
ar
X

iv
:1

20
7.

01
58

v1
 [

cs
.L

O
]

 3
0

Ju
n

20
12

On the Complexity of Equivalence of

Specifications of Infinite Objects

Jörg Endrullis Dimitri Hendriks

Rena Bakhshi

VU University Amsterdam

Department of Computer Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

{j.endrullis, r.d.a.hendriks, r.r.bakhshi}@vu.nl

November 20, 2018

Abstract

We study the complexity of deciding the equality of infinite objects specified
by systems of equations, and of infinite objects specified by λ-terms. For
equational specifications there are several natural notions of equality: equality
in all models, equality of the sets of solutions, and equality of normal forms
for productive specifications. For λ-terms we investigate Böhm-tree equality
and various notions of observational equality. We pinpoint the complexity of
each of these notions in the arithmetical or analytical hierarchy.

We show that the complexity of deciding equality in all models subsumes
the entire analytical hierarchy. This holds already for the most simple infinite
objects, viz. streams over {0, 1}, and stands in sharp contrast to the low arith-
metical Π0

2-completeness of equality of equationally specified streams derived
in [17] employing a different notion of equality.

1 Introduction

In the last two decades interest has grown towards infinite data, as witnessed by
the application of type theory to infinite objects [5], as well as the emergence of
coalgebraic techniques for infinite data types like streams [19], infinitary term
rewriting and infinitary lambda calculus [24]. In functional programming, the
use of infinite data structures dates back to 1976, see [14, 11].

We are concerned with the complexity of deciding the equality of infinite
objects specified by systems of equations, and infinite objects specified by λ-
terms. The equational specification of coinductive objects is common practice in

1

http://arxiv.org/abs/1207.0158v1

coalgebra, term rewriting and functional programming. Consider the following
example from [17]:

zeros = 0 : zeros ones = 1 : ones

blink = 0 : 1 : blink zip(x : σ, τ) = x : zip(τ, σ)

}

(1)

This is an equational specification of three infinite lists of bits, and a binary
function over infinite lists.1 Then, a typical question is whether the following
equality holds:

zip(zeros, ones) = blink (2)

The answer depends on the semantics we choose to interpret the equality; for
example (2) is not valid in the hidden models considered in [17]; for more details
we refer to Section 2. In order to answer such a question, we first need to settle
on the precise semantics of equality for equational specifications; the candidates
we consider in this paper are

I. Equality in all models.

II. Equality of the set of solutions.

For λ-terms we are not concerned with equality in the sense of convertibility
(which is known to be Π0

2-complete, see [1]). Instead, we are interested in
behavioral equivalence of λ-terms in all contexts, because this corresponds to
the interchangeability of expressions in purely functional languages. It is also
closely related to referential transparency, and the notion of Böhm trees as
values of expressions including those without normal form. Thus we consider
the following equivalences for λ-terms:

III. Observational equivalences.

IV. Böhm-tree equality.

The ‘right’ choice of equivalence depends on the intended application. The
classic semantics mentioned in items I and II above, are defined by model-
theoretic means. From a algebraic perspective I and II are the most natural
semantics to consider for equational reasoning. On the other hand, III and
IV, are defined by means of evaluation, i.e., rewriting. In functional program-
ming the latter are of foremost importance, because these take (lazy) evaluation
strategies into account. From an evaluation perspective, two terms are equal if
they have the same observable behavior, independent of the context they are in.
In contrast to the model-theoretic notions, this equality is invariant under the
exchange of meaningless subterms, that is, subterms which cannot be evaluated
to a (weak) head normal form.

Another candidate for the semantics of equality is

1In Haskell there is zip :: [a] → [b] → [(a, b)], but we prefer to use ‘zip’ for the interleaving

of lists, as defined by the equation in (1), since that is what a zipper does: it interleaves rows
of teeth.

2

V. Equality of normal forms for productive specifications.

A rewrite specification is productive [23, 9] if the terms under consideration can
be fully evaluated, that is, (outermost-fair) rewriting yields a (possibly infinite)
constructor normal form in the limit. In such a setting, equality of the normal
forms is a suitable semantics for the equivalence of terms. Deciding the equality
of productive specifications has been shown to be a Π0

1-complete problem in [13];
this semantics is not considered here.

We now briefly describe the concepts I–IV.

Equality in models (I and II). The semantics I (equality in all models)
is useful when the objects under consideration are specified in the same spec-
ification. This semantics interprets the objects simultaneously in each model
satisfying the specification. This allows us to compare objects that depend on
a common unknown, an underspecified object; see (4) below for an illustrating
example. If the objects under consideration are fully specified, that is, have
unique solutions, then semantics I coincides with semantics II.

In contrast to I, semantics II is more suitable for comparing objects specified
by different specifications, as we explain below. The objects are compared via
the set of their solutions (in their respective specifications). This semantics is
well-known from equations over real (or complex) numbers, where two equations,
like

(x− 1)2 − 1 = 0 and x2 − 2x = 0 ,

are equivalent if they have the same solutions for x, here {0, 2}.
A Σ-algebra A consists of a carrier set A (the domain of A) and an interpre-

tation [[·]] of the symbols Σ occurring in the equational specification as functions
over A. Then A is called a model of an equational specification E, which we
denote by A |= E, if all equations of E respect the interpretation; that is, for
every equation of E both sides have the same interpretation for every assign-
ment of the variables. As the domain we will typically choose (a subset of) the
final coalgebra [21] describing the class of objects we are specifying. The final
coalgebra ensures that the model is continuous, that is, if we have a converging
sequence of terms t1, t2, . . . with limit tω, then the sequence of interpretations
[[t1]], [[t2]], . . . converges towards [[tω]]. For example, in a specification like

ones = 1 : ones ones′ = 1 : ones′ (3)

the symbols ones and ones′ are guaranteed to have the same interpretation.
Continuity is crucial to conclude the validity of equations such as ones = ones′

which are not satisfied in non-continuous models like the initial algebra of the
specification.

Let E be a specification of M and N . Then M is considered equal to N
with respect to semantics I if every model of E is also a model of M = N :
∀A. A |= E ⇒ A |= M = N . This notion is especially of interest if M

3

and N depend on a common unknown and consequently have to be interpreted
simultaneously in the same model. For example in

M = zip(X,X) zip(x : σ, τ) = x : zip(τ, σ)

N = dup(X) dup(x : σ) = x : x : dup(σ)

}

(4)

the streams M and N are both specified in terms of an unspecified stream X .
Whatever interpretation X has, M and N are equal, and so they are equal in
the sense of semantics I.

On the other hand, semantics I has the effect that an underspecified con-
stant is not equivalent to its renamed copy. This is illustrated by the following
specification:

M = 0 : tail(M) N = 0 : tail(N) (5)

Here M and N are not equal in every model; for example, let [[M]] = 0 : 0 : . . .
and [[N]] = 0 : 1 : 1 : Nevertheless, M and N are equal in the sense that
they exhibit the same behaviors. That is, they have the same set of solutions:
every stream starting with a zero is a solution for M as well as for N . Thus,
M and N are equal with respect to the semantics II. This paves the way for
comparing objects M and N that are given by separate specifications EM and
EN , respectively. Note that it is not always suitable to apply semantics I to
the union EM ∪ EN even if the specifications have disjoint signatures (using
renaming), see further Remark 3.

Two objects M and N are equal with respect to semantics II if the set of
solutions of M in EM coincides with the set of solutions of N in EN : { [[M]]A |
A |= EM } = { [[N]]A | A |= EN } . Here the set of solutions of a constant X in
a specification EX is the set of interpretations of X in all models of EX .

Observational equivalence (III and IV). In purely functional languages
based on the λ-calculus [1], the evaluation of expressions is free of side effects.
As a consequence, an expression (or subexpression) can always be replaced by
its normal form, the so-called value of the expression. This principle is known as
referential transparency. This also implies that expressions can be substituted
for each other if they have the same normal form.

For specifications of coinductive objects, such as infinite lists (called streams)
or infinite trees, the value typically is an infinite term. For example in ones =
1 : ones, the term ones has as value (or infinite normal form) the infinite term
1 : 1 : 1 : However, it is not always guaranteed that a term can be fully
evaluated. During the evaluation to the (possibly infinite) normal form, we may
encounter subterms that cannot be evaluated because these subterms do not
have a head normal form. In λ-calculus, such terms are known as meaningless
terms. For example, consider:

natsx(n) = n : g(0) : natsx(n+ 1) g(n) = g(n)

natsx′(n) = n : g(n) : natsx′(n+ 1)

4

Here g(n) is meaningless for every n. Consequently, natsx(0) evaluates to a
stream in which every second element is meaningless, and therefore, undefined.
An infinite value containing undefined parts can be represented by means of
Böhm trees [1] introduced in 1975 by Corrado Böhm. In particular, the Böhm
tree of natsx(0) is: 0 : ⊥ : 1 : ⊥ : 2 : ⊥ : 3 : ⊥ : 4 : ⊥ : . . ., where ⊥ is a special
symbol representing an undefined element.

In λ-calculus (or orthogonal higher-order rewriting), terms with equal Böhm
trees can be exchanged (for each other) without changing the meaning of the
whole expression. In the specification above, natsx(0) and natsx′(0) have the
same Böhm tree, and hence are interchangeable. In contrast, from the model-
theoretic perspective natsx(0) and natsx′(0) are different. In every model of
natsx(0) all elements at odd indexes coincide, whereas natsx′(0) admits models
that assign different interpretations to these elements. From a rewriting as well
as functional programming perspective, these differences are irrelevant as they
concern undefined subterms.

There are several notions of infinite values, depending on what terms are con-
sidered meaningless, including Böhm trees, Lévy-Longo trees, Berarducci trees,
η-Böhm trees, η∞-Böhm trees; see further [6]. The terms λx.xx and λx.x(λz.xz),
for instance, have distinct Böhm trees, but we may want to consider the terms
behaviorally, or observationally equivalent as they are η-convertible. There are
several natural concepts of observational equivalence for λ-calculus, where terms
are considered equivalent if they yield the same observations in every context.
To that end, we consider three forms of observations : normal forms (nf), head
normal forms (hnf), and weak head normal forms (whnf). A head normal form
is a λ-term of the form λx1. . . . λxn.yN1 . . . Nm with n,m ≥ 0. A weak head
normal form is an hnf or an abstraction, i.e., a whnf is a term of the form
xM1 . . .Mm or λx.M . Each of the observations gives rise to an equivalence
=nf , =hnf or =whnf , defined by

M =nf N iff (∀C. C[M] has a nf iff C[N] has a nf)

M =hnf N iff (∀C. C[M] has a hnf iff C[N] has a hnf)

M =whnf N iff (∀C. C[M] has a whnf iff C[N] has a whnf)

In fact, the equivalence =nf corresponds to η-Böhm trees, and =hnf to η∞-Böhm
trees. For more details we refer to [6], where it is argued that =whnf corresponds
to evaluation strategies used by lazy functional languages. If two expressions
behave the same in every context, then no functional program can distinguish
them.

Contribution. We characterize for each of the semantics I–IV the complexity
of deciding the equality of terms. For I and II we will focus on equational
specifications of bitstreams, and for III and IV on behavioral equivalences of
λ-terms and Böhm tree equality.

Each of these equivalences is undecidable, therefore we characterize their
complexity by means of the arithmetical and analytical hierarchies, see Fig-
ure 1. The arithmetical hierarchy classifies the complexity of a problem P by

5

the minimum number of quantifier alternations in first-order formulas that char-
acterize P . The analytical hierarchy extends this classification to second-order
arithmetic, then counting the alternations of set quantifiers.

A It turns out that the complexities of deciding the equality in all models
as well as the equality of the set of solutions subsume the entire arithmetical
and analytical hierarchy when the domain of the models is the set of all streams,
so-called full models, see Theorems 5 and 9. The idea of the proof is as follows.
We translate formulas of the analytical hierarchy into stream specifications by
representing ∀ set quantifiers by equations with variables. This simulates a
quantification over all streams as the models are full, and the equations have to
hold for all assignments of the variables. The ∃ set quantifiers are eliminated
in favor of Skolem functions (here stream functions). The interpretation of the
functions is determined by the model, and the question whether there exists a
model corresponds to an existential quantification over all Skolem functions.

B & C If we admit models whose domain does not contain all streams,
then the complexity of deciding equality drops to the level Π1

1 of the analytical
hierarchy for semantics I, and to Π1

2 for II, see Theorems 1, and 11. The reason
is that equations with variables no longer have to hold for all streams, but only
for the streams that exist in the model. By the Löwenheim-Skolem theorem we
obtain that if there exists a model, then there exists a countable model: from an
uncountable model we construct a countable one, by taking the finitely many
streams “of interest” and closing them under all functions in the model. Thus,
it suffices to quantify over countable models for which one single set quantifier
is enough.

The aforementioned results already hold for bitstreams, one of the simplest
coinductive objects, and thereby can serve as a lower bound on the hardness of

Π1
0 = ∆1

0 = Σ1
0

Π1
1 Σ1

1

∆1
2

Π1
2 Σ1

2

...

arithmetic predicates Φ

∃X. Φ(X)∀X. Φ(X)

∃X. ∀Y. Φ(X,Y)∀X. ∃Y. Φ(X,Y)

Π0
0 = ∆0

0 = Σ0
0

Π0
1 Σ0

1

∆0
2

Π0
2 Σ0

2

...

decidable predicates D

∃x. D(x)∀x. D(x)

∃x. ∀y. D(x, y)∀x. ∃y. D(x, y)

well-foundedness

totality

recursively enumerable

A

C

B
E

D

Figure 1: Arithmetical (bottom) and analytical hierarchy (top).

6

the equality problem for other coinductive objects. We also study the behavioral
semantics from [17]. We find that if behavioral equivalence ≡ is required to be
a congruence, like for example in [2], then the complexity of deciding behavioral
equivalence is catapulted out of the arithmetical hierarchy, to the level Π1

1 of
the analytical hierarchy, see Theorem 12. Likewise so for the behavioural equiv-
alence for specifications of streams of natural numbers, relaxing the congruence
requirement, see Theorem 13.

D For the equivalences on λ-terms, we show that deciding the Böhm
tree and Lévy–Longo tree equality, as well as the observational equivalences
=nf , =hnf and =whnf are Π0

2-complete problems, see Theorem 15. (It is clear
that when an object is given by a rewrite system, like the λ-calculus, then the
complexity resides in the arithmetical hierarchy, since it suffices to quantify over
a number steps to evaluate parts of the object.)

E Finally, we consider the complexity of unique solutions. A term s
has a unique solution within a specification E if there exists models of E, and
in all models of E, s has the same interpretation. The problem of deciding
unique solvability in all full models again subsumes the analytical hierarchy, see
Theorems 6, 7 and 8. When also considering the non-full models, we find that
the problem is Π1

1- and Σ1
1-hard, but is strictly contained in ∆1

2, see Theorems 2,
3 and 4.

Outline. We first discuss related work. We formally introduce bitstream spec-
ifications and stream models in Section 3, and Turing machines with oracles in
Section 4. We recall the basic complexity-related notions in Section 5. We
use these concepts in Section 6 to derive the complexity results for the model-
theoretic notions. In Section 7 we consider a different notion of models, namely
the behavioural semantics as in [17]. Finally, we investigate the observational
equivalences of λ-terms in Section 8.

2 Related Work

The complexity of the equality of streams specified by systems of equations has
been investigated in the ICFP paper [17, Corollary 1]; we cite: Proving equality
on streams defined equationally is a Π0

2-complete problem. This result is based
on a behavioral notion of stream models [16]. We briefly summarize the main
characteristics of these models:

(i) Every stream σ ∈ {0, 1}ω can have multiple representatives in the model
(known as confusion).

(ii) For every equation ℓ = r it is required that the interpretations [[ℓ]] and
[[r]] are behaviorally equivalent, denoted by ≡, that is, equality under all
[[head]]([[tail]]n(✷)) experiments. In particular, it is not required that [[ℓ]] =
[[r]].

(iii) Behavioral equivalence ≡ is not required to be a congruence.

7

Behavioral models have a wide range of applications, for example for modeling
computations with hidden states, or capturing certain forms of nondeterminism.
For these applications it is often intended that the semantics is not preserved
under equational reasoning. For example, consider the following specification
from [17]

tail(push(σ)) = σ ,

specifying a function push that prefixes an element to the argument stream,
while leaving unspecified which element. In the behavioral models we obtain a
restricted form of nondeterminism [25], for example, the following is not behav-
iorally satisfied:

push(tail(push(σ))) = push(σ) , (6)

although derivable by pure equational reasoning. For a nondeterministic oper-
ation, it is of course desirable that (6) does not hold.

However, for function definitions employing pattern matching, behavioral
models sometimes yield unexpected results; consider:

ones = 1 : ones f(x : σ) = σ (7)

Now, there are models that satisfy the specification (7), but not (8):

f(ones) = ones (8)

In these models we have that [[ones]] 6= [[1 : ones]] and, at the same time, that
[[ones]] cannot be constructed by the stream constructor [[:]], that is, [[ones]] 6=
[[:]](x, s) for all x ∈ {0, 1} and s ∈ AS . Consequently, the interpretation
[[f]]([[ones]]) can be arbitrary.

Remark 1. We construct a behavioral model for specification 7 in which
f(ones) = ones is not satisfied:

AS = {o} ∪ {w | w ∈ {0, 1}ω} (the domain of the model)

[[head]](o) = 1 [[head]](0w) = 0 [[head]](1w) = 1

[[tail]](o) = o [[tail]](0w) = w [[tail]](1w) = w

[[:]](0, o) = 0 (1ω) [[:]](0, w) = 0w [[:]](1, w) = 1w

[[:]](1, o) = 1ω [[ones]] = o

[[f]](o) = 0ω [[f]](0w) = w [[f]](1w) = w

This model illustrates that the requirements of [17] do not ensure that every
element of the stream domain AS can be constructed by the stream constructor
[[:]]. For example, the element o represents the stream of ones, but o 6= [[:]](a, b)
for all a ∈ {0, 1} and b ∈ AS . In general, [[M]] and [[head(M) : tail(M)]] need not
be the same element of the domain, although they are behaviorally equivalent.

8

Thus, behavioral reasoning is typically not sound for behavioral models, and
therefore the corresponding specifications are usually referred to as behavioral
specifications. In this paper we are interested in specifications where equational
reasoning is sound.

Remark 2. We construct a behavioral model 〈A, [[·]]〉 in the sense of [17] where
specification (1) is behaviorally satisfied but the goal equation zip(zeros, ones) =
blink is not. The model thereby forms a counterexample to [17, Example 2].

We define the domain by AB = {0, 1} and

AS = {zw | w ∈ {0, 1}∗} ∪ {ow | w ∈ {0, 1}∗} ∪ {0, 1}ω

Here zε and oε are alternative representations of 0
ω and 1ω, respectively, and zw

and ow have an additional finite prefix w ∈ {0, 1}∗. We define the interpretations
[[·]] for every a ∈ {0, 1}, σ ∈ {0, 1}ω, w, v ∈ {0, 1}∗ and x, y ∈ AS . For [[head]]

and [[tail]] we define:

[[head]](zε) = 0 [[head]](oε) = 1 [[head]](aσ) = a

[[tail]](zε) = zε [[tail]](oε) = oε [[tail]](aσ) = σ

[[head]](zaw) = a [[head]](oaw) = a

[[tail]](zaw) = zw [[tail]](oaw) = ow

We define the interpretation [[:]] of the stream constructor by:

[[:]](a, zw) = zaw [[:]](a, ow) = oaw [[:]](a, σ) = aσ

Note that the elements zε and oε cannot be constructed by [[:]].
We interpret [[zeros]], [[ones]] and [[blink]] as follows:

[[zeros]] = zε [[ones]] = oε [[blink]] = (01)ω

We define an auxiliary function ✶ that (similar to zip) interleaves the elements
of finite or infinite words; for u1, u2 ∈ {0, 1}≤ω = {0, 1}∗ ∪ {0, 1}ω, let au1 ✶

u2 = a(u2 ✶ u1) and ε ✶ u2 = u2. We now define the interpretation [[zip]] of the
symbol zip as follows:

[[zip]](zw, ov) =

{

(w ✶ v)0ω for |w| = |v|

(w 0ω) ✶ (v 1ω) otherwise

[[zip]](ow, zv) =

{

(w ✶ v)0ω for |w| = |v|+ 1

(w 1ω) ✶ (v 0ω) otherwise

and in all other cases, we define [[zip]](x, y) = emb(x) ✶ emb(y) where emb(zw) =
w0ω, emb(ow) = w1ω , and emb(σ) = σ.

We check that the specification 1 is behaviorally satisfied:

[[zeros]] = zε ≡ z0 = [[0 : zeros]]

[[ones]] = oε ≡ o1 = [[1 : ones]]

[[blink]] = (01)ω = 01(01)ω = [[0 : 1 : blink]]

9

Observe that zε and z0 (and likewise oε and o1) are behaviorally equivalent. For
the zip equation we distinguish the following cases:

(i) If [[σ]] = zw, [[τ]] = ov, we have:

[[zip(x : σ, τ)]] =

{

(xw ✶ v)0ω if |xw| = |v|

(xw 0ω) ✶ (v 1ω) otherwise

[[x : zip(τ, σ)]] =

{

x(v ✶ w)0ω if |v| = |w| + 1

x((v 1ω) ✶ (w 0ω)) otherwise

The equality [[zip(x : σ, τ)]] = [[x : zip(τ, σ)]] follows by the definition of ✶
together with |xw| = |w| + 1.

(ii) The case [[σ]] = ov, [[τ]] = zw is analogous to (i).

(iii) If [[σ]], [[τ]] ∈ {0, 1}ω, we have:

[[zip(x : σ, τ)]] = (x[[σ]]) ✶ [[τ]]

= x([[τ]] ✶ [[σ]]) = [[x : zip(τ, σ)]]

(iv) If [[σ]] = zw, [[τ]] ∈ {0, 1}ω, then:

[[zip(x : σ, τ)]] = (xw 0ω) ✶ [[τ]]

= x([[τ]] ✶ (w 0ω)) = [[x : zip(τ, σ)]]

(v) The case [[σ]] = ow, [[τ]] ∈ {0, 1}ω is analogous to (iv).

(vi) The case [[σ]] ∈ {0, 1}ω, [[τ]] = zw is analogous to (iv).

(vii) The case [[σ]] ∈ {0, 1}ω, [[τ]] = ow is analogous to (iv).

(viii) If [[σ]] = zw, [[τ]] = zv, then:

[[zip(x : σ, τ)]] = (xw 0ω) ✶ (v 0ω)

= x((v 0ω) ✶ (w 0ω)) = [[x : zip(τ, σ)]]

(ix) The case [[σ]] = ow, [[τ]] = ov is analogous to (viii).

Hence 〈A, [[·]]〉 behaviorally satisfies Specification 1. However:

[[zip(zeros, ones)]] = [[zip]]([[zeros]], [[ones]])

= [[zip]](zε, oε) = 0ω

whereas

[[blink]] = (01)ω

Consequently, the equation zip(zeros, ones) = blink is not behaviorally satisfied
in this model.

10

The counterexample in Remark 2 employs the fact that the behavioral mod-
els of [17] do not require that every stream can be constructed by the (in-
terpretation of the) stream constructor [[:]]. As a consequence, the equation
zip(x : σ, τ) = x : zip(τ, σ) does not fully define [[zip]]; it defines [[zip]](σ, τ) only
for those arguments σ that can be constructed by [[:]].

The example illustrates that the behavioral models of [17] do not go along
with function definitions using pattern matching. To fully define [[zip]], we
can specify it using the stream destructors: head(zip(σ, τ)) = head(σ), and
tail(zip(σ, τ)) = zip(τ, tail(σ)). This change of the specification format resolves
the problem.

Alternatively, keeping the specification format, we can adapt the notion
of models. To reestablish soundness of equational reasoning one can (i) ex-
clude confusion or (ii) require that ≡ is a congruence. Note that the com-
mon models of streams are free of confusion: final coalgebras [20], one-sided
infinite words Aω, and the function space N → A. In hidden algebras [15],
confusion is often allowed but its negative effects are prevented by restrict-
ing to behavioral models [2], in which behavioral equivalence is a congruence:
s ≡ t ⇒ f(. . . , s, . . .) ≡ f(. . . , t, . . .). Then equational reasoning is sound
with respect to behavioral equality, and for a specification like ones = 1 : ones,
ones′ = 1 : ones′, the equality g(ones) = g(ones′) holds behaviorally.

Our results show that when ≡ is required to be a congruence (or confusion is
eliminated), then the complexity of the equality of bitstreams that are specified
equationally jumps from the low level Π0

2 of the arithmetical hierarchy to the
level Π1

1 of the analytical hierarchy, thereby exceeding the arithmetical hierar-
chy. Moreover, we show that even for behavioral specifications with confusion
(as in [17]), equality of streams of natural numbers is Π1

1-complete. Conse-
quently, the results of [17] are valid only for bitstreams in combination with the
behavioral equality discussed above. For general behavioral specifications (not
the special case of stream specifications), the Π1

1-completeness has been shown
in [3].

Term rewriting systems are closely related to equational specifications. The
complexity of deciding various standard properties of term rewriting systems,
such as productivity, termination and confluence (Church–Rosser), has been
investigated in [8, 10].

3 Bitstream Specifications

We will focus mainly on streams, one-sided infinite sequences of symbols, the
prime example of coinductive structures. There are various ways of introducing
streams: as functions N → A mapping an index n to the n-th element of the
stream, as final coalgebras over the functor X 7→ A × X , using coinductive
types [12], or observational models [2]. All these definitions are equivalent in
the sense that the resulting coalgebras are isomorphic.

For the model-theoretic semantics of equality, we will focus on specifica-
tions of bitstreams, streams over the alphabet {0, 1}. Due to their simplicity,

11

bitstreams can be embedded in almost every non-trivial coinductive structure.
Specifications of bitstreams are inherently sorted, with a sort B for bits, and a
sort S for bitstreams. To this end, we introduce sorted terms. Let S be a set of
sorts; an S-sorted set C is a family of sets {Cs}s∈S . Let C and D be S-sorted
sets. Then an S-sorted function (or map) from C to D is a function f : C → D
such that f(Cs) ⊆ Ds for all s ∈ S, that is, a function that respects the sorts.

An S-sorted signature Σ is a set of symbols f ∈ Σ, each having a type
(s1, . . . , sn, s) ∈ Sn+1, denoted by f :: s1 × . . .× sn → s, where n is the arity of
f . Let X be an S-sorted set of variables. The S-sorted set of terms Ter(Σ,X)
is inductively defined by:

– Xs ⊆ Ter(Σ,X)s for every s ∈ S, and

– f(t1, . . . , tn) ∈ Ter(Σ,X)s if f :: s1 × . . . × sn → s, f ∈ Σ, and t1 ∈
Ter(Σ,X)s1 , . . . , tn ∈ Ter(Σ,X)sn .

An S-sorted equation ℓ = r consists of terms ℓ, r ∈ Ter(Σ,X)s ×Ter(Σ,X)s for
some s ∈ S.

Definition 1. A bitstream signature Σ is an S-sorted signature with S = {B , S}
such that 0, 1, : ∈ Σ where 0, 1 :: B are called bits, and the infix symbol ‘:’ of
type B ×S → S is the stream constructor. An equational bitstream specification
over Σ is a finite set E of equations over Σ.

From now on we let S = {B , S}.

Definition 2. A stream algebra A = 〈A, [[·]]〉 consists of:

(i) an S-sorted domain A; AB = {0, 1} and ∅ 6= AS ⊆ {0, 1}N,

(ii) for every f :: s1×. . .×sn → s ∈ Σ an interpretation [[f]] : As1×. . . Asn → As ,

(iii) : ∈ Σ with [[:]](x, σ) = x : σ,

(iv) 0, 1 ∈ Σ with [[0]] = 0 and [[1]] = 1.

The clause (iv) of the definition is optional; in fact, the results in this paper
are independent of its presence. We have included it since the models where
[[0]] = [[1]] are trivial, in the sense that then all bitstreams are equal.

Definition 3. LetA = 〈A, [[·]]〉 be a stream algebra. Moreover, let α : X → A be
a variable assignment. As usual, the interpretation of terms [[·]]Aα : Ter(Σ,X) →
A is defined inductively by:

[[x]]Aα = α(x) [[f(t1, . . . , tn)]]
A
α = [[f]]([[t1]]

A
α , . . . , [[tn]]

A
α)

Then A is called a (stream) model of E if [[ℓ]]α = [[r]]α for every ℓ = r ∈ E and
α : X → A. We write [[·]]α for [[·]]Aα whenever A is clear from the context. For
ground terms t ∈ Ter(Σ,∅), we have [[t]]α = [[t]]β for all assignments α, β; we
then write [[t]] for short.

12

Thus, we interpret function symbols as functions over bits and bitstreams
as imposed by their sort. In particular, terms of type S are interpreted as
bitstreams. In contrast to [17], our setup does not allow for confusion in the
models. Recall that confusion means that the models can contain multiple
representatives for the same stream.

Definition 4. We say that a model A = 〈A, [[·]]〉 is full if its domain contains
all bitstreams, AS = {0, 1}N.

4 Turing Machines as Equational Specifications

We now define a set of standard equations (for bitstream specifications) that
will be used throughout this paper:

zeros = 0 : zeros ones = 1 : ones

zip1(τ) = τ

zip2(x : τ1, τ2) = x : zip2(τ2, τ1)

zipn(τ1, . . . , τn) = zip2(τ1, zipn−1(τ2, . . . , τn)) (n > 2)







(9)

To give an example,

zip3(σ, τ, ρ) = σ(0) : τ(0) : σ(1) : ρ(0) : σ(2) :

τ(1) : σ(3) : ρ(1) : σ(4) : τ(2) : . . .

writing σ(i) for the i’th entry of the stream σ.
We emphasize that all systems of equations in this paper are finite. To that

end, we extend the specifications only by those equations from (9) that are
needed by the specification, that is, the equations zipn(. . .) = . . . for which a
symbol zipm with n ≤ m occurs in the specification.

Lemma 1. In every stream model A = 〈A, [[·]]〉 of a specification including the
equations from (9) we have:

(i) [[zeros]] = 0ω and [[ones]] = 1ω,

(ii) for all σ1, . . . , σk ∈ AS , k ≥ 2 and n ∈ N:
[[zip1]](σ1) = σ1,
[[zipk]](σ1, . . . , σk)(2n) = σ1(n)
[[zipk]](σ1, . . . , σk)(2n+ 1) = [[zipk−1]](σ2, . . . , σk)(n)

A Turing machine M is a quadruple 〈Q,Γ, q0, δ〉 consisting of a finite set of
states Q, an initial state q0 ∈ Q, a finite alphabet Γ containing a designated
blank symbol ✷, and a partial transition function δ : Q× Γ⇀ Q× Γ× {L,R}.

For convenience, we restrict Γ to the alphabet Γ = {0, 1} where 0 is the
blank symbol ✷, and we denote Turing machines by triples 〈Q, q0, δ〉. As input
for the Turing machines we typically use a unary number representation 11 . . .1
(n-times) to encode the number n. Of course, another encoding is possible, as

13

long as the encoding is computable, and the Turing machine is able to detect
the end of the input (since 0 is part of the input alphabet and it is also the
blank symbol).

We define a translation of Turing machines to equational specifications of
bitstream functions, based on the standard translation to term rewriting systems
from [24]. However, we represent the tape using streams instead of finite lists,
and have one instead of four rules for ‘extending’ the tape. In particular, the
equation for extending the tape is the equation for zeros from (9). The terms
of the shape q(σ, τ) represent configurations of the Turing machine, where the
stream τ contains the tape content below and right of the head, and σ the tape
content left of the head. Notably, the head of the machine stands on the first
symbol of τ .

Definition 5. Let M = 〈Q, q0, δ〉 be a Turing machine. We define the specifi-
cation EM to consist of the following equations:

q(x, b : y) = q′(b′ : x, y) for every δ(q, b) = 〈q′, b′, R〉

q(a : x, b : y) = q′(x, a : b′ : y) for every δ(q, b) = 〈q′, b′, L〉

and for halting configurations additionally:

q(x, b : y) = b whenever δ(q, b) undefined

with the signature Σ = {0, 1, :} ∪Q with types q :: S × S → B for every symbol
q ∈ Q, and 0, 1 :: B and ‘:’ of type B × S → S . Moreover, we use RM to denote
the term rewriting system obtained from EM by orienting all equations from left
to right.

Apart from the additional rule for termination, the translation RM is stan-
dard, and the rewrite rules model the transition relation of Turing machines in
one-to-one fashion. So we take the liberty to define input of tuples 〈n1, . . . , nk〉 ∈
N

k and oracles directly on the term representations. We pass k-tuples 〈n1, . . . , nk〉 ∈
N

k of natural numbers as input to a Turing machine by choosing the follow-
ing start configuration q0(zeros, zipk+1(k, n1, . . . , nk)) where n stands for (1 :
)n zeros. The particular encoding of tuples is not crucial, but zipk+1(k, n1, . . . , nk)
is for equational specifications more convenient than the Gödel encoding.

We obtain machines with oracles ξ1, . . . , ξm ⊆ N by writing the oracles ele-
mentwise interleaved on the tape left of the head:

Notation 1. For n ∈ N we use n to abbreviate (1 :)n : zeros. For ξ ⊆ N, we
let ξ denote the stream χξ(0) : χξ(1) : χξ(2) : . . . where χξ is the characteristic
function of ξ. We write ~α short for α1, . . . , αk and ~α for α1, . . . , αk if k is clear
from the context.

For a term rewriting system R, we write →R for a rewrite step with respect
to R, and →∗

R is the reflexive-transitive closure of →R.

14

Definition 6. Let M = 〈Q, q0, δ〉 be a Turing machine. Then for stream terms
ξ1, . . . , ξm :: S and n1, . . . , nk :: S , we define

M(ξ1, . . . , ξm;n1, . . . , nk) :=

q0(zipm(ξ1, . . . , ξm), zipk+1(k, n1, . . . , nk))

Definition 7. A Turing machine M = 〈Q, q0, δ〉 halts (with output b) on in-
puts n1, . . . , nk ∈ N with oracles ξ1, . . . , ξm ⊆ N if there is a rewrite sequence
M(ξ1, . . . , ξm;n1, . . . , nk) →∗

RM
b, where b ∈ {0, 1}. Here ξ is short for the

stream χξ(0) : χξ(1) : χξ(2) : . . . where χξ is the characteristic function of ξ.

Note that the initial term is infinite due to the oracles, nevertheless we
consider only finite reduction sequences. Due to the rules for zipn and zeros,
there are infinite rewrite sequences even if the Turing machine halts. However,
RM is orthogonal and therefore outermost-fair rewriting (or lazy evaluation) is
normalizing, that is, computes the (unique) normal form b ∈ {0, 1} if it exists.

Definition 8. A k-ary predicate P with m oracles is a relation P ⊆ ℘(N)m×N
k.

Then P is called decidable if there is a Turing machine M such that for all
~ξ ∈ ℘(N)m and ~n ∈ N

k: M halts on input ~n with oracles ~ξ, and the output is 1

if and only if P (~ξ, ~n).

In correspondence with Definition 6 we define for ξ1, . . . , ξm, n1, . . . , nk ∈
{0, 1}ω, [[M]](ξ1, . . . , ξm;n1, . . . , nk) as shorthand for [[q0]]([[zipm]](ξ1, . . . , ξm), [[zipk+1]]([[k]], n1, . . . , nk)).
Then for the models of Turing machine specifications we have:

Lemma 2. Let P ⊆℘(N)m×N
k be decidable, and M = 〈Q, q0, δ〉 the correspond-

ing Turing machine. Then in every stream model A = 〈A, [[·]]〉 of a specification

including the equations from (9) and EM we have for every ~ξ ∈ ℘(N)m and

~n ∈ N
k: (~ξ, ~n) ∈ P if and only if [[M]](ξ1, . . . , ξm;n1, . . . , nk) = 1.

Proof. P is decidable, hence M(ξ1, . . . , ξm;n1, . . . , nk) has a nf in {0, 1}, and

the normal form is 1 if and only if (~ξ, ~n) ∈ P .

5 Levels of Undecidability

We briefly introduce complexity related notions that are relevant for this paper:
promise problems, reducibility, hardness and completeness, and the arithmeti-
cal and the analytical hierarchy. For more details, we refer to the standard
textbooks [22, 18].

Definition 9. Let A ⊆ P ⊆ N. The promise (membership) problem for A with
promise P is the question of deciding on the input of n ∈ P whether n ∈ A. For
the case P = N, we speak of the membership problem for A.

We identify the membership problem for A with the set A itself, and the
promise problem for A with promise P with the pair 〈A,P 〉, also denoted by
A|P .

15

Definition 10. Let A,B, P,Q ⊆ N. Then A|P can be (many-one) reduced to
B|Q, denoted A ≤ B, if there exists a partial recursive function f : N ⇀ N such
that P ⊆ domain(f), f(P) ⊆ Q, and ∀n ∈ P. n ∈ A⇔ f(n) ∈ B.

Definition 11. Let B,Q ⊆ N and P ⊆ ℘(N) × ℘(N). Then B|Q is called P-
hard if every A|P ∈ P can be reduced to B|Q. Moreover, B|Q is P-complete if
additionally B|Q can be reduced to some A|P ∈ P .

We stress that Definition 11 does not require that a P-complete promise
problem B|Q is member of P itself. This allows for classifying promise problem
using the usual arithmetic and analytical hierarchy (for membership problems).

Lemma 3. If A|P can be reduced to B|Q and A|P is P-hard, then B is P-hard.

We use 〈〈·〉〉 to denote the well-known Gödel encoding of finite lists of numbers
as elements of N: 〈〈n1, . . . , nk〉〉 := pn1+1

1 · . . . · pnk+1
k , where p1 < p2 < . . . < pk

are the first k prime numbers.
We define the arithmetical and analytical hierarchies:

Definition 12. Let Σ0
0 := Π0

0 := ∆0
0 be the collection of recursive sets of natural

numbers (the decidable problems). Then for n ≥ 1, we define:

– Σ0
n consists of sets {n | ∃x∈N. 〈〈x, n〉〉 ∈B} with B ∈ Π0

n−1,

– Π0
n consists of sets {n | ∀x∈N. 〈〈x, n〉〉 ∈B} with B ∈ Σ0

n−1,

– ∆0
n := Σ0

n ∩ Π0
n.

The arithmetical hierarchy consists of the classes Π0
n, Σ

0
n and ∆0

n for n ∈ N.

For example, the membership a ∈ A for every set A ∈ Π0
2 can be defined

by a formula of the form ∀x1. ∃x2. ∀x3. P (a, x1, x2, x3) where P is a decidable
predicate.

The analytical hierarchy extends this classification of sets to formulas of the
language of second-order arithmetic, that is, with set (or equivalently function)
quantifiers. The following definition makes use of a result from recursion theory,
see [18], stating that if there is at least one set quantifier, then two number
quantifiers suffice (for functions quantifiers, one number quantifier suffices).

Definition 13. Let Σ1
0 := Π1

0 := ∆1
0 =

⋃

n∈N
Π0

n be the set of all arithmetic
predicates. A set A ⊆ N is in Π1

n for n > 0 if there is a decidable predicate P
with m oracles such that for all a ∈ N:

a ∈ A ⇐⇒ ∀ξ1. ∃ξ2. . . .∃ξm. ∀x1. ∃x2. P (ξ1, . . . , ξn, a, x1, x2)

a ∈ A ⇐⇒ ∀ξ1. ∃ξ2. . . .∀ξm. ∃x1. ∀x2. P (ξ1, . . . , ξn, a, x1, x2)

for n even, and n odd, respectively. Here, ξ1, . . . , ξm ⊆ N, the corresponding
quantifiers are set quantifiers, and x1, x2 ∈ N with number quantifiers. Then A
is in Σ1

n, if the condition holds with all ∀ and ∃ quantifiers swapped. Finally,
∆1

n = Π1
n ∩ Σ1

n.

16

6 Equality in Models

In this section we study the complexity of different model-theoretic semantics
of equivalence of bitstream specifications. Based on the notion of models for
bitstream specifications from Section 3, we first formalize the equivalences that
we consider.

For all of the following model-theoretic equivalences, we have the choice
whether or not we require the models to be full, that is, their domain contains
all bitstreams. For example, we can consider the equality of terms in all models
or in all full models:

Definition 14. Let E be a bitstream specification over Σ, and s, t ∈ Ter(Σ,X)
with s, t :: S . Then s and t are said to be

– equal in all models of E if

A |= E implies A |= s = t for all stream algebras A ,

– equal in all full models of E if

A |= E implies A |= s = t for all full stream algebras A .

The set of solutions of a term s in a specification E is the set of interpreta-
tions [[s]] of s in all models satisfying E:

Definition 15. Let E be a bitstream specification over Σ, and s ∈ Ter(Σ,∅)
with s :: S . Then the set of

– solutions of s in E with respect to all models is

[[s]]E = { [[s]]A | A |= E } ,

– solutions of s in E with respect to all full models is

[[s]]E, full = { [[s]]A | A full,A |= E } .

Here it suffices to consider only ground terms s ∈ Ter(Σ,∅). For terms
t ∈ Ter(Σ,X) with variables, the set of solutions can be defined as [[t]]E =
{ [[t]]Aα | A |= E,α : X → A }. However, then [[t]]E = [[s]]E if s is the ground term
obtained from t by interpreting the variables in t as fresh constants (formally,
this amounts to an extension of the signature).

Definition 16. Let Es and Et be bitstream specifications over Σs and Σt,
respectively. Let s ∈ Ter(Σs,∅) and t ∈ Ter(Σt,∅). Then s and t have

– equal solutions over all models if [[s]]Es
= [[t]]Et

,

– equal solutions over all full models if [[s]]Es, full
= [[t]]Et, full

.

Definition 17. Let E be bitstream specifications over Σ, and s ∈ Ter(Σ,∅).
Then s is said to have

17

– a unique solution over all models if |[[s]]E | = 1,

– a unique solution over all full models if |[[s]]E, full| = 1,

– a solution over all models if |[[s]]E | ≥ 1,

– a solution over all full models if |[[s]]E, full| ≥ 1,

– at most one solution over all models if |[[s]]E | ≤ 1,

– at most one solution over all full models if |[[s]]E, full| ≤ 1.

6.1 Auxiliary Definitions

First, we define a few (systems of) equations that are repeatedly used throughout
this section. The following function iszeros that maps zeros to ones and every
other bitstreams to zeros:

iszeros(zeros) = ones iszeros(0 : σ) = iszeros(σ)

iszeros(1 : σ) = zeros

}

(10)

This function does exactly what its name suggests; it checks whether the argu-
ment is the stream of zeros. We use the bit 0 or the stream zeros for false, and
1 and ones for true.

We focus on specifications of bitstreams, and encode streams of natural
numbers as bitstreams via the sequence of run-length of ones. For instance, the
stream 3 : 1 : 0 : 2 : . . . is encoded as 1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : We
then define functions uhd and utl that are the unary counterpart for head and
tail on streams of natural numbers:

uhd(0 : σ) = zeros utl(0 : σ) = σ

uhd(1 : σ) = 1 : uhd(σ) utl(1 : σ) = utl(σ)

}

(11)

For instance, we have

uhd(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 1 : 1 : zeros

utl(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 0 : 0 : 1 : 1 : . . .

The following lemma summarizes these properties:

Lemma 4. In every stream model A = 〈A, [[·]]〉 of a specification including the
equations from (10) and (11) we have:

(i) [[iszeros]](0
ω) = 1ω,

[[iszeros]](w) = 0ω for every w ∈ AS \ {0ω},

(ii) [[uhd]](1n 0w) = 1n 0ω for every w ∈ AS ,
[[uhd]](1ω) = 1ω,

(iii) [[utl]](1n 0w) = w for every w ∈ AS .

18

Note that all interpretations are uniquely defined, apart from the combina-
tion [[utl]](1ω) which can be any stream depending on the model. To avoid this
case, we need means to ensure that a certain bitstream is a valid encoding of a
stream of natural numbers, that is, the stream contains infinitely many zeros:

natstr(ones) = zeros natstr(0 : σ) = 1 : natstr(σ)

natstr(1 : σ) = natstr(σ)

}

(12)

Then an equation natstr(X) = ones guarantees that [[X]] represents a stream of
natural numbers:

Lemma 5. In every stream model A = 〈A, [[·]]〉 of a specification including
the equations from (12) we have: [[natstr]](w) = 1ω if and only if w contains
infinitely many zeros.

Proof. The equations on the right ‘walk’ over the stream, deleting 1’s and con-
verting 0’s to 1’s. If the stream contains infinitely many 0’s, then an infinite
stream of 1’s will be produced. However, if some tail of the stream contains
only 1’s then the equation on the left ensures that the interpretation is unequal
to 1ω.

Definition 18. Let M = 〈Q, q0, δ〉 be a Turing machine. Then the canonical
model A = 〈A, [[·]]〉 for the union of the specifications EM, (9), (10), (11) and
(12) consists of the domain AS = {0, 1}N with interpretations [[·]] as given in
Lemmas 4 and 5, extended by

(i) [[utl]](1ω) = 1ω,

(ii) for every ξ1, . . . , ξm, n1, . . . , nk ⊆ N:

[[q]](~ξ, ~n) = 1 whenever [[q]](~ξ, ~n) →∗ 1, and

[[q]](~ξ, ~n) = 0 otherwise.

Lemma 6. The canonical model is a model of the union of the equational spec-
ifications RM, (9), (10), (11) and (12).

Proof. The rewrite system RM is orthogonal, consequently we have finitary con-
fluence and infinitary unique normal forms [24]. Hence, we can employ a normal
forms semantics for [[q]] (where we map terms without normal forms to 0). For
the remaining equations, it is easy to see that the chosen semantics forms a
model.

6.2 Equality in all Models

For the complexity of equality in all models we obtain:

Theorem 1. The following problem is Π1
1-complete:

Input: Bitstream specification E, terms s, t :: S.

Question: Are s and t equal in all models of E?

19

Proof. The well-foundedness problem for decidable binary relations is known
to be Π1

1-complete, that is, the problem of deciding on the input of a decidable
binary predicateM ⊆ N×N (given in the form of a Turing machine), whetherM
is well-founded. We reduce this problem to an equality problem. LetM ⊆ N×N

be a decidable predicate, and M = 〈Q, q0, δ〉 the corresponding Turing machine.
We define the following specification E:

S = iszeros(run(1,X)) natstr(X) = ones

run(0, σ) = ones

run(1, σ) = 0 : run(

Φ(σ)
︷ ︸︸ ︷

M(zeros; uhd(σ), uhd(utl(σ))), utl(σ))

together with the equations from EM and (9), (10), (11) and (12). We prove
that: E |= S = zeros if and only if M is well-founded.

For ‘⇒’ let M be non-well-founded, and n0 M n1 M n2 M . . . be an infinite
chain. We construct a Σ-algebra A = 〈A, [[·]]〉 such that A |= E but not A |=
S = zeros. We define A as an extension of the canonical model (Definition 18).
The values of [[Φ(σ)]] and [[utl(σ)]] are determined by the canonical model, and
together with the equations for run we obtain for every stream ξ ∈ {0, 1}ω:
[[run]](0, ξ) = 1ω, and [[run]](1, ξ) = 0 : [[run]]([[Φ(ξ)]], [[utl]](ξ)). Hence, there is a
unique interpretation [[run]] that results in a model for the equations of run. We
define κi = 1ni 0 1ni+1 0 1ni+2 and we let n = 1n 0ω. Then for i ∈ N we have

[[run]](1, κi) = 0 : [[run]]([[Φ]](κi), κi+1)

= 0 : [[run]]([[M]](ni, ni+1), κi+1) = 0 : [[run]](1, κi+1)

since we have that [[uhd]](κj) = nj and [[utl]](κj) = κj+1 for all j ∈ N by

Lemma 4. Thus, [[run]](1, κ0) = 0ω. Let [[X]] = κ0 and [[S]] = 1ω. Then
[[natstr]]([[X]]) = [[ones]] by Lemma 5, and [[S]] = [[iszeros]]([[run]](1, [[X]])) by Lemma 4.
We have constructed a model, where [[S]] = 1ω, and, hence, E 6|= S = zeros.

For ‘⇐’ let M be well-founded. Let A be a Σ-algebra such that A |= E. We
show that [[S]] = 0ω. Since [[natstr]]([[X]]) = [[ones]], [[X]] contains infinitely many
zeros by Lemma 5. Thus, [[X]] = 1n0 0 1n1 0 1n2 . . . for some n0, n1, n2, . . . ∈ N.
Let κi = 1ni 0 1ni+1 0 1ni+2 . . . for i ∈ N. Then

[[run]](1, κi) = 0 : [[run]]([[M]](ni, ni+1), κi+1)

=

{

[[run]](1, κi+1) if [[M]](ni, ni+1) = 1

[[run]](0, κi+1) = 1ω if [[M]](ni, ni+1) = 0

Hence, [[run]](1, [[X]]) = 0ω if and only if [[M]](ni, ni+1) = 1 for all i ∈ N. However,
this would contradict well-foundedness of M . As a consequence, we obtain that
[[run]](1, [[X]]) 6= 0ω and [[S]] = iszeros([[run]](1, [[X]])) = 0ω by Lemma 4. This
concludes the Π1

1-hardness proof.
To show Π1

1-membership, we resort to the Löwenheim–Skolem theorem. It
states that if a formula of first-order predicate logic has an uncountable model,
then it also has a countable model. Here, we employ that the domain AS can

20

be encoded as an arbitrary set with functions [[head]] :: AS → {0, 1} and [[tail]] ::
AS → AS together with a first-order predicate logic formula that excludes
confusion, that is, elements a, b ∈ AS with [[head]][[tail]]n(a) = [[head]][[tail]]n(b) for
all n ∈ N are required to be equal, that is, a = b. Likewise, the interpretations
of the symbols in Σ can be translated to first-order predicates, and validity of
the equations to first-order formulas. As a consequence, A |= E ∧ [[s]] 6= [[t]] can
be expressed as first-order formula, and if it has a model, then also a countable
one. Hence, it suffices in ∀A. A |= E ⇒ [[s]] = [[t]] to quantify over countable
models. For this purpose of quantifying over countable models, a set quantifier
∀A ⊆ N suffices. This proves Π1

1-membership.

The following three results are obtained by slight adaptations of the proof
of Theorem 1. In the proof of Theorem 1, we have E |= S = zeros if and only
if S has a unique solution over all models of E. As a consequence, we obtain
the following results concerning (unique) solvability:

Theorem 2. The following problem is Π1
1-complete:

Input: Bitstream specification E, term s.

Question: Does s have at most one solution over all models of E?

Proof. The Π1
1-hardness follows from the proof of Theorem 1, as S has ≤ 1

solutions if and only if M is well-founded.
The membership in Π1

1 uses that it suffices to consider countable models as
in the proof of Theorem 1. Then the formula characterizes the property having
at most one solution: ∀A1. ∀A2. (A1 |= E) ∧ (A2 |= E) ⇒ [[s]]A1 = [[s]]A2 . The
two ∀ set quantifiers can be merged into one, and the properties A |= E, and
[[s]]A1 = [[s]]A2 are arithmetic. Hence, the property is in Π1

1.

Theorem 3. The following problem is Σ1
1-complete:

Input: A bitstream specification E, a term s.

Question: Has s a solution over all models of E?

Proof. The Σ1
1-hardness follows from a tiny adaptation of the proof of Theo-

rem 1. We replace the equation S = iszeros(run(1,X)) by the equations S =
run(1,X) and S = zeros. Then every model where [[run(1,X)]] 6= 0ω is ruled out,
and hence, the specification has a model, and S a solution, if and only if M is
not well-founded.

The membership in Σ1
1 can be described by the following formula (we again

use that we only need to quantify over countable Σ-algebras): ∃A. A |= E.
Hence, the property is in Σ1

1.

Theorem 4. The following problem is Π1
1-hard, Σ

1
1-hard and strictly contained

in ∆1
2:

Input: A bitstream specification E, a term s.

Question: Has s unique solutions over all models of E?

21

Proof. The Π1
1-hardness follows from the fact that the specification used in the

proof of Theorem 2 always has a solution; then unique solvability coincides with
at most one solution.

The Σ1
1-hardness is a consequence of the fact that the specification used in

the proof of Theorem 3 always has at most one solution (due to the equation
S = zeros); then unique solvability coincides with at least one solution.

For the ∆1
2-membership we observe that a term s has a unique solution if

and only if s has at least and s has at most one solution. Therefore unique
solvability can be described by the conjunction of a Π1

1- and a Σ1
1-formula.

6.3 Equality in all Full Models

In Section 6.2 we have considered models whose domain was any non-empty
set of bitstreams (AS ⊆ {0, 1}ω). However, when writing equations such as
even(x : y : τ) = x : even(τ), the intended semantics is often that these equations
should hold for all streams, that is, in full models with domain AS = {0, 1}ω. We
find that the restriction to full models results in a huge jump of the complexity,
which then subsumes the entire analytical hierarchy.

To prepare for the proof, we introduce some auxiliary specifications. We de-
fine nat such that an equation nat(X) = ones guarantees that the interpretation
[[X]] represents a natural number in unary encoding, that is, [[X]] = 1n 0ω for
n ∈ N, as follows:

nat(0 : 1 : σ) = zeros nat(1 : σ) = nat(σ)

nat(0 : 0 : σ) = nat(0 : σ) nat(ones) = zeros

}

(13)

Lemma 7. In every stream model A = 〈A, [[·]]〉 of a specification including the
equations from (13) we have: if [[nat]](w) = 1ω then w = 1n 0ω for some n ∈ N.

Proof. If a stream is not of the format 1n 0ω for some n ∈ N then it is 1ω or
contains . . . 01 The last equation rules out the case 1ω (ensures that the
interpretation is not 1ω).

The first three equations are exhaustive in the sense that every stream can
be matched by one of them. The first equation rules out streams that contain a
1 after a 0, and the equations two and three ‘walk’ step by step over the stream
(proceed with the tail).

We moreover define a function leq such that leq(X,Y) = ones guarantees
that pointwise [[X]] ≤ [[Y]]:

leq(0 : σ, x : τ) = leq(σ, τ)

leq(1 : σ, 1 : τ) = leq(σ, τ)

leq(1 : σ, 0 : τ) = zeros







(14)

Lemma 8. In every stream model A = 〈A, [[·]]〉 of a specification including the
equations from (14) we have that if [[leq]](σ, τ) = 1ω, then σ is pointwise ≤ than
τ (for all σ, τ ∈ AS).

22

Lemmas 7 and 8 are valid for non-full models as well. As explained in the
introduction, the assumption of full models is crucial to guarantee that equations
with variables have to hold for all streams (assigned to the variables) and not
only the streams in the model.

Theorem 5. The following problem subsumes the analytical hierarchy:

Input: Bitstream specification E, terms s, t :: S.

Question: Are s and t equal in all full models of E?

The idea of the proof is as follows. We translate formulas of the analytical hi-
erarchy into stream specifications by representing ∀ set quantifiers by equations
with variables. This simulates a quantification over all streams as the models
are full, and the equations have to hold for all assignments of the variables.

The ∃ set quantifiers are eliminated in favor of Skolem functions f , that is,
axioms of the form ∀~x.∃y.ψ(x1, . . . , xn, y) are replaced by ∀~x.ψ(x1, x2, . . . , xn, f(x1, . . . , xn)).
The interpretation of these functions is determined by the model, and the ques-
tion whether there exists a model corresponds to an existential quantification
over all Skolem functions.

Proof. For every analytical set A, we reduce the membership problem in A to an
equality problem. Every set A of the analytical hierarchy can be defined by

a 6∈ A ⇐⇒ (15)

∀ξ1. ∃ξ2. ∀ξ3. . . .∃ξn. ∀x1. ∃x2. M(ξ1, . . . , ξn, a, x1, x2)

where n ∈ N is even (without loss of generality since Π1
n ⊂ Π1

n+1) and M a
decidable predicate. Let M = 〈Q, q0, δ〉 the Turing machine corresponding to
M . Let a ∈ N be given. We define E to be the following system of equations:

S(τ1, τ3, . . . , τn−1) = run(1, zipn(τ1, g2(τ1), τ3, g4(τ1, τ3),

. . . , τn−1, gn(τ1, τ3, . . . , τn−1)), zeros)

S(τ1, τ3, . . . , τn−1) = zeros

run(0, τ, γ1) = ones

run(1, τ, γ1) = 0 : run(M(τ ;A, γ1, h2(τ, γ1)), τ, 1 : γ1)

A = (1 :)a zeros

nat(h2(τ, γ1)) = ones

together with the equations from EM, (9), and (13). The symbols g2i are typed
S i → S . We claim: E |= zeros = ones if and only if a ∈ A. For this purpose it
suffices to show that the specification has a model (∃A. A |= E) if and only if
the formula in the right-hand side of (15) is valid.

The idea is that the specification models a Skolem normal form of the an-
alytical formula in (15). The ∀ set quantifiers are modeled by an equation
with stream variables; recall that equations have to hold for all assignments of
the variables. In particular, the variables τ1, τ3, . . . , τn−1 in the first equation

23

S(τ1, τ3, . . . , τn−1) = . . . model the set quantifiers ∀ξ1, . . . , ∀ξn−1, respectively.
The ∃ set quantifiers are modeled by Skolem functions g2, g4, . . . , gn which in
the specification are stream functions that get the value of the preceding ∀
quantifiers as arguments. These stream functions g2i are unspecified and can
be ‘freely chosen’ by the model A. Thus, the existential quantification over the
Skolem functions corresponds to the existential quantification over all models
in ∃A.A |= E.

The streams τ1, g2(τi), . . . , τn−1, gn(τ1, τ3, . . . , τn−1) that represent the values
of the set quantifiers are then interleaved by zipn, and passed as the second
argument, named τ , to run; this argument serves as the left side of the tape for
every invocation of the Turing machine M.

The ∀x1 number quantifier is modeled by the third argument γ1 of run.
The initial value of γ1 is zeros, and ‘1 : ✷’ is prepended (corresponding to
counting up) each time the Turing machine halts with output 1. The number
quantifier ∃x2 is modeled by the Skolem function h2 for which the equation
nat(h2(τ, γ1)) = ones ensures by Lemma 4 that the interpretation [[h2(τ, γ1)]]
is a unary encoding of a natural number. Then the term M(τ ;A, γ1, h2(τ, γ1))
with τ = zipn(τ1, g2(τ1), τ3, g4(τ1, τ3), . . . , τn−1, gn(τ1, τ3, . . . , τn−1)) corresponds
precisely to M(ξ1, . . . , ξn, a, x1, x2) in (15).

For ‘⇐’, assume that the formula in (15) is valid. We construct a model
A = 〈A, [[·]]〉 as an extension of the canonical model (Definition 18). For
[[g2]], [[g4]], . . . , [[gn]], [[h2]] we pick the Skolem functions for the quantifiers ∃ξ2, ∃ξ4, . . . , ∃ξn, ∃x2,
respectively (where [[h2]] is a stream function that works on the unary encod-
ing of natural numbers). For σ ∈ {0, 1}ω, we define [[nat]](σ) = 1ω if σ is
of the form 1n 0ω, and 0ω, otherwise. The definition of [[run]] is analogous to
the proof of Theorem 1. Finally, we define [[S]](τ1, τ2, . . . , τn−1) = 0ω for all
τ1, τ2, . . . , τn−1 ∈ {0, 1}ω, and [[A]] = 1a 0ω. Then it is straightforward to verify
that A is a model of the specification.

For ‘⇒’, let A = 〈A, [[·]]〉 be a model of the specification. Then we let the
existential quantifiers ∃ξ2, ∃ξ4, . . . , ∃ξn and ∃x2 in (15) behave according to the
interpretations [[g2]], [[g4]], . . . , [[gn]], [[h2]], respectively (here the translation from
sets ξ ⊆ N to streams ξ is as usual). Assume that there exists an assignment of
the ∀ quantifiers ∀ξ1, ∀ξ2, . . . , ∀ξn−1 and ∀x2 for which the formula in (15) is not
valid, that is, M(ξ1, . . . , ξn, a, x1, x2) does not hold where the existential choices
are governed by the model as described above. We translate this ‘counterex-
ample’ back to the model by considering [[S]](ξ1, ξ3 . . . , ξn−1). As in the proof
of Theorem 1, it is then straightforward to show that [[S]](ξ1, ξ3 . . . , ξn−1) 6= 0ω.
However, this contradicts the assumption ofA being a model due to the equation
S(τ1, τ3, . . . , τn−1) = zeros.

The proof of Theorem 5 immediately yields the following:

Theorem 6. The following problem subsumes the analytical hierarchy:

Input: Bitstream specification E, term s.

Question: Does s have a solution over all full models of E?

24

Proof. Follows from the proof of Theorem 5, as zeros has a solution over all
models of E if and only if E has a model.

Theorem 7. The following problem subsumes the analytical hierarchy:

Input: Bitstream specification E, term s.

Question: Does s have a unique solution over all full models of E?

Proof of Theorems 6 and 7. In the proof of Theorem 5, zeros has a (unique)
solution if and only if E has a model.

For the proof of the following theorem, we slightly adapt the specification in
the proof of Theorem 5 such that it always has a solution, and has more than
one solution if and only if the analytical formula in (15) holds.

Theorem 8. The following problem subsumes the analytical hierarchy:

Input: Bitstream specification E, term s.

Question: Does s have at most one solution over all full models of E?

Proof. We adapt the proof of Theorem 5 by exchanging the two equations
S(. . .) = . . . by the following one:

ones = leq(S, iszeros(run(1, zipn(τ1, g2(τ1), τ3, g4(τ1, τ3),

. . . , τn−1, gn(τ1, τ3, . . . , τn−1)), zeros)))

An interpretation [[S]] = 0ω always yields a solution. In addition, by Lemma 8 we
have [[S]] 6= 0ω only if [[iszeros(. . .)]] 6= 0ω for every assignment of τ1, τ2, . . . , τn−1.
But then [[iszeros(. . .)]] = 1ω by Lemma 4, and, thus, [[run(. . .)]] = 0ω. As in the
proof of Theorem 5, [[run(. . .)]] = 0ω for all τ1, τ2, . . . , τn−1 if and only if the
formula in (15) holds.

6.4 Equality of Solutions

In this section, we study the complexity of deciding whether terms have the
same set of solutions over all (full) models. It is easy to see that the hardness of
these problems is at least that of deciding equality in all (full) models. When
considering all models, the problem turns out Π1

2-complete, and, thus, higher
than the degree Π1

1 of equality in all models.

Remark 3. Let us briefly discuss the applicability of equality in all (full) models
for the comparison of terms s, t that are specified in independent specifications
Es and Et. First, we rename the symbols of one of the specifications such that
Σs ∩ Σt = {0, 1, :}. Thereafter, we consider the validity of s = t in the union
Es ∪ Et.

We show on two examples that this approach does not always yield the
intended results. Let EM consist of the single equation M = 1 :M , and EN of

N = inv(N) inv(0 : σ) = 1 : inv(σ) inv(1 : σ) = 0 : inv(σ)

25

ThenM has the stream of ones as unique solution, but N has no solution. Since
EN does not have model, the union EM ∪ EN also does not admit one. Thus,
EM ∪ EN |= M = N holds for trivial reasons. Nevertheless, we would not like
to consider M and N as equivalent (at least if they are given by independent
specifications).

Even if the specifications have unique solutions, a similar effect can occur.
Let M = zeros and EM consist of the equations

iszeros(nxor(σ)) = zeros

nxor(0 : 0 : σ) = 1 : nxor(σ) nxor(0 : 1 : σ) = 0 : nxor(σ)

nxor(1 : 0 : σ) = 0 : nxor(σ) nxor(1 : 1 : σ) = 1 : nxor(σ)

together with the equations (10). Let N = blink and EN consist of the equation
blink = 0 : 1 : blink. Both specifications have models, and zeros and blink have
unique solutions. For example, EM admits a model whose domain consists of
all eventually constant streams. However, EM rules out models for which there
exist elements σ ∈ AS with [[nxor]](σ) = 0ω. In particular, the stream 0101 . . .
is excluded from the domain AS . As a consequence, the union EM ∪EN has no
models, and EM ∪ EN |= zeros = blink holds.

As a consequence of the proof of Theorem 5, we obtain:

Theorem 9. The following problem subsumes the analytical hierarchy:

Input: Bitstream specifications Es, Et, ground terms s, t :: S.

Question: Do s and t have equal solutions over all full models, that is, [[s]]Es, full
=

[[t]]Et, full
?

Proof. Let Es be the specification in the proof of Theorem 5, and s = zeros.
Then [[s]]Es, full

= {0ω} if Es has a model, and ∅ otherwise. Let Et = {zeros′ =
0 : zeros′} and t′ = zeros′, then we have [[t]]Et, full

= {0ω}. Thus, [[s]]Es, full
=

[[t]]Et, full
is equivalent to E |= zeros = ones in the proof of Theorem 5.

We conclude this section with an investigation of the complexity of deciding
whether two terms have the same set of solutions over all models. The proof of
Theorem 1 yields only Π1

1-hardness. In order to show Π1
2-hardness, we employ

a result of [4] stating that it is a Π1
2-complete problem to decide whether the

ω-language of a non-deterministic Turing machine contains all words {0, 1}ω.
Therefore, we consider non-deterministic Turing machines with one-sides

tapes. Without loss of generality, we may restrict the non-determinism δ :
Q×Γ → ℘(Q×Γ×{L,R}) to binary choices in each step, that is, |δ(q, b)| ≤ 2 for
every q ∈ Q and b ∈ {0, 1}. (Broader choices then are simulated by sequences
of binary choices.) Moreover, for our purposes, it suffices to consider Turing
machines that never halt. For the ω-language, halting always corresponds to
rejecting a run, and this rejection can be simulated by alternating moving forth
and back eternally.

26

That is, a non-deterministic Turing machine M = 〈Q, q0, δ0, δ1〉 has two
transition functions δ0, δ1 : Q × Γ → Q × Γ × {L,R} and we allow a non-
deterministic choice between these functions in each step. Note that, for mod-
eling non-determinism in an equational specifications, we cannot take the union
of the specifications E〈Q, q0, δ0〉 and E〈Q, q0, δ1〉, since multiple equations having
the same left-hand side do not model choice, but additional restrictions on the
models of the specification. To this end, we introduce a third argument for the
binary function symbols q ∈ Q in Definition 5. This argument then governs
the non-deterministic choice. In order to model one-sided tapes, we introduce
a fourth argument that stores the position on the tape, and is increased, when
moving right, and decreased, when moving left. That is, we adapt Definition 5
to:

q(x, b : y, i : z, p) = q′(b′ : x, y, z, 1 : p)

q(a : x, b : y, i : z, 1 : p) = q′(x, a : b′ : y, z, p)

for δi(q, b) = 〈q′, b′, R〉 and δi(q, b) = 〈q′, b′, L〉, respectively. We use En
M to

denote this specification, and Rn
M for the corresponding term rewriting system.

In the initial configuration, the third argument should be an underspecified
stream, allowing for any non-deterministic choice. We pass zeros as fourth
argument, thereby ensuring that the head cannot move to negative tape indices.

A run of M on an ω-word w ∈ {0, 1}ω is a Rn
M rewrite sequence starting from

a term q0(zeros, w,N, zeros) whereN ∈ {0, 1}ω determines the non-deterministic
choices; here w is the term w(0) : w(1) : . . . A run of M is complete if every tape
position p ≥ 0 is visited (that is, positions right of the starting position), and it
is oscillating if some tape position is visited infinitely often. A run is accepting
if it is complete and not oscillating, that it, it visits every position p ≥ 0 at least
once, but only finitely often.

Definition 19. The ω-language Lω(M) is the set of all ω-words w ∈ {0, 1}ω

such that M has an accepting run w.

We employ the following result, which follows from [4]:

Theorem 10. The set {M | Lω(M) = {0, 1}ω} is Π1
2-complete.

We are now ready for the proof of Π1
2-completeness of equality of the set

of solutions over all models. In the proof, we introduce a fifth argument for
the symbol q ∈ Q in En

M which enforces progress (productivity) and rules out
exactly the oscillating runs.

Theorem 11. The following problem is Π1
2-complete:

Input: Bitstream specifications Es, Et, ground terms s, t :: S.

Question: Do s and t have equal solutions over all models equal, that is,
[[s]]Es

= [[t]]Et
?

27

Proof. LetM = 〈Q, q0, δ0, δ1〉 be a non-deterministic Turing machine. We reduce
the problem in Theorem 10 to a decision problem for the equality of the set of
solutions over all full models. We let s = X and define the specification Es to
consist of:

q0(zeros,X,N, zeros, P) = zeros (16)

natstr(P) = ones (17)

q(x, b : y, i : z, p, 1 : v) = q′(b′ : x, y, z, 1 : p, v) (18)

for δi(q, b) = 〈q′, b′, R〉

q(a : x, b : y, i : z, 1 : p, 1 : v) = q′(x, a : b′ : y, z, p, v) (19)

for δi(q, b) = 〈q′, b′, L〉

q(x, y, z, 1 : p, 0 : v) = 0 : q(x, y, z, p, v) (20)

q(x, y, z, 0 : p, 0 : v) = ones (21)

q(a : x, b : y, i : z, 0 : p, 1 : v) = ones (22)

for δi(q, b) = 〈q′, b′, L〉

The equation (16) starts M on the stream X with non-deterministic choices
governed by N and P for enforcing progress. The streams X and N are unspeci-
fied, thus arbitrary. The equation (17) ensures that [[P]] contains infinitely many
zeros. The equations (18) and (19) model the computation of M as discussed
before, but now in each step removing the context 1 : ✷ from the fifth argument.
If the fifth argument starts with a 0, then (20) decrements the position counter
(the fourth argument). Recall, the position counter determines how many steps
the Turing machine M is permitted to move left. Thus, always eventually decre-
menting the counter rules out the oscillating runs. The equations (21) and (22)
rule out models where the head move left of the envisaged progress [[P]].

It is important to note that for any non-oscillating run σ, we can define a
function p : N → N such that after p(n) steps, M visits only tape indices ≥ n.
Then an assignment [[P]] = 1p(0) 0 1p(1) 0 1p(2) 0 . . . in the model will permit this
run to happen, that is, the head will never fall behind the envisaged progress
and Equations (21) and (22) do not apply.

As a consequence, we have [[s]]Es
= {0, 1}ω if and only if for every [[X]] ∈

{0, 1}ω there exists a non-oscillating run (that is, an appropriate choice [[N]])
of M on [[X]]. Now we define t = Y and Et = {Y = Y} for which obviously
[[t]]Et

= {0, 1}ω. Therefore, [[s]]Es
= [[t]]Et

if and only if Lω(M) = {0, 1}ω. This
concludes the proof of Π1

2-hardness.
For Π0

2-membership, the problem can be characterized by the following
analytical formula: ∀〈As,At〉. ∃〈A

′
s,A

′
t〉. (As |= Es ⇒ A′

t |= Et ∧ [[s]]As =

[[t]]A
′

t) ∧ (At |= Et ⇒ A′
s |= Es ∧ [[t]]At = [[s]]A

′

s). As in the proof of Theorem 1,
here, it suffices to quantify over countable models.

28

7 Equality for Behavioral Specifications

In this section we consider the notion of equality from [17] which is based on
hidden algebras [16]. We introduce the hidden models of bitstream specifications
as employed in [17], where it has been shown that deciding the equality of
(equationally defined) streams, with respect to this semantics, is a Π0

2-complete
problem. We consider the following two extensions of this semantics:

(i) extending the semantics to streams over natural numbers, or

(ii) requiring the behavioral equivalence ≡ to be a congruence.

We show that both extensions lift the complexity of deciding equality to the
level Π1

1 of the analytical hierarchy. If the specifications are required to be pro-
ductive (thus, separating the problem of productivity [10] from that of equality)
it can be shown that the complexity resides at Π0

1 [13]. The results in [17] (as
well as the results we mention in the current paper) are based on the comparison
of non-productive specifications, and the proofs inherently encode productivity
problems.

Let us briefly explain why the Π1
1-completeness for the equality of bit-

streams in Theorem 1 does not directly carry over the setup of [17]. The
problem is the definition of the function natstr in (12) containing the equa-
tion natstr(ones) = zeros. This equation does not work if we have confusion
in the models and behavioral equivalence is not a congruence. In particu-
lar, as discussed in Section 2, if ones′ = 1 : ones′, we cannot conclude that
natstr(ones′) = zeros. As a consequence, with the behavioral specifications
of [17] it is not possible to enforce that a bitstream always eventually con-
tains a zero. However, if we consider behavioral specifications of streams of
natural numbers, then we no longer need natstr, hence, reestablishing the Π1

1-
completeness result for the equality of streams of natural numbers specified
behaviorally. There is a similar problem with the equation iszeros(zeros) = ones,
that, however, can be overcome by discarding iszeros as in the proof of Theorem 3.

7.1 Basic Setup

In [17], every bitstream specification contains the equations

head(x : σ) = x tail(x : σ) = σ

where head :: S → B and tail :: S → S .

Definition 20. A hidden Σ-algebra A = 〈A, [[·]]〉 consists of

(i) an S-sorted domain A where AB = {0, 1},

(ii) for every f :: s1×. . .×sn → s ∈ Σ an interpretation [[f]] : As1×. . . Asn → As,

(iii) 0, 1 ∈ Σ with [[0]] = 0 and [[1]] = 1.

We stress that now AS is an arbitrary set.

29

Definition 21. Let A = 〈A, [[·]]〉 be a hidden Σ-algebra. Then σ, τ ∈ AS are
called behaviorally equivalent, denoted by σ ≡ τ , if they are indistinguishable
with {head, tail}-experiments, that is:

σ ≡ τ ⇐⇒ ∀n ∈ N. [[head]]([[tail]]n(σ) = [[head]]([[tail]]n(τ)

On the domain AB , we let ≡ be the identity relation.

Note that ≡ is a not a congruence (only for [[head]] and [[tail]]).

Definition 22. Let E be a bitstream specification over Σ. A hidden Σ-algebra
behaviorally satisfies E, denoted A |≡ E, if for every equation of E, the left-
and right-hand sides are behaviorally equivalent:

[[ℓ]]α ≡ [[r]]α for every ℓ = r ∈ E and α : X → A

We say that an equation ℓ = r is behaviorally satisfied in all hidden models of
E, denoted E |≡ ℓ = r if A |≡ E implies A |≡ ℓ = r for every hidden Σ-algebra
A.

For a discussion of this semantics, we refer to Section 2.

7.2 Behavioral Equivalence as Congruence

We now adapt the basic setup by requiring ≡ to be a congruence relation, that
is, s ≡ t implies f(. . . , s, . . .) ≡ f(. . . , t, . . .). The resulting models are called
behavioral in [2].

Definition 23. A hidden Σ-algebra is called behavioral if ≡ is a congruence
relation. For a bitstream specification E over Σ, we say that ℓ = r is behaviorally
satisfied in all behavioral models of E if A |≡ E ⇒ A |≡ ℓ = r for every
behavioral hidden Σ-algebra A.

Theorem 12. The following problem is Π1
1-complete:

Input: Bitstream specification E, terms s, t :: S.

Question: Is s = t satisfied in all behavioral models of E?

Proof. We show: the equation s = t is behaviorally satisfied in all behavioral
models of E if and only if s = t holds in all models of E; the latter property is
Π1

1-complete by Theorem 1.
The direction ‘⇐’ follows immediately, since every Σ-algebra is a behavioral

hidden Σ-algebra. For ‘⇒’, let A = 〈A, [[·]]〉 be a hidden Σ-algebra. Let A/≡ =
〈A/≡, [[·]]/≡〉 be the quotient algebra. That is, A/≡ are the congruence classes
of A with respect to ≡. For symbols f ∈ Σ and B1, . . . , Bar(f) ∈ A/≡, we define
[[f]]/≡(B1, . . . , Bar(f)) = B if [[f]](b1, . . . , bar(f)) = b for b1 ∈ B1, . . . , bar(f) ∈
Bar(f), and B is the congruence class of b with respect to ≡. The quotient
algebraA/≡ is a behavioral hidden Σ-algebra that, due to ≡ being a congruence,
behaviorally satisfies the same equations as A. Let A′ be the Σ-algebra obtained

30

from A/≡ by renaming the domain elements into the streams they represent,
that is, a ∈ (A/≡)S becomes [[head]](a) : [[head]]([[tail]](a)) : Then [[:]](x, σ) =
x : σ, since in A/≡ every stream has a unique representative in the model.
Hence, A′ is a stream algebra. Moreover, for elements a, b of the domain of
A/≡, we have a ≡ b iff a = b. Hence, A′ is a model of an equation s = t if and
only if s = t is behaviorally satisfied in A.

7.3 Streams of Natural Numbers

We briefly study hidden models with confusion, described in Section 2, for
streams of natural numbers. A N-stream specification is now defined like a
bitstream specification, except the sorts are S = {N , S}, and the symbols are
0 :: N , s :: N → N and ‘:’ of type N × S → S . We adapt the definition of
hidden Σ-algebras accordingly.

Definition 24. A hidden Σ-algebra A = 〈A, [[·]]〉 consists of

(i) an S-sorted domain A and AN = N,

(ii) for every f :: s1×. . .×sn → s ∈ Σ an interpretation [[f]] : As1×. . . Asn → As,

(iii) 0, s ∈ Σ with [[0]] = 0 and [[s]](x) = x+ 1,

(iv) for every s ∈ AS there are n ∈ N and s′ ∈ AS such that we have s = [[:]](b, s′);
see further Remark ??.

The definitions of behavioral equivalence and satisfaction are the same as
for bitstream specifications. A slight modification of the proof of Theorem 3
results in the following.

Theorem 13. The following problem is Π1
1-complete:

Input: N-stream specification E, terms s, t :: S.

Question: Does E |≡ s = t hold? That is, is s = t behaviorally satisfied in all
hidden models of E?

Proof. We reduce the well-foundedness problem for decidable binary relations to
an equality problem. LetM ⊆ N×N be a decidable predicate, andM = 〈Q, q0, δ〉
the corresponding Turing machine. We define the following specification E:

zeros = run(1,X) unary(0) = zeros

run(0, σ) = ones unary(s(x)) = 1 : unary(x)

run(1, σ) = 0 : run(M(zeros; unary(head(σ)),

unary(head(tail(σ)))), tail(σ))

together with the equations from EM and (9). In contrast with the proof of
Theorem 3, X is now a stream of natural numbers. Since X is unspecified, its
interpretation in the model can be an arbitrary stream of natural numbers. As

31

in the proofs of Theorems 1 and 3, we employ X to guess an infinite path through
M . Instead of uhd(·) and utl(·) on bitstreams, we now take unary(head(·)) and
tail(·), respectively, where the function unary converts natural numbers to unary
representations in forms of streams. As in the proof of Theorem 3, it follows
that there exists a hidden Σ-algebra A with A |≡ E if and only if M is not
well-founded. Thus, E |≡ zeros = ones if and only if M is well-founded.

8 Equivalence of Lambda Terms

In this section we investigate the complexity of deciding the equality of λ-terms
with respect to the observational equivalences =nf , =hnf and =whnf as intro-
duced in Section 1. Furthermore, we study the complexity of deciding whether
two λ-terms have the same Böhm trees or Lévy–Longo trees. The interested
reader is referred to [1, 7] for an introduction to Böhm trees, and to [6] for a
thorough study of the observational equivalences on λ-terms.

Definition 25. LetM be a λ-term. The Böhm tree BT(M) ofM is a potentially
infinite term defined as follows. If M has no hnf, then BT(M) = ⊥. Otherwise,
there is a head reduction M →∗

h λx1. . . . λxn.yM1 . . .Mm to head normal form.
Then we define BT(M) = λx1. . . . λxn.yBT(M1) . . .BT(Mm).

Definition 26. Let M be a λ-term. The Lévy–Longo tree LT(M) of M is a
potentially infinite term defined as follows:

LT(M) = ⊥ if M has no whnf

LT(M) = λx.LT(N) if M →∗
h λx.N

LT(M) = xLT(M1) . . .LT(Mm) if M →∗
h xM1 . . .Mm

For the observational equivalences we obtain:

Theorem 14. For each =? ∈ {=n, =h, =w}, the following problem is Π0
2-

complete:

Input: λ-terms M , N .

Question: Does M =? N hold?

Proof. First, we show Π0
2-membership of the problem. We consider =n (=h and

=w work analogously). A λ-term Q has a normal form if and only if Q admits a
standard reduction →∗

std to a normal form, see [1]. For a λ-term Q, and n ∈ N,

we write Q →≤n
std nf to denote that Q rewrites to a normal form within ≤ n

steps of standard reduction. Note that this is a decidable property. Then we
claim:

M =n N ⇐⇒ (23)

∀C. ∀n. ∃m.
(

C[M] →≤n+m
std nf ⇔ C[N] →≤n+m

std nf
)

For ‘⇒’ in (23), assume that M =n N . Let C be a context. We distinguish the
following cases:

32

(i) Assume that C[M] has a normal form. Then C[N] has one, and C[M] →k
std

nf and C[N] →ℓ
std nf for some k, ℓ ∈ N. Then in (23) for any n ∈ N we can

choose m = max(k, ℓ).

(ii) The case that C[N] has a normal form is symmetric to (i).

(iii) If neither C[M] nor C[N] have a normal form, then neither C[M] →≤n+m
std nf

nor C[N] →≤n+m
std nf for any n,m ∈ N.

For ‘⇐’ in (23), assume M 6=n N . Then there is a context C such that exactly
one of the terms C[M] and C[N] has a normal form; without loss of generality,

assume C[M] →≤n
std nf for some n ∈ N. Hence, C[M] →≤n+m

std nf for every

m ∈ N, but C[N] →≤n+m
std nf for no m ∈ N. Thus, the right-hand side of (23)

is not satisfied.
From (23) it follows that =n is in Π0

2, since the two quantifiers ∀C and ∀n
can be merged into a single ∀-quantifier.

We now proceed with proving Π0
2-hardness of the problem. Let T be a Turing

machine, and let T be a λ-term such that for all n,m ∈ N, T nm rewrites to K if
T terminates on input n within m steps, and to KI, otherwise. Here, K = λxy.x
and I = λx.x are the usual combinators, and k = λf.λx.fnx is the Church
numeral representing the natural number k ∈ N. The construction of such T is
standard, see [1]. Now we define:

M = (λx.λa.a(xx))(λx.λa.a(xx))

N = N ′N ′zer N ′ = λxn.T ′n zer(λa.a(xx(succ n)))

T ′ = T ′′T ′′ T ′′ = λxnm.TnmI(xxn(succm))

zer = λfx.x succ = λzfx.f(zfx)

We show that M =? N if and only if T halts on all n ∈ N. Note that T ′nm→∗

I if Tnm →∗ K, that is, if T terminates on input n in m steps; otherwise
T ′nm→∗ T ′n (m+ 1). Hence, we obtain

T ′n 0 →∗ I ⇐⇒ T halts on input n

⇐⇒ T ′n 0 has a (weak) head normal form

The Lévy–Longo tree of M is λa.a(λa.a(λa.a . . .)). If T halts on input n, we
have

N ′N ′n→∗ T ′n zer(λa.a(N ′N ′n+ 1)) →∗ λa.a(N ′N ′n+ 1)

Thus if T terminates on all n ∈ N, then the Lévy–Longo trees of M and N are
equal, and, hence, by [6] we have M =w N , M =h N and M =n N . Otherwise,
let n ∈ N be minimal such that T does not halt on n. Then by the above, we
have:

N →∗ λa. a(λa. a(. . . λa. a
︸ ︷︷ ︸

n-times

(N ′N ′n) . . .))

Then N In →∗ N ′N ′n has no (weak) head normal form, but M In has. Thus we
have M 6=n N , M 6=h N and M 6=w N . This proves Π0

2-hardness.

33

The proof immediately yields the following result:

Theorem 15. The following problems are Π0
2-complete:

Input: λ-terms M , N .

Question: (i) Do s and t have equal Böhm trees?

(ii) Do s and t have equal Lévy–Longo trees?

Proof. Follows immediately from the proof of Theorem 14 since M and N are
observationally equal if and only if they have the same Lévy–Longo tree, and
for M and N the Lévy–Longo trees coincide with their Böhm trees.

We mention that for Berarducci trees, the proof of Theorem 14 implies Π0
2-

hardness. It is not difficult to see that the problem of deciding the equality of
Berarducci trees is in Π0

3. We leave the determination of the precise complexity
to future work.

9 Conclusions

We have investigated different model-theoretic and rewriting based semantics
of equality of infinite objects, specified either by systems of equations or by
λ-terms. It turns out that the complexities for these notions vary from the low
levels of the arithmetical hierarchy Π0

1 and Π0
2, up to Π1

1 and Π1
2 of the ana-

lytical hierarchy, and some even subsume the entire arithmetical and analytical
hierarchy. In particular, the observational equivalences of λ-terms, that are of
interest for functional programming, are all Π0

2-complete.
Apart from Π0

1, none of these classes are recursively enumerable or co-
recursively enumerable. Thus, there exists no complete proof systems for prov-
ing or for disproving equality. An exception is the equality of normal forms
for productive specifications for which inequalities can be recursively enumer-
ated [13].

References

[1] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-
Holland, 1984.

[2] M. Bidoit, R. Hennicker, and A. Kurz. Observational Logic, Constructor-
based Logic, and Their Duality. Theor. Comput. Sci., 298:471–510, 2003.

[3] S. R. Buss and G. Rosu. Incompleteness of Behavioral Logics. ENTCS,
33:61–79, 2000.

[4] J. Castro and F. Cucker. Nondeterministic ω-Computations and the Ana-
lytical Hierarchy. Logik u. Grundlagen d. Math, 35:333–342, 1989.

34

[5] T. Coquand. Infinite Objects in Type Theory. In Postproc. Conf. on Types
for Proofs and Programs (TYPES 1993), volume 806 of LNCS, pages 62–78.
Springer, 1993.

[6] M. Dezani-Ciancaglini and E. Giovannetti. From Böhm’s Theorem to Ob-
servational Equivalences: an Informal Account. In BOTH’01, volume 50 of
ENTCS, 2001.

[7] M. Dezani-Ciancaglini, P. Severi, and F.-J. de Vries. Böhm’s theorem for
Berarducci trees. In CATS 2000 Computing: the Australasian Theory Sym-
posium, volume 31 of ENTCS, 2000.

[8] J. Endrullis, H. Geuvers, J. G. Simonsen, and H. Zantema. Levels of Un-
decidability in Rewriting. Information and Computation, 209(2):227–245,
2011.

[9] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Pro-
ductivity. In Proc. Conf. on Logic for Programming Artificial Intelligence
and Reasoning (LPAR 2008), number 5330 in LNCS, pages 79–96. Springer,
2008.

[10] J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and
Productivity. In Proc. Conf. on Automated Deduction (CADE 22), volume
5663 of LNCS, pages 371–387, 2009.

[11] D. P. Friedman and D. S. Wise. CONS Should Not Evaluate its Arguments.
In ICALP, pages 257–284, 1976.

[12] H. Geuvers. Inductive and Coinductive Types with Iteration and Recursion.
In Proc. Workshop on Types for Proofs and Programs (TYPES 1992), pages
193–217, 1992.

[13] C. Grabmayer, J. Endrullis, D. Hendriks, J. W. Klop, and L. S. Moss.
Automatic Sequences and Zip-Specifications. In Proc. Symp. on Logic in
Computer Science (LICS 2012). IEEE Computer Society, 2012. To appear.

[14] P. Henderson and J. H. Morris, Jr. A Lazy Evaluator. In Proc.
ACM SIGACT-SIGPLAN Symp. on Principles on programming languages
(POPL), pages 95–103. ACM, 1976.

[15] G. Malcolm. Hidden Algebra and Systems of Abstract Machines. In Proc.
Symp. on New Models for Software Architecture (IMSA), 1997.

[16] G. Roşu. Hidden Logic. PhD thesis, University of California, 2000.

[17] G. Roşu. Equality of Streams is a Π0
2-complete Problem. In Proc.

ACM SIGPLAN Conf. on Functional Programming (ICFP), pages 184–
191. ACM, 2006.

[18] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

35

[19] J. J. M. M. Rutten. Behavioural Differential Equations: a Coinductive
Calculus of Streams, Automata, and Power Series. Theor. Comput. Sci.,
308(1-3):1–53, 2003.

[20] J. J. M. M. Rutten. A Tutorial on Coinductive Stream Calculus and Signal
Flow Graphs. Theor. Comput. Sci., 343:443–481, 2005.

[21] D. Sangiorgi and J. J. M. M. Rutten. Advanced Topics in Bisimulation and
Coinduction. Cambridge University Press, 2012.

[22] J. R. Shoenfield. Degrees of Unsolvability. North-Holland, 1971.

[23] B. A. Sijtsma. On the Productivity of Recursive List Definitions. ACM
Transactions on Programming Languages and Systems, 11(4):633–649,
1989.

[24] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[25] M. Walicki and S. Meldal. Nondeterminism vs. underspecification. In Proc.
of the World Multiconference on Systemics, Cybernetics and Informatics,
ISAS-SCI 2001, pages 551–555. IIIS, 2001.

36

	1 Introduction
	2 Related Work
	3 Bitstream Specifications
	4 Turing Machines as Equational Specifications
	5 Levels of Undecidability
	6 Equality in Models
	6.1 Auxiliary Definitions
	6.2 Equality in all Models
	6.3 Equality in all Full Models
	6.4 Equality of Solutions

	7 Equality for Behavioral Specifications
	7.1 Basic Setup
	7.2 Behavioral Equivalence as Congruence
	7.3 Streams of Natural Numbers

	8 Equivalence of Lambda Terms
	9 Conclusions

