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ABSTRACT
Recommendation accuracy can be improved by incorporat-
ing trust relationships derived from social networks. Most
recent work on social network based recommendation is fo-
cused on minimizing the root mean square error (RMSE).
Social network based top-k recommendation, which recom-
mends to a user a small number of items at a time, is not well
studied. In this paper, we conduct a comprehensive study
on improving the accuracy of top-k recommendation using
social networks. We first show that the existing social-trust
enhanced Matrix Factorization (MF) models can be tailored
for top-k recommendation by including observed and miss-
ing ratings in their training objective functions. We also
propose a Nearest Neighbor (NN) based top-k recommen-
dation method that combines users’ neighborhoods in the
trust network with their neighborhoods in the latent fea-
ture space. Experimental results on two publicly available
datasets show that social networks can significantly improve
the top-k hit ratio, especially for cold start users. Surpris-
ingly, we also found that the technical approach for combin-
ing feedback data (e.g. ratings) with social network infor-
mation that works best for minimizing RMSE works poorly
for maximizing the hit ratio, and vice versa.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Design, Measurement, Experimentation
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1. INTRODUCTION
The idea of recommender systems (RS) is to automati-

cally suggest items to each user that s/he may find appeal-
ing, e.g. see [1] for an overview. Traditional collaborative
filtering approaches predict users’ interests by mining user
rating history data [3, 9, 16–20]. In real life, people often
resort to their friends for recommendations in real life. It
is therefore tempting to improve RS by incorporating in-
formation on the trust relationships between users in social
networks. In the literature, e.g. [4, 6–8, 11, 12, 15], it was
shown that using social network information in addition to
feedback data (e.g. ratings) can significantly improve rec-
ommendation accuracy. While there is some improvement
on the average recommendation accuracy over all users, the
improvement is particularly significant for the so-called cold
users, who have provided only very little feedback (e.g. very
few ratings) [5, 7, 8, 15]. Most of the existing social network
based recommender systems are optimized for the root mean
square error (RMSE), which has enjoyed perhaps the largest
popularity among the various accuracy measures in the rec-
ommender literature. On the other hand, top-k recommen-
dation, a small number k of items been recommended to a
user at a time is pervasive in Real-World recommendation
task.

In this paper, we provide a comprehensive study on im-
proving the accuracy of top-k RS using social networks. To-
wards this goal, we first show that the existing social-trust-
enhanced Matrix Factorization (MF) models [7,8,11,12] can
be conveniently tailored for top-k recommendation by ex-
tending their training objective functions to include both
the observed ratings and the missing ratings. For the Near-
est Neighbor (NN) based top-k recommendation, we propose
to combine users’ neighborhood in their trust network with
their neighborhood in the user latent feature space derived
from matrix factorization considering MNAR. To generate
top-k recommendation from a combined neighborhood, in-
stead of taking the weighted average over only the observed
ratings, we propose to use voting-based algorithm as a sim-
ple approach to consider both observed and missing ratings.

To assess the performance of the proposed social-network-
based top-k RSes, we then undertake a comprehensive com-
parison study using two publicly available real-world data
sets: Epinions and Flixster. The major findings are:

1. Trust information significantly improves top-k hit ra-
tio when incorporated properly both in MF and NN
models.

2. Our proposed social network based NN models and RS



trained with our modified objective function consider-
ably outperform the only published top-k approach us-
ing social network information in recent literature [7],
an NN approach.

3. Among the various ways of combing feedback data
with social network information, the one that was found
to be worst with respect to RMSE turns out to be the
best concerning the top-k hit ratio. This illustrates
that the technical details of minimizing RMSE can be
very different from the ones that work to optimize top-
k hit ratio.

This paper is organized as follows. Some related work is
discussed in section 2. Section 3 outlines the top-k models
using social network information. In particular, in Sections
3.1.1 to 3.1.3, we outline various matrix factorization (MF)
models for combining feedback data and social trust infor-
mation that were proposed in the literature. As they are
typically geared towards RMSE, we modify their training
objectives functions towards the top-k hit ratio. We pro-
pose a set of social network based NN models in Section
3.2. In Section 4, we present the comprehensive comparison
study of the various approaches–with respect to the top-k
hit ratio. The paper is concluded in Section 5.

2. RELATED WORK

2.1 Recommendation Task
We consider the following Real-World Recommendation

Task : for each user, the recommender system has to rec-
ommend a small number, say k, of items from among all
available items. One may distinguish between two slightly
different variants of this task: (a) all items are eligible for
recommendation, including the items that have been rated1

by the user in the past (this assumes that a user may con-
sume an item possibly several times, e.g. listen to a song on
the online radio); or (b) only those items, which have not
been rated by the user in the past, are eligible for recom-
mendation (this assumes that a user consumes an item at
most once, e.g. purchase of a movie DVD).
A meaningful offline test ideally should provide a good

approximation to the utility function optimized by the de-
ployed system (e.g. user satisfaction, increase in sales). This
immediately suggests the corresponding procedures for of-
fline testing on available data:

• all items: for each user, all items are considered,
whether rated or not by the user (in the training or
test set).

• all unrated items: for each user, only those items
are considered that have not been rated by the user
in the training set. Note that this contains items with
and without ratings in the test data.

Due to the data sparsity, the difference between these two
variants is expected to be small, as confirmed by our exper-
iments. We hence will only report results concerning the
second variant in this paper.
The user’s selection bias causes the observed feedback (e.g.

ratings, purchases, clicks) in the data to be missing not at

1For simplicity, we use ’ratings’ as a synonym for feedback
in this paper. As will become clear, the presented approach
is applicable to both explicit and implicit feedback data.

random (MNAR). This is an important issue in practice,
but largely ignored in the literature (the few exceptions in-
clude [2, 13, 14, 21]). Selection bias may result from user’s
tendency to rate only the items they like or know. Com-
pared to the (unknown) distribution over (a random sub-
set of) all ratings, the distribution of observed ratings is
skewed due to the selection bias. As the k recommended
items have to be chosen from all items (that were not rated
in the training set), this unknown distribution influences
the recommendation accuracy, and hence user satisfaction
in practice. The top-k hit ratio provides a direct assess-
ment of a recommender system’s accuracy [21]. In contrast,
RMSE on the observed data is agnostic to the selection bias,
as the data in the training set and the test set are from the
same skewed distribution.

Recent work by Marlin et al. [13, 14] provided empirical
evidence that the data typically used for training and test-
ing recommender systems indeed exhibit a significant se-
lection bias, i.e., the ratings are missing not at random:
their histograms of the distribution of ratings in the Ya-
hoo!LaunchCast data show that low ratings are much more
likely to be missing from the observed data than high ratings
(see Figure 2 in [13]).

If the ratings in the available data had been missing at
random (MAR), unbiased results could have been expected
from the common test procedures using observed ratings
only. It is shown in [21] that the top-k hit ratio or recall
has desirable properties when applied to all (unrated) items
in MNAR test data. Note that approaches that perform
well with respect to RMSE on the observed ratings may
perform poorly with respect to the top-k hit-ratio on all
items [2,10,21].

2.2 Top-k Hit-Ratio
As to compute the top-k hit ratio or recall, for each user

u, we rank the items i according to the predicted rating
R̂i,u. Since the predicted rating is continuous, the ranking
list is unique. Otherwise, ties are broken at random. An
item is defined as relevant to a user in the test set if s/he
finds it appealing or interesting (e.g., the assigned rating in
the test data is above a certain threshold). For instance, in
our experiments with Epinions data, the rating values range
from 1,..., 5 stars, and we consider 5-star ratings as relevant
(i.e. the user definitely liked these items), while other rating
values and missing rating values are considered not relevant.
Other choices led to similar results. Now the top-k hit ratio
or recall can be defined as the fraction of relevant items in
the test set that are in the top-k of the ranking list, denoted
by N(k, u), from among all relevant items, N(u). For each
user u, the top-k hit ratio is given by

H(k, u) =
N(k, u)

N(u)
, (1)

which can be aggregated over all users to obtain the aver-
age top-k hit ratio or recall for the test set. The recall is
computed as follows:

recall =

∑
u N(k, u)∑
u N(u)

, (2)

Note that a higher top-k hit ratio or recall is better. In
our experiments, the evaluation metric is recall.

2.3 Top-k Matrix Factorization



AllRank [21] was found to be the best approach to opti-
mizing the top-k hit ratio on various data sets in the litera-
ture [2, 10, 21], outperforming various neighborhood models
and the SVD++ [10], among others. It is based on a low-
rank matrix-factorization (MF) model: the matrix of pre-

dicted ratings R̂ ∈ Ru0×i0 , where i0 denotes the number of
items, and u0 the number of users, is modeled as

R̂ = rm +QP⊤, (3)

with matrices P ∈ Ri0×j0 and Q ∈ Ru0×j0 , where j0 ≪
i0, u0 is the rank; and rm ∈ R is a (global) offset. Ideally, one
would directly optimize the top-k hit ratio in the training
step. Unfortunately, this is computationally prohibitive. We
hence resort to optimizing the square error:∑

all u

∑
all i

Wu,i ·
(
Ro&i

u,i − R̂u,i

)2
+ λ

(
||P ||2F + ||Q||2F

)
(4)

The key here is to train the model on all items by summing
not only over the observed ratings. λ > 0 is a regularization
parameter. We use the Frobenius norm, denoted by || · ||F ,
to regularize the learned matrices P and Q. Note that this
is slightly different from the original AllRank version [21],
which uses the trace norm regularization. The difference
between these two kinds of regularization are discussed in
detail concerning RMSE in [19]. Concerning the top-k hit
ratio, we found the resulting difference to be rather small.
The use of the Frobenius norm here is motivated merely by
the fact that we want to be consistent with the recommender
systems that use social network information in the literature
[8,11,12], which use the Frobenius norm regularization. The

ratings predicted by the model are denoted by R̂u,i (see
(3)); and Ro&i

u,i equals the actual rating value in the training
data if observed for user u and item i; otherwise the value
Ro&i

u,i = rm is imputed. The key is in the training weights,

Wu,i =

{
1 if Robs

u,i observed
wm otherwise

. (5)

It is crucial that the weight assigned to the imputed ratings
is positive, ie wm > 0 in AllRank [21]. In contrast, the
usual optimization of the RMSE test-measure is obtained by
training with wm = 0. This seemingly small difference has
the important effect that AllRank is trained on all items,
while RMSE-approaches are trained only on the observed
ratings. AllRank achieves a considerably larger top-k hit-
ratio or recall on all items than the various state-of-the-art
approaches (see results in [21] and compare to [2, 10]).
Alternating least squares (ALS) can be used for compu-

tationally efficient training of AllRank [21]. Alternatively,
stochastic gradient descent with sub-sampling of the im-
puted ratings may be used, like in [16], which typically leads
to (slightly) degraded hit ratios, but is computationally more
efficient than ALS for certain models.
In ALS, for fixed Q, the matrix P that minimizes (4) can

be calculated using the usual necessary condition (equate
gradient to zero), and solving for Pi,· for each item i. This
results in the following update equation for each row i of P :

Pi,. = (Ro&i
.,i

⊤ − rm)W̃ (i)Q
(
Q⊤W̃ (i)Q+ λI

)−1

, (6)

where the dot in the index of a matrix refers to the vector of
all entries; W̃ (i) = diag(Wi,.) ∈ Ru0×u0 is the diagonal ma-
trix containing the ith row of weight matrix W ; I ∈ Rj0×j0

is the identity matrix. While the diagonal matrix W̃ (i) may
appear to be of computationally prohibitive size, (6) can be
computed efficiently [21]. The update equation for each row
u of Q is analogous.

3. TOP-K RECOMMENDER SYSTEMS US-
ING SOCIAL NETWORKS

Recommender systems using social network information
were mainly developed to optimize RMSE on observed rat-
ings, e.g. [6,8,11,12,15]. Various approaches are used. While
neighborhood [4,7] and random walk [6] methods were used
on the social network graph, matrix factorization methods
were found to be the most accurate model also in the context
of social network information [8,11,12].

For this reason, we start with matrix factorization (MF)
approaches using social network information [8, 11, 12], and
modify them as to optimize the top-k hit ratio (rather than
the original RMSE). Each of the three models and its modi-
fication is outlined in the following sub-sections. Other than
MF approaches, we also consider nearest neighbor (NN) ap-
proaches. In fact, in recent recommender literature, the only
top-k approach using social network information is a NN
method [7] to the best of our knowledge. In Section 3.2,
we develop several variants of NN approaches by adopting
user latent features derived from MF optimized for top-k hit
ratios.

3.1 Top-k MF using Social Networks
In the following subsection, we briefly review the existing

MF approaches in the literature that combine rating data
with social network information [8, 11, 12]. As to optimize
the top-k hit ratio (rather than RMSE), we modify their
training function as to account for all items, rather than
the observed ratings only, analogous to AllRank in Section
2.3.

The social network information is represented by a ma-
trix S ∈ Ru0×u0 , where u0 is the number of users. The
directed and weighted social relationship of user u with user
v (e.g. user u trusts/knows/follows user v) is represented
by a positive value Su,v ∈ (0, 1]. An absent or unobserved
social relationship is reflected by Su,v = sm, where typically
sm = 0.

3.1.1 Social Recommendation (SoRec) Model
Social Recommendation (SoRec) was introduced in [12].

In this model, the social network matrix S (see beginning of
Section 3.1) may be slightly modified as follows [12]:

S∗
u,v = Su,v

√
d−v

d+u + d−v
,

where d+u is the out-degree of user u in the social network
(i.e. the number of users whom u follows/trusts), and d−v
is the in-degree of user v in the network (ie the number of
users who follow/trust user v).

The predicted ratings are obtained from the model as fol-
lows:

R̂ = rm +QP⊤, (7)

where P and Q are the low-rank matrices of the model.
While this is the same equation as (3), which does not use
social network information, note that the information from



the social network is implicitly present in the learned ma-
trices P and Q. Besides the rating data, also the social
network information is used for training this model. The
social relationships are predicted as follows:

Ŝ∗ = sm +QZ⊤, (8)

where Z ∈ Ru0×j0 is a third matrix in this model, besides
P and Q. Note that the matrix Q is shared among the
two equations (7) and (8). Due to this constraint, one can
expect Q (i.e. the user profiles Qu for each user u) to reflect
information from both the ratings and the social network
as to achieve accurate predictions for both. Note that the
matrix Z is not needed for predicting rating values, and
hence may be discarded after the matrices P and Q have
been learned. Both (7) and (8) are combined as follows in
the training objective function. Analogous to Section 2.3,
we modify the training function as to optimize the top-k hit
ratio (instead of RMSE):∑

all u

∑
all i

Wu,i ·
(
Ro&i

u,i − R̂u,i

)2
+

∑
all u

∑
all v

W (S)
u,v ·

(
S∗
u,v − Ŝ∗

u,v

)2
+ λ

(
||P ||2F + ||Q||2F + ||Z||2F

)
, (9)

where ||·||F denotes the Frobenius norm of the matrices, and
λ is the usual regularization parameter. Wu,i and Ro&i

u,i are
defined as in the AllRank model, see Section 2.3. The term
concerning the social network (in the second line) is analo-
gous to the first term concerning the ratings. In particular,
the absent or unobserved social links are treated analogous
to the missing ratings in AllRank, i.e. we impute the value

sm with weight w
(S)
m . Like Wu,i in (5), W

(S)
u,v is defined as

follows:

W (S)
u,v = γ ·

{
1 if S∗

u,v observed

w
(S)
m otherwise

, (10)

where γ ≥ 0 determines the weight of the social network
information compared to the rating data. Obviously, γ = 0
corresponds to the extreme case where the social network is
ignored when learning the matrices P and Q. As γ increases,
the influence of the social network increases. The effect is
that the user profiles Qu and Qv of two users u and v become
more similar to each other if they are friends. While only
positive social relationships are considered in the original
model [12], we note that this model allows also for negative
values of Su,v, representing e.g. distrust among users.
Note that the rating matrix Ro&i and the social network

matrix S∗ may be combined into a single matrix (and the

weight matrices analogously): [Ro&i S∗] and [W W (S)]. When
these two matrices are used in AllRank, SoRec training is
formally identical to AllRank training. The social relation-
ships hence take the place of virtual rating values, where
friends appear to have rated the same virtual items (i.e.
common friends). Apart from that, when the training ob-
jective is re-written in this form, it is clear that the same
ALS update equations can be applied as for AllRank (see
Section 2.3).

3.1.2 Social Trust Ensemble (STE) Model
Recommendation with Social Trust Ensemble (STE) was

introduced in [11]. The predicted ratings are obtained from

the model, comprising the matrices P ∈ Ri0×j0 and Qu0×j0 ,
as follows:

R̂u,i = rm + αQuP
⊤
i + (1− α)

∑
v

Su,vQvP
⊤
i , (11)

where we omitted the logistic function, as we found its ef-
fect rather negligible in our experiments. The reason is that
only the ranking/order of the predicted rating values is im-
portant for the top-k hit ratio, while it is irrelevant if the
predicted rating values are confined to valid rating values
(e.g. the interval [1, 5] stars). The trade-off between the
feedback data (ratings) and the social network information
is determined by α ∈ [0, 1]. Obviously, the social network
information is ignored for α = 1, while α = 0 assigns the
highest possible weight to the social network information.
Intermediate values of α result in a weighted combination of
the information from both sources. (11) is equivalent to the
matrix notation

R̂ = rm + SαQP⊤, (12)

where Sα = αI+(1−α)S, and I is the identity matrix. Anal-
ogous to Section 2.3, the modified training function geared
towards the top-k hit ratio then reads as follows:∑

all u

∑
all i

Wu,i ·
(
Ro&i

u,i − R̂u,i

)2
+ λ

(
||P ||2F + ||Q||2F

)
, (13)

where || · ||F denotes the Frobenius norm. Wu,i and Ro&i
u,i are

defined as in the AllRank model, see Section 2.3. We found
this objective function to be computationally inefficient to
optimize using ALS. The update equation for Qu,. reads:

Qu,. =
(
εQold

u + α(Ro&i
u,. − rm)W̃ (u)P

−(1− α)
∑

v|u∈Nv

∑
all i

Wv,i(R
o&i
v,i − R̂v,i)Sv,uPi,.

)
·
(
αP⊤W̃ (u)P + (λ+ ε)I

)−1

(14)

where Nu is the set of users that u trusts. Note that we
added an additional term on either side, εQu,. and εQold

u,. ,
respectively. We found that, for the STE model, ALS gets
easily stuck in a local optimum without this term. Using an
appropriate value ε > 0, effectively results in a smaller step
size of ALS, requiring more iterations until convergence, but
helping avoid local optima. It is very expensive to compute
the second term in the equation. As an approximation, we
just sum up the observed ratings for all users v|u ∈ Nv, in-
stead of summing up all items. As the update equation of
P , it is identical to (6).

3.1.3 Social MF Model
The SocialMFmodel was proposed in [8], and was found to

outperform SoRec and STE with respect to RMSE. Each of
the rows of the social network matrix S has to be normalized
to 1, resulting in the new matrix S∗ with S∗

u,v ∝ Su,v, and∑
v S

∗
u,v = 1 for each user u.

The predicted ratings are obtained from the model, com-
prising the matrices P ∈ Ri0×j0 and Qu0×j0 , as follows:

R̂ = rm +QP⊤, (15)

where we again omitted the logistic function, as we found
its effect rather negligible in our experiments. Analogous to



Section 2.3, we modified the training function in [8] as to
optimize the top-k hit ratio (instead of RMSE):∑

all u

∑
all i

Wu,i ·
(
Ro&i

u,i − R̂u,i

)2
+ β

∑
all u

(
(Qu −

∑
v

S∗
u,vQv)

⊤(Qu −
∑
v

S∗
u,vQv)

)
+ λ

(
||P ||2F + ||Q||2F

)
(16)

The tradeoff between the feedback data (ratings) and the so-
cial network information is determined by β ≥ 0. Obviously,
the social network information is ignored for β = 0, while in-
creasing values of β shift the tradeoff more and more towards
the social network information. The term in the second line
constitutes a constraint that a user profile Qu should be sim-
ilar to the (weighted) average of his/her friends’ profiles Qv

(measured in terms of the square error).
(16) can be optimized by stochastic gradient descent using

the update equations (13) and (14) in [8]; however, it has to
be computed not only for the available ratings, but also for
the imputed values. Due to the sheer number of imputed
values, this may become computationally inefficient. As an
approximation, one may use a sub-sample of the imputed
values for efficient computations (cf also [16]). Alternatively,
(16) can be optimized by ALS, like Allrank (see Section 2.3).
For fixed P , the update equation for row u of matrix Q
is determined by the constraint that the derivative of (16)
equals zero, which results in

0 = Qu,.

(
P⊤W̃ (u)P + λI

)
−(Ro&i

u,. − rm)W̃ (u)P

−β(I − S∗⊤)u,.(I − S∗)Q (17)

where W̃ (u) = diag(W.,u) ∈ Ri0×i0 is the diagonal matrix
containing the uth column of the weight matrix W . Due
to the social network matrix S∗, this equation cannot be
solved analytically for Q. Given that ALS is an iterative
procedure, one may replace Q in the third line by its value
from the previous iteration, Qold. Then this equation can
be solved for Qu,., resulting in the update equation

Qu,. =
(
(Ro&i

u,. − rm)W̃ (u)P

+β(I − S∗⊤)u,.(I − S∗)Qold + εQold
u,.

)
·
(
P⊤W̃ (u)P + (λ+ ε)I

)−1

(18)

where we again added the same additional terms, εQu,. and
εQold

u,. , as to avoid local optima. As the update equation of P
does not involve the social network matrix S∗, it is identical
to (6).

3.2 Nearest Neighbor Methods
In a NN method, top-k recommendations are generated

not from all items, but only from items “liked” by a subset
of users who are “nearest” (under certain distance metric) to
the target user. The neighborhood of a user can be calcu-
lated using collaborative filtering, or it can be just a set of
directly or indirectly connected friends in a social network.
This makes it convenient to incorporate social trust into NN
based top-k recommendation.

Basically, NN based RS is quite a different approach from
MF based RS in terms of real system deployment. In Real-
World systems, there are lots of user’s feedbacks every day,
e.g., as it is reported that there are billions of the like buttons
served daily in facebook. NN based RS enjoys a unique
advantage in that it can incrementally integrate user’s new
feedback into recommendation. Nearest neighbors of a user
is fixed between two sequential neighborhood update, so one
user’s new feedbacks is able to influence the recommendation
to its neighbors in real time. While, in MF based approach,
in order to integrate user’s new feedbacks, it requires new
matrix factorization which is not efficient when deployed in
real systems. Due to this difference, we think its meaningful
and necessary to study NN models.

To the best of our knowledge, [7] is the only work that in-
corporates social network into NN based top-k recommender
system. Two neighborhood based approaches are studied
in [7] and their performance are comparable. We thus select
one model there, termed as Trust-cf, as the baseline in our
comparison.

In Trust-cf, Breadth First Search (BFS), starting from a
source user u, is performed to obtain a set of trusted neigh-
bors, namely trusted neighborhood. Meanwhile, collabora-
tive filtering (CF) neighborhood consists of users who are
close to the source user u in terms of Pearson Correlation
coefficient. The items rated highly by users in either neigh-
borhoods are considered to be candidates for top-k recom-
mendation. Trust-cf calculates the predicted rating for a
candidate item as the weighted average of all observed rat-
ings in the two neighborhoods. The weight for a user in
the trusted neighborhood is set to 1/dv, where dv is the
depth of user v from the source user u in the trust network.
The weight for a user in the CF neighborhood is the Pearson
Correlation coefficient between this user and the source user.
If an item has predicted ratings from both neighborhoods,
two predicted ratings are combined using weighted average
with weights proportional to the neighborhood size for this
item. Finally, trust-cf sorts all the candidate items by their
predicted ratings and recommends the top-k to the source
user.

We propose a set of social network based NN approaches
to achieve high top-k hit ratio by considering both social
trust and MNAR. We always denote by k1 the number of
nearest users identified by the Collaborative Filtering (CF)
approach, and by k2 the number of trusted users identified
by the social network based approach.

• CF-ULF approach. CF-ULF uses AllRank to obtain
the user latent features. The users are then clustered in the
user latent feature space using the Pearson correlation coef-
ficient. The k1 users nearest to the source user u are iden-
tified. The relevant items of these nearest users are voted
to form the top-k recommended items. The voting for the
candidate items are computed as follows:

V oteu,i =
∑

v∈Nu

∑
i

sim(u, v)δi∈Iv , (19)

where δ is the Kronecker delta; Iv denotes the set of relevant
items of user v; and Nu is the set of k1 nearest neighbors of
user u (as determined by the Pearson correlation). V oteu,i
is the voting concerning item i for user u; the k1 nearest
neighbors of user u are weighted according to their similarity
sim(u, v) with user u, measured in terms of the Pearson
correlation coefficient between user u and v (in user latent



feature space).
• PureTrust approach. PureTrust approach employs

the breadth-first search (BFS) in the social network to find
k2 trusted users to the source user u.
The voting scheme is similar to the scheme employed in

CF-ULF.

V oteu,i =
∑

v∈N
(t)
u

∑
i

wt(u, v)δi∈Iv , (20)

where N
(t)
u is the set of trusted users of u, and by wt(u, v)

the voting weight from user v. The value of wt(u, v) is set
to be 1/dv, where dv is the depth of user v in the BFS tree
rooted at user u.
• Trust-CF-ULF approach. Trust-CF-ULF approach

is the combination of user latent feature space based col-
laborative filtering (CF-ULF) approach and social network
based approach. The value of k1 is set to be equal to the
value of k2 in Trust-CF-ULF. In this approach, we firstly
find k1 closest neighbors from the CF neighborhood, then
find k2 closet neighbors from the trust neighborhood which
are not in the k1 set. Then users in the combined neigh-
borhood vote for their relevant items. w(u, v) is defined as
following:

V oteu,i =
∑

v∈N
(c)
u

∑
i

w(u, v)δi∈Iv , (21)

where, N
(c)
u is the combined neighborhood.

w(u, v) =

{
sim(u, v) if v ∈ Nu

wt(u, v) if v ∈ N
(t)
u

, (22)

• Trust-CF-ULF-best approach. Trust-CF-ULF-best
improves upon Trust-CF-ULF by dynamically tuning the
value of k1 and k2 so as to obtain the best recall results.
The main differences between our proposed NN methods

and Trust-cf are: 1) Our CF neighbors are derived from user
latent features obtained from AllRank, which is expected
to have higher top-k hit ratio than the Pearson correlation
coefficient based only on observed ratings; 2) We use voting,
instead of the weighted averaging of the observed ratings, to
construct top-k recommendations. Voting can be treated as
the simplest approach to consider all items with and without
ratings. As will be shown in Section 4.2.4, our NN models
perform much better than the existing social network based
NN models.

4. EXPERIMENTS
In this section, we perform experiments for the proposed

top-k RSes on Epinions2 and Flixster3 datasets. We focus
on the top-k hit ratio or recall as a more realistic measure
for testing recommendation accuracy (as motivated in Sec-
tion 2). Concerning the three MF models, SoRec, STE and
SocialMF (see Section 3.1), we used rank j0 = 10, like
in [8, 11, 12]. We find that Trust information significantly
improves top-k hit ratio when incorporated properly both
in MF and NN models. We also find that our proposed
NN based RS and MF models trained with our modified ob-
jective function considerably outperform the existing top-k
approach using social network information in recent litera-
ture [7]. Moreover, among the three models for combining

2http://www.epinions.com/
3http://www.flixster.com/

rating data with social network information, the model with
the worst performance concerning RMSE surprisingly turns
out to achieve the best top-k hit ratio. This illustrates that
approaches that work well for the vastly popular RMSE are
not necessarily useful for optimizing the more realistic top-k
hit ratio or recall.

4.1 Dealing with High Computation Cost
Training on all items admittedly increases the compu-

tation complexity, which is another key performance met-
ric, other than accuracy, in designing recommender systems.
Good recommendation algorithms not only need to provide
accurate results, but also need to be scalable to large prob-
lems. To work with two large real-world datasets, we con-
ducted our experiments on a Linux server with four E5640
Intel Xeon CPUs. Each CPU has four cores, and each core
has 12.3 MB cache. The shared memory size is 12 GB.
We implemented multi-thread C++ programs to parallelize
large-scale matrix operations encountered in model training
and parameter optimization. The running times for different
models ranges from seconds to hours. For the STE model,
we could not afford the computation cost to get the exact
optimal solution, and we resorted to approximation meth-
ods. We found that the stochastic gradient descend and
gradient descend methods easily got stuck in local minima
when training with missing ratings, while ALS performed
better in many cases.

4.2 Experiments on Epinions Dataset

4.2.1 Dataset
Epinions is a consumer opinion site where users review

various items, such as cars, movies, books, software, etc.,
and assign ratings to the items. The ratings are in the range
of 1(min) to 5(max). Users also assign trust values (i.e. a
value of 1) to other users whose reviews and/or ratings they
find valuable. No trust value indicates that a user either
does not know the other, or distrusts him. We used the
Epinions dataset4 published by the authors of [22] in our
experiments.

The Epinions data set consists of 71,002 users with a total
number of 104,356 rated items. The total number of reviews
is 571,235, and the total number of pairwise, directed trust
relationships is 508,960. In our experiments, the data set
is divided into two sub-sets: the training set and the test
set. For users with less than five ratings, one randomly
selected rating is put into the test set. For users with five
ratings or more, 10% of the randomly selected ratings are
moved to the test set. We define cold user as user who
had rated fewer than 5 items. We further split the test
set randomly into two disjoint sets of equal size. The first
test set is used for cross-validation during training as to
determine the tuning parameters in our objective function.
The second test set is used as a truly held-out data set for
final evaluation of the trained model. We report the result
of testing the second test set. We consider 5-star ratings as
relevant5 to a user, i.e. the user definitely likes these items,
and report the recall test results for the top 500 items (as
defined in Section 2). The reason we set k = 500 is as

4http://alchemy.cs.washington.edu/data/epinions/
5Considering both 4 and 5 star ratings as relevant, exper-
iments showed similar differences among the various ap-
proaches.
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Figure 1: Top-500 Recall for social-network-based matrix-factorization models on Epinions data.

follows. In Epinions dataset, there are much more number
of items than users which is different from many other data
sets, e.g. Netflix dataset 6. Thus, using a small value for k
will produce generally poor results for all compare methods.
Actually, we have performed experiments for k = 5. The
recall of modified SoRec model on all user and cold user were
2.06% and 2.45% respectively, and the recall of modified
No Trust on all user and cold user were 1.31% and 0.93%
respectively. Nonetheless, we show the results of recall as
the value of k changes in Figure 6.

4.2.2 Recall for MF Models
We found the following tuning parameters of the training

objective functions for the MF models (see Section 2.3) to
result in the highest recall: λ = 0.4, rm = −1, wm = 0.0002
for all models; the optimal tradeoff between the rating data
and the social network information is determined by the pa-

rameters β for SocialMF, α for STE, and γ (with w
(S)
m =

0.00003,sm = 0) for SoRec. The results are shown in Fig-
ure 1. As expected, it is important to find the right tradeoff
between the social network information and the rating data.
While all three models show an improvement in recall com-
pared to No Trust case, it is particularly large for SoRec.
SoRec model with our modified training objective function
outperforms No Trust by 23.1% in terms of overall recall
and 101.8% in terms of cold user recall. It shows that social
network is very helpful in terms of top-k recommendation es-
pecially for recommendation of cold start users. Moreover,
recall is even slightly higher for cold users than it is for all
users. This may be explained by the fact that cold users
have a slight tendency to rate popular items (i.e. items with
a large number of ratings), which can naturally be recom-
mended more accurately. In the Epinions data, the average
item rated by a cold user has received 102 ratings, while the
average item rated by all users has received only 93 ratings.
Note that this tendency is much more pronounced in the
Flixster data (see Figure 4), where recommendations can be
made even more accurately for cold users than for all users
(see Figure 3).
The recall test results for the optimal tuning parameters

are summarized for all these MF models in Table 1. Table
1 shows that the SoRec model with our modified training
objective function achieves the best recall. This may be un-
expected, as the SoRec model was found to achieve a worse
RMSE than STE in [11], and STE was found to have a
worse RMSE than SocialMF in [8]. This result illustrates

6http://en.wikipedia.org/wiki/Netflix Prize

that the best way of combining rating data with social net-
work information concerning the popular RMSE measure is
not necessarily the best way to maximize recall.

test MF models
users No Trust SocialMF STE SoRec

original training (on observed ratings)

all 1.9% 3.5% 2.7% 2.6%
cold 1.5% 1.0% 2.8% 2.9%

modified training (on all ratings)

all 26.0% 29.1% 29.4% 32.0%
cold 16.5% 27.9% 26.6% 33.3%

Table 1: Epinions data: recall (top 500) in percent
for three MF models trained with original and mod-
ified training objective. ‘No Trust’ is the baseline
MF model that only uses rating data.

4.2.3 RMSE for MF Models
Apart from optimizing for recall, we also determined the

optimal tuning parameters as to minimize RMSE, and found
λ = 0.1, rm = 4, wm = 0, j0 = 10, which resulted in the
following RMSE values:

• RMSE = 1.174, if only the rating data is used,

• RMSE = 1.095, for SocialMF (with β = 20),

• RMSE = 1.157, for STE (with α = 0.5),

• RMSE = 1.117, for SoRec (with γ = 50 and w
(S)
M =

0).

These results are consistent with RMSE results in the in the
literature [8, 11, 12]. It verifies that social network informa-
tion is useful for improving RMSE.

4.2.4 Recall for NN Models
As a further comparison, Figures 2 shows the recall test re-

sults we obtained for various nearest neighbor models, which
are outlined in Section 3.2. To the best of our knowledge,
this includes the only top-k approach using social network
information [7], the Trust-cf model. In Trust-cf model, k1 is
set to be 5 which leads to best recall in user based CF. Top-
500 recommendation result on Epinions dataset of Trust-cf
is shown in Figure 2(c).

Among the NN approaches, the one in Figure 2(c) achieves
a considerably worse hit ratio than any of the NN approaches
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Figure 2: Top-500 Recall by Nearest Neighbor based Models on Epinions dataset

in Figure 2(a) and 2(b). This poor performance of the only
published top-k approach (in Figure 2(c)) [7]–is due to the
following reason: the NN approach in [7] predicts the rat-
ing value of a user in terms of the average rating values of
the user’s friends–which is obviously based on the observed
ratings only. In contrast, the various NN approaches in Fig-
ure 2(a) and 2(b) use voting–which is the simplest possible
way of accounting for all items, i.e. by counting 0 for an
absent rating and counting 1 for an observed relevant rating
(with weights defines in Section 3.2). As the rating value is
ignored, this is the simplest possible approach to account for
all items during training. Though recall of NN based RS is
not as good as MF based RS. As we mentioned in Section 3.2,
NN based approach enjoys the advantage of incrementally
integrating user’s new feedbacks while MF based approach
is not able to.

4.3 Experiments on Flixster Dataset
Despite the different properties of the Epinions and Flixster

data sets, the results on the Flixster data confirm our results
on the Epinions data. Flixster is a social network site where
users add other users to their friend lists to form a social net-
work. Flixster has about one million users, who rate movies
and share reviews. The ratings in Flixster have ten discrete
values from 0.5 to 5, with step size of 0.5. Flixster is dif-
ferent from Epinions in that social relations in Flixster are
bi-directional. The Flixster data 7 used here is from [8]. The
Flixster social network has 26.7 million connections. The
trace consists of 8.2 million movie ratings on 49,000 movies
and 1 million users. The number of users who made at least
one rating is 150,000. Note that a large portion of users in
the Flixster data did not rate movies. However, they are
useful for social-network-based recommender systems, since
a recommendation can be made using the ratings of users
who are reachable through the no-rating users. We split the
data into a training set and a disjoint test set. For users
with less than 10 ratings, we randomly choose one rating
and put it into test set. For users with 10 or more than 10
ratings, we randomly chose 5% as put them into the test set.
We further split the test set randomly into two disjoint sets
of equal size and report results of testing the second test set
akin to Epinions case. We defined rating values of 4 or larger
as relevant for computing recall on the test set. We report
recall for the top 100 items recommendation. The top-k hit
ratio of different k value is presented in Figure 7.

7http://www.sfu.ca/ sja25/datasets/
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Figure 4: Comparison of cold users’ and overall
users’ tendency to rate popular items in the Flixster
data.

Figure 3 shows that recall can be improved by using the
social network information in addition to the rating data.
The optimal values for the other tuning parameters are: λ =

0.1, rm = 1 and wm = 0.2. The optimal w
(S)
m and sm

are 0.2 and 0 respectively in modified SoRec model. For
these optimal training parameters, the recall test results are
summarized for all the MF models in Table 2.

test MF models
users No Trust SocialMF STE SoRec

original training (on observed ratings)

all 4.4% 4.7% 5.3% 8.2%
cold 6.3% 6.6% 7.2% 15.4%

modified training (on all ratings)

all 44.3% 45.2% 47.1% 49.1%
cold 30.8% 38.3% 47.6% 59.2%

Table 2: Flixster data: recall (top 100) in percent for
three MF models trained with original and modified
training objective. ‘No Trust’ is the baseline MF
model that only uses rating data.

As before, SoRec with modified training objective func-
tion achieves the largest recall. We can see from Table 2 that
SoRec model with our modified training objective function
outperforms No Trust by 10.8% in terms of overall recall and
92.2% in terms of cold user recall. It again shows that social
network is very helpful in terms of top-k recommendation es-
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Figure 3: Top-100 Recall for social-network-based matrix-factorization models on Flixster data.
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Figure 5: Top-100 Recall by Nearest-Neighbor-based Models on Flixster dataset

pecially for recommendation of cold start users. Note that
the improvement for the cold users over all the users is par-
ticularly pronounced for the Flixtser data, as cold users have
a rather strong tendency to rate popular items, as shown in
Figure 4.
In Trust-cf model, k1 is set to be 20 which leads to best

recall in user based CF. Top-100 recommendation result on
Flixster dataset of Trust-cf is shown in Figure 5(c). Akin
to Epinions dataset, among the NN approaches, the one in
Figure 5(c) achieves a considerably worse hit ratio than any
of the NN approaches in Figure 5(a) and 5(b).

4.4 Impact of Dimensionality and Top-k
Figure 6 and 7 depict recall vs. the top-k number with

dimensionality j0 = 10 and j0 = 20 respectively. We can see
from Figure 6 and 7 that dimensionality j0 = 20 performs
better than j0 = 10. This is because larger dimensional-
ity captures more latent features of users and items and
hence improves recall. It should be noted that top-k hit ra-
tio of Flixster data is much more better than Epinions data.
Counting that the number of items in Epinions dataset is
about two times of Flixster dataset, still, we find that re-
call of Flixster is more than two times of Epinions for top-5
to top-500 recommendations. This is probably because of
the fact that Epinions data is a multi-category data which
contains items from many categories(cars, movies, books,
software, etc.) while items in Flixster are all movies which
makes the recommendation easier in general. Furthermore,
users in Flixster dataset averagely have more number of
social connections and item ratings compared to Epinions

dataset.

5. CONCLUSIONS
Social recommendation is prevalent in real-world, but top-

k recommendation using online social networks has been in-
sufficiently studied in the recommendation literature. In
this paper, we present a comprehensive study on improv-
ing the accuracy of top-k recommendation using trust infor-
mation derived from social networks. We showed that the
existing social network based recommender systems can be
conveniently tailored for top-k recommendations by modi-
fying their training objective functions to account for both
observed ratings and missing ratings. Through experiments
on two large-scale data sets, we made three majors find-
ings: 1)Trust information significantly improves top-k hit
ratio when incorporated properly both in MF and NN mod-
els; 2)Our proposed social network based NN models and
RS trained with our modified objective function consider-
ably outperform the only published top-k approach using
social network information in recent literature [7], an NN
approach; 3) among the various ways of combing feedback
data with social network information, the one that was found
to be worst with respect to RMSE turns out to be the best
concerning the top-k hit ratio. This illustrates that the tech-
nical details of minimizing RMSE can be very different from
the ones that work to optimize the more realistic top-k hit
ratio.

Among all NN approaches, Trust-CF-ULF-best performs
best in terms of top-k hit ratio. And modified SoRec model
is the best among all MF models in terms of hit-ratio.
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Figure 6: Recall vs Top-k and impact of Dimen-
sionality on Epinions data.
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sionality on Flixster data.

In summary, our work demonstrated that top-k recom-
mendations pose unique challenges, and social trust informa-
tion, when incorporated properly, can significantly improve
the hit ratio of top-k recommendations.
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