
Vectorisation Avoidance

Gabriele Keller† Manuel M. T. Chakravarty† Roman Leshchinskiy

Ben Lippmeier† Simon Peyton Jones‡

†School of Computer Science and Engineering
University of New South Wales, Australia

{keller,chak,rl,benl}@cse.unsw.edu.au

‡Microsoft Research Ltd
Cambridge, England

{simonpj}@microsoft.com

Abstract
Flattening nested parallelism is a vectorising code transform that
converts irregular nested parallelism into flat data parallelism. Al-
though the result has good asymptotic performance, flattening thor-
oughly restructures the code. Many intermediate data structures and
traversals are introduced, which may or may not be eliminated by
subsequent optimisation. We present a novel program analysis to
identify parts of the program where flattening would only introduce
overhead, without appropriate gain. We present empirical evidence
that avoiding vectorisation in these cases leads to more efficient
programs than if we had applied vectorisation and then relied on
array fusion to eliminate intermediates from the resulting code.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; Polymorphism; Abstract data types

General Terms Languages, Performance

Keywords Nested data parallelism, Haskell, Program transforma-
tion

1. Introduction
Data Parallel Haskell (DPH) is an extension to the Glasgow Haskell
Compiler (GHC) that implements nested data parallelism. DPH
is based on a vectorising program transformation called flatten-
ing [5, 6, 14, 15, 17], which converts irregular and nested data par-
allelism into regular traversals over multiple flat arrays. Flattening
simplifies load balancing and enables SIMD parallelism together
with cache-friendly, linear traversals of unboxed arrays.

Unfortunately, without subsequent aggressive optimisation, flat-
tened code is grossly inefficient on current computer architectures.
A key aspect of flattening is to convert scalar operations into ag-
gregate array operations, such as turning floating-point addition
into the element-wise addition of two arrays of floats. However, in-
termediate scalar values in the source code are also converted to
arrays, so values that were once stored in scalar registers are now
shuffled to and from memory between each array operation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

The observation that flattening increases memory traffic is not
new [7, 10, 11, 19], and DPH uses array fusion [12, 13] to combine
successive array operations back into a single traversal. While this
works for small kernels, relying on fusion alone turns out to have
serious drawbacks:

1. Array fusion can be fragile, because it depends on many en-
abling code transformations.

2. Specifically, fusion depends critically on inlining — which
must be conservative in the presence of sharing to avoid work
duplication, and cannot handle recursive definitions. Aggres-
sive inlining leads to large intermediate programs, and hence
long compile times.

3. Even if fusion goes well, GHC’s current back-end code genera-
tors cannot properly optimise fused code, which leads to exces-
sive register use in the resulting machine code.

Tantalisingly, we have identified many common situations in which
vectorisation provides no benefit, though the overheads introduced
are very much apparent. Thus motivated, we present a program
analysis that allows us to completely avoid vectorising parts of the
program that do not require it. To our knowledge, this is the first
attempt to guide flattening-based vectorisation so that vectorisation
is avoided where it is not needed, instead of relying on a subsequent
fusion stage to clean up afterwards.

In summary, we make the following contributions:

• We characterise those parts of DPH programs where vectorisa-
tion introduces overheads without appropriate gain (Section 2
& 3).
• We introduce a program analysis to identify subexpressions that

need not be vectorised, and modify the flattening transform to
lift entire expressions to vector-space, so that its intermediates
are not converted to array values. (Section 4).
• We present empirical evidence supporting our claim that vec-

torisation avoidance is an improvement over plain array fusion,
at least for our benchmarks (Section 5)

In our previous work [11] we introduced partial vectorisation,
which allows vectorised and unvectorised code to be combined in
the same program. With partial vectorisation, the unvectorised por-
tion fundamentally cannot be vectorised, such as when it performs
an IO action. In contrast, this paper presents vectorisation avoid-
ance, where the unvectorised portion is code that could be vec-
torised, but we choose not to for performance reasons. We discuss
further related work in Section 6.

2. Too Much Vectorisation
Vectorisation for higher-order programs is a complex transforma-
tion, but we only need the basics to appreciate the problem ad-
dressed in this paper. In this section, we walk though a simple ex-
ample that highlights the problem with intermediate values, and
sketch our solution. A more comprehensive description of the vec-
torisation transform can be found in Peyton Jones et al. [17].

2.1 Parallel force calculation
We use a parallel gravitation simulation as a running example. The
simulation consists of many massive points (bodies), each with a
mass, a location in two dimensions, and a velocity vector:

type Mass = Float
type Vector = (Float, Float)
type Location = Vector
type Velocity = Vector
type Accel = Vector
data MassPoint = MP Mass Location Velocity

At each time step we compute the acceleration due to gravitational
force between each body, and use the sum of accelerations to up-
date each body’s velocity. The following accel function computes
the acceleration a body experiences due to the gravitational force
between it and a second body. The eps (epsilon) parameter is a
smoothing factor that prevents the acceleration from approaching
infinity when the distance between the two bodies approaches zero.

accel :: Float -> MassPoint -> MassPoint -> Accel
accel eps (MP _ (x1, y1) _) (MP m (x2, y2) _)
= let dx = x1 - x2

dy = y1 - y2
rsqr = dx * dx + dy * dy + eps * eps
r = sqrt rsqr
aabs = m / rsqr

in (aabs * dx / r , aabs * dy / r)

In DPH we express nested data parallelism using bulk operations
on parallel arrays. The type of parallel arrays is written [:e:], for
some element type e. Parallel array operators behave like Haskell’s
standard list operators (but on arrays), and are identified by a
suffix P — for example, mapP, unzipP, sumP, and so on. We
also use parallel array comprehensions, which behave similarly to
list comprehensions [17]. The crucial difference between Haskell
lists and parallel arrays is that the latter have a parallel evaluation
semantics. Demanding any element in a parallel array results in
them all being computed, and on a parallel machine we expect this
computation to run in parallel.

Using parallel array comprehensions, we implement a naı̈ve
O(n2) algorithm that takes a parallel array of bodies, and computes
the gravitational acceleration acting on each one:

allAccels :: Float -> [:MassPoint:] -> [:Accel:]
allAccels eps mps
= [: (sumP xs, sumP ys)

| mp1 <- mps
, let (xs, ys) = unzipP [: accel eps mp1 mp2

| mp2 <- mps :]
:]

The degree of parallelism in allAccels is n2: for each element
mp1 of mps the inner comprehension computes accel for every
other element mp2 in mps. We also sum the individual accelerations
on each body using 2 ∗ n parallel sums in parallel. In the full sim-
ulation we would then use the resulting accelerations to compute
new velocities and positions for each body.

Although this is a naı̈ve algorithm, it presents the same chal-
lenges with respect to vectorisation of intermediates as the more
sophisticated Barnes-Hut algorithm. We stick to the simpler ver-
sion to avoid complications with the irregular tree structures that

Barnes-Hut uses, which are orthogonal to the ideas discussed in
this paper.

2.2 Lifting functions into vector space
Vectorising accel from the previous section and simplifying yields
accelL shown below. The subscript L is short for “lifted”, and we
describe vectorisation as lifting a function to vector space.

accelL :: PArray Float
-> PArray MassPoint -> PArray MassPoint
-> PArray Accel

accelL epss (MPL _ (xs1,ys1) _) (MPL ms (xs2,ys2) _)
= let dxs = xs1 -L xs2

dys = ys1 -L ys2
rsqrs = dxs *L dxs +L dys *L dys +L epss *L epss
rs = sqrtL rsqrs
aabss = ms /L rsqrs

in (aabss *L dxs /L rs , aabss *L dys /L rs)

In the type of accelL, the PArray constructor is our internal ver-
sion of [::] which only appears in vectorised code. A value of
type (PArray a) contains elements of type a, which are stored in
a type-dependent manner. For example, we store an array of pairs of
integers as two arrays of unboxed integers. This “unzipped” repre-
sentation avoids the intermediate pointers that would otherwise be
required in a completely boxed representation. Similarly, we store
an array of MassPoint as five separate arrays: an array of masses,
two arrays for the x and y components of their locations, and two
arrays for the x and y components of their velocities. We can see
this in the above code, where we add a suffix “s” to variable names
to highlight that they are now array-valued.

Lifting of accel itself is straightforward, because it consists
of a single big arithmetic expression with no interesting control
flow. The lifted versions of primitive functions correspond to their
originals, except that they operate on arrays of values. For example:

(*L) :: PArray Float -> PArray Float -> PArray Float

Pairwise multiplication operates as (*L) = zipWithP (*) and
is provided by the back-end DPH libraries, along with other lifted
primitives.

Returning to the definition of accelL we see the problem with
intermediate values. Whereas the variables rsqr, r, dx, dy and
so on were scalar values in the source code, in the lifted version
they have become array values. Without array fusion, each of these
intermediate arrays will be materialised in memory, whereas with
the unvectorised program they would exist only transiently in scalar
registers.

The original accel function does not use nested parallelism,
branching, or anything else that justifies an elaborate transforma-
tion, so in fact this simpler code would be far better:

accelL epss (MPL _ (xs1,ys1) _) (MPL ms (xs2,ys2) _)
= let f eps x1 y1 x2 y2 m

= let dx = ...; dy = ...;
rsqr = ...; r = ...; aabs = ...
. . . 〈as in original definition of accel〉 . . .

in (aabs * dx / r , aabs * dy / r)
in zipWithPar6 f epss xs1 ys1 xs2 ys2 ms

Here, zipWithPar6 is a 6-ary parallel-array variant of zipWith.
This simpler version of accelL performs a single simultaneous
traversal of all six input arrays, with no array-valued intermediates.

This simpler version of accelL works only because the original
version does not call any parallel functions, directly or indirectly.
This property ensures that the f passed to zipWithPar6 does not
introduce any nested parallelism itself. If the original accel had
itself used a data-parallel function, then that function would need
to be called for each pair of points — and this nested invocation of
data-parallel functions is precisely what flattening is supposed to
eliminate.

So the question is this: can we identify purely-sequential sub-
computations (such as accel) that will not benefit from vectorisa-
tion? If so, we can generate simple, efficient zipWith-style loops
for these computations, instead of applying the general vectorisa-
tion transformation and hoping that fusion then eliminates the in-
termediate arrays it introduces.

2.3 Maximal sequential subexpressions
The situation in the previous section was the ideal case. With accel
we were able to avoid vectorising its entire body because it did
not use any data parallel functions. This made accel completely
sequential. We may not be that lucky, and the function we want to
vectorise may contain parallel subexpressions as well as sequential
ones. In general, to perform vectorisation avoidance we need to
identify maximal sequential subexpressions.

To illustrate this idea, consider a variant of accel, where the
smoothing factor is not passed as an argument, but instead deter-
mined by a parallel computation that references dx and dy:

accel’ (MP _ (x1, y1) _) (MP m (x2, y2) _)
= let dx = x1 - x2

dy = y1 - y2
eps = 〈a data-parallel computation with dx and dy〉
rsqr = dx * dx + dy * dy + eps * eps
r = sqrt rsqr
aabs = m / rsqr

in (aabs * dx / r , aabs * dy / r)

This time we cannot lift accel’ by wrapping the entire body
in a parallel zip, as this would yield a nested parallel computa-
tion. Instead, we proceed as follows: (1) identify all maximal se-
quential subexpressions; (2) lambda lift each of them, and (3) use
zipWithParn to apply each lambda-lifted function element-wise
to its lifted (vectorised) free variables. Doing this to the above func-
tion yields:

accel’L (MPL _ (xs1, ys1) _) (MPL ms (xs2, ys2) _)
= let dxs = zipWithPar (λx1 x2. x1 - x2) xs1 xs2

dys = zipWithPar (λy1 y2. y1 - y2) ys1 ys2
epss = 〈lifted data-parallel computation with dxs and dys〉

in zipWithPar4 (λm dx dy eps.
let rsqr = dx * dx + dy * dy + eps * eps

r = sqrt rsqr
aabs = m / rsqr

in (aabs * dx / r, aabs * dy / r))
ms dxs dys epss

The resulting lifted function accel’L contains three parallel array
traversals, whereas accelL only had one. Nevertheless, that is still
much better than the 13 traversals that would be in the vectorised
code without vectorisation avoidance.

We were able to encapsulate the bindings for rsqr, r, and aabs
by the final traversal because after the eps binding, there are no
more parallel functions. In general, we get the best results when
intermediate sequential bindings are floated close to their use sites,
as this makes them more likely to be encapsulated along with their
consumers.

2.4 Conditionals and recursive functions
The function accel did not have any control-flow constructs. For
an example with a conditional, consider a division function that
tests for a zero divisor:

divz :: Float -> Float -> Float
divz x y = if (y == 0)

then 0
else x ‘div‘ y

Without vectorisation avoidance, the lifted version of divz is as
follows:

divzL :: PArray Float -> PArray Float -> PArray Float
divzL xs ys
= let n = lengthPA ys

flags = (ys ==L (replicatePA n 0))
(xsthen, xselse) = splitPA flags xs
(ysthen, yselse) = splitPA flags ys

in combinePA flags (replicatePA (countPA flags) 0)
(xselse ‘div‘L yselse)

We first compute an array of flags indicating which branch to take
for each iteration. We use these flags to split (using splitPA) the
array-valued free variables into the elements for each branch, and
apply the lifted version of each branch to just those elements asso-
ciated with it. Finally, combinePA re-combines the results of each
branch using the original array of flags. Using these extra inter-
mediate arrays ensures that the parallel execution of divzL will be
load-balanced, as each intermediate array can be redistributed such
that each worker is responsible for the same number of elements.
To see this, suppose that performing a division on our parallel ma-
chine is more expensive than simply returning a constant 0. If we
were to evaluate multiple calls to divz in parallel without using
our splitP/combineP technique, there is a chance that one pro-
cessor would need to evaluate more divisions than another, leading
to work imbalance. However, in the code above we split the input
arrays (xs and ys) into the elements corresponding to each branch,
and use all processors to compute the results for both branches. As
all processors are used to evaluate both branches, we can be sure
the computation is perfectly balanced.

Unfortunately, both splitP and combineP are expensive. If
we were to execute the unvectorised version of divz then the
arguments for x and y would be passed in scalar registers. The
flag indicating which branch to take would also be computed in
a register. Once again, when we vectorise divz these intermediate
values are converted to arrays, which reifies them in memory. For
this example, the extra memory traffic introduced will far exceed
the gain from improved load balancing; it would be better to avoid
vectorising the conditional entirely and instead generate:

divzL xs ys
= zipWithPar2

(λx y. if (y == 0) then 0 else x ‘div‘ y)
xs ys

The situation becomes even more interesting when recursion is
involved, such as in this familiar function:

fac :: Int -> Int -> Int
fac acc n
= if n == 0 then acc

else fac (n * acc) (n - 1)

Lifting this function without vectorisation avoidance will use
splitP and combineP to flatten the conditional, and the recur-
sive call will be to the lifted version. The consequence is excessive
data movement for each recursion and an inability to use the tail
recursion optimisation.

In contrast, using vectorisation avoidance we can confine the
recursive call to the sequential portion of the function:

facL :: PArray Int -> PArray Int -> PArray Int
facL accs ns
= let f acc n

= if n == 0 then acc
else f (n * acc) (n - 1)

in zipWithPar2 f accs ns

This code risks severe load imbalance if the depth of the recursion
varies widely among the instances computed on each processor.
At the same time, it also avoids the high overheads of the fully
vectorised version. Which is the lesser evil?

In our experience so far, using vectorisation avoidance for
purely sequential recursive functions has always produced faster
code. We intend to provide a pragma to override this default ap-
proach in exceptional cases.

2.5 Vectorisation avoidance in a nutshell
In summary, vectorisation avoidance consists of three steps. First,
we identify the maximal sequential subexpressions. Second, we
lambda lift those subexpressions. Third, we use zipWithParn to
apply each lambda-lifted function (in parallel) to each valuation of
its free variables. As a result we generate fewer array traversals
and fewer intermediate arrays, though we may sacrifice some load
balancing by doing so. We will formalise these steps in Section 4,
but first we pause to review the vectorisation transformation itself.

3. Vectorisation Revisited
This section reviews the features of vectorisation that are central
to subsequently adding vectorisation avoidance in Section 4. For a
complete description of vectorisation, see our previous work [17].

3.1 Parallel arrays, maps, and the Scalar type class
As mentioned in Section 2.2, in vectorised code we store parallel
array data in a type-dependent manner, so the representation of
PArray a depends on the element type a. Haskell, we realise this
using type families [8, 9] thus:

data family PArray a
data instance PArray Int = PInt (Vector Int)
data instance PArray (a, b) = P2 (PArray a) (PArray b)
data instance PArray (PArray a) = PNested VSegd (PDatas a)
... more instances ...

For arrays of primitive values such as Int and Float we use
an unboxed representation, specifically the unboxed arrays from
the vector package.1 Using unboxed arrays improves absolute
performance over standard boxed arrays, and admits a simple load
balancing strategy when consuming them. For structured data we
hoist the structure to top-level: representing an array of structured
values as a tree with with unboxed arrays of scalars at its leaves.
The instance for pairs is shown above.

The PArray type family also supports flattening of nested ar-
rays, and arrays of sum types [10, 16, 17]. A partial definition of
nested arrays is shown above, but we leave discussion of the VSegd
segment descriptor and PDatas data blocks to [16].

For vectorisation avoidance, the important point is that we can
only bail out to a sequential function if the elements that function
consumes can be extracted from their arrays in constant time. As
discussed in [16], it is not possible to select a nested array from an
array of arrays in constant time, due to time required to cull unused
segments from the resulting segment descriptor. Now, consider the
accelL function back in Section 2.2. The body of its sequential
part f does run in constant time, so zipWithPar6 can’t take any
longer than this to extract its arguments — otherwise we will
worsen the asymptotic complexity of the overall program.

We side-step this complexity problem by restricting vectorisa-
tion avoidance to subexpressions that process scalar values only.
These are the primitive types such as Int and Float, as well
as tuples of primitive types, and enumerations such as Bool and
Ordering. We collect these types into the Scalar type class,
which is the class of types that support constant time indexing.
When we determine maximal subexpressions as per Section 2.3,
all free variables, along with the result, must be Scalar.

1 http://hackage.haskell.org/package/vector

Now that we have the Scalar class, we can write down the
full types of the n-ary parallel mapping functions we met back in
Section 2.2.

mapPar :: (Scalar a, Scalar b)
=> (a -> b) -> PArray a -> PArray b

zipWithPar2 :: (Scalar a, Scalar b, Scalar c)
=> (a -> b -> c)
-> PArray a -> PArray b -> PArray c

zipWithPar3
:: (Scalar a, Scalar b, Scalar c, Scalar d)
=> (a -> b -> c -> d)
-> PArray a -> PArray b -> PArray c -> PArray d
〈and so on〉

These scalar mapping functions apply their worker element-wise,
and in parallel to their argument arrays. They are provided by the
DPH back-end library.

The key goal of vectorisation avoidance is to maximise the work
done by these mapping functions per corresponding tuple of ar-
ray elements. The sequential subexpressions from Section 2.3 are
subexpressions that can be mapped by the scalar mapping func-
tions, and we maximise the work performed by finding subexpres-
sions that are as big as possible.

3.2 Vectorising higher-order functions
Vectorisation computes a lifted version of every function that is in-
volved in a parallel computation, which we saw in Section 2.2. Pre-
viously, we simplified the discussion by statically replacing expres-
sions of the form mapP f xs (equivalently [:f x| x <- xs:])
by fL xs — an application of the lifted version of f. This static
code rewriting is not sufficient for a higher-order language. Stat-
ically, we cannot even determine which worker functions will
be passed to mapP, and hence need a lifted version. Instead, we
closure-convert lambda abstractions and dynamically dispatch be-
tween the original and lifted versions of a function [17].

In GHC, the vectorisation transformation itself operates on
the Core intermediate language, which is an extension of Sys-
tem F [21]. Figure 1 displays the transformation on a slightly
cut-down version of Core, which contains all elements that are
relevant to our discussion of vectorisation avoidance. The central
idea is that given a top-level function definition f :: τ = e, the
full vectorisation transformation produces a definition for the fully
vectorised version of f named fV:

fV :: VtJτK = V JeK

We vectorise types with VtJ·K and values with V J·K. In general, if
e :: τ , then V JeK :: VtJτK. The vectorisation of types and values
goes hand in hand.

3.2.1 Vectorising types
To vectorise types with VtJ·K, we replace each function arrow (->)
by a vectorised closure (:->). We also replace each parallel array
[::] by the type-dependent array representation PArray from
Section 3.1. For example:

VtJInt -> [:Float:] -> FloatK
= Int :-> PArray Float :-> Float

Figure 1 also shows vectorisation of data types, which we use for
the arrays of tuples described in Section 3.1.

VtJτK :: Type → Type is the vectorisation transformation on types

VtJτ1->τ2K = VtJτ1K :-> VtJτ2K Functions
VtJ[:τ:]K = LtJτK Parallel arrays
VtJIntK = Int Primitive scalar types

VtJFloatK = Float
VtJT τ1 . . . τnK = TV VtJτ1K . . .VtJτnK Algebraic data types (e.g. lists)

LtJτK = PArray VtJτK

V JeK :: Expr → Expr is the full vectorisation transformation on terms
Invariant: if xi : σi ` e : τ then xi : VtJσiK ` V JeK : VtJτK

V JkK = k k is a literal
V JfK = fV f is bound at top level
V JxK = x x is locally bound (lambda, let, etc)
V JCK = CV C is data constructor with C :: τ and CV :: V JτK

V Je1 e2K = V Je1K $: V Je2K
V Jλx.eK = Clo {env = (y1, . . . , yk)

, clos = λenv x. case e of (y1, . . . , yk)→ V JeK
, clol = λenv x. case e of ATupk n y1 . . . yk → L JeK n}

where{y1, . . . , yk} = free variables of λx.e
V Jif e1then e2else e3K = ifV Je1K thenV Je2K elseV Je3K

V Jletx= e1in e2K = letx=V Je1K inV Je2K
V Jcase e1 ofC x1 . . . xk → e2K = caseV Je1K ofCV x1 . . . xk → V Je2K

L JeK n :: Expr → Expr → Expr is the lifting transformation on terms
Invariant: if xi : σi ` e : τ then xi : LtJσiK ` L JeK n : LtJτK

where n is the length of the result array

L JkK n = replicatePA n k k is a literal
L JfK n = replicatePA n fV f is bound at top level
L JxK n = x x is locally bound (lambda, let, etc)

L Je1 e2K n = L Je1K n $:L L Je2K n
L JCK n = replicatePA n CV C is a data constructor

L Jλx.eK n = AClo {aenv = ATupk n y1 . . . yk,
, aclos = λenv x. case env of (y1, . . . , yk)→ V JeK
, aclol = λenv x. case env of ATupk n

′ y1 . . . yk → L JeK n′}
where{y1, . . . , yk} = free variables of λx.e

L Jif e1then e2else e3K n = combinePA e′1 e′2 e′3
where e′1 = L Je1K n

e′2 = case ys2 of ATupk n2 y1 . . . yk → L′ Je2K n2

e′3 = case ys3 of ATupk n3 y1 . . . yk → L′ Je3K n3

(ys2 , ys3) = splitPA e′1 (ATupk n y1 . . . yk)
{y1, . . . , yk} = free variables of e2, e3

L′ JeK n = if n==0 then emptyPA else L JeK n
L Jletx= e1in e2K n = letx=L Je1K n inL Je2K n

L Jcase e1 ofC x1 . . . xk → e2K n = let v =L Je1K n
in case cast v′ of _x1 . . . xk → L Je2K n

scrutiniser cast to representation type

Figure 1. The vectorisation transformation without avoidance

3.2.2 Vectorised closures
In general, in a higher-order language it is not possible to statically
determine which functions may end up as f in a specific data-
parallel application mapP f xs. Therefore, all values of function
type must include both a scalar as well as a lifted version of the
original function. To make matters worse, functions may be put
into arrays — indeed, the vectorisation transformation must do this
itself when lifting higher-order functions.

The trouble with arrays of functions is that (a) we do want to
use standard array operations, such as filterP, but (b) do not
want to represent PArray (a -> b) as a boxed array of function

pointers. If we were to use a boxed array of function pointers
then we would sacrifice much data parallelism, as we explained
in previous work [17]. With this in mind, we represent single
vectorised functions as explicit closures, containing the following:

1. the scalar version of the function,

2. the parallel (lifted) version of the function, and

3. an environment record of the free variables of the function.

As we will see in Section 3.3, arrays of functions are represented
similarly, by using an array for the environment instead of a single
record.

Concretely, we use the following data type for vectorised closures:

data (a :-> b) = forall e. PA e =>
Clo { env :: e

, clos :: e -> a -> b
, clol :: PArray e -> PArray a -> PArray b }

The two fields clos and clol contain the scalar and lifted version
of the function respectively. The field env has the existentially
quantified type e, and is the environment of the closure. We bundle
up useful operators on arrays of type PArray e into the existential
PA e type class, so that consumers can process the environment
of a deconstructed Clo. During vectorisation, all lambdas in the
source code are closure converted [1] to this form.

In Figure 1, we see closure conversion in action, where V J·K
replaces lambda abstractions in the original program by explicit
closures. Consequently, it also replaces function application by
closure application, which is defined as:

($:) :: (a :-> b) -> a -> b
($:) (Clo env fs fl) arg = fs env arg

Closure application extracts the scalar version of the function (fs)
and applies it to the environment and function argument. The lifted
version of the function (fl) is produced by the lifting transforma-
tion L J·K · from Figure 1. It is used to handle nested parallelism
when a vectorised closure happens to be the f in mapP f — though
we need to cover more ground before we can discuss the implemen-
tation.

3.3 Arrays of functions
Vectorisation turns functions into explicit closures, so type vectori-
sation gives us VtJ[:a -> b:]K = PArray (a :-> b). The cor-
responding PArray instance is given below. Arrays of functions are
represented as a slightly different form of plain closures, which we
call array closures:

data instance PArray (a :-> b) = forall e. PA e =>
AClo { aenv :: PArray e

, aclos :: e -> a -> b
, aclol :: PArray e -> PArray a -> PArray b }

The difference between plain closures and array closures is that
with the latter, the environment is array valued. As with plain
closures, array closures come with a matching application operator:

($:L) :: PArray (a:->b) -> PArray a -> PArray b
($:L) (AClo env fs fl) = fl env

This lifted function application operator is used to implement ap-
plication in the lifting transformation L J·K · from Figure 1.

3.4 A simple example
Before we get into any more detail, let us run through the vectori-
sation of a simple example:

inc :: Float -> Float
inc = λx. x + 1

Applying the full vectorisation transformation in Figure 1 yields:

incV :: Float :-> Float
incV = Clo () incS incL

incS :: () -> Float -> Float
incS = λe x. case e of () -> (+)V $: x $: 1

incL :: PArray () -> PArray Float -> PArray Float
incL = λe x. case e of

ATup n -> (+)V $:L x $:L (replicatePA n 1)

To aid explanation we have named incS and incL, but otherwise
simply applied Figure 1 blindly. Notice the way we have systemati-
cally transformed inc’s type, replacing (->) by (:->). Notice too
that this transformation neatly embodies the idea that we need two
versions of every top-level function inc, a scalar version incS and
a lifted version incL. These two versions paired together form the
fully vectorised version incV.

The vectorised code makes use of vectorised addition (+)V ,
which is provided by a fixed, hand-written library of vectorised
primitives:

(+)V :: Float :-> Float :-> Float
(+)V = Clo () (+)S (+)L

(+)S :: () -> Float -> Float :-> Float
(+)S = λe x. Clo x addFloatS addFloatL

(+)L :: PArray ()
-> PArray Float -> PArray (Float :-> Float)

(+)L = λe xs. AClo xs addFloatS addFloatL

addFloatS :: Float -> Float -> Float
addFloatS = Prelude.(+)

addFloatL :: PArray Float -> PArray Float
-> PArray Float

addFloatL = zipWithPar2 Prelude.(+)

The intermediate functions (+)S and (+)L handle partial ap-
plications of (+). Finally we reach ground truth: invocations of
addFloatS and addFloatL, implemented by the DPH back-end
library. The former is ordinary floating point addition; the latter is
defined in terms of zipWithPar2 from Section 3.1.

This is important! It is only here at the bottom of a pile of nested
closures that the old, full vectorisation transformation finally uses
the scalar mapping functions. Considering how trivial the original
function inc was, the result of vectorisation looks grotesquely
inefficient. Most of this clutter is introduced to account for the
possibility of higher order programming, and in many cases, it can
be removed by subsequent optimisations.

However, even when GHC’s optimiser can remove all the clut-
ter, it still has a real cost: compile time. With vectorisation avoid-
ance, we can completely avoid vectorising inc and save all of this
overhead.

3.5 Using lifted functions
In Section 3.2.2, we asserted that lifted code is ultimately invoked
by mapP (and its cousins zipWithP, zipWith3P, and so on). The
code for mapP itself is where nested data parallelism is finally
transformed to flat data parallelism:

mapPV :: (a :-> b) :-> PArray a :-> PArray b
mapPV = Clo () mapP mapP

mapP :: () -> (a :-> b) -> PArray a :-> PArray b
mapP _ f = Clo f mapPS mapPL

mapP :: PArray () -> PArray (a :-> b)
-> PArray (PArray a :-> PArray b)

mapP _ fs = AClo fs mapPS mapPL

mapPS :: (a :-> b) -> PArray a -> PArray b
mapPS (Clo env fs fl) xss

= fl (replicatePA (lengthPA xss) env) xss

mapPL :: PArray (a :-> b)
-> PArray (PArray a) -> PArray (PArray b)

mapPL (AClo env _ fl) xss
= unconcatPA xss (fl env (concatPA xss))

-- xss :: PArray (PArray a)
-- env :: PArray e
-- fl :: PArray e -> PArray a -> PArray b

The function mapPL implements a nested map. It uses a well known
observation that a nested map produces the same result as a single
map, modulo some shape information:

concat . (map (map f)) = (map f) . concat

The implementation of mapPL exploits this fact to flatten nested
parallel maps. It eliminates one layer of nesting structure using
concatPA, applies the simply lifted function fL to the resulting
array, and re-attaches the the nesting structure information using
unconcatPA.

3.6 Conditionals and case expressions
GHC’s Core language includes a case expression with shallow
(non-nested) patterns. Conditionals are desugared by using that
case expression on a Boolean value. Given the syntactic complex-
ity of case expressions, we have opted for a simplified presenta-
tion in Figure 1. We have an explicit conditional if-then-else to
capture dynamic control flow, together with a one pattern case con-
struct to capture data constructor decomposition by pattern match-
ing. The lifting of conditionals by L J·K · proceeds as per the dis-
cussion in Section 2.4.

4. Transformation Rules
We will now formalise our intuition about where and how to avoid
vectorisation. The formalisation consists of three parts:

1. Labelling: a static code analysis that identifies maximal sequen-
tial subexpressions (Section 4.1).

2. Encapsulation: a code transformation that isolates and lambda-
lifts the maximal sequential subexpressions (Section 4.2).

3. Vectorisation: a slight modification of the vectorisation trans-
formation that uses labelling information to avoid vectorisation
(Section 4.3).

The trickiest step is the first. Once the maximal sequential subex-
pressions have been identified, it is reasonably straightforward to
use that information in the vectorisation transform itself.

4.1 Labelling
Labelling performs an initial pass over the program to be vec-
torised. To decide which parts are maximally sequential, we need
labels for each subexpression, as well as the current context. Fig-
ure 2 defines AT J·K to label types, and A J·K · to label expres-
sions. These functions produce four possible labels:

• p — the labelled expression (or type) may contain a parallel
subexpression (or a parallel array subtype);
• s — the labelled expression (or type) does not contain any

parallel subexpression (or parallel array subtype) and the type
of the expression (or the type itself) is a member of type class
Scalar;
• c — the labelled expression (or type) does not contain any

parallel subexpression (or parallel array subtype), but the type
of the expression (or the type itself) is not a member of type
class Scalar; and
• e — the labelled expression is an encapsulated lambda abstrac-

tions whose body should not be vectorised.

The type labeller maps a type to a label:

AT J·K :: Type→ {s,p, c}

In the present formalisation, we omit polymorphic types as they
don’t add anything interesting. Our implementation in GHC works
fine with polymorphism and all of GHC’s type extensions.

The intuition behind AT JτK is that it produces s for types in
the class Scalar, p for types containing parallel arrays, and c in
all other cases. It depends on a set Pts (parallel types) that contains
all type constructors whose definition either directly includes [::]
or indirectly includes it via other types in Pts.

Labelling uses a right associative operator B (combine) that
combines labelling information from subexpressions and subtypes.
It is biased towards its first argument, except when the second argu-
ment is p, in which case p dominates. We assume B is overloaded
to work on labels and labelled expressions. In the latter case, it ig-
nores the expression and considers the label only.

The expression labeller takes an expression to be labelled, and a
set of variables P (parallel variables) which may introduce parallel
computations. It produces a labelled expression, being a pair of an
expression and a label, which we denote by LExpr.

A J·K · :: Expr→ {Var} → LExpr

We assume P initially includes all imported variables that are
bound to potentially parallel computations. Labelling of expres-
sions produces one label, and also rewrites the expression so that
each subexpression is labelled as well.

The expression labeller operates as follows. Literals are labelled
s. Variables in the set P are labeled p, otherwise the label depends
on their type, as is the case with data constructors. For applications,
the label depends on their type, unless one subexpression is p. The
same holds for conditionals.

If the body of a lambda expression or its argument type are p,
then the whole expression will be labelled p, otherwise it is handled
slightly differently. The type of a sequential lambda expression is
never in Scalar, so tagging it c does not add any information.
What we are interested in is the tag of its body (once stripped of
all lambda abstractions), as this is the information that we need to
decide whether we need to vectorise the expression.

For let-expressions, we add the variable to the set P if the bound
expression is labelled p and the variable’s type is not in Scalar.
If the type is in Scalar, then our unboxed array representation en-
sures that demanding the value of this expression in the vectorised
program cannot trigger a suspended parallel computation — re-
membering that GHC core is a lazy language. Note that if the bound
expression turns out to be labelled p then we may need to re-run
the analysis to handle recursive lets. First, we assume the expres-
sion is not p, so we do not include the bound variable in P . Under
this assumption, if we run the analysis and the expression does turn
out to be p, then we need to run it again with the set P ∪{x}, as we
may have tagged subexpressions incorrectly. In GHC core, there is
a distinction between recursive and non-recursive let-bindings, and
this extra step is only necessary for recursive bindings. If the bound
expression is not tagged p, we proceed as usual.

4.2 Encapsulation
Once we have the labelled tree, we traverse it to find the maxi-
mal sequential subexpressions we do not want to vectorise. As per
Section 2.3, we avoid vectorisation by first lambda lifting the ex-
pression, and then applying the resulting function to all its free vari-
ables. This is done by the following encapsulation function, where
xi are the free variables of exp.

encapsulate exp =
((λx1.(. . . λxk.exp, e), . . .), e)(x1, s) . . . (xk, s), e)

Definition of right associative operator B, overloaded to work on labels and labelled expressions

tB p = p
t1 B t2 = t1, if t2 6= p

AT J·K :: Type→ {p, c, s}

AT Jτ1 → τ2K = cBAT Jτ1K BAT Jτ2K
AT J[:τ:]K = p

AT JT τ1 . . . τnK = s if T τ1 . . . τn ∈ Scalar, where n ≥ 0
= p if T ∈ Pts

= cBAT Jτ1K B · · ·BAT JτnK otherwise

A J·K · :: Expr→ {Var} → LExpr

A Jk :: τK P = (k, s) k is a literal
A Jx :: τK P = (x,p) if x ∈ P x is a variable

(x,AT JτK) otherwise
A JC :: τK P = (C,AT JτK) C is data constructor

A Je1 e2 :: τK P = ((A Je1K P)(A Je2K P),
AT JτK BA Je1K P BA Je2K P)

A J(λx :: τ .e)K P = (λx.(A JeK P), A JeK P BAT JτK)
A J(if e1then e2 else e3) :: τK P = (ifA Je1K P thenA Je2K P elseA Je3K P,

AT JτK BA Je1K P BA Je2K P BA Je3K P)
A J(letx :: τ1= e1 in e2) :: τK P = (letx=A Je1K (P ∪ {x}) inA Je2K (P ∪ {x}),p) if A Je1K P = (e′1,p)

and τ1 6∈ Scalar
= (letx=A Je1K P inA J e2K P, otherwise

AT JτK BA Je1K P BA Je2K P)
A J(case e1 ofC xi :: τi → e2) :: τK P = (caseA Je1K P ofC xi :: τi → A Je2K (P ∪ xi), if A Je1K P = (e′1,p)

p) and τi 6∈ Scalar
= (caseA Je1K P ofC x1 . . . xk → A Je2K P, otherwise

AT JτK BA Je1K P BA Je2K P)

Figure 2. Static code analysis determining the subexpressions that need to be vectorised

fvs(e) = ∀v :: τ ∈ FreeVars(e).AT JτK = s

E J·K :: LExpr→ LExpr

E J(k, l)K = (k, l)
E J(x, l)K = (x, l)
E J(C, l)K = (C, l)

E J(e1 e2, s)K = encapsulate(e1 e2), if fvs(e1 e2)
E J(e1 e2, l)K = (E Je1K E Je2K , l)
E J(λxi.e, s)K = encapsulate(λxi.e) if fvs(e)
E J(λxi.e, l)K = (λxi.E JeK), l)

E J(if e1then e2else e3, s)K = encapsulate(if e1then e2else e3) if fvs(e1 e2)
E J(if e1then e2else e3, l)K = (if E Je1K then E Je2K else E Je3K , l)

E J(letx= e1in e2, s)K = encapsulate(letx= e1in e2) if fvs(letx= e1in e2)
E J(letx= e1in e2, l)K = (letx= E Je1K in E Je2K), l)

E J(case e1 ofC x1 . . . xk → e2, s)K = encapsulate(case e1 ofC x1 . . . xk → e2) if fvs(case e1 ofC x1 . . . xk → e2)
E J(case e1 ofC x1 . . . xk → e2, l)K = (case E Je1K ofC x1 . . . xk → E Je2K , l)

Figure 3. Encapsulation of maximal sequential subexpressions

As usual top-level bindings are not included in the free variables.
Note how encapsulate labels all new lambda expressions as well as
the encapsulated expression exp with e.

Figure 3 defines E J·K :: LExpr → LExpr , which, given a la-
belled expression, encapsulates all subexpressions that (1) perform
some work (are larger than an individual literal, variable, or data

constructor), (2) are marked as s, and (3) whose free variables are
also marked as s. These are our sequential subexpressions. Since
E J·K defines a top down transformation, it encapsulates the first
subexpression it encounters that meets the requirements. Hence, it
encapsulates maximal sequential subexpressions.

VE J(λx1 . . . xk.e, e)K = Clo {env = ()
, clos = λenv x1 . . . xk. e
, clol = λenv x1 . . . xk. case env of ATup n → (zipWithPark(λx1 . . . xk.e))}

Figure 4. Modified vectorisation rules for lambda abstractions

4.3 Modifying vectorisation
After labelling an expression with A J·K · and encapsulating all
maximal sequential subexpressions with E J·K, we only need a
slight addition to the rules of vectorisation from Figure 1 to avoid
vectorisation. Firstly, the vectorisation and lifting transform, V J·K
and L J·K · need to be adapted to process labelled expressions. That
adaptation is trivial as the existing rules all just ignore the label and
operate on the expression as usual.

Secondly, we add one additional rule for vectorising lambda
expressions that is shown in Figure 4. If a lambda expression
is labelled e, we know without needing any further checks that
it is safe to lift it by simply using a scalar mapping function,
zipWithPark,2 instead of the full lifting transformation L J·K ·.
In this case, we do not need to check for free variables, as lambda
abstractions marked e are closed.

5. Performance
In this section, we provide empirical evidence that vectorisation
avoidance yields a net improvement in both compile time and run-
time, when compared to full vectorisation in combination with ar-
ray fusion. Our measurements are restricted to the implementa-
tion of vectorisation in GHC (the only existing implementation of
higher-order flattening known to us) and to multicore CPUs without
considering SIMD vector instructions. The results may be different
for vector hardware, such as SIMD instructions or GPUs, but cur-
rently we have no DPH backend to investigate these architectures.

We chose those relatively simple benchmark programs, as they
expose the effect of vectorisation avoidance well. The impact on the
performance of the more complex DPH benchmarks, like Barnes-
Hut, is as expected given the numbers below, taking into account
the ratio between code which is affected by the optimisation and
code which is not.

All benchmarks have been executed on a quadcore 3.4 GHz In-
tel Core i7 running OS X with the current development version
of GHC (version 7.5). With the exception of the benchmarks con-
cerned with load balancing, vectorisation avoidance ought to im-
prove program performance independent of whether the program is
executed sequentially or in parallel on multiple cores. We include
parallel runtimes throughout, to support that claim, but only for up
to four cores as there are no interesting scalability questions.

5.1 Additional lambdas
The encapsulation of maximal sequential subexpressions in lambda
abstractions by vectorisation avoidance arguably complicates the
program. Does this introduce overheads? In our benchmarks it
didn’t appear to.

This is not surprising. These lambda abstractions are processed
twice by vectorisation: to produce a scalar and a lifted version of the
abstraction when creating a vectorised closure (c.f., Section 3.2.2).
In the case of the lifted code, the lifting transformation L J·K ·
introduces additional abstractions anyway.

In the scalar code, the situation is less obvious. Encapsulation
introduces an expression of the form

(λx ... xn. expr) x ... xn

2 We assume zipWithPar1 = mapPar.

This turns into Clo{...} $: x $: · · · $: xn, which GHC’s
simplifier reliably simplified by inlining ($:), case simplification,
and beta reduction in our experiments.

5.2 Simple arithmetic operations
Our first two benchmark programs investigate the case where
stream fusion [12, 13] is able to completely fuse a chain of ar-
ray traversals. Specifically, we measure the runtime of the follow-
ing two functions when used in parallel — that is, we measure
zipWith pythagoras xs ys and zipWith distance xs ys,
where xs and ys are vectors containing 108 Double values:

pythagoras x y
= sqrt (x * x + y * y + 2 * x * y)

distance (xo, yo) ((x1, y1), (x2, y2))
= (x1 - xo) * (y2 - yo) - (y1 - yo) * (x2 - xo)

In our current implementation, the Scalar class does not yet have
an instance for pairs. Hence, vectorisation avoidance cannot use
zipWith_scalar on the entire body of distance. Instead it en-
capsulates the body of the innermost case expression (performing
pattern matching on the pairs); so, the code has the following struc-
ture after encapsulation:

distance xy0 xy =
case xy0 of (x0, y0) ->
case xy of (xy1, xy2) ->
case xy1 of (x1, y1) ->
case xy2 of (x2, y2) ->
(λ x0 y0 x1 y1 x2 y2.

(x1 - x0) * (y2 - y0) - (y1 - y0) * (x2 - x0))
x0 y0 x1 y1 x2 y2

Given that the additional array traversals introduced by vectorisa-
tion of pythagoras and distance can be completely eliminated
by array fusion, we might expect that vectorisation avoidance does
not provide any additional benefit. However, the graph displayed in
Figure 5 shows that vectorisation avoidance does improve perfor-
mance slightly. This is because fusion leads to slightly more com-
plex loops than vectorisation avoidance.

According to the graph, the two benchmarks do not scale par-
ticularily well. We believe that this is because the code is memory
bound — i.e., the full floating-point performance of the processor
is not exploited because the processor has to wait for the memory-
subsystem to fetch the operands.

5.3 Fusion and vectorisation avoidance together
In the previous benchmark, we measured the performance of
zipWithP pythagoras xs ys by itself (and the same with
distance). Next, we study that same code sandwiched between a
producer (enumerating the arrays consumed by the zipWithP) and
a consumer (summing up the result array with sumP); so, we have
got

sumP (zipWithP pythagoras
(enumFromToP 1 (10^8))
(enumFromToP 1 (10^8)))

Ideally, we would like the whole pipeline to fuse into a single
loop that computes the final sum without creating any intermedi-
ate arrays. Looking at the graph in Figure 6 that does happen for

0

1000

2000

3000

4000

1 2 3 4

distance

m
s

cores

only fusion with vect avoid

0

750

1500

2250

3000

1 2 3 4

pythagoras
m

s

cores

only fusion with vect avoid

Figure 5. Runtimes of the pythagoras and distance functions on vectors of 108 floating-point numbers

0

2000

4000

6000

8000

1 2 3 4

distance with wrapper

m
s

cores

only fusion with vect avoid

0

1000

2000

3000

4000

1 2 3 4

pythagoras with wrapper

m
s

cores

only fusion with vect avoid

Figure 6. Runtimes of the pythagoras and distance functions with wrappers on vectors of 108 floating-point numbers

the pythagoras benchmark with vectorisation avoidance enabled.
With fusion alone, performance is worse by more than a factor of
3. Array fusion by itself did not manage to eliminate the entire
pipeline, whereas the combination of array fusion with vectorisa-
tion avoidance did so successfully, leading to a dramatic perfor-
mance improvement. Once the pipeline fuses completely, the code
also scales better — since there are no more intermediate structures,
the memory-access bottleneck vanishes.

Why is fusion by itself not successful at removing all interme-
diate structures? In the lifted code, the arrays produced by the enu-
merations are shared, because the arguments to pythagoras are
used multiple times in the body. This hampers inlining, and hence,
stream fusion. With vectorisation avoidance, all sharing is in the
code that is not vectorised, so this problem does not arise.

In the case of distance, vectorisation avoidance is also a
clear improvement. However, it is less dramatic as the remaining
pattern matching of the argument pairs (discussed in the previous
subsection) prevents fusion of the entire pipeline.

5.4 Conditionals
Fully vectorising conditionals is expensive due to the splitPA and
combinePA operations. On the other hand, vectorised conditionals
balance load well, whereas if vectorisation is avoided, we might
suffer from load imbalance. To assess the impact of vectorisation
avoidance on conditionals, we measured mapP simpleCond xs
and mapP sinCond xs, for arrays with 108 elements, where

simpleCond x = if (x ‘mod‘ 2 == 0)
then 3 * x
else 2 * x

sinCond x n = if (x < n / 2)
then x
else sin (sin (sin (2 * x)))

We chose the input array to contain the increasing sequence of 1
to the size of the array. Hence, for simpleCond, we have no load
imbalance with vectorisation avoidance, whereas sinCond has a
severe load imbalance as we execute the then-branch on the first
half of elements and the else-branch on the other half.

0

3000

6000

9000

12000

1 2 3 4

sinCond

m
s

cores

only fusion with vect avoid

0

2000

4000

6000

8000

1 2 3 4

simpleCond
m

s

cores

only fusion with vect avoid

Figure 7. Runtimes of the simpleCond and sinCond functions on vectors of 108 Ints and Doubles, respectively

0

275

550

825

1100

1 2 3 4

simpleRec

m
s

cores

non-randomised randomised

Figure 8. Runtimes of simpleRec on vectors of 105 Doubles
with and without randomisation

As expected, the graph in Figure 7 shows that vectorisation
avoidance for conditionals is a big improvement when there is
no load imbalance. However, even with a severe load imbalance,
vectorisation avoidance is still an advantage for small numbers
of cores. Nevertheless, with vectorisation avoidance, scalability
suffers in case of load imbalance; hence, it would be worthwhile to
enable the programmer to determine the behaviour of the vectoriser
with a pragma.

5.5 Recursive Functions
The question of load imbalance becomes even more pressing when
the work complexity of a function depends on the array element it
is applied to, as in

simpleRec x = if (x < 5)
then x
else simpleRec (x - 5)

Interestingly, in the case of a tail recursive function, the benefit
of vectorisation avoidance is even greater, because vectorisation
prevents the code generator from compiling the recursion into a
simple loop. For the admittedly extreme case of simpleRec, where

0

2750

5500

8250

11000

1 2 3 4

acceleration

m
s

cores

allAccels, only fusion zipWithP accel, only fusion
allAccels, vect avoid zipWithP accel, vect avoid

Figure 9. Runtimes of allAccels and zipWithP accels com-
puting 108 interactions

there is no work in the recursive steps, the fully vectorised version
is two orders of magnitude slower than that using vectorisation
avoidance.

Unfortunately, when mapping simpleRec over an array con-
taining the increasing sequence of 1 to the size of the array, load
imbalance is also significant. Vectorisation of simpleRec provides
load balancing, but, in this example, with a prohibitively expensive
constant factor. An alternative to full vectorisation in such cases is
to apply vectorisation avoidance, but to randomise the input vector.
The graph in Figure 8 suggests that this is a worthwhile strategy.
Currently, a programmer needs to do it explicitly, but we plan to
investigate automatic randomisation.

5.6 Calculating accelerations
Figure 9 displays the running times for computing the accelera-
tion of 108 mass point interactions (the example we used in Sec-
tion 2) with and without vectorisation avoidance. It does so in two
ways. Firstly, by using allAccels on 104 mass points (it im-
plements a quadratic algorithm); and secondly, by directly using
zipWithP accel on two arrays of 108 mass points. The main dif-
ference between these two computations is that allAccels also

computes 2 ∗ 104 parallel sums. Hence, it is not surprising that
allAccels is slower than zipWithP accel across the board.

However, it is interesting to see that the gain due to vectorisation
avoidance is higher in the case of allAccels, where it is 11%
on a single core, than for zipWithP accel, where it is 3%. The
reason is as for pythagoras and distance with wrappers. Fusion
of the acceleration computation with sumP is more effective with
vectorisation avoidance.

Note also that, as previously mentioned, the Scalar class in
our current implementation does not yet include pairs. Hence, the
vectorisation of accel cannot yet be entirely avoided (c.f., the
explanation for distance in Section 5.2). We expect the gain to
be even more pronounced once support for tuples is added.

5.7 Compilation time
We argued that, apart from producing faster code, vectorisation
avoidance also produces simpler code which requires fewer sub-
sequent optimisations. This, in turn, should result in shorted com-
pilation times. For the examples presented in this section, overall
compilation was about 25% faster when vectorisation avoidance
was enabled.

6. Related Work
We are not aware of any other work that attempts to selectively
avoid vectorisation in higher-order programs. However, in a recent
port of Blelloch’s original NESL system to GPUs [2], the code
for NESL’s virtual vector machine, called VCODE, is analysed to
fuse sequences of lifted arithmetic operations. This is selectively
undoing some vectorisation, albeit in a first-order setting. Much
like our old stream fusion system, it cannot undo the vectorisation
of conditionals or recursive functions.

Manticore is an implementation of nested data parallelism
which uses a technique called hybrid flattening leaving the code
mostly intact, and which relies on dynamic methods, such as
work stealing and lazy tree splitting [3, 18]. Similarly, Blelloch
et al. [4, 20] investigated alternatives to flattening based on multi-
threading. Based on the scheduling strategy, they were able to es-
tablish asymptotic bounds on time and space for various forms of
parallelism, including nested data parallelism.

Overall, there are two general approaches to implementing
nested data parallelism. Approaches based on multi-threading natu-
rally fit the execution model of MIMD machines, such as multicore
processors. However, they need to perform dynamic load balanc-
ing (e.g., by using work stealing) and to agglomerate operations on
successive array elements (to get efficient loops). The alternative is
vectorisation, which produces pure SIMD programs. This approach
must make efforts to increase locality (e.g., by array fusion). It
seems that a hybrid approach may work best, and the question is
whether to start from the MIMD or SIMD end. We chose to start
from SIMD and relax that using vectorisation avoidance, as dis-
cussed here, complemented by a more flexible array representation
as discussed in a companion paper [16].

Acknowledgements. This work was supported in part by the Aus-
tralian Research Council under grant number LP0989507.

References
[1] A. W. Appel and T. Jim. Continuation-passing, closure-passing style.

In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. ACM Press, 1989.

[2] L. Bergstrom and J. Reppy. Nested data-parallelism on the GPU. In
ICFP’12: Proceedings of the 17th ACM SIGPLAN International Con-
ference on Functional Programming. ACM Press, 2012. Forthcoming.

[3] L. Bergstrom, J. Reppy, M. Rainey, A. Shaw, and M. Fluet. Lazy
tree splitting. In ICFP’10: Proceedings of the 15th ACM SIGPLAN

International Conference on Functional Programming. ACM Press,
2010.

[4] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient scheduling
for languages with fine-grained parallelism. Journal of the Association
for Computing Machinery, 46(2), 1999.

[5] G. E. Blelloch and G. W. Sabot. Compiling collection-oriented lan-
guages onto massively parallel computers. Journal of Parallel and
Distributed Computing, 8, 1990.

[6] M. M. T. Chakravarty and G. Keller. More types for nested data par-
allel programming. In ICFP’00: Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming. ACM
Press, 2000.

[7] M. M. T. Chakravarty and G. Keller. Functional array fusion. In
ICFP’01: Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming. ACM Press, 2001.

[8] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In ICFP’05: Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming. ACM Press,
2005.

[9] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow.
Associated types with class. In POPL’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Sysposium on Principles of Programming
Languages. ACM Press, 2005.

[10] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller,
and S. Marlow. Data Parallel Haskell: a status report. In DAMP 2007:
Workshop on Declarative Aspects of Multicore Programming. ACM
Press, 2007.

[11] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and G. Keller.
Partial vectorisation of Haskell programs. In DAMP 2008: Workshop
on Declarative Aspects of Multicore Programming, 2008.

[12] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From
lists to streams to nothing at all. In ICFP 2007: Proceedings of the
ACM SIGPLAN International Conference on Functional Program-
ming, 2007.

[13] D. Coutts, D. Stewart, and R. Leshchinskiy. Rewriting haskell strings.
In PADL 2007: Practical Aspects of Declarative Languages 8th Inter-
national Symposium. Springer-Verlag, Jan. 2007.

[14] G. Keller and M. M. T. Chakravarty. Flattening trees. In Euro-Par’98,
Parallel Processing, number 1470 in LNCS. Springer-Verlag, 1998.

[15] R. Leshchinskiy, M. M. T. Chakravarty, and G. Keller. Higher order
flattening. In PAPP 2006: Third International Workshop on Practical
Aspects of High-level Parallel Programming, number 3992 in LNCS.
Springer-Verlag, 2006.

[16] B. Lippmeier, M. M. T. Chakravarty, G. Keller, R. Leshchinskiy,
and S. Peyton Jones. Work efficient higher order vectorisation. In
ICFP’12: Proceedings of the ACM SIGPLAN International Confer-
ence on Functional Programming(to appear). ACM Press, 2012.

[17] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty.
Harnessing the multicores: Nested data parallelism in Haskell. In
FSTTCS 2008: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, LIPIcs. Schloss
Dagstuhl, 2008.

[18] A. Shaw. Implementation Techniques For Nested-data-parallel Lan-
guages. Phd thesis, Department Of Computer Science, The University
Of Chicago, 2011.

[19] B. So, A. Ghuloum, and Y. Wu. Optimizing data parallel operations
on many-core platforms. In STMCS’06: First Workshop on Software
Tools for Multi-Core Systems, 2006.

[20] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons. Space
profiling for parallel functional programs. J. Funct. Program., 20(5-6),
2010. ISSN 0956-7968.

[21] M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. Sys-
tem F with type equality coercions. In TLDI’07: ACM SIGPLAN Inter-
national Workshop on Types in Language Design and Implementation.
ACM, 2007.

