
Speculative Parallel Asynchronous Contact Mechanics

Samantha Ainsley
Columbia University

Etienne Vouga
Columbia University

Eitan Grinspun
Columbia University

Rasmus Tamstorf
Walt Disney Animation Studios

Abstract

We extend the Asynchronous Contact Mechanics algorithm [Har-
mon et al. 2009] and improve its performance by two orders of mag-
nitude, using only optimizations that do not compromise ACM’s
three guarantees of safety, progress, and correctness. The key to this
speedup is replacing ACM’s timid, forward-looking mechanism for
detecting collisions—locating and rescheduling separating plane
kinetic data structures—with an optimistic speculative method in-
spired by Mirtich’s rigid body Time Warp algorithm [2000]. Time
warp allows us to perform collision detection over a window of time
containing many of ACM’s asynchronous trajectory changes; in this
way we cull away large intervals as being collision free. Moreover,
by replacing force processing intermingled with KDS rescheduling
by windows of pure processing followed by collision detection, we
transform an algorithm that is very difficult to parallelize into one
that is embarrassingly parallel.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: contact, collision, simulation, parallelization

Links: DL PDF

1 Introduction

The design of physical simulation algorithms can require diffi-
cult decisions weighing slower, more principled approaches against
faster shortcuts. In the short term, it can be tempting or necessary
to prioritize speed. However, in the words of Sutter and Alexan-
drescu [2004], “it is far, far easier to make a correct program fast
than it is to make a fast program correct.” In this work we adopt
the longer term perspective that as computers become ever faster,
methods designed from the ground up to guarantee correctness will
prove to be the longest-lasting.

Moreover, while available processing power continues to increase
exponentially, this increase is no longer in the raw speed of CPU
cores, but in the number of cores available per die [Borkar and
Chien 2011]. Algorithms that cannot be parallelized are less likely
to survive in the long term.

We seek algorithms to simulate thin flexible materials subject to
complex collisions and contact geometries. Asynchronous contact
mechanics (ACM) [Harmon et al. 2009] addresses this goal by fo-
cusing on three built-in guarantees: 1) the simulation is safe and
provably stops all interpenetrations; 2) it conserves momentum and

energy, physical invariants, for physical systems with the appropri-
ate symmetries; and 3) for well-posed problems, ACM is guaran-
teed to make progress, in the sense of terminating in finite time.
There is, however, a wide gulf between “finite time” and “fast,” and
the earlier paper was presented as a foundation for systems-style
research into correct and fast simulations.

We describe a new system for ACM that dramatically decreases the
amount of time spent on bookkeeping and collision detection, by
an order of magnitude. While the original ACM was difficult to
parallelize, we employ speculation to expose easy parallelization,
leading to another order of magnitude speedup.

Our implementation yields speedups of more than two orders of
magnitudes on a 12-core work station, enabling practical com-
putational cost for simulations with complex contact geometries.
The algorithm retains ACM’s three aforementioned guarantees, and
therefore serves as one step toward realizing Sutter and Alexan-
drescu’s statement in the context of physical simulation.

1.1 Overview

Summary of ACM The ACM algorithm upon which our method
is based is described in detail by Harmon et al. [2009] and in follow-
up work [Harmon 2010; Vouga et al. 2011; Harmon et al. 2011a].
We only briefly summarize the salient features of the method here.

ACM guarantees safety and correctness of the simulation by acti-
vating nested penalty layers of decreasing thickness η1 > η2 > . . .
and increasing stiffness in anticipation of collisions. Whenever two
objects approach each other with distance less than η1, ACM adds a
penalty force to the simulation that opposes the collision. If the ob-
jects continue approaching and reach a distance η2 from each other,
a second penalty force is added that’s stiffer than the first, and so
on; the total force applied to the objects grows unbounded as the
distance between them decreases, so that it is guaranteed to stop
the collision no matter how hard the impact. Each penalty force
is stepped asynchronously [Lew et al. 2003] instead of in lockstep,
allowing each force to be integrated at its own stable time step. An
event priority queue keyed by time maintains which force is to be
processed next.

To detect when to activate a new penalty force, ACM uses kinetic
data structures (KDSs) [Guibas 1998]. For each pair of primitives
in the simulation, a separating slab of thickness η1 is found that
separates the primitives, guaranteeing that they are farther than η1
apart. This slab certifies that no collisions can occur between them
for some time interval into the future. A KDS event is placed on the
event queue at this expiration time. Whenever the velocity of either
primitive changes, this time must be recomputed, or rescheduled.
When the KDS event is popped from the queue, either a new sepa-
rating slab is found and its event pushed onto the queue, or the first
penalty layer is activated for the two primitives under the conser-
vative assumption that a collision is imminent. The above process
is then repeated to detect when to activate the next deepest penalty
layer at distance η2.

An alternative to KDSs The above approach to activating
penalty layers guarantees that collisions cannot be missed. Unfor-
tunately, this guarantee carries a heavy cost: in typical simulations

http://doi.acm.org/10.1145/2366145.2366165
http://portal.acm.org/ft_gateway.cfm?id=2366165&type=pdf

Ideal 6

KDS Processing
6

KDS Rescheduling

24

Bookkeeping

64%

%
%

%

Ideal

40.

Resimulation
34.

Collision Detection

24.

Unneeded Penalty
Bookkeeping

%

%
%

Figure 1: A breakdown of time spent on useful work (green), and
overhead (orange), for the original ACM implementation (left) and
our approach (right) when simulating Harmon et al [2009]’s reef
knot example for three simulation seconds. The relative total com-
pute time is illustrated by the total area of the pie charts when the
right pie chart is scaled and superimposed on the left. The left plot
was generated from data reported by Harmon et al.

over 90% of the execution time is spent on rescheduling or pro-
cessing KDS events [Harmon et al. 2009]. Moreover, every time
an event is processed, the event queue changes in a way that is un-
predictable a priori: a KDS event will either reschedule itself for an
unknown time in the future, or will insert a new penalty layer whose
first tick could occur an arbitrarily small amount of time later and
will itself cause rescheduling of other KDS events. Because of these
unpredictable causal dependencies between events, processing and
rescheduling of KDS events cannot be easily parallelized.

Instead of using KDSs to guarantee that the simulation never enters
an interpenetrating state, we propose taking advantage of the time
warp paradigm [Jefferson 1985]: we simulate a window of time
without attempting to find or resolve any new collisions. At the end
of the window we perform retrospective collision detection, and if
any collisions were missed, we roll back to the beginning of the
window, add new penalty layers, and repeat this process until no
collisions are detected. We describe this algorithm in detail in §2.

Speculative simulation and rollback is not at first glance an obvi-
ously fruitful model for collision detection and response. Consider,
as a point of comparison, a hypothetical ideal implementation of
ACM that wastes no work on collision detection: an omniscient or-
acle informs this ideal implementation exactly when to activate all
penalty layers needed to resolve imminent collisions, and when to
deactivate the penalty layer because it will exert zero force the next
time it is processed. This ideal implementation gives a lower bound
on the amount of computation any functionally identical optimiza-
tion of ACM must perform.

It is useful to compare this ideal implementation to both the original
ACM implementation and the proposed rollback scheme: any work
done by either method beyond that of the ideal implementation is
termed wasted work. A rollback scheme performs several types of
wasted work:

• Resimulation: Every time an event is processed and then
rolled back, the time spent processing that event was wasted.

• Collision detection: Time spent on collision detection takes
away time that could have been spent on integrating forces
and advancing the simulation. In the ideal implementation,
collision detection is instantaneous.

• Unneeded penalty forces: Penalty events that exert zero
force (as a result of being added to the event queue by overly-
conservative collision detection) do not need to be processed.

• Bookkeeping: Rollback has significant miscellaneous over-
head: saving and restoring the (large amount of) simulation
state after every rollback window, gathering the trajectory data
during each window needed by collision detection, and so on.

In the original implementation, processing and rescheduling of
KDS events are the main sources wasted work, in addition to event
queue maintenance. (Since the event queue contains many KDS
events in addition to force events, pushing, popping, and reschedul-
ing events on the queue is more costly.) For the reef knot example
by Harmon et al [2009], Figure 1 shows a breakdown of how much
wasted work, and of what type, each method exhibits.

Despite the potential overhead of speculative simulation with roll-
back, this approach has several advantages over original ACM: the
collision detection at the end of each simulation window needs only
to determine whether or not a collision has occurred (the time of
impact is unimportant), and can take advantage of four instead of
three dimensions of information (see §3). As a result, collision de-
tection and resimulation is substantially cheaper than rescheduling
and processing KDS events “along the way.” Together these factors
significantly reduce the amount of wasted work incurred during a
typical simulation. Moreover, both the collision detection and the
processing of material/penalty forces within each window can be
easily parallelized (§4), unlike rescheduling of KDS events.

Related work The foundation of ACM’s time stepping algorithm
is the work by Lew et al on asynchronous variational integrators
(AVIs) [2003]. Parallel extensions of AVIs have been studied for
use in finite element simulations of elastica without contact, us-
ing domain decomposition and message passing [Kale and Lew
2007] as well as dependency graphs [Huang et al. 2007]. An im-
plementation of the latter has been incorporated into the Galois
framework for running parallel algorithms on multiprocessors [Pin-
gali et al. 2011]; we discuss in Section 5.2 the possibility of us-
ing Galois to parallelize our force integration. In graphics, AVIs
have been applied to asynchronous integration of cloth internal
forces [Thomaszewski et al. 2008b]. Debunne et al [2001] proposed
the similar idea of adaptively switching between different levels
of resolution and time step when simulating visco-elastic bodies.
ACM has recently been extended to handle implicit forces using a
ghost mesh [Harmon et al. 2011b].

Mirtich [2000] applied Time Warp to simulations of large numbers
of interacting rigid bodies, and our method is largely inspired by
this work. Zheng and James [2011] recently used Time Warp at the
body level to asynchronously simulate vibrating objects for sound
simulation. These methods leverage Time Warp to roll back only
those contact groups involved in a detected collision; for simula-
tions with few, large, deformable bodies this approach is less prof-
itable since stiff elastic forces rapidly propagate information away
from points of contact. Rather, we use Time Warp primarily be-
cause of the substantial savings Retroactive Detection offers asyn-
chronous integration.

Parallel simulation of cloth and thin shells with collisions is a well-
studied problem. For instance, Thomaszewski [2006; 2008a] solves
for implicit material forces using a data-parallel conjugate gradi-
ent algorithm, and uses data from past frames to estimate a good
splitting of the collision detection task. Bender and Bayer [2008]
simulate inextensible cloth by decomposing it into strips of con-
straints that can be processed in parallel. Selle et al [2009] effi-
ciently handle very high resolution cloth by parallelizing and ex-
tending Bridson’s method [2002] to reduce the number of geomet-
ric tests needed during collision detection. Our method stands apart
in offering ACM’s three guarantees of safety, progress, and correct-
ness.

2 Speculative simulation with rollback

In place of forward-looking kinetic data structures, we propose de-
tecting collisions in hindsight and resolving them with a speculative

model in the spirit of Jefferson’s time warp algorithm [1985]. We
tile time into consecutive fixed-sized rollback windows of duration
R. (We discuss the choice of the parameter R in §5.1.) Within
each window, we advance the simulation by processing events as
described in the original ACM algorithm, except that we do not
add, process, or reschedule any KDS events. That is, we process
internal force events, and penalty events for any penalty layers that
were active at the start of the window. More collisions may occur
during the rollback window but we make no attempt at detecting or
responding to them before the end of the rollback window.

ball wall

sp
ac

e

timet=t0 t0+R

penalty
region 1

t=t0 t0+R

ro
llb

ac
k

* *
t=t0 t0+R

ro
llb

ac
k

Figure 2: A cartoon illustrating the rollback process: the simula-
tion steps a ball forward in time, heedless of collisions (left). In-
terference detection at the end of the rollback window notices that
the ball enters the first penalty layer, so the simulation rolls back,
activates the first penalty layer, and resimulates the window (mid-
dle). During resimulation, the ball enters the second penalty layer;
rolling back, activating the second penalty layer, and resimulat-
ing, no collisions (i.e., entries into third penalty layer) are detected
(right), and the result is finally accepted.

Algorithm 1 Algorithm to integrate one window

1: procedure INTEGRATEWINDOW
2: X0 ← {x0,x1,x2, . . .} // save start-of-window positions

3: Ẋ0 ← {ẋ0, ẋ1, ẋ2, . . .} // save start-of-window velocities
4: Q0 ← Q // save start-of-window queue state
5: repeat
6: H← X0 // reset histories
7: while Q.head.t < t0 +R do
8: (E, h, t)← Q.pop // Pop eventE with time step h at time t
9: ProcessEvent(E,h,t)

10: end while
11: C ← BroadPhaseCollisionDet(H) // get missed collisions
12: if C 6= ∅ then
13: {x0,x1,x2, . . .} ← X0 // restore positions

14: {ẋ0, ẋ1, ẋ2, . . .} ← Ẋ0 // restore velocities
15: Q← Q0 // restore start-of-window queue state
16: Q.push(new penalty events constructed from C)
17: end if
18: until C = ∅
19: end procedure

We stop processing events when we would process the first event
whose time exceeds the end of the rollback window. We then
perform interference detection to determine whether any collisions
were missed during the window: if so, we restore the entire sim-
ulation to its state at the beginning of the rollback window, and
activate a penalty layer for each missed collision. We then resim-
ulate the rollback window. The forces from the new penalty layers
may have induced additional collisions, or may not have been suffi-
cient to stop the detected collisions, so we repeat this process until
collision detection reports no missed collisions during the rollback
window. See Figure 2 for an illustration of this process.

Implementation At the start of every rollback window we take
a snapshot of the entire simulation state, which we restore in the

event of a rollback. This includes positions, velocities, events on the
queue and their times, positions of the material reference configu-
ration, etc. We also maintain a history of vertex positions: for each
vertex, we track its position at the start of the window, the end of
the window, and its position and time whenever it changes velocity
due to force processing. Since vertices move along piecewise linear
trajectories, this history minimally encodes the entire trajectory of
the simulation over the rollback window, and is passed to the col-
lision detection algorithm at the end of the window. Note that due
to ACM’s asynchrony, different vertices have different numbers of
history entries and entries do not necessarily align in time.

At the end of every rollback window, if a penalty layer is exerting
zero force, we remove it from the list of active penalty layers.

Algorithm 2 Algorithm to process one event

1: Process an event E with time step h, scheduled time t

2: procedure PROCESSEVENT(E,h,t)
3: ξ := stencil(E) // global indices of the local stencil
4: for i ∈ ξ do // update positions and clocks
5: xi ← xi + (t− ti)ẋi
6: ti ← t
7: end for
8: compute Fξ // local impulses Fi for i ∈ ξ (embarrassingly parallel)

9: ẋξ ← ẋξ − hM−1
ξ Fξ // update velocities (embarrassingly parallel)

10: Q.push(E, h, t+ h) // Schedule recurring event
11: for i ∈ ξ do // save history
12: Hi.append(xi, t) // Hi records trajectory of xi

13: end for
14: end procedure

3 Collision Detection

At the end of every rollback window, we must examine the tra-
jectory of the system over the course of the window and deter-
mine if any collisions occurred. In particular, each pair of material
primitives (edge-edge or vertex-face) either has no active penalty
layers—in which case we must detect if we need to activate the
first, outermost penalty layer for that pair—or they already have
some penalty layers on the queue, in which case we must check if
the next-deeper layer is needed. To preserve the safety guarantee
we must perform continuous-time proximity detection on the full
trajectory: it is not enough to merely check positions at the end of
the window as objects may have tunneled through each other. This
proximity detection is the same as collision detection with an offset
surface corresponding to the thickness of the penalty layer.

Our particular problem domain has several distinguishing features:

• Each vertex in the simulation moves in a piecewise linear tra-
jectory, and vertices do not change trajectory in lockstep.

• Although the coarse motion of a vertex over the rollback win-
dow might be simple, for simulations involving cloth, thin
shells, or other objects with stiff internal forces, the fine
trajectory is composed of very many high-frequency, low-
amplitude oscillations.

• The interference distance we need to detect against differs
for each pair of primitives in the simulation, since we always
check for that pair entering its next deeper penalty layer, and
different primitive pairs in the simulation have different num-
bers of penalty layers already active.

• We only need to know whether or not a collision occurred at
some point during the rollback window – the precise time of
impact is unimportant.

We propose a three-phase detection algorithm with these features
in mind.

Broad phase: swept-volume k-DOPs We cull collisions be-
tween primitives that remain spatially distant for the entire rollback
window by fitting a k-DOP hierarchy [Konečný and Zikan 1997] to
the swept volumes of the triangles in the simulation. We have ob-
served that (unoriented) 26-DOPs work well in practice. We place
bounding volumes around swept volumes rather than around each
triangle at each point in time to avoid a complete rebuild of the hier-
archy at the end of each rollback window. We also avoid scenarios
in which increasing history granularity leads to large hierarchies
and therein costly traversal.

Since we need to detect proximity between pairs of primitives, and
since that proximity varies depending on how many penalty layers
are already active for that pair, during fitting we inflate the k-DOPs
by the conservative, largest penalty layer thickness η1 (the thickness
of the first penalty layer). If two leaf nodes (triangles) overlap, we
look at all possible pairs of primitives taken from the two triangles,
look up how many penalty layers k (if any) are already active for
that pair, and check if their swept volume k-DOPs, inflated by ηk+1,
overlap. If so, we proceed to the narrow phase.

Narrow phase: Space-time separating planes Given an edge-
edge or vertex-face pair that could not be culled by the broad phase,
the narrow phase must determine if the primitives come within
some proximity ηk+1. Each of the vertices that compose the pair
move in a piecewise linear trajectory, so the rollback window can be
subdivided into time intervals during which all vertices have con-
stant velocity; in this setting, proximity detection amounts to find-
ing the roots of well-known continuous collision detection polyno-
mials (with thickness) of degree at most six [Stam 2009; Brochu
et al. 2012]. Such root solves are very expensive, so we propose a
second phase of culling based on separating slabs that takes advan-
tage of the fact that we do not need the time of impact, and that over
a small window of time most forces only cause small perturbations
to positions.

Algorithm 3 Algorithm for culling narrow-phase collisions on the
interval [t0, tf]

1: procedure NARROWPHASE(t0, tf)
2: if (tf ≤ t0) then
3: return false
4: else if (tf − t0 < tol)∧ ConstantVelocity(t0, tf) then
5: return ContinuousCollisionDetection(t0, tf) // Fail-safe
6: end if
7: tmid = (tf + t0)/2
8: if PrimitivesProximate(tmid) then
9: return true

10: end if
11: (tl, tu) = NoCollisionInterval(tmid)
12: return NarrowPhase(t0, tl) ∨ NarrowPhase(tu, tf)
13: end procedure

Algorithm 3 outlines our approach. For a rollback window begin-
ning at time t0 and ending at tf = t0 + R, we first calculate the
distance between the primitive pair at the midpoint tmid =

t0+tf
2

(line 8). If the pair is within proximity at this time, we know a
collision must occur during the rollback window. Otherwise, a sep-
arating slab of thickness ηk+1 must exist and certify the lack of
collisions on some interval (tl, tu) around tmid (line 11). If tl < t0
and tu > tf , we are guaranteed that the pair does not collide for
the entire rollback window. If t0 < tl we recursively apply this

di
st

 <
 μ

k+
1

R
ep

or
t C

ol
lis

oi
n

 s
la

b

time

sp
ac

e

tmidt0 tf

di
st

 >
 μ

k+
1

time

sp
ac

e

tmidt0 tf
time

sp
ac

e

tmidt0 tf

Figure 3: Narrow phase collision detection using separating slabs.
The trajectories of two vertices in 1D are shown. At tmid we detect
that the two vertices are sufficiently far apart, so cull an interval of
time based on how long a separating slab can be shown to certify
that there are no collisions. We then recurse until we have found
a collision or proven that no collisions occur at any time in the
rollback window.

algorithm to the time window [t0, tl], and similarly for [tu, t0+R].
Figure 3 illustrates this algorithm.

Failsafe: Continuous collision detection If we would recurse
on an interval that is too small (we use 10−10 seconds for this toler-
ance) and the primitive pair has constant velocity within this inter-
val, we invoke the third phase of collision detection, CTCD using
root solving (culling some polynomials when we can prove using
interval arithmetic that they have no roots during the rollback win-
dow), as a last resort (line 5). Invoking the failsafe is rare: in our
benchmark examples, only about 0.2% of all narrow phase calls
require the failsafe.

4 Parallelization

In the original ACM code, after every event is processed, KDS
events associated to the vertices in the event’s stencil must be
rescheduled. This rescheduling alters the event queue in unpre-
dictable ways: the KDS event might reschedule itself for an ar-
bitrary later time, or it might remove itself from the queue and ac-
tivate a penalty layer; it is therefore unclear how this reschedul-
ing could be effectively parallelized. On the other hand, removing
KDS events as the mechanism for guaranteeing collision-free simu-
lations, and replacing them with speculative simulation followed by
collision detection, opens the door to straightforward parallelization
of the entire algorithm.

4.1 Parallelizing force processing

As in the ACM paper, we are concerned primarily with simulat-
ing meshes of approximately uniform resolution; for such meshes,
the maximum stable time step for the internal forces does not vary
much, and so as in the original ACM implementation we conser-
vatively bucket material forces into super-elements [Huang et al.
2007; Harmon 2010] by setting all of their time steps to that of the
stiffest element. For example, gravity forces, internal forces, and
the different layers of penalty forces are each grouped into their
own bucket. We then represent the group as a single item on the
event queue. Once bucketed, internal forces can be parallelized
very simply without synchronization: to process the grouped forces
we integrate positions to the current time (see Alg. 2 line 4), com-
pute and store for each force in the group the impulse applied by
that force (see Alg. 2 line 8), and iterate over the vertices of the
simulation, applying to each velocity the sum of the impulses com-
puted in the previous step (see Alg. 2 line 9).

Each of these steps is done in parallel. Penalty layers of the same
depth can be naturally grouped since they have identical stable
timesteps; we process them in parallel in the same way.

Figure 4: The benchmarks from Harmon et al [2009]. From left to right: reef knot, bowline knot, trash compactor, and two cloths draped.
Timing comparisons for these benchmarks are listed in Table 1.

For simulations involving graduated meshes of widely varying tri-
angle size, bucketing coarse element at the fine elements’s time step
is inefficient. An interesting direction for future work would be to
explore using several buckets at different orders of time step magni-
tude to better handle such a distribution of internal force stiffnesses.

4.2 Parallelizing collision detection

To get reasonable scaling behavior, collision detection must also be
parallelized. It is trivial to run the narrow phase (both the spacetime
separating slabs and the root solve) in parallel. Parallelizing the
broad phase effectively is more complicated, so at present we opt
for a simple staggering scheme that allows us to run a sequential
broad phase while still making use of all available cores by allowing
the simulation to proceed to the next rollback window in parallel. A
number of better methods have been proposed for efficient parallel
collision detection [Kim et al. 2009; Pabst et al. 2010; Tang et al.
2010; Tang et al. 2011], and we hope to incorporate this into our
framework in the future.

Collision

Rollback Needed Aborted

Collision Resolved

Penalty Activated

Figure 5: After simulating a rollback window (top-left), we opti-
mistically continue simulating the next window concurrently while
performing collision detection (top-middle). If a collision is de-
tected, we interrupt the simulation and roll back (bottom-left). If
collision detection confirms there were no collisions in the last win-
dow, we continue simulating (bottom-right).

In our current implementation, whenever we need to perform col-
lision detection, we run it in parallel with optimistic simulation of
the next rollback window. In other words, after simulating rollback
window i, we perform collision detection on window i, and with
any remaining cores begin simulation of window i + 1 under the
assumption that no collisions will be found. If collision detection
does return a collision, we immediately stop simulating frame i+1
and roll back to the beginning of frame i. Figure 5 illustrates this
timeline. Speculatively starting integration of the next frame is ad-
vantageous whenever collision detection ultimately finds no colli-
sions during the previous window – in our benchmarks, this occurs
60–70% of the time.

4.3 Miscellaneous Optimizations

Several other optimizations we attempted further improved the per-
formance of our framework.

• Kernel fusion of the bending and stretching forces: for
simulations involving both bucketed bending and stretching
membrane forces, we compute the force contribution of the
stretching force at the same time as that of the bending force.
Doing so halves the number of times mesh position informa-
tion must be fetched and improves cache performance.

• Bandwidth reduction: Using reverse Cuthill-McKee re-
ordering [Cuthill and McKee 1969], we reduce the number of
cache misses incurred while integrating internal forces by re-
ordering the mesh vertices at the start of the simulation. Other
methods for cache aware or cache oblivious layouts may be
even more effective [Yoon et al. 2005].

In addition to the changes listed above, we also refactored and
micro-optimized the published ACM source code in several places
(for instance, removing unnecessary trigonometric function calls in
the bending force computation, unrolling tight inner loops, and rear-
ranging the layout of data structures in memory to maximize cache
efficiency). These changes already improved the performance of
our code when run with a single thread. However, more impor-
tantly, we found that such low-level optimizations aimed at improv-
ing cache performance were essential to achieving reasonable scal-
ing behavior with increasing number of cores.

5 Analysis and Results

Existing benchmarks We ran our method on four of five exam-
ples timed by Harmon et al [2009]; see Figure 4. We used an Intel
12-core Westmere-EP workstation (X5690 @ 3.47GHz). To ensure
a fair comparison we also re-timed the publicly released ACM code
on identical hardware. Table 1 shows the timing comparison; our
method is more than two orders of magnitude faster than the origi-
nal ACM code for all examples. Due to needing fewer events on the
queue, our implementation is also more memory efficient – for the
Reef Knot, our implementation uses 229 MB of RAM, compared
to Harmon et al’s 424 MB.

We stress that our method is a conservative optimization of Harmon
et al’s asynchronous algorithm: we propose changing how collision
detection is performed (an implementation detail), but not which
collisions are detected or how these collisions are resolved. In par-
ticular, our implementation preserves the three Harmon et al guar-
antees of safety, correctness, and progress.

The twister Inspired by the video accompanying Bridson’s the-
sis [2003], we simulated a cylindrical rod suspended within a cloth
cradle, Figure 6. Constant external torque applied to the rod wrings
out the cloth. Since our method preserves all of ACM’s guarantees,

Example Vertices Original ACM One thread, no slabs One thread Twelve threads Total speedup

Reef Knot 10642 23.6 hrs 74 mins 50.5 mins 5.8 mins 244x
Bowline Knot 3995 7.0 days 4.9 hrs 121 mins 15.2 mins 663x
Trash Compactor 714 13.8 hrs 53.5 mins 13.3 mins 2.4 mins 345x
Two Cloths Draped 15982 11.6 days 6.7 hrs 4.7 hrs 40.1 mins 416x

Table 1: Wall clock time for each of the examples benchmarked by Harmon et al [2009]. We ran each examples using the publicly-available
ACM implementation, our code with only a single thread and CTCD only (instead of spacetime separating slabs) for the collision detection
narrow phase, our complete code with only a single thread, and our complete code with 12 threads. The simulation parameters were identical
to those selected by Harmon et al. For the rollback window size R we used 1/300 for all examples.

0 5 10 15 20
0

5

10

15

20

25

30

35

Simulation Time HsL

N
um

be
rr
ol
lb
ac
ks
êCP

U
Ti
m
e
HsL

Figure 6: A spinning rod wrings out a sheet of cloth. Our method’s safety guarantee, which we inherit from ACM, ensures that no interpen-
etrations occur even as the cloth twists tightly around itself multiple times. We plot the number of times each frame rolls back (blue) and the
total clock wall time spent computing each frame (maroon). As a point of context, the rod starts spinning at time 3.0 and stops spinning at
12.0.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

Sp
ee

du
p

fa
ct

or

Number of cores

Trash compactor (2 seconds)
Two cloth drape (0.3 seconds)
Reef knot (0.1 seconds)

Figure 7: Scaling behavior of our method for three examples for
different numbers of available cores. Speedup factor is relative to
our method run on only a single core. The reef knot is run for a
short amount of time to show the behavior when the computation is
dominated by material force updates. The trash compactor’s poor
scaling is due to the small problem size (less than a thousand de-
grees of freedom). The cloth drape is a more typical example of a
large problem with many penalty contacts.

including safety, no interpenetrations occur over the course of the
simulation, despite the amount of self-contact.

Scaling of parallelism We ran several benchmark examples on
an Intel 32-core Westmere-EX machine (E7-8837 @ 2.67GHz), and
varied the number of cores our code was permitted to use. Figure 7
shows how the wall-clock time varies as a function of cores used.
We observe reasonable scaling for up to 16 cores, with additional
cores providing diminishing returns.

Profiling our code suggests to us that cache performance during
event processing limits our scalability. When integrating bucketed
force events, we first compute and store the force supplied by each
force event, then iterate over the vertices and for each vertex look
up and apply each relevant force’s impulse contribution to that ver-
tex’s velocity. Splitting integration into these two steps allows us to
parallelize both steps without synchronization, but increases each
force event’s cache footprint by requiring the impulses to be tem-
porarily stored, and looking up that impulse during the velocity up-
date randomly accesses memory. For processing internal forces,
where the set of forces that affect each vertex is constant throughout
the simulation, cache performance can be improved by partitioning
the mesh into disjoint regions and processing each region in parallel
(with special handling of the region boundaries), without intermedi-
ate storage. However, it is unclear how this strategy would extend to
penalty force processing, and our initial experiments with partition-
ing the material forces resulted in only a modest (7%) performance
improvement.

5.1 Choice of rollback window size

Our framework introduces one additional parameter not present in
the original algorithm: the duration of the rollback window R.
Whereas choice of this parameter can have dramatic effects on per-
formance, it bears emphasis that the three guarantees are not com-
promised by any choice of R.

What is the optimal choice ofR? Is it greater than zero, i.e. is there
a point to rollback at all? In what follows, we give a theoretical
argument that there exists a “sweet spot” for R, and study how the
wall clock time of the benchmark examples vary with R.

Effect of R on number of rollbacks In a simulation with fre-
quent collisions, increasing R increases the number of times a win-

dow rolls back on average, since during a large window it is more
likely that the penalty forces that were added to fix one set of colli-
sions will introduce a new set of collisions.

1
10000

1
1000

1
100

1
10

0

500

1000

1500

Rollback Window Size H s L
W
al
lT
im
e
HsL

Figure 8: The total wall clock
time, as a function of R, for the
trash compactor (blue), two-cloth
drape (maroon), and reef knot
(tan). The “sweet spot” for R
does not vary much between sim-
ulations and the run time of the
simulations is insensitive to small
perturbations of R.

Effect of R on collision
detection Consider
an ideal simulation with
frequent self-collisions
uniformly distributed in
time, and assume that
the number of times the
simulation rolls back does
not change as R varies.
Changing R changes the
amount of time needed by
collision detection for each
rollback window. Fitting
of the leaf nodes of the
broad phase scales roughly
as R, since computing
the swept volumes of
the simulation’s triangles
requires tracing the tri-
angle’s trajectory through
the rollback window. The
cost of the narrow phase is approximately proportional to R logR,
since the number of collisions is proportional to R and the cost of
the divide-and-conquer separating slabs narrow phase is roughly
logarithmic. Refitting interior nodes, and traversing the hierarchy,
becomes more expensive as R increases (since traversal will reach
the leaf level more often when more collisions are present) but
has a non-trivial base constant cost independent of the size of the
rollback window.

Since the number of rollback windows in a simulation is inversely
proportional to R, the total cost of the narrow phase is roughly
logR, whereas the overhead cost of BVH traversal decreases as R
increases and grows unbounded as R shrinks. We therefore expect
to minimize total cost at a sweet spot balancing these factors.

Effect ofR on event processing The cost of event processing is
proportional to the total window simulation time and resimulation
time (assuming the cost of unnecessary penalty forces, etc. is neg-
ligible.) This simulation time is determined by the average number
of times each window rolls back, which in turn increases with R.
We thus expect wasted reprocessing work to increase with R.

Effect of R on unneeded penalty forces Unneeded penalty
forces linger on the queue for two reasons: first, if multiple col-
lisions are detected during a rollback window, it is possible that the
penalty forces added to resolve one collision will, as a side-effect,
also prevent the other collision, so that the forces added to prevent
the second collision never act. Second, a penalty force might pre-
vent a transient impact during one small part of a rollback window,
and do nothing the remainder of the window. Both of these situa-
tions become more likely as R increases, so we expect the cost due
to unneeded penalty forces to increase with increasing R.

Benchmark data We studied the effect of R on CPU time
spent on collision detection, resimulation, and processing unneeded
penalty layers, for three of our benchmark examples. Figure 9 plots
this data. As expected, the cost of resimulating and of unneeded
penalty forces increases with R, and the cost of collision detection
forms a “U” shape, with the cost increasing asR becomes too small.
In Figure 8 we plot the total wall clock time, as a function of R, for

Figure 9: We measured, for the trash compactor (blue), two-cloth
drape (maroon), and reef knot (tan), the CPU time wasted on col-
lision detection (left), resimulation (middle), and unneeded penalty
forces (right) as a function of R. As we expect, resimulation and
unneeded penalty forces increase as R increases, while collision
detection time has a sweet spot and grows large as R becomes too
small.

the same examples. The total wall clock time behaves similarly
to collision detection time, confirming that rollback is indeed use-
ful: performing collision detection over a window is significantly
cheaper than doing so after every event is processed, and the in-
crease in other waste is modest.

We also observe from Figure 8 that small perturbations of R near
the sweet spot does not significantly change the wall clock time of
the simulation; hence performance does not depend critically on
pinpointing the exact sweet spot. For all timings in this paper we
simply used R = 0.003, which seems to work well for all of our
examples; with more study and analysis we hope to provide, in the
future, a heuristic for automatically selecting R, and an adaptive
algorithm for adjusting R over the course of a simulation.

5.2 Parallel AVIs

Recent exciting work [Huang et al. 2007; Pingali et al. 2011] has
examined parallelization of AVIs for physical systems without con-
tact, and we studied the possibility of incorporating this work into
our framework. Unfortunately, the available parallelism of our
event queue does not appear sufficiently high for graph-based out-
of-order execution to be profitable. If we leave internal and penalty
forces bucketed, we have that the internal force bucket is connected
to every other event (since the internal forces affect every vertex),
and each penalty layer event is connected to every other penalty
layer so that the event dependency graph is complete and the work-
list never contains more than one event. Nevertheless, we hope
to explore the possibility of combining ACM and Galois in future
work, particularly for simulations involving cloth-shell coupling or
other scenarios where the stable timesteps of the internal forces vary
widely and naively bucketing them is expensive.

6 Conclusion

The ACM framework, as originally described in Harmon et
al [2009], offered unparalleled correctness and robustness guaran-
tees, but at a steep performance cost relative to other popular meth-
ods for simulating cloth, shells, and deformable bodies. By replac-
ing ACM’s KDS-based collision detection paradigm with one based
on Time Warp, we both dramatically improve its efficiency and al-
low it to be easily parallelized, for a total of two orders of magni-
tude speedup over Harmon et al. This speedup is a significant step
towards ACM being viable for production, and we look forward to
future work, such as further investigation and improvement of our
algorithm’s scaling behavior, or ideas for adaptively selecting the
rollback window size.

7 Acknowledgements

We thank Fang Da, Danny Kaufman, and Breannan Smith for their
help and feedback during preparation of this paper. This research
is supported in part by the Sloan Foundation, the NSF (CAREER
Award CCF-06-43268 and grants IIS-09-16129, IIS-10- 48948, IIS-
11-17257, CMMI-11-29917), and generous gifts from Adobe, Au-
todesk, Intel, mental images, NVIDIA, Side Effects Software, The
Walt Disney Company, and Weta Digital.

References

BENDER, J., AND BAYER, D. 2008. Parallel simulation of inex-
tensible cloth. In Proceedings of VRIPhys.

BORKAR, S., AND CHIEN, A. A. 2011. The future of micropro-
cessors. Commun. ACM 54, 5 (May), 67–77.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact, and friction for cloth animation.
ACM Transactions on Graphics 21, 3, 594–603.

BRIDSON, R. 2003. Computational aspects of dynamic surfaces.
PhD thesis, Stanford University.

BROCHU, T., EDWARDS, E., AND BRIDSON, R. 2012. Effi-
cient geometrically exact continuous collision detection. ACM
Transactions on Graphics (TOG) – Proceedings of the ACM SIG-
GRAPH 2012.

CUTHILL, E., AND MCKEE, J. 1969. Reducing the bandwidth of
sparse symmetric matrices. In ACM ’69 Proceedings of the 1969
24th national conference, 157–172.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A.
2001. Dynamic real-time deformations using space and time
adaptive sampling. In Proceedings of SIGGRAPH 01, 31–36.

GUIBAS, L. 1998. Kinetic data structures: a state of the art report.
In Proceedings of the 3rd Workshop on Algorithmic Foundations
of Robotics (WAFR), 191–209.

HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND
GRINSPUN, E. 2009. Asynchronous contact mechanics. ACM
Transactions on Graphics (TOG) – Proceedings of the ACM SIG-
GRAPH 2009.

HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND
GRINSPUN, E. 2011. Research highlights: Asynchronous con-
tact mechanics. Communications of the ACM.

HARMON, D., ZHOU, Q., AND ZORIN, D. 2011. Asynchronous
integration with phantom meshes. In ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation.

HARMON, D. 2010. Robust, Efficient, and Accurate Contact Algo-
rithms. PhD thesis, Columbia University.

HUANG, J.-C., JIAO, X., FUJIMOTO, R. M., AND ZHA, H. 2007.
DAG-guided parallel asynchronous variational integrators with
super-elements. In Proceedings of the 2007 summer computer
simulation conference, 691–697.

JEFFERSON, D. 1985. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems 7, 404–425.

KALE, K., AND LEW, A. 2007. Parallel asynchronous variational
integrators. International Journal for Numerical Methods in En-
gineering 70, 291–321.

KIM, D., HEO, J.-P., HUH, J., KIM, J., AND YOON, S.-E. 2009.
HPCCD: Hybrid parallel continuous collision detection using

cpus and gpus. Computer Graphics Forum (Pacific Graphics)
28, 7.

KONEČNÝ, P., AND ZIKAN, K. 1997. Lower bound of distance in
3D. In Proceedings of WSCG 1997, vol. 3, 640–649.

LEW, A., MARSDEN, J. E., ORTIZ, M., AND WEST, M. 2003.
Asynchronous variational integrators. Archive for Rational Me-
chanics and Analysis 167, 85–146.

MIRTICH, B. 2000. Timewarp rigid body simulation. SIG-
GRAPH ’00 Proceedings of the 27th annual conference of com-
puter graphics and interactive techniques, 193–200.

PABST, S., KOCH, A., AND STRAER, W. 2010. Fast and scalable
cpu/gpu collision detection for rigid and deformable surfaces.
Computer Graphics Forum 29, 5, 1605–1612.

PINGALI, K., NGUYEN, D., KULKARNI, M., BURTSCHER, M.,
HASSAAN, M. A., KALEEM, R., LEE, T.-H., LENHARTH, A.,
MANEVICH, R., MÉNDEZ-LOJO, M., PROUNTZOS, D., AND
SUI, X. 2011. The tao of parallelism in algorithms. In Proceed-
ings of the 32nd ACM SIGPLAN conference on programming
language design and implementation, 12–25.

SELLE, A., SU, J., IRVING, G., AND FEDKIW, R. 2009. Robust
high-resolution cloth using parallelism, history-based collisions,
and accurate friction. IEEE Transactions on Visualization and
Computer Graphics.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver
for computer graphics. In IEEE International Conference on
Computer-Aided Design and Computer Graphics, 1–11.

SUTTER, H., AND ALEXANDRESCU, A. 2004. C++ Coding Stan-
dards: 101 Rules, Guidelines, and Best Practices. Pearson Edu-
cation, Inc.

TANG, M., MANOCHA, D., AND TONG, R. 2010. Mccd: Multi-
core collision detection between deformable models using front-
based decomposition. Graphical Models 72, 2, 7–23.

TANG, M., MANOCHA, D., LIN, J., AND TONG, R. 2011.
Collision-streams: Fast GPU-based collision detection for de-
formable models. In I3D ’11: Proceedings of the 2011 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games,
63–70.

THOMASZEWSKI, B., AND BLOCHINGER, W. 2006. Parallel sim-
ulation of cloth on distributed memory architectures. Proc. Eu-
rographics Symp. Parallel Graphics and Visualization.

THOMASZEWSKI, B., PABST, S., AND BLOCHINGER, W. 2008.
Parallel techniques for physically-based simulation on multi-
core processor architectures. Computers and Graphics 31, 25–
40.

THOMASZEWSKI, B., PABST, S., AND STRASSER, W. 2008.
Asynchronous cloth simulation. Computer Graphics Interna-
tional.

VOUGA, E., HARMON, D., TAMSTORF, R., AND GRINSPUN, E.
2011. Asynchronous variational contact mechanics. Computer
Methods in Applied Mechanics and Engineering 200, 2181–
2194.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., AND MANOCHA,
D. 2005. Cache-oblivious mesh layouts. ACM Trans. Graph.
24, 3 (July), 886–893.

ZHENG, C., AND JAMES, D. L. 2011. Toward high-quality modal
contact sound. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2011) 30, 4 (Aug.).

