
THE QUEST FOR EXCELLENCE IN DESIGNING CS1/CS2 ASSIGNMENTS

Todd J. Feldman and Julie D. Zelenski

Department of Computer Science

Stanford University

ABSTRACT

We identify the principles involved in designing effective
programming assignments for CS 1/CS2. Through a case
study of a particularly successful recursion assignment, we
establish several prerequisites that must be present in the
foundation of a potential assignment and discuss techniques
for engineering exceptional assignments through changes to
their more malleable components.

INTRODUCTION

Providing students with first-rate homework assignments is
integral to the success of any course, and nowhere is this
relationship so pronounced as in CS I /CS2, where the lion’s
share of what students really learn comes from their
completion of several programming projects. Furthermore,
the course material constantly builds upon itself and
students must live with each assignment for one or two
weeks at a time. Clearly, students cannot afford to have an
inferior assignment deprive them of the educational
rewards it was intended to deliver.

Our aim is to illustrate what it takes to create quality
CS l/CS2 assignments by following an individual
assignment through its genesis and refinement. Because
recursion tends to be conceptually troublesome for students,
it is especially important to have a focused and penetrating
assignment for this material. We saw the word game
Boggle as an excellent basis for a recursion assignment
within the framework of our library-based approach to
programming that makes extensive use of tools for handling
strings, 1/0, and graphics [Roberts95a].

Boggle is played on a 4 x 4 board on which 16 lettered dice
are randomly arranged. The object is to find sequences of
four or more adjoining letters that form words; two letters
adjoin if they are horizontal, vertical, or diagonal
neighbors. No die can be used more than once in forming
any one word. All players simultaneously write down
whatever words they can find until time is called; each
player receives credit only for those words not found by
anyone else.

Our adaptation of the game pits a single human player
against the computer. Using an unlimited amount of time,
the user enters all of the words that she can find, after
which the computer searches the board to find and display
any remaining words.

PREREQUISITES FOR EFFECTIVE ASSIGNMENTS

We first assigned Boggle in the fall of 1993. We required
the students’ programs to generate and draw the board,
assemble a dictionary out of a provided abstract data type
(ADT) and a file of words, check the validity of the user’s
words as they are entered, and perform the computer
player’s exhaustive search. Establishing the validity of a
user’s word entails confirming that it appears in the
dictionary, verifying that it has not yet been used, and
locating and highlighting the word on the board. In the
following snapshot, the user has entered the word “trails”:

Permission to copy withoot fee all or part of this material is granted In coding the solution ourselves, we were pleased to
provided tfmt the copies are not made or distributed for direst discover that Boggle met our expectations as an especially
commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by
illustrative exercise in recursion. Our students tackled the

pemiission of the AssocbUon for Computing Machinery. TOCOPY assignment with enthusiasm, embracing the challenges in
otherwise or to republish, mquiree a fee andlor specific permission. both programming and playing the game, and related that
SIGCSE ’96 2/96 Philadelphia, PA USA they found the experience rewarding and enjoyable.
Q1996 ACM 0-69791 -757X96K)002....50 .5O

Boggle is a registered trademark of Parker Brothers.

319

http://crossmark.crossref.org/dialog/?doi=10.1145%2F236462.236564&domain=pdf&date_stamp=1996-03-01

What made Boggle such a good choice? What can it teach
us about crafting other good assignments? A careful
analysis enabled us to answer these questions and establish
the following prerequisites for effective assignments:

● The material that an assignment is intended to teach must

lie at the heart of the problem it poses.

The selection of appropriate examples plays an important
role in successful teaching. In a lecture setting, one can
fashion isolated functions and code fragments into
canonical examples that incorporate and illustrate the new
material with clarity and focus. On a larger scale,
programming assignments, too, must prominently employ
the constructs and techniques they are designed to teach.

Peeling back the exterior of the Boggle program — its
interface. 1/0, etc. — reveals fundamentally recursive
algorithms that use backtracking search to finding the
user’s and computer’s words. The formation of words is so
characteristically recursive that even students who are just
becoming acquainted with recursion do not experience the
usual temptation to apply more familiar iterative
techniques. In fact, iterative implementations are
practically impossible and therefore preclude serious
consideration.

A common drawback of most recursion assignments is the
fact that they exhibit only one of the two classical types of
recursive problems. Some assignments involve the
production of a single solution (e.g., a path through a
maze), while others involve the production of all solutions
(e.g., the permutations of a set). Boggle, however,
exemplifies both types of recursion, one in finding the
individual words entered by the user and the other in
producing the collection of words that the user overlooked.
As a result, students are able to explore both recursive
paradigms as well as the differences between them.

● An assignment must only be challenging with respect to

the material it is intended to teach.

It is counterproductive for students to squander their efforts
on conceptual difficulties unrelated to the specific learning
experience for which an assignment is designed. Instead,
students must be able to focus their attention on the
challenges of the new material. Free from unnecessary
distractions, students will be able to channel their energy
towards the proper goal; they will also be better able to
appreciate how their solution to a particular problem is
characteristic of the solutions to other problems of the same
class.

The two recursive algorithms of Boggle are the only
elements of the problem that are in any way challenging.
Everything else is simple: the remaining functionality is
essentially 1/0, in the form of library-based string and
graphics routines; the only data structures required are a
two-dimensional array of records to represent the board and
a provided dictionary ADT to store words.

● An assignment must be engaging.

In this age of Sega and Nintendo, it takes a lot more for a
program to be ‘cool’ than it used to. With instructors
taking the care to make assignments enticing and
interesting, students look forward to working on their
programs and want to get their code to work. As a result,
students achieve far greater results than they otherwise
would [Roberts95b].

We have been very successful in this regard by designing
assignments with a strong audio-visual component (most or
all of which is provided for the students through library
code) and a high degree of interactivity; students are
excited by flashy programs in which they can g-et involved.
Not surprisingly, games work particularly well, as Mary
Poppins would agree [Sherman64]:

In ev’ry job that must be done
There is an element of fun;
You find the fun and — snap! —
The job’s a game.

In Boggle, graphics and soundl combine with a challenging
and addictive game to produce a program that students
want to write because they enjoy running it themselves:

Just a spoonful of sugar helps the medicine go down
In a most delightful way.

● An assignment must be accessible to cdl students,

Since the true value of an assignment lies in how effective
it is at fostering students’ mastery of certain skills, it is
Imperative for all students to have a fair shot at attempting
all assignments. Programming assignments should not be
unnecessarily difficult in terms of either the complexity of
the code that students must write or the approachability of
the problems they must solve. Furthermore, assignments
should be without bias towards students of any particular
culture, gender, or academic discipline: the problems
involved should not require specialized knowledge of
unfamiliar topics or attention to overwhelming details and
special cases.

Boggle fits these criteria well: it is a straightforward and

popular word game with clear objectives and concise rules.

w The end result of an assignment must be worth the time

and effort required to achieve it.

When students see the end result of a programming
assignment as something especially impressive, useful, or
fun — a program they would like to have for themselves —
they will approach the project with a heightened sense of
interest and motivation. Writing a program that is worthy
of being shown off to others does wonders for a beginning
programmer’s sense of accomplishment. These positive
results will not only leave a student with good memories of

‘We gave our students a sound-playlng routine and lots of fun sounds with
which to embellish their programs.
21ncluding computer science and englneenng, since many students In
CS 1/CS2 have nontechnical backgrounds.

320

the relevant assignment, but they will inspire the student on

subsequent assignments as well.

On completion of their Boggle programs, students were
amazed that they were able to write a program to solve a
problem that seemed so difficult to them. The large
branching factor associated with the formation of words is
enough to confound most humans, yet students witnessed
their programs’ ability to find an incredible number of
words with speed and completeness. Students accepted
with good-natured humility the fact that the computer
player consistently defeated them, and took much-deserved
pride in the rare situations where the tables were turned.s

ENGINEERING EFFECTIVE ASSIGNMENTS

Although the first version of our assignment had important

strengths, it was not without its tlaws. On successive
iterations of the assignment, we sought to clear up the
aspects of the original version that were unnecessarily
problematic. Our experiments in revising the assignment
have yielded this formula for engineering an exceptional
assignment from a strong foundation:

● Focus the assignment.

Clearing away nonessential components allows students to
focus their energy on the more interesting aspects of the
assignment. Students can be given the code for features of
the program that would otherwise be eliminated. This
works best when the functionality naturally separates into a
cohesive and independent module. Ideally the code only
loosely couples with the students’ work and they use it only
through its public interface.

This approach acquaints students with the techniques
involved in working with code written by others: reading
an interface, integrating its use into their own code, and
debugging a program which has diverse contributions.
These are useful skills for students to cultivate. We
recommend distributing the module as source code if it
would be accessible to the students at their current skill
level. Source code provides a valuable debugging aid and
furnishes a strong example of well-commented, cleanly
written code.

The initial version of the Boggle assignment was too long.
Giving students more time was not the right answer: we
needed to eliminate the extraneous tasks that were
crowding an already complex assignment. For example,
drawing and highlighting the board introduced no new
concepts and required tedious fussing to tune to perfection.
In our revised version, we provided a module of graphics
routines that the students could call at appropriate times,
substantially reducing their time spent on the project’s
graphical aspects.

3Students reportedly posted screen snapshots in their dormitories and
computer clusters as testimomals to their trmmphs.

We gave our students the source code for the graphics
module and encouraged them to adapt or embellish the
routines. In truth, few students did, and most assignments
were visually identical, lacking the creativity and
individuality of the first batch (which was, perhaps, a minor
downside of this change). Also, the sense of pride and
accomplishment was diminished for some students, who
felt they had only written “half’ of the assignment. We
countered this by assutvng students that our code did
nothing mystical or complex — that they could certainly
write it it’ they were asked to do so — and encouraging
them to examine the source code to bolster their sense of
proficiency.

● Dotl ‘t cut cotwers on materials provided to students.

Students will not be able to fix any deficiencies in a
compiled library, thus its functionality must be complete
and efficient enough to properly support their work. The
quality of any supporting data files IS equally important.
Admittedly, constructing data files with more than the
barest bones is time-consuming, yet having access to
interesting and comprehensive data often makes the
difference between a “toy” result and a program that
accomplishes something wonderful and impressive. An
investment in exceptional materials can greatly enrich the

students’ experience without any change to the assignment
itself.

Our original assignment suffered from inadequate and
incomplete dictionary support. We provided a simple hash-
table dictionary ADT in library form that supported the
Enter and Lookup operations. In order to recognize when
the exhaustive search of the computer’s turn was futilely
exploring a dead-end path, a prefix lookup was sorely
needed. Unfortunately, this operation is not easily
supported by a hash table, and in the original assignment
we had to impose an artificial limit on the maximum word
length to curtail the time-consuming and fruitless search.

In revising the assignment, we sought and implemented a
dictionary better tuned for our needs. [Appe188] describes a
highly efficient dictionary built from a directed acyclic
word-graph, or dawg, a trie with unified suffixes as well as
prefixes. The desired prefix lookup operation was trivial to
implement. Now that students could identify and terminate
pointless searches, we removed the unnecessary upper
bound on word length.

The dictionary data file we first used was the standard
UNIX /usr/diet/words tile which contains about 25,000
of the most common English words. Unfortunately, it
includes only stem words and none of their common
derived forms such as plurals, past tenses, and gerunds.
While playing the game, the dictionary would report that
many simple and familiar words (e.g., “boats”, “running”,
“happiest”) were not in the dictionary. The students’
programs seemed toy-like and the students themselves felt
less accomplished, although this shortcoming was in no

way reflective of their efforts.

321

In our later assignment, with a more space- and time-
efficient dictionary, we were able to quadruple the size of
the dictionary’s vocabulary, with no increase in memory
requirements and no degradation in speed.4 With these
improvements to the dictionary and its data files, the end
result was a much more realistic and playable game with
virtually no changes to the students’ part of the assignment.

Unfortunately, increasing the sophistication of the library
code or the size and intricacy of the data files creates more
work for instructors. It also raises the possibility of
introducing bugs, necessitating an extremely thorough
testing phase to shake out errors before students stumble
over them.

● Don ‘t crddfeatures indiscriminately.

When the basic assignment concept seems a bit too simple,
various extensions can be added to spice it up or to provide
extra challenges for the more motivated students.
However, many small details often make an assignment
only longer, not harder. The best enhancements are those
which complement the main issues of the assignment and
help to further the students’ mastery of the key concepts.
The consequences of any addition to the assignment must
be carefully weighed, for it might contribute more
complexity than intended.

In place of the standard 4 x 4 Boggle arrangement, we
asked students to accommodate variable-sized boards in the
original assignment. This small extension introduced not
only additional generality but also the need for dynamic
memory allocation, creating an unfortunate mire of troubles
for our students who were not yet firmly in control of the

related issues. Although they did need to solidify their
memory allocation skills, asking them to do so while also
learning recursion reflected poor timing. We backed out of
that decision and stuck with the usual fixed-size board in
the revised assignment.

In contrast, we developed a few extensions that entailed
interesting thought on the part of the students with only
minor impact on their code: handling any occurrence of “q”
on the board as “qu”s or allowing dice to be used repeatedly
in forming a single word. Both of these additions required
students to wrestle further with the recursive code rather
than a fringe detail.

“ Make the assignment easier for students to test and debug.

CS l/CS2 students are still fairly new to programming, and
they often aren’t experienced with the gamut of debugging
and testing techniques. To clarify the goals the students
must attain, a compiled sample application can demonstrate
the behavior of a working solution. Even better, a program
can offer its own feedback, making it immediately obvious

to the student whether it is working correctly, not only on
the main tasks, but on the small details as well. A “back
door” or “cheat mode” may be needed to allow students to
directly construct the situations they need to debug and
overrule decisions usually made at random.

The first version of Boggle did reasonably well at offering
feedback. For example, when the user enters a word, the
program must highlight it visually on the board; students

can easily notice if their programs fail to find the word or
highlight the wrong letters. However, other flaws can be
harder to detect. No word can be used more than once, but
in the first version of the assignment, there was no visible
indication as to which words had been used; to verify that
repetitions were caught, the students had to remember the
words they had used. In the revised version, we provided a
score-keeping facility that displayed the players’ word lists

alongside the board. NOW that it was clear which words
had been used, students were better able to test whether
their programs properly enforced the repeated word
restriction.

Students also found it difficult to establish the veracity of
their algorithms for the computer’s exhaustive search.
Something is obviously wrong when this search finds
words that do not exist. However, since there are so many
words to be found, it’s much harder to tell whether any
have been omitted. In the revised assignment, we added an
option to the sample application that allowed the students to
assign letters to locations manually. By forcing the board
in the sample application to match a board generated by
their own program, a student could observe the two
programs, side by side, searching for words on the same
board. If the two programs found the same words, the
student could be more confident about the correctness of
their code.

SUMMARY

Boggle has blossomed into one of our top assignments. It
consistently rates very highly with our students and
continues to defy our attempts to come up with a

comparable alternative.

Our work with Boggle has convinced us to restrict our
consideration of potential assignments to those that share its
initial strengths. We labeled these qualities prerequisites

because they are difficult or impossible to impart if they are
missing from an assignment’s fundamental concept. For
example, one would be hard put to contort Boggle into an
appropriate string assignment, because its peripheral use of
a small subset of string operations cannot be shifted to the
heart of the game. Similarly, computing n to 500 decimal
places is neither compelling nor engaging to the average
student, and little can be done to make it so.

41n fact our new dictionary was almost too large — it Included obscure
words that caused more than a few students to wonder if their program had
a bug when it found one of the more unusual words!
‘To make “q” more usable, the commercial version of Boggle combines it
with “u” on a single die face as “qu”.

Boggle also demonstrates that even good assignments can
be made better. Each time we prepare a new version of an
old assignment, we are surprised at how much we are able
to improve it; we evolve our assignments as we learn from

322

our own experiences as well as the successes and failures of

every new group of students. For example, our students
have exposed several aspects of Boggle that can still be
refined: we’d like to find a way to help them debug their
code without getting lost in the depths of recursion and
avoid the memory allocation problems that accompany
recursive string processing. Although our students have not
complained about the single (human) player limitation of
Boggle in its present form, we are excited by the prospect

of someday devising a competitive networked
implementation of the game for multiple players.

Designing assignments is one of the most personalized
aspects of teaching, and therefore also one of the most
gratifying. We receive heartfelt joy and pride from
watching our students — many of whom have never
touched a computer before — learn and mature from the
programming experiences that we craft for them, We hope
that in sharing our own discoveries and ideas in this paper
we may inspire others to invest the extra time and effort in
creating assignments that will return great rewards to both
their students and themselves.

REFERENCES

[Appe188] Andrew W. Appel and Guy J. Jacobsen, “The
World’s Fastest Scrabble Program”, Communications of the

ACM, Volume 31, No. 5, May 1988.

[Roberts95a] Eric S, Roberts, The Art and Science of C: A

Libraty-Based Approach, Reading, MA: Addison-Wesley,
1995.

[Roberts95b] Eric S. Roberts, “A C-Based Graphics
Library for CS 1”, SIGCSE Bulletin, March 1995.

[Sherman64] Richard M. Sherman and Robert B. Sherman,
“A Spoonful of Sugar”, Mary Poppins, The Walt Disney
Company, 1964.

323

