
To appear in ACM TOG 31(6).

Large-scale Fluid Simulation using Velocity-Vorticity Domain Decomposition

Abhinav Golas∗1, Rahul Narain†2, Jason Sewall‡3, Pavel Krajcevski§1, Pradeep Dubey¶3, and Ming Lin‖1

1University of North Carolina at Chapel Hill
2University of California, Berkeley

3Intel Corporation

(a) (b) (c)

Figure 1: Examples of fluids simulated with our technique: (a) a city block hit by a tsunami (vortex domain in yellow) (b) seagulls flying
through smoke (c) smoke flow around a sphere. We achieve up to three orders of magnitude of performance over standard grid-only techniques.

Abstract

Simulating fluids in large-scale scenes with appreciable quality using
state-of-the-art methods can lead to high memory and compute
requirements. Since memory requirements are proportional to the
product of domain dimensions, simulation performance is limited
by memory access, as solvers for elliptic problems are not compute-
bound on modern systems. This is a significant concern for large-
scale scenes. To reduce the memory footprint and memory/compute
ratio, vortex singularity bases can be used. Though they form a
compact bases for incompressible vector fields, robust and efficient
modeling of nonrigid obstacles and free-surfaces can be challenging
with these methods.

We propose a hybrid domain decomposition approach that couples
Eulerian velocity-based simulations with vortex singularity simula-
tions. Our formulation reduces memory footprint by using smaller
Eulerian domains with compact vortex bases, thereby improving the
memory/compute ratio, and simulation performance by more than
1000x for single phase flows as well as significant improvements for
free-surface scenes. Coupling these two heterogeneous methods also
affords flexibility in using the most appropriate method for modeling
different scene features, as well as allowing robust interaction of
vortex methods with free-surfaces and nonrigid obstacles.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling;

Keywords: Computational fluid dynamics, vortex methods, stable
fluids, Navier-Stokes equations

∗golas@cs.unc.edu
†narain@eecs.berkeley.edu
‡jason.sewall@intel.com
§pavel@cs.unc.edu
¶pradeep.dubey@intel.com
‖lin@cs.unc.edu

1 Introduction

State-of-the-art methods for fluid simulation, including velocity-
based Eulerian methods and smoothed particle hydrodynamics,
model the entire spatial extent of the fluid. Discretization of this
space is often chosen to be able to sample sufficiently fine details
under the restriction of limited computational resources. As a result,
scenes with large spatial scales can only be simulated to coarse
detail on PCs, relying on procedural methods to infuse detail. The
simple computational kernels of these methods are largely memory-
bandwidth bound, since domains of interest cannot reside in caches
of current generation CPUs, and computational complexity cannot
mask the cost of memory accesses. An alternate approach to mod-
eling fluids is to model fluid detail, represented by the vorticity of
the fluid, i.e. the curl of the velocity field. For incompressible flows,
vorticity can be compactly represented by Lagrangian singularity el-
ements. They are thus free of numerical dissipation, which can be a
significant issue with Eulerian methods, and do not need to explicitly
model the pressure of the fluid. Though this leads to computational
savings for scenes with unbounded fluid, robust and efficient mod-
eling of obstacles or free-surfaces with two-way coupling using
vorticity methods is challenging. Vortex singularity elements also
serve as intuitive models for visual fluid detail, e.g. a smoke ring
can be modeled as a vortex curve or filament.

These aspects make detail modeling of fluids with vortex singularity
elements attractive, especially for large-scale scenes. To extend the
applicability of these methods to free-surface fluids and scenes with
deformable elements, we propose a hybrid domain-decomposition
approach. Since Eulerian methods are adept at modeling such sur-
faces, coupling them with vortex methods can provide a robust,
flexible, and efficient approach to fluid simulation. Particularly for
scenes with large spatial scales but concentrated regions of detail,
our approach can provide substantial computational and memory
savings with reduced numerical dissipation, allowing simulations
with more detail than previously possible.

It also poses significant challenges, the biggest of which is coupling
heterogeneous methods in the same simulation while ensuring a
consistent velocity field that matches the actual fluid velocity. We
address this problem by separately coupling fluid flux and vorticity

1



To appear in ACM TOG 31(6).

across simulation boundaries. We propose an iterative coupling
algorithm that matches fluid flux across boundaries using appropriate
boundary conditions for grid simulations and by creating vortex
singularities on the boundary for vortex simulations. To accurately
transfer vorticity across boundaries, we use a novel vortex particle
creation algorithm and velocity boundary conditions for advection.
It is important to note that maintaining vortex surface elements is
computationally expensive and numerically ill-conditioned if surface
mesh quality is poor. We develop an approach that addresses both of
these issues by constructing meshes using grid faces, and efficiently
computing fluxes induced by these face elements, even allowing
pre-computation. We extend hierarchical approach of [Lindsay
and Krasny 2001] for faster computation of flux induced by vortex
particles and surface elements.

Main Results: The key contributions of this work are:

• a hybrid fluid simulation algorithm that preserves vortex fluid
features by using a compact vortex basis with Lagrangian el-
ements in the interior of the fluid, while enforcing arbitrary
boundary conditions such as nonrigid obstacles and free sur-
faces using an Eulerian grid representation near boundaries;

• a novel two-way coupling between Eulerian Navier-Stokes
simulations and Lagrangian vorticity simulations, which con-
serves vorticity over time and ensures continuity in the velocity
and vorticity fields;

• a sampling algorithm to create a vortex particle representation
of a given velocity field by minimizing residual in theL2 norm;
and

• an efficient and well-conditioned approach to computing
strength of vortex surface elements, and an O(m logm) algo-
rithm to evaluate flux using hierarchical methods.

The coupling techniques introduced in this paper are quite general
and can be used to connect different kinds of fluid simulation tech-
niques in a heterogeneous domain decomposition framework. When
applied to grid-based and vorticity-based methods, this method en-
ables efficient simulation of large fluid volumes using a vorticity
representation while supporting rich and complex interaction at
boundaries. We demonstrate the benefits of this approach on sev-
eral large-scale scenes (see Fig. 1) which would have a prohibitive
computational cost using existing techniques.

2 Related Work

Physically-based simulation of fluids has been a major focus of
computer graphics research over the past decade. In this section,
we briefly review the work in this area that is most relevant to
this work. These may can be classified into two broad categories:
velocity-based methods, which discretize the velocity field of the
fluid directly, and vorticity-based methods, which describe it in-
directly by its curl (vorticity) instead. These methods may further
classified in orthogonal categories based on the type of discretization,
i.e. Eulerian or Lagrangian methods.

2.1 Velocity-based methods

Most of the de facto standard techniques for fluid simulation in
computer graphics use a velocity-based representation. In such
methods, one solves a discretization of the Navier-Stokes equations,
which describe the evolution of the velocity field of a fluid over time.

A popular approach to solving these equations is by using finite
difference methods on Eulerian grids — this was introduced to com-
puter graphics by the pioneering work of Foster and Metaxas [1996].
Stam [1999] proposed semi-Lagrangian advection schemes to allow

for unconditionally stable fluids, and Foster and Fedkiw [2001] de-
veloped methods for producing realistic, robust liquid surfaces in
simulations. These methods have the advantage of being simple to
implement and producing visually compelling results, including in-
teractions with rigid and deformable objects [Chentanez et al. 2006;
Batty et al. 2007; Robinson-Mosher et al. 2008]. Similar techniques
have also been proposed using tetrahedral meshes [Wendt et al. 2007;
Klingner et al. 2006; Chentanez et al. 2007] instead of rectilinear
grids. However, Eulerian simulators have traditionally faced two
challenges. First, they suffer from significant numerical dissipation,
typically exceeding the desired viscosity in the fluid, causing flow
detail to be undesirably damped out. Recent developments in im-
proved advection schemes offer benefits in this aspect [Kim et al.
2007; Selle et al. 2008; Mullen et al. 2009; Lentine et al. 2011;
Zhu and Bridson 2005], while techniques for introducing additional
detail have also been proposed [Fedkiw et al. 2001; Selle et al. 2005;
Kim et al. 2008; Narain et al. 2008; Schechter and Bridson 2008;
Pfaff et al. 2010]. However, a second, more fundamental challenge
is that Eulerian methods require voxelization of the entire simula-
tion domain. The elliptical pressure projection operator needed to
solve these equations demands that all pressure values be strongly
coupled with each other, leading to large computational and memory
requirements for expansive scenes. Some recent work has attempted
to address this issue, with level-of-detail representations [Losasso
et al. 2004], coarse grid projections [Lentine et al. 2010], and model
reduction [Treuille et al. 2006; Wicke et al. 2009], but these are often
incompatible with techniques for reducing dissipation.

An alternative approach is that of smoothed particle hydrodynam-
ics, which models the fluid volume as a system of particles with
pairwise forces between them. This approach has been employed
for interactive simulation of liquids [Müller et al. 2003]. Similar to
Eulerian grids, these methods can lead to a large number of particle
primitives to sample fluid extent. In addition, enforcing incompress-
ibility correctly can be expensive, owing to irregular computational
elements. These concerns have been addressed partly with adaptive
sampling [Adams et al. 2007] and predictive-corrective schemes
for incompressiblility projection [Solenthaler and Pajarola 2009].
Sin et al. [2009] proposed a point-based approach that combines
features from particle-based and grid-based methods. However, for
the large scales under consideration, computational costs remain
substantial for all such techniques.

2.2 Vorticity-based methods

Vortex simulations are a class of methods which were originally
devised for aircraft wing design, and have recently begun to receive
attention in computer graphics as well. These methods model the
evolution of fluid vorticity, which is the curl of the velocity field,
instead of velocity itself. With the exception of Elcott et al. [2007]’s
Eulerian approach representing vorticity on a tetrahedral mesh, most
of the methods in this category are Lagrangian, using singularities
with the Green’s function of the Laplace operator.

In this formulation, singularity methods can be applied, represent-
ing the vorticity distribution as a superposition of singularities such
as particles [Chorin 1973; Park and Kim 2005], curves/filaments
[Angelidis and Neyret 2005; Weißmann and Pinkall 2009], or sur-
faces/sheets in 3D space. Vortex singularities are excellent basis
functions for fluid velocity for a number of reasons. They offer a
compact and exact representation of fluid velocity in unbounded
domains, automatically ensure incompressibility, and are immune to
numerical dissipation. Due to their Lagrangian nature, vortex sin-
gularity methods also allow easier user control of the simulation as
compared to grid methods. These features have made these methods
popular for interactive simulations [Angelidis et al. 2006; Weißmann
and Pinkall 2010]. Curve or filament representations also ensure in-

2



To appear in ACM TOG 31(6).

Figure 2: Several seagulls flying through clouds of smoke to demon-
strate airflow around their wings. On this scenes, our simulation
achieved speedups of >1,000x

compressibility of vorticity, but can only model inviscid fluids. This
is not the case with vortex particles, which allow viscous fluids to be
modeled, at the cost of a slightly compressible vorticity field. The
divergence-free constraint can be enforced iteratively through par-
ticle strength exchange methods [Cottet and Koumoutsakos 1998],
which can also model viscosity.

Enforcing boundary conditions requires the solution of a dense linear
system. Though capable of arbitrary accuracy — conditions are en-
forced at mesh resolution — for nonrigid obstacles, precomputation
of the linear system is impossible, which makes these the limiting
factor in vortex simulations. Also, due to the singular nature of
vortex singularities, proximity of elements has a major impact on
the conditioning of this linear system, to the extent of rendering the
system unsolvable due to poor conditioning. Large variations in the
size of elements have a similar effect on conditioning. These issues
make efficient and robust modeling of nonrigid obstacles non-trivial.
It is also difficult to model the dynamics of free surfaces in this
framework.

While there have been a number of hybrid simulation techniques
combining, for example, rectilinear grids with tetrahedral meshes
[Feldman et al. 2005], or grids with particle-based methods [Losasso
et al. 2008], all these work solely with velocities, and we are aware
of no work in computer graphics that allows combining velocity-
and vorticity-based methods in the same simulation.

The remainder of the paper is organized as follows. The hybrid
domain decomposition algorithm is described in Section 3. We pro-
pose some tools for improving the efficiency of vortex simulations
in Section 4. Finally, results and analysis of our implementation are
described in Section 5.

3 Hybrid Fluid Simulation

Given velocity-based and vorticity-based methods have complemen-
tary advantages, we propose a hybrid approach that combines the
respective strengths of both techniques. In particular, many different
techniques have been proposed to support different types of bound-
ary conditions for velocity-based methods, including free surfaces,
deformable and thin objects, and two-way coupling. On the other
hand, vorticity-based methods can compactly represent effectively
infinite volumes of fluid where detail in the fluid motion is spatially
limited. Therefore, we propose to combine both methods through a
domain decomposition approach (Section 3.2), representing the fluid
using velocity-based methods near boundaries such as obstacles and
free surfaces, and employing vorticity-based methods in the large
interior region of the fluid.

However, the disparate nature of velocity and vorticity methods
makes it challenging to combine them into a single heterogeneous
simulation. An essential problem is that of coupling together the two
representations at the interface between them, so that they represent
a consistent velocity field for the entire fluid. We present a novel
two-step coupling algorithm to address this problem: first match-
ing normal velocities at the interface using an alternating scheme
(Section 3.3), and then transferring vorticity information across sub-
domains through particle seeding (Section 3.4). As we show below,
matching both velocity and vorticity across the interface is necessary
to obtain a consistent and convergent simulation in this framework.

3.1 Subdomains

Our simulation consists of Eulerian (Gi) and Vortex (Vi) subdo-
mains. For notational simplicity, we use G and V to refer to the
union of all Eulerian subdomains and Vortex subdomains respec-
tively. Eulerian subdomains model the Navier Stokes equations
using uniform grids, with velocity u sampled on a staggered grid.
Operator splitting is used to integrate each term one by one, with
a BFECC Semi-Lagrangian scheme for advection, explicit integra-
tion for external forces, and a sparse Poisson solve for enforcing
incompressibility using pressure. Advection and Incompressibility
solve steps take volume flux boundary conditions from the hybrid
simulator, instead of zero flux enforced in traditional solvers. For
more details we refer the reader to [Bridson and Müller-Fischer
2007; Carlson 2004].

Vortex subdomains (Vi) model the evolution of vorticityω = ∇×u,
using the vorticity form of the Navier Stokes equations:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω, (1)

∇ · ω = 0, (2)

under the assumption of no density gradients. Under this formula-
tion, velocity can be expressed using the Green’s function of the
Laplace operator, giving rise to the Biot-Savart formula:

u(x) =
1

4π

∫
R3

ω(z)× x − z

‖x − z‖3 dz. (3)

for a vorticity distribution in an infinite domain. Note the absence
of a pressure term, as the velocity so defined is incompressible by
definition. As mentioned before, this distribution can be represented
as a superposition of discrete primitives such as points (particles),
curves (filaments), or surfaces/meshes (sheets) giving rise three
types of vortex singularity methods. We use a particle representation
owing to its ease of use, and the possibility of modeling viscosity,
which is not possible using filaments. Also, due to poor long term
stability of ideal singularities, regularized singularities or “vortex
blobs” are typically preferred. A popular choice is the Rosenhead-
Moore kernel, a regularized form of the Biot-Savart kernel with a
constant smoothing radius a to give

u(x) =
1

4π

∫
R3

ω(z)× x − z

(‖x − z‖2 + a2)3/2
dz. (4)

The smoothing radius governs the concentration of vorticity repre-
sented by a vortex blob, which affects the scale of vorticity features
that can be represented by it.

The vortex particle algorithm proceeds by advecting vortex particles,
perturbing particle strengths to model vortex stretching and viscosity,
and creating vortex sheets to model obstacles. Particles whose
strength falls below a minimum threshold are culled. For more
details about advection, stretching and viscosity, we refer the reader
to [Cottet and Koumoutsakos 1998]. Obstacles are modeled by

3



To appear in ACM TOG 31(6).

(a) (b)

Figure 3: Decomposition of domain into vortex (red) and Eulerian
grid (blue) subdomains for (a) single-phase flows, and (b) free-
surface flows. Dotted lines denote grid region boundaries, while
solid lines denote the vortex coupling sheet

creating vortex sheets on their surface. [Weißmann and Pinkall
2010] propose creating filaments along the edges of a polygonal
mesh for this purpose, where the strength (Γi) of each filament
(fi) is determined to enforce zero flux through each face of the
mesh, i.e.

∑
i Γifluxi(fj) + fluxV(fj) = 0. We utilize a similar

algorithm relying on vortex particles instead of filaments to enforce
flux. In the hybrid case, we create sheets to match a non-zero
flux, resulting in the equation for the strength of each filament:∑
i Γifluxi(fj) + fluxV(fj) = fluxG(fj). In case of multiple

vortex domains, either all vortex sheets can be computed using one
solve, or by iteratively solving for the strength of each vortex sheet
separately. This choice usually depends on whether linear systems
for each component can be precomputed or not.

3.2 Hybrid Domain Decomposition

In our hybrid approach, we divide the simulation domain into a
number of non-degenerate, overlapping subdomains, each of which
is simulated using either the vortex method or Eulerian Navier-
Stokes simulation.

It is natural to define one large region V, consisting of the interior
of the fluid at least a distance d away from boundaries, on which
the vortex method is applied. This region consists of one or more
disjoint subdomains Vi. The other subdomains, labeled Gi, use
Eulerian Navier-Stokes simulations, and may contain boundaries
such as static or moving obstacles and free surfaces. We assume that
all Eulerian subdomains Gi are disjoint from each other (if not, we
may merge any grids that overlap), and each of them overlaps with
the vortex subdomain V, in order to apply our coupling algorithm.
Thus, the burden of supporting various boundary conditions is lifted
from the vortex method, and placed on grid-based methods for which
numerous techniques are available.

This decomposition is illustrated in Figure 3. For single-phase
simulations like smoke, the domain consists of grids immersed in
a vortex simulation, with the vortex domain extending to a user-
specified distance d inside every grid. For free-surface simulations
like water, the vortex simulation is embedded inside an Eulerian grid,
with the boundary of the vortex domain being a distance d inside
the fluid surface. As boundaries move, so do their corresponding
subdomains, so that at all times the boundaries are contained entirely
within grids and remain at least a distance d from the extent of the
vortex subdomain.

Fluid velocities in the vortex subdomain are determined using the
grid velocities as boundary conditions. That is, the boundary of the
vortex subdomain, which is a surface that lies entirely within the
grid, is treated as an obstacle whose normal velocities are given by
the grid velocity field, and a vortex sheet is computed on this surface

to match the corresponding fluxes. Thus, the velocity field can be
evaluated at any point in the interior using the Rosenhead-Moore
kernel (4).

We define the timestepping scheme of the hybrid simulation as
follows. Each subdomain is advanced independently over one time
step ∆t while assuming that velocities in the others are constant.
Assuming constant velocities in other subdomains introduces an
error on the order of O(∆t) in both vortex and grid regions: in the
vortex region because boundary conditions are determined by the
grid; and in the grid because advection carries velocities in from
the vortex region. In general, this magnitude of error is acceptable
because the rest of the simulation (like most techniques for fluid
simulation in graphics) is also first-order accurate. At the end of
the time step, we couple the simulations back together by matching
normal velocities at the boundaries, thus enforcing incompressibility,
and matching vorticity in the interior of the overlap region. It can
be shown that when the overlap region is simply connected, if both
grid and vortex velocity fields have equal flux at the boundary and
equal vorticity in the interior, they must be identical [Cantarella
et al. 2002]. For overlap regions with complex topologies, additional
circulation constraints are needed. Thus, we can ensure that the
combined simulation is consistent: where the grid and the vortex
domains overlap, they agree on the fluid velocity.

In the following two subsections, we describe our proposed coupling
techniques in more detail.

3.3 Velocity coupling

Each Eulerian solver stores a velocity field which determines the
velocity uGi at any point within its grid Gi. Similarly, the vortex
method determines the velocity uV at any point in its subdomain
V. By allowing domains Gi and V to overlap, we can enforce
consistency between the corresponding simulations by ensuring that
uGi and uV are equal in the overlap region Oi = Gi ∩V.

To enforce this constraint, we recall that the velocity field in any
region is uniquely determined by the distribution of vorticity within
it, and the flux at the boundaries of the region. Therefore, discrepan-
cies between the velocities seen by different subdomains can only
occur from having incorrect vorticity information in the interior or
incorrect flux at the boundary. Assuming consistent vorticity in
the overlap region, we need to ensure that flux across the boundary
of the overlap region is consistent, i.e. velocity induced by both
simulations is the same uGi = uV at the boundary .

Velocity can be matched at ∂Gi by enforcing the desired velocity
as boundary conditions for the incompressibility projection step. To
do the same with vortex simulation requires the creation of a vortex
sheet S to match normal flux through ∂V, i.e.

(uS + uV) · n = uGi · n (5)

on the sheet, where uS is the velocity induced by the vortex sheet S.

Thus the velocity coupling can be formulated as a fixed point itera-
tion, one iteration of which can be expressed as follows:

1. Determine the velocity uV + uS at the boundary ∂Gi of the
Eulerian subdomain

2. Using uV + uS as the boundary condition, perform the incom-
pressibility projection on the grid Gi

3. Determine the velocity uGi at the boundary ∂V of the subdo-
main V

4. Compute strength of the vortex sheet S to match vortex velocity
uV to uGi

4



To appear in ACM TOG 31(6).

(a)

(b)

Figure 4: Examples of fluid flow and domain decomposition (a)
static, for single-phase flows, (b) dynamic, for free-surface flows
changing with the topology of water extent

Coupling iterations are performed till uG and uV + uS converge.
For coupling multiple Eulerian subdomains with the vortex subdo-
main, this iteration can be performed in lockstep for every pair of
overlapping subdomains.

This algorithm belongs to the class of methods known as the Schwarz
alternating methods [Toselli and Widlund 2004], which are com-
monly used in domain decomposition methods. Schwarz alternating
methods are guaranteed to converge to a unique solution for second
order PDEs, and thus this iteration ensures that the velocity field is
consistent at the boundaries of all subdomains, and consequently in
the entire domain.

3.4 Vorticity exchange

Velocity coupling on the subdomain boundaries will yield consistent
velocities over the entire overlap region only if the vorticities seen
by both representations are equal. However, even if the vorticities
are equal in the initial conditions, they will gradually go out of sync
over time, as vorticity is transported into the overlap region through
advection. Therefore, to ensure consistency at all times, we need to
account for this by exchanging vorticity between the grid and the
particle domains. We derive this procedure by considering the two
cases where vorticity is brought into the overlap region from the
vortex particles and from the grid domain respectively.

From the vortex particle domain, vorticity enters the overlap region
when a vortex particle flows in and crosses the boundary of the grid.
In this case, transferring vorticity into the grid’s velocity field can
be done with appropriate boundary conditions. When we perform

velocity advection on the grid using, say, a semi-Lagrangian scheme,
it typically requires velocity information at locations outside the
grid; we fill this in using the velocities determined by the vortex
particle representation. Thus, as a vortex particle enters the overlap
region, advection on the grid automatically pulls in its corresponding
vorticity. Further, when the particle moves into the grid-only region,
it may be deleted as its vorticity remains represented on the grid, or
preserved to drive vorticity confinement.

Handling the transfer from the grid to vortex particles is somewhat
more involved. As advection on the grid moves velocities around, the
vorticity present in the grid-only region may be transported into the
overlap region. This vorticity is unaccounted for by existing vortex
particles in the overlap region, creating error in the representation.
Therefore, we must insert new vortex particles in the overlap region
to make the vorticities match.

We do this in a greedy fashion, at each iteration inserting the particle
which best reduces the difference between the vorticity due to the
particles and the vorticity present in the grid, denoted ∆ω. This is
the particle at position xp with strength αp which minimizes the
L2-norm of the vorticity difference,

ε =

∫
Gi∩V

(
∆ωp(x) + k(x− xp, αp)

)2
dV, (6)

where k is the Rosenhead-Moore kernel. We found that the smooth-
ing kernel used to obtain the Rosenhead-Moore kernel from the
Biot-Savart kernel is well approximated by a Gaussian of standard
deviation a/2. The choice of Gaussian smoothing is motivated by its
smoothing properties in scale space, due to which features smaller
than a are smoothed away, and computational efficiency afforded
due to its linear separability property. Therefore, we smooth ∆ω
with the Gaussian and choose xp at which the smoothed field attains
its maximum magnitude in the overlap region. Once xp is fixed, it is
straightforward to find the particle strength αp which minimizes ε,
as k is linear in αp. We add this particle into the simulation and then
repeat the process, until ε or ‖αp‖ fall below chosen thresholds.

With this process, we maintain consistency between the grid and the
vortex particles in the overlap region. To reduce the particle count,
we also merge particles which are within a certain fraction of the
smoothing radius a of each other. At every time step, we consider
the O(dn2) cells in the overlap region. Though in the worst case, all
these cells may result in new vortex particles, temporal coherency
results in the creation of O(dn) particles per step. We note that even
though the Rosenhead-Moore kernel has infinite support, vortex
particles can be created with finite information offered by the grid,
since the distribution of vorticity around a particle decays rapidly
with distance.

The outline of our resulting algorithm is shown in Figure 5.

4 Efficient vortex particle simulation

Vortex particle simulation is one of the major underlying compo-
nents of our method. In this section, we discuss our implementation,
including optimizations — some derived from theoretical concerns,
others from practical ones. Efficient algorithms for purely Eulerian
fluid simulation already exist, thus we do not delve into them here.
As discussed in Section 2, the three main steps of vortex particle
simulation are advection, stretching, and obstacle handling. Advec-
tion requires the computation of velocity at every particle position,
and naı̈ve summation using the Biot-Savart law leads to an O(p2)
algorithm for p particles. [Lindsay and Krasny 2001] propose a
hierarchical summation approach to compute velocities, that reduces
the cost of this step to O(p log p). However, in the presence of obsta-
cles, the most expensive step is evaluating flux through the obstacle

5



To appear in ACM TOG 31(6).

For each time step:
1. Advance level-set surfaces, if any
2. Advect velocity fields uGi and apply any external forces
3. Convect vortex particles in V
4. Repeat until convergence or maximum iterations:

(a) Perform incompressibility projection on all grids Gi

using boundary conditions uV + uS from vortex
particle simulation

(b) Rebuild vortex sheet(s) S in the middle of grid-vortex
overlap

(c) Determine strength of vortex sheet(s) S to match
vortex and grid velocities as per Equation (5)

5. Vorticity exchange
(a) Create vortex particles to minimize vorticity residual
(b) Perform vortex stretching to model fluid viscosity

Figure 5: The main steps of our method.

surface, and the subsequent linear system solve. In addition, mesh
quality plays a pivotal role in the conditioning of this system.

4.1 Well-conditioned vortex sheet computation

The computation of vortex sheets that match normal velocities at
their surface is a major step in vortex singularity simulation and
our velocity coupling algorithm. Like any other vortex singularity
element, the sheet induces a velocity field determined by the Biot-
Savart law. In practice, these sheets are discretized as polygonal
meshes, where each mesh face is a singularity with a distribution
of vorticity. We use the approach proposed by [Weißmann and
Pinkall 2010], which assumes a constant strength for each face and
represents each with a filament geometry defined by the edges of
the face. To determine the strength of each face, a linear system
is constructed that matches normal velocities or total flux at the
face in accordance with equation (5). Due to reciprocity between
filaments, the resulting matrix is symmetric. We first evaluate the
net flux on each boundary polygon due to all vortex particles in the
scene, giving uV · n, and then solve a linear system to compute
vortex sheet strengths that will produce the desired change in flux,
(uGi − uS) · n.

In the presence of topological holes, fluxes are insufficient to
uniquely determine the velocity field, and a circulation constraint
must be specified for each hole. For example, if the sheet is a torus,
normal fluxes alone cannot capture a purely tangential flow through
the torus. For a formal discussion, we refer the reader to [Cantarella
et al. 2002]. The condition number of this problem depends heav-
ily on the quality of the underlying mesh. When matching flux
through each face, a high variance in face areas can result in a poorly
conditioned system. Similarly, due to the singular nature of these
vortex elements, the minimum separation between faces also affects
conditioning. Very low separation among a few faces can skew the
eigenvalues of the matrix, making it poorly conditioned to the extent
of losing rank.

To remedy this, we propose constructing vortex sheets using grid
faces. Since we construct sheets at a distance d from any surface,
this is equivalent to measuring distance using the infinity norm. The
resulting mesh has two important properties, firstly that faces have
zero variance of area, and that minimum separation between two
faces is at least the grid cell width ∆x. Using these meshes results
in linear systems with much better conditioning than those obtained
using the traditional marching cubes algorithm, which relies on the
2-norm. In addition, the entries of any possible matrix constructed
can be precomputed, since the set of all possible mesh faces is a
finite set.

4.2 Hierarchical methods for flux computation

As noted earlier, flux computation is one of the major computational
kernels of our algorithm. Since the velocity induced by a vortex
element is the curl of its corresponding vector potential Φ, Stokes’
theorem lets us express its flux through a polygon η as

flux(η) =

∫∫
η

u(x) · dA =
∑
i

∫
∂ηi

Φ(x) · dl (7)

where

Φp(x) =
1

4π

∫
R3

ω(z)√
‖x − z‖2 + a2

. (8)

To create the linear system we need to determine flux induced by
a vortex particle or filament though a polygon. Though closed
forms can be obtained for both, a better approach is to extend the
hierarchical structure created to compute velocities. This structure
can be easily extended to compute the vector potential induced by
a set of vortex particles at any point in space. Then, a quadrature
rule can be used to evaluate the integral in equation (7). We found
that a 5th order Gauss-Legendre quadrature achieves a relative error
< 0.01 when compared to the closed form.

Creating a hierarchical approach for filaments is non-trivial. How-
ever, using the same idea of evaluating integrals with Gaussian
quadrature, a filament edge can be discretized into a number of
vortex particles placed according to the quadrature sample positions,
with their strengths being the filament strength multiplied by quadra-
ture weights, strength vectors being aligned to the edge. This is
especially simple for the mesh we create, since edge lengths are
equal, but can be applied to any polygonal mesh.

Thus the same hierarchical approach used for vortex particles can
be used for vortex sheet velocity and flux computation, creating a
unified representation for the vortex simulation. This suggests an
iterative approach to solving the linear system to determine vortex
sheet strength, since for a mesh containing m faces, instead of using
O(m2) operations for matrix vector multiplication, we can do the
same computation hierarchically in O(m logm) operations. This
is especially helpful since for a grid of size O(n× n× n), m can
be O(n2), thus a matrix-vector multiply of complexity O(n4) can
be performed with O(n2 logn) operations. By using Fast Multipole
Methods, this cost can be brought down further to O(n2).

As to the choice of iterative methods, we use the GMRES algorithm
with restarts [Barrett et al. 1994], since the matrix is indefinite. We
observe convergence in O(n) iterations on average, O(n2) iterations
in the worst case. Thus, the strength of a vortex sheet can be de-
termined in O(n4 logn) time in the worst case, and O(n3 logn) on
average.

It is important to note that the underlying bounding volume hierarchy
constructed for this method is also used to accelerate neighborhood
queries needed for the vortex stretching step, bringing its complexity
down from O(p2) to O(kp) where k is the number of neighbors
considered.

5 Results

Our method was used to simulate a number of challenging examples.
Vorticity confinement was not used in any scenario.

Coupled simulation in unbounded space: Seagulls in flight (Fig-
ure 2) are used to demonstrate how our method can be used for a
scenario which would be challenging to simulate with either vortex
or velocity methods alone. In this scene, three seagulls fly through

6



To appear in ACM TOG 31(6).

Example dt Grid Resolution Simulation Time Grid Resolution Simulation Time Max. Vortex Average coupling Speedup(Eulerian) Eulerian (s) (Hybrid) Hybrid (s) Particles sheet size
Dam Break 0.0167 128x192x128 93.375 - 83.122 15860 490x490 1.123

256x384x256 1313.94 - 514.41 32089 2316x2316 2.55
Smoke around 0.04 72x118x72 3.66 32x34x32 1.033 11516 1232x1232 3.54
sphere 0.04 144x236x144 47.712 64x68x64 5.959 23976 1232x1232 8.006

0.04 144x236x144 47.712 64x68x64 29.7295 20105 4928x4928 1.604
0.04 288x474x288 1277.37 128x136x128 177.044 34298 5640x5640 7.214

Wave 0.04 600x100x120 403.89 - 118.897 1567 2742x2742 3.4
City 0.04 312x60x210 87.51 - 66.801 7208 1722x1722 1.31
Seagull 0.04 520x256x520 NA 84x60x84 15.31 25674 1296x1296 >1000

Table 1: Single thread performance for our examples (All time values for one simulation step)

four plumes of laminar smoke flow. To best demonstrate the effect
of obstacle interaction, buoyancy is not modeled — the flow is kept
laminar and does not become turbulent on its own. Vortex methods
cannot be coupled robustly with deformable objects, while a domain
of this size cannot be voxelized in desktop or mobile PC memory.
The deforming wings of the seagulls induce vorticial details into the
flow, which is carried by vortex particles even after the birds have
moved on to different parts of the scene. Although we have applied
a bound to the domain by determining the extents of all elements
of the scene, the domain is unbounded in principle; the memory
savings noted are lower bounds of what can be obtained with even
larger scenes.

Preservation of vortex features: Figures 4(a) and 4(b) show fluid
flow around simple boundaries where vortex features are preserved.
It is important to note that speedup obtained for the sphere scene is
not as significant as the seagull scene, since it has high-detail vortices
in nearly its entire domain of interest, and thus cannot benefit as
greatly from a compact representation of vorticity.

Tsunami striking a city (Figure 1(a)). A tsunami breaks over a
city block, demonstrating fluid detail created by a high number of
rigid objects; this scenario involves interaction with a large area of
obstacle surfaces. The complexity of our approach scales with the
total surface area of all elements in the scene — this scene is not
expected to enhance performance as well as other cases. However,
our approach helps in preserving flow details even in the absence of
vorticity confinement.

Velocity coupling/comparison: In this scene, we show wave form-
ing, cresting, and breaking. Visual fidelity and detail are maintained,
resulting in a qualitatively similar simulation as previous methods,
while affording performance benefits.

Scenes are modeled and rendered using Blender R© and Maya R©.
Water is rendered as a mesh with an appropriate water shader, while
smoke is rendered as a density field. Smoke is advected passively
through the flow, but can also be used to create density estimates for
buoyancy forces.

5.1 Performance

For each of these examples, the vortex smoothing radius a is chosen
to be close to the grid cell width; in all the examples shown here, this
was in the range [∆x, 4∆x]. Correspondingly, the size of the overlap
region d is kept between [a, 2a] to allow sufficient information to
create vortex particles, since the decay of the vorticity kernel is faster
than linear. In practice, we have observed that an average of 2-3
coupling iterations are sufficient to allow the simulation regions to
converge with an error of 10−4 in the L2 norm of the residual.

We measured the performance of our method on an Intel R© Xeon R©

X5560 processor running at 2.8GHz on a system with 48GB of
RAM and 8MB lowest-level cache. Our method is implemented in
C/C++, and some components use SIMD (4-wide single-precision

(a) (b)

Figure 6: Dam Break example at t=0.48s using PIC(left) and
FLIP(right) showing maximum height reached by water

SSE) instructions to improve performance and resource utilization.

The timing and performance results for all of our examples are
shown in Table 1; here we show a performance comparison between
purely Eulerian and hybrid simulation for single phase and free-
surface simulations demonstrating the speedups obtained by using
our method. Overall our approach gives varying speedups that are
most pronounced for single-phase simulations. This is expected;
free-surface scenes require regeneration of the coupling vortex sheet
every step, which represents additional overhead in our technique
not present in standard fluid solvers and proportionally mitigates
(but does not eliminate) the overall advantage of our technique in
efficiency.

Additional scope for optimization of these results exists, by using ap-
propriate preconditioners for GMRES, and more optimized solvers.
In addition, for free-surfaces, the same coupling sheet can poten-
tially be used for multiple frames and linear solvers can be warm
started with values from the previous time steps leading to more
performance benefits.

5.2 Controlling Dissipation

As some of our examples may appear diffusive, we offer some
insight into controlling diffusion. First of all, it is important to note
that smoke sources in our scenes introduce purely laminar flow,
with no model for buoyancy. This is done in order to highlight the
preservation of vorticity across subdomain boundaries, since such
an observation would be difficult in turbulent flow. Because our
coupling algorithm matches flux and vorticity, any error in the latter
would be observed as spurious vorticity at subdomain boundaries.

Three main sources of possible diffusion while using our algorithm
are the choice of smoothing radius a, grid advection, and vortex
stretching algorithms chosen. In figure 6 we show the difference in
using PIC v.s. FLIP advection algorithms [Zhu and Bridson 2005].

7



To appear in ACM TOG 31(6).

The choice of advection algorithms has an equally large impact in
single-phase simulations, and some of our examples exhibit such
dissipation as well. However, as shown by the example, this can be
readily addressed by the use of less dissipative advection algorithms.
The impact of advection algorithms on grid vorticity is analogous
to the effect of vorticity stretching in vortex domains along with the
choice of smoothing kernel. Accurate and stable stretching of vortex
particles requires careful creation of new particles as needed, and the
enforcement of the divergence-free vorticity constraint. Deviation
from the constraint results in a tradeoff between numerical stability
and diffusive behavior. Though a higher order kernel can improve
accuracy, third order and higher kernels induce negative vorticity
which is visually undesirable. The choice of smoothing radius is
also important since it controls the highest frequency of vorticity
detail that can be modeled.

6 Conclusion

We have presented a hybrid simulation algorithm for simulating
fluids in large-scale scenes with a reduced memory and computa-
tional footprint that is proportional to the total area of all surfaces. It
provides memory and execution time improvements from 2x–1000x,
depending on the scene. This performance gain is achieved via a
novel algorithm that couples vortex singularity methods and Eule-
rian velocity simulations. We also propose a vortex particle creation
algorithm, which creates particles to compactly represent a velocity
field by minimizing the L2 norm of the difference. Our generalized
approach also offers a flexibility to choose different regimes and
numerical methods for distinct regions of a scene.

6.1 Limitations and future work

Our method discretizes the vorticity space – rather than spatial extent
– using one set of basis functions, defined by the smoothing radius
a. To achieve high performance, our method relies on sparsity in
this space. For scenes that contain dense vortex detail, our method’s
computational advantage diminishes, bringing its performance closer
to other techniques. For specific static scenes, more compact bases
could be derived, but such an approach would not scale to dynamic
scenes without substantial pre-computation.

We also note that our particle seeding algorithm chooses a subset of
possible vortex bases: those centered at grid cell centers. Though
this does not reduce the applicability of the method, the possibility of
expanding the set of bases to different smoothing radii and general-
ized particle placement would add to the efficiency and compactness
of the vortex representation.

Our formulation uses overlapping subdomains for coupling since it
simplifies the coupling algorithm. A non-overlapping coupling, if
possible, could allow the formulation of a vortex boundary condi-
tion for free-surfaces and two-way coupled obstacles. This would
reduce the need for a full-fledged grid simulation, and afford greater
flexibility in the choice for simulation methods.

Representing velocity fields as vortex particles opens the possibility
of compact storage and manipulation of velocity fields. This can be
used for artistic control of fluid velocity and even for accurate model-
ing of fluid turbulence. Further investigation of these avenues would
be valuable for increasing fidelity and artistic control of existing
algorithms as well.

Acknowledgments: We would like to thank the anonymous review-
ers for their valuable suggestions; Adam Lake and Nico Galoppo at
Intel for their support during the early stage of concept exploration.
This research was supported in part by ARO Contract W911NF-04-
1-0088, NSF awards 0917040, 0904990, 100057 and 1117127, and

Intel. The second author was supported by UNC Computer Science
Alumni Fellowship while working on this project at UNC.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. ACM Trans. Graph. 26 (July).

ANGELIDIS, A., AND NEYRET, F. 2005. Simulation of smoke based
on vortex filament primitives. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, SCA ’05, 87–96.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Proceedings
of the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, SCA ’06,
25–32.

BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO,
J., DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C.,
AND DER VORST, H. V. 1994. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, Philadelphia, PA.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast
variational framework for accurate solid-fluid coupling. ACM
Trans. Graph. 26, 3, 100.

BRIDSON, R., AND MÜLLER-FISCHER, M. 2007. Fluid simulation:
Siggraph 2007 course notes. In ACM SIGGRAPH 2007 courses,
ACM, SIGGRAPH ’07, 1–81.

CANTARELLA, J., DETURCK, D., AND GLUCK, H. 2002. Vector
calculus and the topology of domains in 3-space. Amer. Math.
Monthly 109, 5, 409–442.

CARLSON, M. T., 2004. Rigid, melting, and flowing fluid. Ph.D.
Dissertation.

CHENTANEZ, N., GOKTEKIN, T. G., FELDMAN, B. E., AND
O’BRIEN, J. F. 2006. Simultaneous coupling of fluids and de-
formable bodies. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 83–89.

CHENTANEZ, N., FELDMAN, B. E., LABELLE, F., O’BRIEN,
J. F., AND SHEWCHUK, J. R. 2007. Liquid simulation on lattice-
based tetrahedral meshes. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, SCA ’07, 219–228.

CHORIN, A. J. 1973. Numerical study of slightly viscous flow.
Journal of Fluid Mechanics 57, 04, 785–796.

COTTET, G. H., AND KOUMOUTSAKOS, P. D. 1998. Vortex
Methods: Theory and Practice. Cambridge University Press.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial fluids.
ACM Trans. Graph. 26 (January).

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM, SIG-
GRAPH ’01, 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M. 2005.
Animating gases with hybrid meshes. In Proceedings of ACM
SIGGRAPH 2005.

8



To appear in ACM TOG 31(6).

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids.
In Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques, ACM, SIGGRAPH ’01, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58 (September).

KIM, B., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2007. Advec-
tions with significantly reduced dissipation and diffusion. IEEE
Transactions on Visualization and Computer Graphics 13, 135–
144.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008. Wavelet
turbulence for fluid simulation. ACM Trans. Graph. 27 (August),
50:1–50:6.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes. In
Proceedings of ACM SIGGRAPH 2006, 820–825.

LENTINE, M., ZHENG, W., AND FEDKIW, R. 2010. A novel
algorithm for incompressible flow using only a coarse grid pro-
jection. In ACM SIGGRAPH 2010 papers, ACM, SIGGRAPH
’10, 114:1–114:9.

LENTINE, M., AANJANEYA, M., AND FEDKIW, R. 2011. Mass
and momentum conservation for fluid simulation. In Proceed-
ings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ACM, 91–100.

LINDSAY, K., AND KRASNY, R. 2001. A particle method and
adaptive treecode for vortex sheet motion in three-dimensional
flow. J. Comput. Phys. 172 (September), 879–907.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water
and smoke with an octree data structure. In ACM SIGGRAPH
2004 Papers, ACM, SIGGRAPH ’04, 457–462.

LOSASSO, F., TALTON, J., KWATRA, N., AND FEDKIW, R. 2008.
Two-way coupled sph and particle level set fluid simulation. IEEE
Transactions on Visualization and Computer Graphics 14 (July),
797–804.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DESBRUN,
M. 2009. Energy-preserving integrators for fluid animation. ACM
Trans. Graph. 28 (July), 38:1–38:8.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, Eurographics Association, SCA ’03, 154–159.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and procedu-
ral synthesis. ACM Trans. Graph. 27 (December), 166:1–166:8.

PARK, S. I., AND KIM, M. J. 2005. Vortex fluid for
gaseous phenomena. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM,
SCA ’05, 261–270.

PFAFF, T., THUEREY, N., COHEN, J., TARIQ, S., AND GROSS,
M. 2010. Scalable fluid simulation using anisotropic turbulence
particles. In ACM SIGGRAPH Asia 2010 papers, ACM, New
York, NY, USA, SIGGRAPH ASIA ’10, 174:1–174:8.

ROBINSON-MOSHER, A., SHINAR, T., GRETARSSON, J., SU, J.,
AND FEDKIW, R. 2008. Two-way coupling of fluids to rigid and
deformable solids and shells. ACM Trans. Graph. 27 (August),
46:1–46:9.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In Proceedings of the 2008
ACM/Eurographics Symposium on Computer Animation.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vor-
tex particle method for smoke, water and explosions. In ACM
SIGGRAPH 2005 Papers, ACM, SIGGRAPH ’05, 910–914.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable maccormack method. J. Sci.
Comput. 35 (June), 350–371.

SIN, F., BARGTEIL, A. W., AND HODGINS, J. K. 2009. A point-
based method for animating incompressible flow. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible sph. ACM Trans. Graph. 28 (July),
40:1–40:6.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH ’99, 121–128.

TOSELLI, A., AND WIDLUND, O. 2004. Domain Decomposition
Methods - Algorithms and Theory, vol. 34 of Springer Series in
Computational Mathematics. Springer.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model
reduction for real-time fluids. In ACM SIGGRAPH 2006 Papers,
ACM, SIGGRAPH ’06, 826–834.

WEISSMANN, S., AND PINKALL, U. 2009. Real-time interactive
simulation of smoke using discrete integrable vortex filaments. In
Workshop in VRIPS 2009, Eurographics Association.

WEISSMANN, S., AND PINKALL, U. 2010. Filament-based smoke
with vortex shedding and variational reconnection. In ACM SIG-
GRAPH 2010 papers, ACM, SIGGRAPH ’10, 115:1–115:12.

WENDT, J. D., BAXTER, W., OGUZ, I., AND LIN, M. C. 2007.
Finite volume flow simulations on arbitrary domains. Graph.
Models 69 (January), 19–32.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. In ACM SIGGRAPH 2009 papers,
ACM, SIGGRAPH ’09, 39:1–39:8.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA,
SIGGRAPH ’05, 965–972.

9


