1206.2775v3 [cs.DC] 24 Jul 2014

arXiv

Parallel Discrete Event Simulation with Erlang!

Luca Toscano

Gabriele D’Angelo

Moreno Marzolla

Department of Computer Science, University of Bologna
luca.toscano2@studio.unibo.it, g.dangelo@unibo.it, marzolla@cs.unibo.it

Abstract

Discrete Event Simulation (DES) is a widely used technique i
which the state of the simulator is updated by events hapgeni
at discrete points in time (hence the name). DES is used t@mod
and analyze many kinds of systems, including computer @chi
tures, communication networks, street traffic, and othieasallel
and Distributed Simulation (PADS) aims at improving the -effi
ciency of DES by partitioning the simulation model acrosdtipie
processing elements, in order to enable larger and/or nededled
studies to be carried out. The interest on PADS is increasimge
the widespread availability of multicore processors arfidrdéble
high performance computing clusters. However, designarglfel
simulation models requires considerable expertise, thatrbeing
that PADS techniques are not as widespread as they couldh be. |
this paper we describe ErlangTW, a parallel simulation eidere
based on the Time Warp synchronization protocol. ErlangBW i
entirely written in Erlang, a concurrent, functional pragming
language specifically targeted at building distributedeays. We
argue that writing parallel simulation models in Erlang @ne
siderably easier than using conventional programminguages.
Moreover, ErlangTW allows simulation models to be execuied
ther on single-core, multicore and distributed computinthiec-
tures. We describe the design and prototype implementefiéin-
langTW, and report some preliminary performance resultsioh
ticore and distributed architectures using the well knowtORD
benchmark.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniqgues—Concurrent Programming; |.6@rputing

Methodologies]: Simulation and Modeling—Types of Simulation
General Terms Languages, Performance

Keywords Parallel and Distributed Simulation, PADS, Time
Warp, Erlang

1The publisher version of this paper is available at
http://dx.doi.org/10.1145/2364474.2364487. Please cite as
Luca Toscano, Gabriele D’Angelo, Moreno Marzolla. Parallel Discrete
Event Simulation with Erlang. Proceedings of ACM SIGPLAN Work-
shop on Functional High-Performance Computing (FHPC 2012) in
conjunction with |CFP 2012. | SBN: 978-1-4503-1577-7.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

FHPC’12, September 15, 2012, Copenhagen, Denmark.
Copyright(© 2012 ACM 978-1-4503-1577-7/12/09. .. $10.00

1. Introduction

Simulation is a widely used modeling technique, which isligglp
to study phenomena for which a closed form analytical sofuti
is either not known, or too difficult to obtain. There are many
types of simulation: in aontinuous simulation the system state
changes continuously with time (e.g., simulating the teraipee
distribution over time inside a datacenter); idiacrete simulation
the system state changes only at discrete points in timdtyfina
a Monte Carlo simulation there is no explicit notion of time, as it
relies on repeated random sampling to compute some result.
Discrete Event Simulation (DES) is of particular interestice
it has been successfully applied to modeling and analysisasfy
types of systems, including of computer system architest.oom-
munication networks, street traffic, and others. In a DiscEvent
Simulation, the system is described as a set of interactitiges;
the state of the simulator is updated by simulat@ents, which
happen at discrete points in time. For example, in a comméer
work simulation the following events may be defined: (1)wairbf
a new packet at a router; (2) the router starts to processlepac
(3) the router finishes processing a packet; (4) packetrressson
starts; (5) a timeout occurs and a packet is dropped; and.so on
The overall structure of a sequential event-based simuiato
relatively simple: the simulator engine maintains a listjed Fu-
ture Event List (FEL), of all pending events, sorted in noordas-
ing simulation time of occurrence. The simulator executesain
simulation loop; at each iteration, the event with lowerdstampt
is removed from the FEL, and the simulation time is advanoed t
Then, the event is executed, which triggers any combinatidhe
following actions:

e The state of the simulation is updated;

e Some events may be scheduled at some future time;

e Some scheduled events may be removed from the FEL;

e Some scheduled events may be rescheduled for a differest tim

The simulation stops when either the FEL is empty, or some
user-defined stopping criteria are met (e.g., some predefirex-
imum simulation time is executed, or enough samples of eveint
interest have been collected). The FEL is usually impleegtat a
priority queue, although different data structures hawenbmnsid-
ered and provide various degree of efficiericy [18].

Traditional sequential DES techniques may become inappro-
priate for analyzing large and/or detailed models, due ¢oldinge
number of events which can require considerable (wall gltioke
to complete a simulation run. The Parallel and Distributéd-S
ulation (PADS) discipline aims at taking advantage of mader
high performance computing architectures—from massipahgl-
lel computers to multicore processors—to handle large iaafg-
ciently [14]. The general idea of PADS is to partition the siation
model into submodels, called Logical Processes (LPs) wtach
be evaluated concurrently by different Processing Elem@riEs).

http://arxiv.org/abs/1206.2775v3
http://dx.doi.org/10.1145/2364474.2364487

More precisely, the simulation model is described in terfmauti-

ple interactingentitieswhich are assigned to different LPs. Each LP
that is executed on a different PE, is in practice the coataif a
set of entities. The simulation evolution is obtained tlgiothe ex-
change of timestamped messages (representing simulagoisg
between the entities. In order to ensure that causal depeiege
between events are not violated|[19], each receiving entitgt
process incoming events in non decreasing timestamp order.

We observe that multi- and many-core processor architestur
are now ubiquitous; moreover, the Cloud computing paradigm
allows users to rent high performance computing clusters us
ing a “pay as you go” pricing model. The fact that high perfor-
mance computing resources are readily available shouldestig
that PADS techniques—which have been refined to take adyanta
precisely of that kind of resources—are widespread. Unifately,
PADS techniques have not gained much popularity outsidehhig
specialized user communities.

There are many reasons for thatl[10], but we believe that the
fundamental issue with PADS is that parallel simulation Bisdre
currently not transparent to the user. Fidure 1 (a) showéiteatly
simplified) structure of a DES stack. At the higher level weéha
the user-definedimulation model; the model defines the events
and how they change the system state. In practice, the medel i
implemented using either general-purpose programmirguizge,
or languages specifically tailored for writing simulatigesy., Sim-
ula [9], GPSSI[16], Dynam6 [29], Parsét [4], SIMSCRIPTIIE[R
The simulation program depends on some underlginglation
engine, which provides core facilities such as random number gen-
eration, FEL handling, statistics collection and so on. Sineula-
tion engine may be implemented as a software library to betin
against the user-defined model. Finally, at the lower lahel sim-
ulation is executed on some hardware platform, which in ggne
is a general-purpose processor; ad-hoc architecturesalavbeen
considered (e.g., the ANTON supercomputef [31]).

The current state of PADS is similar to Figdré 1 (b). Dif-
ferent parallel/distributed simulation libraries and dielvares
have been proposed (e/sik [24], SPEEDES [32], PRIME [27],
GAIA/ARTIS [11]), each one specifically tailored for a particular
environment or hardware architecture. While hardware idgecy
is unavoidable—shared memory parallel algorithms areglifter-
ent than distributed memory ones, for example—the problera h
is that low level details are exposed to the user, which theze
must implement the simulation model taking explicitly irao-
count where the model will be executed. This seriously brttite
possibility of porting the same model to different platfarm

ErlangTW is a step towards the more desirable situation show
in Figure[1 (c). ErlangTW is a simulation library written irr-E
lang [3], which implements the Time Warp synchronizatiootps
col for parallel and distributed simulationis [17]. Erlarsya con-
current programming language based on the functional jgarad
and the actor model, where concurrent objects interacyisiare
nothing message passing. In this way, the same applicaiopa-
tentially run indifferently on single-core processorsaigd mem-
ory multiprocessors and distributed memory clusters. THang
Virtual Machine can automatically make use of all the avdda
cores on a multicore processor, providing a uniform comcami
tion abstraction on shared memory machines. Also, mulEplang
VMs can provide a similar abstraction also on distributednoey
systems. Thanks to these features, the same ErlangTW sionula
model can be executed serially on single-core processom
currently on multicores or clusters. Of course, perforneandl
depend both on the model and on the underlying architedtore;
ever, preliminary experiments with the PHOLD benchmark (re
ported in Sectioq]5) show that scalability across diffepotessor
architectures can indeed be achieved. Moreover, futussores of

ErlangTW will add support for the adaptive runtime migratiof
simulated entities (or whole LPs) using the serializatieat@ires
offered by Erlang. An approach that, due to many technidél di
culties, is not common in PADS tools but that often speedshap t
simulation execution.

This paper is structured as follows. In Seciidn 2 we reviesv th
scientific literature and contrast our approach to similarks. In
Sectior B we introduce the basic concepts of distributedilsition
and the Time Warp protocol. In Sectiéh 4 we present the archi-
tecture and implementation of ErlangTW. We evaluate théoper
mance of ErlangTW using the PHOLD benchmark, both on a mul-
ticore processor and on a small distributed memory cluptgfor-
mance results are described in Secfibn 5. Finally, cormhssand
future works will be presented in Sectigh 6.

2. Related Works

Over the years, many PADS tools, languages and middlewaxes h
been proposed (a comprehensive but somewhat outdatedtist ¢
be found in[[2D]); in this section we highlight some of the os
significant results with specific attention to the implenagiohs of
the Time Warp synchronization mechanism.

usik [24] is a multi-platform micro-kernel for the implement
tion of parallel and distributed simulations. The micra+ie pro-
vides advanced features such as support for reverse catioputa
and some kind of load balancing.

The Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation (SPEEDES§)|[32] and the WarplV-Ke
nel [33] have been used as testbeds for investigating new ap-
proaches to parallel simulation. SPEEDES is a software dram
work for building parallel simulations in C++. SPEEDES pro-
vides support for optimistic simulations by defining newadgfpes
for variable which can be rolled back to a previous state (as w
will see in Sectiod B, this is required for optimistic simidas).
SPEEDES uses the Qheap data structure for event management,
which provides better performance with respect to coneeati
priority queue data structures. SPEEDES has also been osed f
many seminal works on load-balancing in optimistic synoima-
tion.

DSIM [8] is a Time Warp simulator which targets clusters com-
prised of thousands of processors and that implements sdme a
vanced techniques for the memory management (e.g. Time-Quan
tum GVT and Local Fossil Collection).

We are aware of two existing simulation engines based on the
Erlang programming language: Simg4 [6] and Sim-Dias¢a [1].
Sim94 has been originally developed for military leadgghain-
ing of battalion commanders, and is based on a client-server
paradigm. The server runs the simulation model, while tdien
can connect at any time to inspect or change the simulataie.st
It should be observed that Sim94 implements a conventiomal s
quential simulator, while ErlangTW implements a paralted ais-
tributed simulator based on the Time Warp synchronizatiaiop
col. Sim-Diasca, on the other hand, is a true PADS engineusim
lation models can be executed on multiple execution urits)js
based on a time-stepped synchronization approach. A tiepgpsd
simulation is divided into fixed-length time steps; all extéon
units execute each step concurrently and synchronize édefd-
cuting the next one (see Sectidn 3). Time-stepped simuakatian
be appropriate for systems whose evolution is “naturallgr/eh
by a sequence of steps (e.g., circuit simulation evolvirgpeting
to a global clock). Issues in time-stepped simulationsuidelthe
need to find the appropriate duration of steps, and the highafo
synchronization.

. . X specific Y specific Z specific .)
Simulation Model model model model Simulation Model
ErlangTW Engine
Simulation Engine Engine X Engine Y Engine Z
Erlang VM
Single Core Multicore Single Core Multicore
Hardware CPU CPU HPC Cluster CPU cPU HPC Cluster
(a) (b) (c)
Figure 1. Layered structure of discrete-event simulators
A recent work|[1R] investigated the use of the Go programming L Event Queve |
languadé to implement an optimistic parallel simulator for mul- \

ticore processors. The simulator, called Go-Warp, is basethe
Time Warp mechanism. Go provides mechanisms for concurrent]]]]]
execution and inter-process communication, which fadgitthe
development of parallel applications. Like Erlang, allsbenech-
anisms are part of the language core and are not provided-as ex
ternal libraries. However, Go-Warp can not be executed ois-a d
tributed memory cluster without a major redesign; with teispect,
ErlangTW represents a significant improvement, since timi-si
lator runs without any modification on both shared memory and
distributed memory architectures. To the best of our kndgse The term “parallel simulation” is used if the PE have access t
Erlang has not been used to implement a Time Warp simulation common shared memory, or in presence of a tightly couples-int
engine. connection network. Conversely, “distributed simulatisused in
case of loosely coupled architectures (i.e. distributechorg clus-
ters) [25]. In practice, modern high-performance systeraoften
hybrid architectures where a large number of shared memaly m
tiprocessors are connected with a low latency network. dfbeg,
the term PADS is used to denote both approaches.

It is important to observe that, even if a shared system state
is indeed available on shared memory multiprocessor, tie &
still partitioned across the PE in order to avoid race caoiakt and
improve performance.

j Entity

Communication

/ Network

Figure2. Components of a PADS system

3. Distributed Simulation

A Parallel and Distributed Simulation (PADS) can be definetea
simulation in which more than one processor is employled]. [R5
already observed in the introduction, there are many ressfeome-
lying on PADS: to obtain results faster, to simulate largemsrios,
to integrate simulators that are geographically disteduto inte-
grate a set of commercial off-the-shelf simulators and topose
different simulation models in a single simulator![15].

The main difference between sequential simulation and PADS
is that in the latter there is no global shared system staRABS
is realized as a set @htities; an entity is the smallest component
of the simulation model, and therefore defines the modeésgr
larity. Entities interact with each other by exchangingeastamped
events. Entities are executed inside containers calledEdsh LP
dispatches the events to the contained entities, and atsevath
the other LPs for synchronization and data distributiorprictice,
each LP is usually executed by a PE (e.g., a single core inmode
multicore processors). Each LP notifies relevant eventtier &.Ps
by sending messages using whatever communication medium is
available to the PEs. Each message is a paif), wheree is a
descriptor of the event to be processed, aisthe simulation time
at whiche must be processed. Of course, the message header in
cludes additional information, such as the ID of the origpnand
destination entities.

Model partitioning Partitioning the model is nontrivial, and in
general the optimal partition strategy may depend on thetire
and semantic of the system to be simulated. For example, in a
wireless sensor network simulation where each sensor nadle c
interact only with neighbors, it is reasonable to partitibe model
according to geographic proximity of sensors. Many cornifiget
issues must be taken into account when partitioning a stonla
model into LPs. Ideally, the partition should minimize theaunt

of communication between PEs; however, the partition gshaldo

try to balance the workload across different PEs, in ordexvtmd
bottlenecks on overloaded PEs. Finally, it is necessarpmnsider
that a fixed partitioning scheme may not be appropriate, whgen
the interactions among LPs change over time. In this scgrsoime
form of adaptive partitioning should be employed but thisttee

is not provided by most of currently available simulators.

Synchronization The results of a PADS are correct if the outcome
The situation is illustrated in Figufd 2. Each LP containgfa s is identical to the one produced by a sequential executiowhich
of entities, and a queue of events which are to be executetleby t all events are processed in nondecreasing timestamp onger (
local entities. The event queue plays the same role of the FEL assume that we can always break ties to avoid multiple ewents
of sequential simulations: the LP fetches the event withefow occur at the exact same simulation time). In PADS, eachhkd®ps
timestamp and forwards it to the destination entity. If aritgn a local variableLVT; called Local Virtual Time (LVT), which
creates an event for a remote entity, the LP uses an undgrlyin represents the (local) simulation time. LRan process message
communication network to send the event to the correspandin (¢, e) if t > LVT;; after executing the event the LVT is set tof.
remote LP. It should be observed that the LVT of each LP advances at a
different rate, due to load unbalance or communicationydel®his
may cause problems, such as the one shown in Figure 3. We depic

%http://golang.org/

http://golang.org/

6 7 10

»LP

<6, e> <7, e,> <10, e>

27
i LP
2
7 10

<8, e4>
LP
3

6 8

Figure3. An example of causality violation

the timelines associated to three LE€?;, LP2> and LPs. The
numbers on each timeline represents the LVT of each LP. Asrow
represent events; for simplicity, all messages are timgsta with
the sender’s LVT.

When LP receives(7, e2) from LP1, it setsLVT, = 7 and
executes the event. Then,L P, advances its LVT to 10, and sends
anew messag@o, e3) to LP;. After that, messagg, e4) arrives
from LP3; e4 can not be executed, sindd/T'; has already been
advanced to 10. MoreoveL, P, sent out a messaggo, es) for
eventes, which may or may not have been generated sheuld
have been executed before in the correct order, befpre

Figure[3 shows an example chusality violation [19]. Two
events are said to be in causal order if one of them can have som
consequences on the other. In PADS, different synchraaizat
strategies have been developed to guarantee causal grdsrin
eventstime-stepped, conservative andoptimistic.

In a time-stepped simulation, the time is divided in fixed-size
steps, and each LP can proceed to the next timestep only whe
all LPs have completed the current one [34]. This approaghite
simple, but requires a barrier synchronization at each gtemver-
all simulation speed is therefore always dominated by tbhe/-sl
est LP. Furthermore, defining the “correct” value of the sie@
can be difficult if not impossible for some models.

The conservative approach prevents causality violations from
occurring. A LP must check that no messages from the pastrean a
rive, before executing an event. This is achieved using tren@y-
Misra-Bryant (CMB) [22] algorithm, which imposes the foliing
constraints: i) each LP has an incoming queue for all other LPs
from which it can receive messages) ach LP must generate
events in non decreasing timestamp order) the delivery of the
events is reliable (no message can be lost) and the netwakx do
not change the message order. Under these assumptiond,Rach
checks all the incoming queues to determine what is the gt s
event to be processed. If there are no empty queues, therctra
ing event with lower timestamp is safe and can be executefbhrin
tunately, this mechanism is prone to deadlock, since a LFhoan
identify the next safe event if all incoming queues are ngotgnTo
avoid this, the CMB algorithm introduces a new type of messag
(called NULL messages) with no semantic content. The reoéip
a NULL messaget, NULL) informs the receiver that the sender
has set its LVT ta, and hence will not send any event with times-
tamp lower thart. NULL messages can be used to break dead-
locks, at the cost of increasing the network load. Moreayenera-
tion of NULL messages requires some knowledge of the sinoulat
model, and therefore can not be transparent the user.

Finally, the Time Warp protocol [17] implements the so odlle
optimistic synchronization approach. In Time Warp, each LP can
process incoming events as soon as they are received. Glyiou
causality violations may happen, and special actions neithen
to fix them. If a LP receives a message (calkbchggler) with
timestamp smaller than some event already processed, itroilis

o produce NULL messages, while optimistic mechanismsese

back the computations for these events and re-execute thém i
proper order. The problem is that some of the events to benendo
might have sent messages (events) to other LPs (@@.¢3) in
Figure[3). These messages must be invalidated by sending- cor
spondinganti-messages. The recipient of an anti-messagg é)
must roll back its state as well, which might trigger a cascafl
rollbacks that brings back the simulator to a previous stdite
carding the incorrect computations that have been perfdrme

In order to support rollbacks, each LP must keep a log of all
processed events and all messages sent, together withfanyaa
tion needed to undo their effects. Obviously, logging atl amery
event since the beginning of the simulation is infeasible t the
huge memory requirement. For this reason, the simulatdodtier
cally computes the Global Virtual Time (GVT), which is a lawe
bound on the timestamp of any future rollback. The GVT is $ymp
the smallest timestamp among unprocessed and partiagpsed
messages, and can be computed with a distributed snapsjost al
rithm [15]. Once the GVT has been computed and sent to all LPs,
logs older than GVT can be reclaimed. GVT computation can be
a costly operation, since it usually involves some form ét@dall
communications. Therefore, finding the optimal frequentths
operation is a critical aspect of Time Warp and typically¢thesen
frequency is the result of a tradeoff between memory consiomp
for the logs and simulation speed. However, when the uniteyrly
execution architecture provides efficient support for otidun oper-
ations, the GVT computation does not add too much overheatd, a
the Time Warp protocol can achieve almost linear speedup eve
very large setup$ [26].

Optimistic synchronization offers some advantages wispeet
to conservative approaches: first, optimistic synchrdmirds gen-
erally capable of exploiting a higher degree of parallefisetond,
conservative simulators require model specific infornmaiimoorder

reliant on such information (although they can exploit iaifail-

able) [13].

4. TheErlangTW Simulator

Erlang is a functional, concurrent programming languagseta
on lightweight threads (LWT) and message passing. This sake
it well suited for developing parallel applications both simared
memory multicore machines and on a distributed memory etust
An Erlang program is compiled to an intermediate represiemta
called BEAM, which is executed on a Virtual Machine. If Syntme
ric Multiprocessing is enabled, the VM creates a separdtedider

for each CPU core; each scheduler fetches one ready LWT from a
common queue and executes it. Tégawn function can be used
to create a new thread executing a given function. The VM will
take care of dispatching threads to active schedulers. adigtat
there is no 1:1 mapping between LWT and OS threads facsgitate
the work of the developer, since the VM takes care of balanttie
load across the available processors.

Each LWT has an identifier that is guaranteed to be unique
across all VM instances, even those running on differentshos
connected through a network. The identifier can be used by
send/receive primitives, which are provided directly bg {an-
guage itself and do not require external libraries.

The ErlangTW Simulator is an implementation of the Time
Warp algorithm described in Sectiéh 3. Although Time Warp re
quires fairly sophisticated state management capakilitisupport
rollbacks and antimessages, it turned out that this (fdiinyted)
complexity is paid back by the fact that Time Warp does not re-
quire ad-hoc modifications of simulation models (e.g., tmpate
NULL events).

Message Format Messages exchanged between LPs are repre- init_model_state,

sented using the record data type, providing the abstractica samadi_find_mode,
key-value tuple. Messages have the following structure: samadi_marked_messages_min,
messageSeqgNumber,

-record(message, {type, status}).

seqNumber,

1pSender, where:

1pReceiver, my_id is the unique identifier of the LP;

payload,

timestamp}) . received_messages is the list of unprocessed messages, read from

) the process mailbox;
The type field represents the message type; current types are:

event (normal event)ack (acknowledgement to ensure reliable de-
livery of messages)narked_ack (special kind of acknowledgement

inbox_messages is the incoming message queue containing unpro-
cessed messages;

required by the Samadi’s algorithm, described later), amidnes- proc_messages is a data structure which contains, for each pro-
sage (used during rollbackskeqNumber is a numeric value repre- cessed event, the list of messages sent by that event toeemot
senting how many messages the sender LP haslyfceiver entities. This data structure is required to perform raksa
and 1pSender are the unique identifiers of the sender and re- when necessary, because it contains the event to repraugss a
ceiver LP.payload is the actual content of the message, describ- the antimessages to send;

ing the event to process and all ancillary data. Finaliyjestamp to_ack_messages is a list of events, sorted in nondecreasing times-

is simulated time associated to the event contained in thiega.
The simulator needs to acknowledge messages in order te guar
antee the correctness of its global state, because eaclageeiss]) o
the System must be taken into account by one LP Only. The Er- mOdQl_S[at(_% IS the User'deﬁned structure Conta|n|ng the state Of the
lang VM guarantees message delivery, but only from an LWT to Simulation model;
another one’s mailbox, therefore this could lead to theasibn in timestamp is the LVT;
which an LP has received a particular message but it hasneaici
read it, so it is unaware of its presence. Conversely oncePareL
ceives an acknowledge for a message it knows that it hasdgirea
been taken into account by the receiver. An example of glsiaaé
is the Global Virtual Time, explained in the following.

Here an example of a message:

tamp order, related to the messages sent by the LP still to be
acknowledged;

history is the list of processed events, used by the Time Warp
protocol to perform rollbacks when necessary. Each elewfent
the list is a tuple of the forrjTimestamp, modestate, Evertt,
and record the state of this LP at the given simulation time,
before the Event has been processed. A tuple is added to the
history after an event has been extracted fiabox_messages

#message{type=event/ack/marked_ack/antimessage, and executed,
seqNumber=100, samadi_* data structures needed in order to implement the Samadi’s
1pSender=<100,0,0>, GVT algorithm, as stated in the next paragraph.
1pReceiver=<100,1,0>,
payload="hello", Implementing Simulated Entities As already described in Sec-
timestamp=103} tion[3d, a LP is a container of simulation entities. Each grist

the representation of some actor or component of the “rgal” s
Event Queue Each LP maintains a priority queue of incoming tem. By decoupling LPs from entities, the simulation mocetan
messages sorted in nondecreasing timestamp order. Thédiiede avoid dealing with partitioning; however, if more controles the
the message with lower timestamp from the queue and, if the simulator is desired, the modelers can implement their avatom
message is not a straggler, immediately executes the asstci partitioning by working at the LP level.
event. The queue is implemented as an Andersson General Bal- In ErlangTW there is a layer between LP and entities, in otaler

anced Tre€ [2]. The tree contains (Key, Value) pairs, whezekiey implement the separation of concerns described above. Tite m

is the simulation time, and the Value is a list of events whach eler implements three methods in a particular Erlang mockiled
scheduled to happen at that time (ErlangTW supports simedias user; these methods define the actions executed by each LP dur-
events, i.e., multiple events happening at the same sietitahe). ing initialization, event processing, and terminatione TPHOLD

model (described in Sectidd 5) uses an initialization fiomcto
evenly partition the entities between the running LPs. Tvene
processing function implements the behavior executed bly ea-
tity upon receipts of a new message. Finally, the termindiimc-
tion is normally used to display or save simulation resuitstber
information at the end of each simulation run. Each message ¢
tains a field callegpayload that could transport any kind of user-
defined data. As a specific example, the event data structacthy
the PHOLD model to manage entities has the following stmectu

Logical Processes Each LP is implemented as an Erlang LWT
created using thepawn function. LPs communicate using teend
andreceive operators. The state of an LP is kept in a record with
the following structure:

-record(lp_status, {my_id,
received_messages,
inbox_messages,
max_received_messages,
proc_messages,
to_ack_messages,
anti_messages,

-record(payload,
{entitySender, entityReceiver, valuel}).

current_event, and can be instantiated, for example, as follows:
history, gvt,

rollbacks, #payload{entitySender=10,

timestamp, entityReceiver=122,

model_state, value=42}

In this example entity 10 has sent a message to the entity 122

with a payload containing the integer 42. In the current enpén-
tation of ErlangTW, where the allocation of entities on LPssin
be manually defined, the user specifies a mapping functioohwhi
is used by ErlangTW to deliver message to the appropriatdriLP.
future versions we plan to implement some automatic aliocat
mechanism and to provide this binding transparently.

Global Virtual Time The Global Virtual Time is calculated with
Samadi’s algorithm[[30]. One LWT, called GVT Controller, is
responsible to periodically checking the smallest timagtaf all
events stored in the queues of all LPs; the GVT controllelss a
responsible for starting and stopping the simulation. endtirrent
version of ErlangTW, the GVT controller periodically brazsts

a GVT computation request message to all LPs; each LP sends

back the value of the LVT such that the controller can compute
the GVT as the minimum of these values. The GVT is finally sent
to all LPs, which can then prune their local history by remgvall
checkpoints older than the GVT.

In practice, the calculation of the GVT is complex given that

some messages could be in flight when the sender and/or the re-

ceiver LPs are reporting their LVT. Ignoring these messagmsdd
result in a wrong (overestimated) GVT and hang the whole simu
lation. The solution proposed by Samadi is to add an ackrigwle
ment for each message used for the GVT calculation, to pisoper
identify in flight messages and to decide what LP must takenthe
in account.

In future versions of ErlangTW we plan to compute the GVT
using a more scalable reduction operation.

Random Number Generation The pseudo random number gen-
erator used by each simulated entity is the Linear Congialent
Generator described by Park and Miller inl[23]. The initiakd
can be stored in a configuration file which is read by ErlangTW
before starting the simulation run. Each entity within theng LP
shares a common random number generator, whose seedadk initi
ized with the seed in the configuration file. In this way it ispible

to start the simulator in a known state, to achieve detesmrand
repeatability.

5. Performance Evaluation

In this section we evaluate the scalability of ErlangTW,hboh
shared memory and distributed memory architectures, wssym-
thetic benchmark called PHOLD _[14], which is specifically- de
signed for the performance evaluation of Time Warp implemen
tations.

The PHOLD Benchmark PHOLD is the parallel version of the
HOLD benchmark for event queuds|[18] and it is quite simple to
implement and describe. The model is made by a sét efitities
that are partitioned amonf LPs; each LP contains the same num-
ber E/L of entities. Each entity produces and consumes events.
When an entity consumes an event, a new event is generateié-and
livered to another entity (note that the total number of ¢évé@mthe
system remains constant). The timestamp of the new eveatris ¢
puted by adding an exponentially distributed random numbtr
mean 5.0 to the timestamp of the receiving event. In this inbhee
recipient is randomly chosen using a uniform distributidhere-
fore, each event has a probability Z of being sent to an entity
in the same LP as the originator, and a probability— 1)/L of
being sent to an entity on a different LP. As the numbef LP in-
creases, the ratio of remote vs local events increases. HibeB

Number of LPs{) 1,...,8 (shared memory)

1, 2, 3, 6 (distributed memory)
840, 1680, 2520, 3360

0.5

1000, 5500, 10000 FPops

Number of entities £)
Event Density(p)
Workload

Table 1. Parameters used in the simulations

inal version) does require a good level of balancing to obgaiod
performance results|[7.110]. Hence, the goal of PHOLD istdt
the scalability of Time Warp implementations by considgram
appropriate execution environment.

There are four main parameters which are used to control the
benchmark:

e The numbet of LP
e The number¥ of entities

e The event density p, 0 < p < 1, defined as the fraction of
entities that generate an event at the beginning of the atioal
At each simulation time there apd” events in the system

e Theworkload, used to tune the computation / communication
ratio by running some CPU-intensive computation each time a
event is processed. In our case, we implemented the workload
as a pre-defined number of floating point operations (FPops)

Experimental Setup Table[1 shows the parameters which have
been used in the simulation runs. We tested ErlangTW both on a
shared memory and on a distributed memory architecture.

The number of entitie& has been chosen as multiples of 840,
which is the minimum common multiple of the number of LPs we
considered (i.e., 840 is an integer multiple of all integiershe
rangel, ..., 8). This ensures that the number of entities allocated
to each LPE/L, is an integer.

As already described, the event density has been set to 0.5,
which means that, at a given time, the average number of guent
the system i9.5 x E. We considered three different workloads of
1000, 5500 and 10000 Floating Point Operations. FinalyGN'T
is computed every 5 seconds.

We measured the wall clock time of a simulation run until
the GVT reaches 1000. In order to produce statisticallydves-
sults, we perform 30 runs for each experiment, and compue th
average of each batch. We investigate the scalability afrigimwW
by computing the speedup as a function of the nunibef LP.

ErlangTW on Shared Memory The shared memory system
(gda i7) is an Intel(R) Core(TM) i7-2600 CPU 3.40GHz with
4 physical cores with Hyper-Threading (HT) technologyl [21]
The system has 8 GB of RAM and runs Ubuntu 12.04 (846
GNU/Linux, 3.2.0-24-generic #39-Ubuntu SMP). For thisteys
we considered several values fornamelyL = 1,...,8 LPs. HT
works by duplicating some parts of the processor except #ie m
execution units. From the point of view of the Operating 8yst
each physical processor core corresponds to two logicabgewrs.
The impact of virtual cores on PADS is worth investigatiof12]
and will be reported in the following.

Figure[4 shows the speedu, as a function ofZ; recall that
St = T1/Tr, whereT, is the wall clock simulation time when
n LPs are used. In each figure we consider a specific value for
the workload, and we plot a curve for each number of entities
E. As a general trend we observe that scalability improvedas t
number of entities gets large; also, scalability improvesgmally

benchmark is homogeneous in terms of load assigned to the LPsif the workload (FPops) increases. Figlile 5 shows the effiyie

all of them have the same amount of communication and computa
tion. While this can be unrealistic for general simulatioodals, it
is important to remark that the Time Warp mechanism (in iig-or

Eff . = Sr/L as a function ofL. The efficiency is an estimate of
the fraction of actual computation performed by all prooessas
opposed to communication and synchronization.

Host CPU Physical Cores HT RAM Operating System Network

gda i7 Inteli7-2600 3.40GHz 4 Yes 8GB GNUI/Linux Kernel 3.2 (x86 64)Not used
cassandra Intel Xeon 2.80GHz 2 Yes 3GB GNU/Linux Kernel 2.6 (x86 32) &hi Ethernet
cerbero Intel Xeon 2.80GHz 2 Yes 2GB GNU/Linux Kernel 2.6 (x86 32) &hit Ethernet
chernobog Intel Xeon 2.40GHz 4 No 4GB GNUI/Linux Kernel 2.6 (x86 64) GhgeEthernet

Table 2. Experimental testbeds (top: shared memory; bottom: Higed memory)

Workload = 1000 FPops

Workload = 5500 FPops

Workload = 10000 FPops

Linear speedup - - - - - Linear speedup - - - - - L Linear speedup - - - - -
8l 840 entities —+— 4 8l 840 entities —+— sk 840 entities —+—
1680 entities —¢— 1680 entities —— I 1680 entities ——
2520 entities —*— 2520 entities —*— . 2520 entities —*— .
T 3360 entities —=— b r 3360 entities —=— Tr 3360 entities —&—
6| 1 6| 6
Q . Q . ’ [=3 e ’
2 st 1 2 st s st
@ 3 @
3 4+ - - 3 4+ - I3 4+ -
%] \B/a—_e/a %] %)
2k E 2k N . 2t N
1t g 1t 1t
Physical Cores Virtual Cores Physical Cores Virtual Cores Physical Cores Virtual Cores
| N M | N L | N M | | N | | N M | | h |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of LPs Number of LPs Number of LPs
Figure4. Speedup on the shared memory architecture as a functioe oftinber of LPs (higher is better)
Workload = 1000 FPops Workload = 5500 FPops Workload = 10000 FPops
14 12 1.2
840 entities —+— 840 entities —+— 840 entities —+—
1680 entities —— 1680 entities —<— 1680 entities ——
12 2520 entities —%— 1L 2520 entities —%— 1Lk 2520 entities —»— |
3360 entities —&— 3360 entities —&— 3360 entities —&—
1| 4
0.8 08
3 o8} g g 3
3 3]
3 3 0.6 3 0.6
| | g E \—x-\#‘,,
04 04
04| R
02 F J 02 02
0 | | | | | | | | 0 | | | | | | | | 0 | | | | | | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of LPs Number of LPs Number of LPs
Figure5. Efficiency on the shared memory architecture as a functidghehumber of LPs (higher is better)
Workload = 1000 FPops Workload = 5500 FPops Workload = 10000 FPops
3500 3500 3500
840 entities —+— 840 entities —+— 840 entities —+—
1680 entities —— 1680 entities —— 1680 entities ——
3000 [2520 entities —%— 1 3000 [2520 entities —*— 3000 2520 entities —*—
3360 entities —&— 3360 entities —&— 3360 entities —&—
» 2500 B » 2500 «» 2500
2 2 2
S S S
I I &
k- k- S
H 2000 B = 2000 5 2000
5 5 s
8 1500 [1 & 1s00f 8 1500 |
5 5 5
Z 1000 } Physical Cores Virtual Cores , Z 1000 F Physical Cores Virtual Cores Z 1000 | Physical Cores Virtual Cores
500 B 500 500
0 | | | | | | 0 " | | | | | 0 * | | | | |

1 2 3 4 5 6 7
Number of LPs

®

1 2 3 4 5 6 7 8
Number of LPs

1 2 3 4 5 6 7 8
Number of LPs

Figure6. Total number of rollbacks on the shared memory architeciara function of the number of LPs (lower is better)

ErlangTW exhibits good scalability and efficiency uplic= 4,

noticeable drop of the speedup (and therefore in the effigien

since in this case each LP can be executed on a separategbhysic which is easily explained by the effect of HT. Whén = 5,

processor core. The transition from = 4 to L = 5 shows a

one of the physical CPU cores executes two LPs and becomes

the bottleneck. The Time Warp protocol works well when the
workload is well balanced, but degrades significantly if fpbts
are present[7].

To better understand this, we report in Figlle 6 the mean tota
number of rollbacks which occurred during the whole simafat
run. A large number of rollbacks indicates that the LVT at the
individual LPs are advancing at different rates. The PHOL®iel
is balanced by construction, since all entities perforrmiidal
tasks and are uniformly distributed across the LPs. FromrE[@
we see that the number of rollbacks increases in the refica
1,...,4; if L 1 no rollbacks happen, since all events are
managed through the event queue of a single LP, so that dgusal
is always ensured. Adding more LPs increases the posgibilit
receiving a straggler. Froth = 4 to L = 5 load unbalance occurs
and the number of rollbacks sharply increases. The LPs mgnni

ernet protocol which suffers from non negligible latencgt&lfrom
Figurel® that scalability and efficiency are particularlpptor low
workload intensities (1000 and 5500 FPops) and for low nurabe
entities. In these situations PHOLD is communication bowmdi
the latency introduced by the commodity LAN severely impast
the overall performance.

Since our cluster includes heterogeneous machines, thade |
is not evenly balanced across the LPs, and this generategea la
number of antimessages. In Figliré 10 we plot the mean totat nu
ber of rollbacks as a function of the number of LPSThe number
of rollbacks sharply increases from= 2 to L = 3, and this can
be explained by the fact that fenssandra andcerbero have a
similar hardware configuration, whilehernobog (which is used
whenL = 3 and L = 6) is much more powerful. As in the shared
memory case, the faster LPs is prone to produce a large nushber

on the overloaded processor core lag behind the other LRIs, an stragglers which generate a cascade of rollbacks.

a large number of antimessages is produced to undo the gpdate

performed by the faster LPs. As the number of LPs furtheeiase,
we observe that the number of rollbacks decreases, sinsgstem
becomes more and more balanced.

In practice it is extremely difficult, if not impossible, toasi-
cally partition a PADS models such that the workload is bedah
across the LP, since the computation / communication ratio c
change during the simulation. If detailed knowledge of timeus
lation model is not available in advance, as it is the caset wios
the times, it is necessary to resort to adaptive entity rtigmaech-
niques to balance the LEs [11]. It is worth mentioning thaufiy
offers native support for code migration, which greatly giifiy the
implementation of such techniques; this will be the focu$uare
extensions of this work.

ErlangTW on Distributed Memory The distributed memory sys-
tem is the research cluster of the PADS group at the Uniyersit
of Bologna. We used three machinegssandra, cerbero and
chernobog whose configuration is shown in Tadlé 2. We per-
formed experiments witl. = 1,2,3,6. For L = 1, the LP ex-
ecuted orrassandra; for L = 2, one LP executed otassandra
and the other one onerbero. For L. = 3 we run a single LP
on each of the three machines. Finally, when= 6 we executed
two LPs on each of the three machines.

6. Conclusion and future work

In this paper we described ErlangTW, an implementation ef th
Time Warp protocol for parallel and distributed simulasample-
mented in Erlang. ErlangTW allows the same simulation méalel
be executed (unmodified) either on single-core, multico dis-
tributed computing architectures. We described the pyptim-
plementation of ErlangTW, and analyzed its scalability onuati-
core, shared memory machine and on a small distributed nyemor
cluster using the PHOLD benchmark.

Results show that Erlang provides a good framework to build
simulators, thanks to its powerful language features amnaliali
machine facilities; furthermore, Erlang’s transparenssage bro-
kering system greatly simplifies the development of comjlisx
tributed applications, such as PADS. Performance of the [HHO
benchmark show that scalability and efficiency on shared ongm
architectures are very good, while distributed memoryigectures
are less friendly—performance wise—to these kinds of egfiins.

As seen before, the communication overhead of the disatbut
execution environment has a big impact on the simulatoroperf
mances and the Time Warp synchronization algorithm reaactk/b
to imbalances in the execution architecture (e.g. CPUs vétly
different speeds or presence of background load). Botle thexb-

Figure[T shows the speedup of the PHOLD model, measured |ems can be addressed using nice features provided by Etteng

on our distributed memory cluster. Thanks to the Erlanglagg,
it was possible to execute the exact same implementationhwhi

serialization of objects and data structures, and code atidgr.
Thanks to this, it is possible to implement the transfer afisi

was tested on the shared memory machine. Again, each value iSated entities across different LPs or even moving a wholeohP

obtained by averaging 30 simulation runs. The most prontinen
feature of these figures is the superlinear speedup whictrecc
with L = 2 andL = 3 LPs. As in most of these situations,
this superlinear speedup can be explained by the fact tlat th
machine used for the test with = 1 (cassandra) has limited

a different CPU, all at runtime. In this way, the ErlangTW slax
tor would be able to reduce the communication cost by adealgtiv
clustering highly interacting entities within the same IFRrther-
more, it will be possible to implement other advanced forris o
load-balancing(11] to speed up the execution and to reduee t

memory, and therefore makes use of virtual memory during the nymper of roll-backs. This will permit the implementatiohnew

simulation. To confirm this hypothesis, we reduced the arnofin
memory required by the PHOLD model by reducing the wall clock
time between GVT calculations. Recall from Sec{ion 3 thateo

the GVT is known, each LP can discard logs for events executed

before the GVT, since these events will be never rolled back.
Therefore, increasing the frequency of GVT calculationultssin
a reduced memory footprint of the simulation model, at th&t ob

adaptive simulators that can change their configurationratme.
To further enhance the performance of ErlangTW, we will eitpl
additional parallelization of the LP, by decoupling me&salis-
patching from entity management using separate LWT.

Sour ce Code Availability

a higher number of communications. The test shown in Figlire 7 The ErlangTW Simulator is released under the GNU General Pub

were done with the GVT computed every 6f wall clock time;
reducing this interval to 4 produces the more reasonable results
shown in FiguréB.

Scalability on the distributed memory cluster is quite paw
confirmed by the efficiency shown in Figurk 9. This result can b
explained by observing that PADS applications often exHd
computation / communication ratio, and in our distributezhmory
testbed the communication network uses the standard Gigtbi

lic License (GPL) version 2 and can be freely downloaded from
http://pads.cs.unibo.it/

References
[1] Sim-Diasca’http://www.sim-diasca.org/} 2012.

[2] A. Andersson. General balanced tre@sAlgorithms, 30(1):1-18, Jan.
1999. ISSN 0196-6774. doi: 10.1006/jagm.1998.0967.

http://pads.cs.unibo.it/
http://www.sim-diasca.org/

Workload = 1000 FPops

1 2 3 4 5 6
Number of LPs

Workload = 5500 FPops

1 2 3 4 5 6
Number of LPs

Workload = 10000 FPops

Linear speedup - - - - - Linear speedup - - - - - Linear speedup - - - - -
840 entities —+— - 840 entities —+— - 840 entities —+—
- 1680 entities —¢— 1 - 1680 entities —¢— E 6 1680 entities ——
2520 entities —*— . 2520 entities —*— . 2520 entities —»—
3360 entities —&— 3360 entities —&— 3360 entities —&—
L 4 L 4 5L
g af i 5 af i g4t
k=1 k=1 =1
@ 3 @
[[Q
Q Q Q
@ r b @ r b (2
L 4 L 4 2L
L 4 L 4 1l
| | | | | | | | | | | | | | | | | |

1 2 3 4 5 6
Number of LPs

Figure 7. Speedup on the distributed memory cluster as a functioneohtimber of LPs (higher is better); the GVT is computed every 5

of wall clock time

Workload = 1000 FPops

Workload = 5500 FPops

Workload = 10000 FPops

Linear speedup - - - - - Linear speedup - - - - - Linear speedup - - - - - .
840 entities —+— - 840 entities —+— - 840 entities —+— L
- 1680 entities —¢— I 1 6 1680 entities —¢— o E 6 1680 entities —— L
2520 entities —»*— . 2520 entities —»*— . 2520 entities —»— .
3360 entities —=— L 3360 entities —&— L 3360 entities —&— L
L . i 51 . i 5L T
g af i 5 af 1 54
3 . =] e = -
o i 3 . Q .
g . 3 - g ®
2] [L - 7 2] 3 L - h " 3F L. -
B) 2r) 2r m//‘a
- i L L L L L L L L L L L L L L L L L L
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Number of LPs Number of LPs Number of LPs

Figure 8. Speedup on the distributed memory cluster as a functioneohtimber of LPs (higher is better); the GVT is computed every 1

of wall clock time

Workload = 1000 FPops

Workload = 5500 FPops

Workload = 10000 FPops

1 1 1
840 entities —+— 840 entities —+— 840 entities —+—
1680 entities —— 1680 entities —— 1680 entities ——
2520 entities —*— 2520 entities —*— 2520 entities —*—
0.8 | 3360 entities —&— 0.8 3360 entities —&— 0.8 3360 entities —&—
> 06 T > 06 T > 06 B
9 9 9
c c c
k) k)]
5 5 =
= = =
w04} E w04t} E wooa} E
02 B 02 B 02 B
0 | | | I 0 | | | | 0 | | | |
1 2 3 6 1 2 3 6 1 2 3 6

Number of LPs Number of LPs Number of LPs

Figure9. Efficiency on the distributed memory cluster as a functiothefnumber of LPs (higher is better)

DS-RT.2006.18.

[6] B. Carlson and S. Tronje. Sim94—a concurrent simulatorpian-
driven troops. Technical report, Uppsala Universitet, &sve Feb. 15
1995.

[7] C. D. Carothers and R. M. Fujimoto. Efficient executiortiofe warp
programs on heterogeneous, NOW platformEEE Trans. Parallel
Distrib. Syst., 11(3):299-317, Mar. 2000. ISSN 1045-9219. doi:
10.1109/71.841745.

[8] G. Chen and B. Szymanski. DSIM: scaling time warp to 1,033
processors. |&mulation Conference, 2005 Proceedings of the Winter,
page 10 pp., dec. 2005. doi: 10.1109/WSC.2005.1574269.

[3] J. Armstrong.Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007. ISBN 193435600X, 978193435600

[4] R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, J. & and
H. Y. Song. Parsec: a parallel simulation environment fanglex
systems.Computer, 31(10):77 —85, oct 1998. ISSN 0018-9162. doi:
10.1109/2.722293.

[5] L. Bononi, M. Bracuto, G. D’Angelo, and L. Donatiello. Rboring
the effects of Hyper-Threading on parallel simulationPhoceedings
of the 10th |EEE international symposium on Distributed Smulation
and Real-Time Applications, pages 257-260, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2697-7. doi: 1094

Workload = 1000 FPops

Workload = 5500 FPops

Workload = 10000 FPops

840 entities —+—
1680 entities ——
2520 entities —*—
3360 entities —&—

840 entities —+—
1680 entities —— 1
2520 entities —*—
3360 entities —&—

5000 - 5000

1 4000

4000 -

3000 - 3000 -

Total roll backs
Total roll backs

2000 - 2000 -

1000 B 1000

L 0 L

840 entities —+—
1680 entities —— 1
2520 entities —*—
3360 entities —&—

1 5000

1 4000

3000

Total roll backs

2000

B 1000

L L L 0

6 1 2 3

Number of LPs

Number of LPs

4 5 6

Number of LPs

Figure 10. Total number of rollbacks on the distributed memory clusiei function of the number of LPs (lower is better); the GVT is

computed every d.of wall clock time

[9] O.-J. Dahl and K. Nygaard. SIMULA: an ALGOL-based sintida
language. Commun. ACM, 9(9):671-678, Sept. 1966. ISSN 0001-
0782. doi: 10.1145/365813.365819.

[10] G. D’Angelo. Parallel and distributed simulation fromany cores
to the public cloud. IrHigh Performance Computing and Smulation
(HPCS), 2011 International Conference on, pages 14-23, July 2011.
doi: 10.1109/HPCSim.2011.5999802.

[11] G. D’Angelo and M. Bracuto. Distributed simulation @frge-scale
and detailed modeldnternational Journal of Smulation and Process
Modelling (IJSPM), 5(2):120-131, 2009. ISSN 1740-2123.

[12] G. D’Angelo, S. Ferretti, and M. Marzolla. Time warp dretGo. In
Proc. Smutools 2012 - Fifth International Conference on Smulation
Tools and Techniques, pages 249-255, Desenzano, Italy, Mar.19 2012.

[13] R. M. Fujimoto. Parallel discrete event simulation. Rroceedings
of the 21st conference on Winter simulation, WSC '89, pages 19-28,
New York, NY, USA, 1989. ACM. ISBN 0-911801-58-8.

[14] R. M. Fujimoto. Performance of time warp under synthetorkloads.
In Proc. SCSMulticonference on Distributed Smulation, pages 23-28,
1990.

[15] R. M. Fujimoto. Parallel and distributed simulation systems. Wiley
series on parallel and distributed computing. Wiley, 200(6BN
9780471183839.

[16] G. Gordon. The development of the general purpose sitionl System
(gpss). S GPLAN Not., 13(8):183-198, Aug. 1978. ISSN 0362-1340.
doi: 10.1145/960118.808382.

[17] D. R. Jefferson. Virtual timeACM Trans. Program. Lang. Syst., 7(3):
404-425, July 1985. ISSN 0164-0925. doi: 10.1145/391@398

[18] D. W. Jones. An empirical comparison of priority-queared event-set
implementations.Commun. ACM, 29(4):300-311, Apr. 1986. ISSN
0001-0782. doi: 10.1145/5684.5686.

[19] L. Lamport. Time, clocks, and the ordering of events idistributed
system.Commun. ACM, 21(7):558-565, July 1978. ISSN 0001-0782.
doi: 10.1145/359545.359563.

[20] Y.-H. Low, C.-C. Lim, W. Cai, S.-Y. Huang, W.-J. Hsu, Said, and
S. J. Turner. Survey of languages and runtime libraries éoalfel
discrete-event simulatiorSMULATION, 72(3):170-186, 1999. doi:
10.1177/003754979907200309.

[21] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. KoufatyA. J.
Miller, and M. Upton. Hyper-Threading Technology Architeie and
Microarchitecture.Intel Technology Journal, 6(1), Feb. 2002.

[22] J. Misra. Distributed discrete event simulatiotACM Computing
Surveys, 18(1):39-65, 1986.

[23] S. K. Park and K. W. Miller. Random number generatorodjones
are hard to findCommun. ACM, 31(10):1192-1201, Oct. 1988. ISSN
0001-0782. doi: 10.1145/63039.63042.

[24] K. S. Perumalla.usik - a micro-kernel for parallel/distributed simu-
lation systems. IiProceedings of the 19th Workshop on Principles of

Advanced and Distributed Smulation, PADS '05, pages 59-68, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-76382-
8.

K. S. Perumalla. Parallel and distributed simulatitraditional tech-
niques and recent advances. In L. F. Perrone, B. LawsonuJaht

F. P. Wieland, editorsProceedings of the Winter Smulation Confer-
ence WSC 2006, Monterey, California, USA, December 3-6, 2006,
pages 84-95. WSC, 2006. ISBN 1-4244-0501-7. doi: 10.1145/
1218112.1218132.

K. S. Perumalla, A. J. Park, and V. Tipparaju. GVT al¢fums and dis-
crete event dynamics on 129k+ processor cored8ih International
Conference on High Performance Computing, HiPC 2011, Bengaluru,
India, December 18-21, 2011, pages 1-11. IEEE, 2011. ISBN 978-1-
4577-1951-6. doi: 10.1109/HiPC.2011.6152725.

[27] PRIME. Parallel Real-time Immersive network Modeliggviron-
ment - PRIME https://www.primessf.net, 2011.

[28] S. V. Rice, H. M. Markowitz, A. Marjanski, and S. M. Bajle The
SIMSCRIPT Il programming language for modular objecteoted
simulation. InProceedings of the 37th conference on Winter simula-
tion, WSC '05, pages 621-630. Winter Simulation Conference5200
ISBN 0-7803-9519-0.

[29] G. P. Richardson and A. L. Pughntroduction to System Dynamics
Modeling with Dynamo. MIT Press, Cambridge, MA, USA, 1981.
ISBN 0262181029.

[30] B. Samadi, R. Muntz, and D. Parker. A distributed algon to
detect a global state of a distributed simulation systenPrae. IFIP
Conference on Distributed Processing. North-Holland, 1987.

[31] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. Harkson,
J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P
Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. lerard
I. Kolossvary, J. L. Klepeis, T. Layman, C. McLeavey, M. Aokdes,
R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald,dvles,
and S. C. Wang. Anton, a special-purpose machine for maecul
dynamics simulationCommun. ACM, 51(7):91-97, July 2008. ISSN
0001-0782. doi: 10.1145/1364782.1364802.

[32] J. S. Steinman and J. W. Wong. The SPEEDES persisteaoge{r
work and the standard simulation architecture.Ptoceedings of the
seventeenth workshop on Parallel and distributed simulation, PADS
'03, pages 11—, Washington, DC, USA, 2003. IEEE Computei-Soc
ety. ISBN 0-7695-1970-9.

[33] J. S. Steinman, C. N. Lammers, M. E. Valinski, K. Rothil & Words.
Simulating parallel overlapping universes in the fifth dirien with
HyperWarpSpeed implemented in the WarplV kernelPtaceedings
of the Smulation Interoperability Workshop, SIW '08, 2008.

[34] S. Tay, G. Tan, and K. Shenoy. Piggy-backed time-stégiaulation

with 'super-stepping’. IrSmulation Conference, 2003. Proceedings
of the 2003 Winter, volume 2, pages 1077 — 1085 vol.2, dec. 2003.

[25]

[26]

https://www.primessf.net

	1 Introduction
	2 Related Works
	3 Distributed Simulation
	4 The ErlangTW Simulator
	5 Performance Evaluation
	6 Conclusion and future work

