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Abstract

We describe an algorithm for producing the smallest com-
plex algebralc variety containing a given semi-algebraic set
S, and all the irreducible components of S. Let S be de-
fined by s polynomials of degrees less than d with integer
coefficients of bit lengths less than A4. Then the complexi-
ty of the algorithm is bounded from above by a polynomial

in M, Sn, dn’. The degree of the complexification is less

than sndo ‘n), while the degrees of polynomials defining the
complexification and irreducible components are less than
do(n)

1 Introduction

The complezification of a semi-algebraic set S c R“ of di-
mension p is the smallest (with respect to the set-theoretic
inclusion) complex affine algebraic variety C(S) containing
S. The real and complex dimension of C(S) is equal to p.
The degree of S is the degree of the variety C(S), defined
as the sum of the degrees of the irreducible components of
C(S). The degree of an irreducible complex algebraic set of
dimension p is the number of intersection points of this set
wit h a generic n —p-plane, We Me int crested in computing
the complexification and estimating the degree.

Upper bounds on the degree and on the number of real
irreducible component as well as upper estimates on the de-
grees of polynomials defining the complexification and the
irreducible components of a semi-algebraic set are of fun-
damental theoretical importance. For instance, the degree
1s one of the natural characteristics of the geometric com-
plexity of a set, particularly valuable in situations when the
topological characteristics are trivial. It is not immediately
evident that its upper estimate should be roughly the same
as in algebraically closed case: the degree of the input poly-
nomial raised to the number of variables,
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An upper estimate on the degree gives lower bounds on
computational complexity for algebraic comput at ion trees.

An upper bound for the degree of an algebraic variety
in a projective space over algebraically closed field is pro-
vided by the classical B6zout’s Theorem. Heintz [10] un-
dertook a thorough examination of the degree concept for
locally closed and constructive sets in affine spaces over al-
gebraically closed fields. In particular he proved a “B6zout’s
Inequality” for locally closed sets. In Chistov [4] and Grig-
oriev [8] an algorithm with complexity singly exponential in
the numer of variables was constructed for producing all ir-
reducible components for projective and affine varieties over
a wide class of algebraically closed fields.

An algorithm for finding the complexification and irre-
ducible components of a semi-algebraic set was proposed in
Galligo-Vorobjov [7]. It is based on effective quantifier el-
imination for real closed fields. The bounds for degree of
the set and for complexity of the algorithm, being singly ex-
ponential in the number of variables, are still too rough, for

inst ante the estimate for the degree is do (nz J.
The emphasis of the algorithm described in the present

paperis on the tightness of the bounds.
We would like to thank the referees and Thomas Lickteig

for very useful suggestions.

2 The main theorems

Let S be a semi-algebraic set. A point x of S is a point of
S of local dzmenszon p if there is a real r >0 such that for
any O < r’ s r the dimension of S n B. (r’) is equal to p
(where B. (r’) is the ball of center x and radius r’). A point
z of S of local dimension p is smooth if there exists a real
r > 0 such that for any O < r’ < r S n B.(T’) is a smooth
manifold of dimension p. There exists a real r > 0 such
that for any O < r’ < r the smallest complex affine algebraic
variety cent aining S n 1?. (r’) is the same. This set, denoted
by Cz (S), is the local complexijication of S at x. The local
degree of S at x degm(S) is the degree of C. (s).

We consider first the case of an irreducible algebraic set
V = Z(f) defined as the zero set of a polynomial f G
Z[xl, ..., Xn] of degree less than d.’

Theorem 1 Let V = Z(f) be an irreducible algebrazc set
defined as the zero set of a polynomial f 6 ZIXI, . . . X~] of
degree less than d. If the dzmension of V is p, then

deg(V) < (2(d + l))*-P= (O(d))n-p

26

http://crossmark.crossref.org/dialog/?doi=10.1145%2F236869.236891&domain=pdf&date_stamp=1996-10-01


Corollary 1 Let V be an algebraic setdefined as the zero
set of polynomials of degree less than d. Let x be a smooth

point of V of local dimension p. Then

degC(V) < (O(d) )n-p.

Consider now a semi-algebraic set S C R“ defined by
an arbitrary Boolean combination of atomic inequalities of
thekind~ > Oor f = O, f c ZIXI,. ... X~] = Z[X] of
degrees degx (~) < d and bit-lengths of integral coefficients
< ~. Let s be the number of different atomic polynomials.
The semi-agebraic set S c Rn is basic if it is defined by a
system of atomic inequalities of the kind f > 0 or f = O,

f ez[xl,..., xn].

Theorem 2 The degree of S is such that

deg(S) = smdo(”).

More precisely, let pl (resp. pz) be the maximal (resp. min-
imal) d~mension among all irreducible components of C(S),
then

deg(S) < (60sd/n)” ~ ((n ‘P)P + l)(2(d+ I))n-p

P2<PSP1

If S is basic

deg(S) s do(n).

More precisely, let pl (resp. pz) be the maximal (resp. min-
imal) dimension among all irreducible components of C(S).

Then
deg(S) < pldo(n-p’) = do(n).

We are proving these bounds through an algorithm which
produces the complexification. In order to describe the out-
put of the algorithm we explain the term “standard repre-
sentation” [7].

Let h e C.lg [Yl,. . . . Yn] = C.lg [Y] be a polynomial with
complex algebraic coefficients. We say that h is given in a
standard representation with the degrees (dl, dz) and the bit
lengths (IV1, Nz ) for some positive integers dl, dz, N1, Nz, if
the following data is provided:

● a polynomial @ E Z[Z], where Z is a new variable;

● a polynomial ~ E Z[Z] [Yl, . . . . Y.], where each coeffi-
cient from Z[Z] is of the kind

(1)

with 1< q < (degY (k))’.

Here degY (fi) < dl, deg(@) < dz, and bit length of
~vw < N1, bit length i(@) < N2. The polynomial h is the
result of substit ut ion of a certain root of @, instead of vari-
able Z in each expression (1) for all q.

If h has real algebraic coefficients, a standard represen-
tation includes the specification of the sequence of signs of
the derivatives of all orders of @, which (by Thorn’s lemma,
[3]) defines the unique real root of@.

Theorem 3 Gvoen a semi-algebraic set S as above, there as
an algorithm which produces the complez~jication C(S). The

running time of the algorithm is linear in s% and polynomial

in M and d“z. The algorithm represents the complex afine

variety C(S) as a collection of ats absolutely irreducible com-
ponents:

c(s) = u v(”).
Cl

For every component V(a) of dimension p the algortthm con-
structs a system of polynomial equations

with IJjm)e Ratg[XI, . . .. Xn]. The number of equations

N is bounded by d“(n(n-p)), the degree of the component
deg(V(a)) is bounded by (2(d + l))n-p. The polynomials

V(a) are given in a standard representation with degrees3

and bit lengths

((log s)JldcP(n-p), (log s)Mdc(n-p))

for a certain integer c >0.

The family of all real algebraic varieties defines a Zariski
topology on R“ which induces a topology on any subset of
Rn, in particular, on any semi-algebraic subset.

A semi-algebraic set S c Rn is called (absolutely) irre-
ducible in the space R“ if a representation S = S1 U S2,
where S1, Sz are Zariski closed subsets m S (i. e., with re-
spect to Zariski topology induced on S, these sets are semi-
algebraic), implies either S = S1 or S = Sz.

The set S is uniquely representable as a union S =
Um S(a) of its absolutely irreducible in R“ components, that

is, semi-algebraic subsets S(a) such that:

● every s(~) is Zariski closed in S absolutely irreducible
in Rn;

The systems of equations (with real coefficients) for the
family of all absolutely irreducible components of the com-
plexification C(S) define the family of all absolutely irre-
ducible in R“ components of semi-algebraic set S. More-
over every V(m) is a complexification of the corresponding
real component, and C(S) (l R“ is the Zariski closure of S.
The number of all real irreducible components of S is dom-
inated by the degree of S, and, therefore, by pld”(n–pz).

O ~ –P2) on degree of a basic semi-algebraicThe bound pld (

set S is somewhat unnatural since it involves parameters of
the complexification C(S) rather than parameters depend-
ing only on S.

Denote by Sp the subset of S consisting of all points
of S of a fixed dimension p. The complexification and the
absolutely irreducible components can be produced for all
the subsets Sp. The degrees of Sp is bounded similiary to
the degree of S:

deg(SP) ~ ((n –p)p+ l)(2(d + l))n-p,

a well as the estimates on the sizes of systems representing
the complexification of Sp and its irreducible components.
The running time of this procedure is also linear in sm and

polynomial in M but only polynomial in d“3.
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Let us mention the following statements which are closely
related to the previous results and can be proved within the
same circle of ideas.
1) The complexification C(S) can be represented by a sin-
gle system of equations with real algebraic coefficients. An
estimate on the size of this system is similiar to the bounds
on systems for components.
2) The components V(a) can be also represented by their
generic points.
3) All the concepts and results of this paper can be for-
mulated and proved in ‘kelative version”, with respect to
a subfield of F C R, rather than the whole R. In partic-
ular, we can definethe F-complexification VF of S as the
smallest (with respect to set-theoretical inclusion) variety
in C“ with coefficients from F, cent aining S. Obviously,
v=vccvF.

Define the F-degree of S, degF(S), as deg(VF). Clearly,
degF (S) > deg(S), hence the largest possible degree of S is
attained on the field of rationals.

In the “relative version” the role of the components of
S absolutely irreducible in R“ is played by the components
irreducible over F in R’ defined with respect to Zariski
topology on Rn formed by all real varieties in R“ given by
polynomials with coefficients in F.

The theorems and statements above are true for the F-
complexification, F- degree and irreducible over F compo-
nents with the same upper bounds on the sizes of output
objects and running time.
4) The dimension of S can be computed within the time

bound linear in s“ and polynomial in M, d“’. This bound
is, probably, not tight. The conjecture is that there exists an
algorithm for computing the dimension of S in time linear
in Smand polynomial in M, dn [6].

Note that the number of coefficients in the polynomial-
s representing the complexification and irreducible compo-
nents is, in the worst case, of the same order as the running
time for producing these objects. This means that for the
chosen method of representation of complexification and ir-
reducible components the bound on complexity can’t be im-
proved [4].

We conclude this section with a short description of the
technique.

First, the algorithm reduces the problem for a general
semi- algebraic set S to the local case for a real algebraic
variety V = Z(f) defined by a polynomial ~, at a point x
where the dimension of V is p and x is a smooth point of V.

The algorithm writes out n – p equations of degrees not
exceeding 2(d + 1). The coefficients of these polynomials
belong to a transcendental extension of Q by two infinites-
imal elements, 60 and J1 and these polynomials define a p-

dimensional variety V in the affine space (C(60, 61))n.
The variety “covers” V at the neighbourhood of x, that

is for any x’ of V close to z there exists y ~ V such that
[Ii – yll is infinitesimal.

Then we can say that the union of a certain subfamily of
components of V “approximates” V at the neighbourhood
of z. Passing to the limit is done roughly in the same way as
in [4] and [8]. The rest of the paper describes the algorithm
and proofs of the bounds in more detail. Full proofs will
appear later.

3 Infinitesimals

The definitions below concerning infinitesimals follow [9]

Let F be an arbitrary real closed field (see, e.g., [11]
and an element s be infinitesimal relative to elements of F.
This means that for any positive element a c F inequalities
O < s < a are valid in the ordered field F(s). Obviously, the
element s is transcendental over F. For an ordered field F)
we denote by F’ its (unique up to isomorphism) real closure,
preserving the order on F’ [11].

We recall some other well-known statements concerning
real closed fields. A Puiseux (formal power-fractional) series
over F is series of the kind

b = ~a,#’’rP,

i>o

where O # a, c F for all i ~ O, integers V. < VI < . . .
increase and the natural number p ~ 1. The field F(e) con-
sisting of all Puiseux series (appended by zero) is real closed,

hence F(s) ~ F~) ~ F(E). Besides the field F[@] (e) is
algebraically closed.

If V. <0, then the element b E F(E) is infinitely large,
If V. >0, then b is infinitesimal relative to elements of the
field F. A vector (bl, . . . . b~) 6 F(c)n is called F-finite if
each coordinate bi, 1 s i ~ n is not infinitely large relative
to elements of F.

For any F-finite element b E F(E) its standard part st (b) is
definable, namely st(b) = ao in the case V. = Oand st(b) = O
if V. > 0. For any F-finite vector (bl, . . . . b~) s F(s)n its
standard part is defined by the equality

st(bl,... ,b~) = (st(b,), . . . ,st(b~)).

For a set W c F(E)n we define

st(W) = {st(w) : w 6 W and w is F–finite}.

The following transfer principle is true (Tarski [15]). If
F’, F“ are real closed fields with F’ C F“ and ‘P is a closed
(without free variables) formula of the first order theory of
the field F’, then P is true over F’ if and only if P is true
over F“.

If S c F“ is a semi-algebraic set the eztension of S to F’
is the semi-algebraic set of F’n defined by the same boolean
combination as S. The extension of S to F’ will be denoted
by S(F’), or S when this does not lead to ambiguity

4 Constructing approximating subvarieties of a given di-
mension

Consider an algebraic set V defined by f = O , with f every-
where non negative (it is the case, for instance, if ~ is a sum
of squares), and a smooth point x of V of local dimension
p. According to the plan outlined at the end of Section 2,
the algorithm will construct a variety V of real and complex
dimension p covering V.. The coefficients of the systems
of equations defining the varieties are polynomials in some
infinitesimals. The variety v has two important properties.
Firstly, V has the proper dimension p. Secondly, any point
z from the neighbourhood is infinitely close to a point from
v.

The first property is purely algebraic and can be obtained
by choosing a special structure for the system defining V.

This construction appears in [14].
Consider a real algebraic set V, defined without loss of

generality as the zero set of a polynomial

f6R[X,,..., X~]=R[X]
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everywhere non negative with degx (j ) ~ 2d (if V was de-
fined by several equations of degree d, take their sum of
squares).

Let a > 0 be a real number. Let J1 be infinitesimal
relative to R. Denote by RI (resp. C 1) the real closure
(resp. algebraic closure) of R(JI ).

Define

2(d+1) + ~-F x:@+l) – a)g = (1 –C$l)f+c$l(xp+l

{}
W= g=O cRT

{

ag~= g= &=...=
}

—=0 cR:
ax.

{
V(cl) = g =

ag aq

}
—=... ==–=0 cc:.
8xp+2 ax.

Lemma 1 ● The dimension over the field Cl of V(C1 )
is equal to p.

● The dimension over the field R1 of V does not exceed

P.

Proof: For every choice of (z1, . . . . Zp) in C:, the n – p-
plane define by Xl = xl, . . . . Xp = Xp intersects the va-
riety V(C1 ) in a finite number of points. Finally, the real
dimension never exceeds the complex dimension. ❑

Let x be a smooth point of V of local dimension p and
B.(r) a ball containing x. We denote by T. the tangent p-

plane to V at z and suppose, without loss of generality, that
the projection of T. on the Xl, . . . . XP- plane is a bijection.

We choose a = (n – p)rz(~+l).

Proposition 1 There exists y G V such that st(g) = x.

Proof : The proof is based on the follcrwing lemma.

Lemma 2 If x is an isolated point of V, then there exists

y 6 V such that st(y) =x.

Proof : The variety % is a smooth manifold of dimension
n – 1 and in a neighbourhood of z is semi-algebraically dif-
feomorphic to a sphere around z. El

Define Pas the n–p-plane defined by XI = XI, . . . . XP =
XP. Since the tangent plane to V at x, Tz is transversal to P,

the point x is an isolated point of the variety V fl P C R“-p
and we can apply lemma 2 to V fl P and V fl P. Note that
W (l P is a smooth hypersurface in R“-J’. ❑

Let the element dO>0 be infinitesimal relative to R, the
element 61 >0 be infinitesimal relative to R(do). Denote by
RO (resp. CO) the real closure (resp. a~gebraic closure) of
R(Jo) and by RI (resp. C 1) the real closure (resp. algebraic
closure) of R(Jo, 61). Denote by sto the map from RI to RO
associating to a Puiseux series in 61 finite over R(Jo) its
initial term.

For a polynomial f G RIX1, . . . . X~] of degree less than
2d and a multi-index 1 = (ip+l,. . . . i~) we introduce the
polynomial f~. We use the following notations:

D = Bo(d~l)

a = (n – p)j;z(~+l)

fl = (1 – Jl)f – Jl(X~J~~’) + ~ ~+ x~~+l) – a)

{

afI 8fI
VI= fI= G=.”= 1—=0 cR:

P axtn

V’={f=O}n DcR~

W= U{ Vr:l~{l,..., n}p}CR~R~

{

~fr =,,, _ ~fl
VI(C1) = fI = ~

1
–—=0 cc;

~P+2 8X,.

Proposition 2 Let VP be the subset of points of local di-
mension p of V’. There exwts y G W such that sto (y) =x.

Proof : Denote by VI the points of V’ having a tangent
p-plane which projects bijectively on the Xi, . . . . Xip -plane
with {ii, . . ..iP} ={...., n} \ 1. Then the union of the
VI for all choice of 1 is a semi-algebraic subset of V’ whose
euclidean closure is V’. By proposition 1, the image under
sto of W contains UVI. Moreover the image under sto of a
semi-algebraic set is closed [14]. •1

Introduce a new variable Y, and denote by VY,I (CO) C

C~+l the variety defined by the equations obtained by sub-
stituting Y to 61 in the equations defining VI (Cl).

Set

Wy(co) = lJ{VY,r(Co) : I C {1,..., n}n-p} c C;+’.

Denote by W\ (Co) the union of all the absolutely irre-
ducible in C~+l components of VY(Cl ) whose extention to
Cl have non-empty intersections with {Y = 61} C C~+l.

Lemma 3 ● The afine dimension over CO of W! (CO),

is equal to p + 1;

● VP c (Wj(Co) n {Y = O} nR~+l);

● The afine dimenston over Co of W< (Co) fl {Y = O}

is equal to p.

5 Construction of the complexification

The algorithm we are going to describe relies on two main
subroutines

. an algorithm for computing all the irreducible compo-
nents of an algebraic set over algebraically closed field,
and selecting those intersecting another algebraic set
[4] and [8]. These results are summarized in the ap-
pendix;

. an algorithm for testing the emptyness of a semi-algebraic
set (using [1] which has the most precise bounds, see
also [7], [13]).

Let us now describe the algorithm for constructing the
complexification and the absolutely irreducible components
of the semi-algebraic set S.

Let fl, . . . . j, be all atomic polynomials in the Boolean
formula defining S. A ( fl, . . . . f, )-semi-algebraic set is any
non-empty set of the kind {fl *1 O&. &f~ *, O} where *J is
either > or < or =. Then S is a union of certain ( fl, . . . . fs )-

semi-algebraic sets.
Let the degrees degx (fj ) < d. @om Warren [16] and

Pollack-Roy [12] we know that the number of all (fl,. . . . f. )-
semi-algebrac sets (even the total number of connected com-
ponents in all these sets) does not exceed

(4ed(4s + I)/n)n < (60ds/n)m.
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Moreover there is an algorithm producing the list of al-
1 the non empty (fl, . . . . f, )-semi- algebraic sets in time
~~+l~o(~) [1],

It is easy to show that for two semi-algebraic sets S1, S2 C
R“ we have:

C(S1u s,) = C(s, ) u C(S2).

Therefore, it is sufficient to construct the complexifications
of elements of the decomposition of S into basic (jl, . . . . f, )-
semi-algebraic sets.

Let us now describe the algorithm for constructing the
complexification and absolutely irreducible components of
the basic semi-algebraic set

If there are no equalities, the complexification is the w-
hole space.

Otherwise, set j = ~ 1~,~~1 (~~)2. For each number p
from O to n – 1 and for each multi-index 1 = (iP+l, . . . . in)
the algorithm produces the variety VY,I (CO) constructed
previously (i. e., writ es down the corresponding system of
equations). The algorithm computes the family of all irre-
ducible over C.l, (60) components of VY,r (Co) using [4], [8]
(see Proposition 3 in Appendix). Observe that every com-
ponent is of dimension p + 1.By the transfer principle, the
family of systems of equations defining these components al-
so defines the family of all absolutely irreducible components
of VY,I(C1).

The algorithm selects (using [4], [8], see Proposition 3)
all the components of VY,I (C I ) having non-empty int erect-
ions with {Y = 61}. Using [4], [8] (see Proposition 4), the

algorithm gets the family of all irreducible components W$’)

for all U$) n {Y = O}. Observe that every IV$’) has dimen-

sion p. Let W(p) C C; be the union of all these components
Wy)

‘p) is described by a system of poly-Each component W@

nomial equations with coefficients in C~~g(Jo). The algo-
rithm rewrites the system so that it would have coefficients
from the field of real algebraic numbers R.lg. We denote by
W@’)(R; ) the intersection of W(p) with R;.

After that, the algorithm decides whether W(p) “covers”
S’ (Ro) C {~ = O}(RO), by checking the emptyness of the
difference S’ (Ro) \ W(p) (Ro). In other words, the algorith-
m checks the emptyness of the intersection of all differences

S’ (Ro) \ IV$’) (Ro) for all components WY), using [1]. Since

the real variety W$) (Ro) can be defined by a single equa-

tion, say, g = O, the difference S’ (Ro) \ W~)(RO) can be

defined by a system ~ = O,~~,+1 >0,. . ,ik > 0,g2 >0.
Hence, the algorithm has to check the consistency of the
system containing ~ = O,f~l+l > 0, . . . . ~s > 0 and stric-
t inequalities corresponding bijectively to all components
@$O .

Suppose that W(p) covers S’ (Ro), then

dimRO (S’(RO)) = p

because the system fkl +1 >0 &. ..& f, >0 defines an open

set in R;. Moreover, the union fi(p) of all components WY)
such that

dimR, (WY) (R.o)) = P

forms a complexification of the union of all irreducible com-
ponents of S’ (Ro) of maximal dimension. The algorithm

selects all the components WY) such that

dimRO (W$’) (Ro)) = P

by deciding whether W(p - 1) (i.e., the corresponding variety

for the previous value of the dimension) covers W~). Then

the algorithm repeats the just described procedure replacing

p by p – 1 and S’(RO)’ by T(Ro) \ (l$(P)(Ro)). Thus, the
complexification of all irreducible components of S’ (Ro) of
the “second maximal” dimension will be found.

If W(PJ does not cover S’ (Ro) then the algorithm passes
to consideration of the next value of p (in increasing order).

For p = dlmRO (S) the variety W(p) covers S’ (Ro).
Iterating the procedure, the algorithm gets the complex-

ifications for unions of components of S’ (Ro ) of all dimen-
sions.

6 The complexity analysis and estimates

Let, as in the Introduction, a semi-algebraic set S c R“ be
defined by a Boolean combination of atomicequations and
inequalities of the kind f >0 or f = O, f c ZIX1, . . . . Xn] =
Z[X] of degrees degx ( f ) < d and bit-lengths of integral
coefficients t(f) < M. Let s be the number of different
atomic polynomials.

We described above a procedure for reducing the com-
plexification problem and irreducible components problem
for S to the same problems for all (jl, . . . . f. )-semi-algebraic
sets. The number of these sets does not exceed (60sd/n)~
and the complexity of the procedure for finding them is
~“(l) sn+ldo(n). Thus, the degree (resp. complexity bound-

s) for the input set S can be obtained from the degree (resp.
complexity bbounds) for a (f 1, ..., fs )-semi-algebraic sets

by multiplying by (60sd/n)n (resp. Me(l) .sn+ldo(n)).
The procedure for the (f 1, . . . . fs )-semi-algebraic set

was described at the end of the previous section.
First the polynomial f E ~ l~%<kl (fz)2 was introduced;

evident ly degx (g’) < 2d. Then t h: algorithm proceeds re-
cursively on p starting from p = O. For a current value
of p the algorithm produces the varieties VY,l (C ~) for al-
1 possible multi-indices 1 of length n – p. The number of
all multi-indices is (~) ~ 2n, the degrees of the equations

defining VY,I (CO) are less than 2(d + 1),the bit- lengths of
coefficients are less than log(s) + A4.

Fixing a multi-index 1 = (iP+l, . . . . in), the algorith-
m of Proposition 3 decomposes the variety VY,I (CO) in-
to absolutely irreducible (p + 1)-dimensional components,
describing each component V. by a system of equation-

_ Q(a) = O. The degrees with respect toSvl —.. .=l
XI,. . . . Xm of the ~olynomials defining VY,I (CO) are less
than 2(d + 1), the degrees of these polynomials with respec-
t to 60 are less than 1, and the bit-lengthsof coefficients
of these polynomials are O((logs) M). Then, due to the
B6zout’s theorem, the number of all components is less than
2(d + I)”–p. According to Proposition 3 the number of e-
quations la is bounded by (3(2d + 3)”–p)n+l, the degrees

degd, x (!IJ~”)) are bounded by dc(”-p). Every polynomial
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V(a) is given in a standard representation (see Introduction)
w~th degrees

(~.(~-rd d.(w))

and bit lengths

((log s) Md’p@-~), (log s)Md’(~-p))

for a certain integer c >0. On the decomposition of VY,I (Co)
the algorithm spends time not exceeding

((log s) M)o(’)do@-’’)@.

After that the algorithm selects with the help of Propo-
sition 4 all the components of VY,I (Cl) having non-empty
intersections with {Y = 61}. The running time of the algo-
rithm up to this point does not exceed

((log s)M)o(’)do((~-’’)~).

For each selected component U. of dimension p the algo-
rithm applies Proposition 4 to the intersection L&(1 {Y = O}
and gets a family of all absolutely irreducible components
Wd of all such intersections. Let, as before, W(p) denote the
union of all the components W8.

Each Wp has dimension p and is represented by a system
of equations:

According to Proposition 4, the number of equations in
the latter system 1~,~ is bounded by (3(2d+ 3))n-p)n+l, and
the following holds

deg(W6) < (2(d + I))”-p

deg60,x(v~’@)) < ~cOz-P)

Every polynomial Q:m’p) is given in a standard represen-
tation with degrees

(~.(n-P), ~.(a))

and bit lengths

((log s)ivfd’p(~-p), (log s) Md’p)

for a certain integer c >0.
Then the algorithm rewrites the system of equations for

W@so that it has coefficients from R=lg The polynomials in
these equations are given in a standard representation with

the same degrees and bit lengths as V~’T‘6).
Up to this point the algorithm spends time not exceeding

((logs)M)o(’)do((~-p)~).

After that the algorithm decides whether W(p) “covers”
the set S’ (Ro), by checking the emptyness of the intersec-
tion of all differences S’ (Ro) \ WB (Ro) for all components
Wp. This reduces to checking the consistency of a system
of polynomal inequalities

f= O& fk,+l>O &”””& fk>O&gl>O&.. &gq >0,

where the inequalities gl > 0, ..., g, > 0 correspond bi-
jectively to the components W@. The polynomial g, corre-
sponding to the component Wp is a sum of squares of poly-
nomials defining Wp; thus its degree deg60,x < dc(n–p).

The standard representation of g, has dlegrees

(~.(n-P),~.(n-P))

and bit lengths

((logs)Mdcp@”, (Iogs)iwd”)

for a certain integer c >0. The number q of all polynomials
g, is equal to the number of the components Wp, i.e., is less
than (2(d + I))n–p. So the total number of inequalities in
the system is less than s + (2(d + l))n-p. The deciding of
consistency is done with the help of the procedure of [13] or
[1], therefore the working time of the algorithm up to this
point is

j@(l)~n&((n-P)~),

In the case when W(p) covers S’ (Ro), the algorithm se-
lects all the components Wb such that

dimRo(W6(Ro)) = P

by deciding whether W(p- 1) covers W6. That is done by ap-
plying the procedure from [1] similary to checking whether
W ‘p) covers S’ (R. ). For each component the checking re-

quires less than ((log S)i’kf)o(l)do(( n-p)n) time. The union
all the selected components is the complexification of of the
union of all irreducible components of R of maximal dimen-
sion. Then the algorithm repeats the just described proce-
dure recursively to find the “second maximal” dimension,
etc.

In the case when W(p) does not cover S’ the algorithm
passes to the next value of p.

Thus, the total running time of the algorithm is

Now we look at estimates on the degree. Since in the
irreducible we have only to consider the dimension p,

degz (V) s O(d)n-p.

Let, as in the formulation of our theorems, pl denote
the maximal dimension among all irreducible components of
the complexification C(S), and pz be the minimal dimension
among the components of C(S). The algorithm implies the
following upper bound for the real degree of S:

deg(S) ~ (60sd/n)n
~ ()

n (2(d+ l))n-p <
PP25P5P1

< (60sd/n)n(pl –p~ + 1)2n(2(d + l))n-p’ =

= (o(scz/n))nd@-p2) = Sndo(n).

Observe that if S is basic, then the factor (60sd/n)n does
not occur in the bound for the degree:

deg(S) s ~
()

n (2(d+ l))n-f’ <
PP2<P5P1

< (pl –pz + 1)2” (2(U’ + l))n-p’ = 2nd0(n-p2) = do(n).

Modifying slightly our arguments, we obtain a better
bound for deg(S) (and hence for the number of absolute-
ly irreducible components). The idea is to use a smaller
family of p(n – p) + 1 (n – p)-subspaces instead of all (~)

coordinate (n – p)-planes in the construction of V based on
the following lemma due to Chistov [5].
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Lemma 4 For each p wath 1 s p ~ n there exists a family
AP wzth p(n – p) + 1 elements of n – p-planes m Rn such
that for any p- plane P C R“ there M a n –p-plane Q = AP

whtch is transversal to P.

We get

deg(S) ~ (60sd/n)n ~ ((n-p)p+ l)(2(d+l))”-p
P25PSP1

< (60sd/n)n(pl –pz + I)(pl(n –pz) + l)(2(d + I))”-p’

= (O(sd/n))ndO[n-p2) = ~ndO(n)

in the case of a general semi-algebraic set S; and

deg(S)~ ~ ((n–p)p +l)(2(d+l))”-p

PI5PSP2
< (p] –p~ + l)(p~(n – p~) + l)(2(d + l))n-pz

= pld o(~–P2)—do(~)

in the case of a basic semi-algebraic S.
Observe that for a basic S the bound pldo(n-p’) is better

than the original bound 2nd0(n–p2).
The theorems announced in the Introduction are proved.
Remark that unfortunately, we do not know how to con-

struct the linear spaces of the preceding Lemma 4 within
polynomial time.

7 Application to complexity theory

Let us mention an application of the degree estimate to com-
plexity theory. One of the central problems there is to ob-
tain lower complexity bounds for deciding membership to
a semi-algebraic set with respect to algebraic computation
tree model. The lower bound is expected to be of the kind
O(V(S)) where v(S) is a nonnegative characteristic of (i.e.,
nonnegative function on) the semi-algebraic set S. Exam-
ples of v are: number of all connected components, Euler
characteristic, sum of all Betti numbers of S.

The general methodology (see Yao, [17] says that if v
satisfies certain three axioms, then the complexity k of test-
ing membership (i. e., the height k of algebraic comput at ion
tree) can be bounded from below:

k > Q(log(v(s))).

The axioms are:

e Z/(sl u S2)< V(sl) +24s2);

o v(isomorphic projection(S)) ~ u(S);

● if S is defined by system of equations and s inequalities
of degrees at most d, then u(S) s (sd)”cn).

The degree of S verifies theese axioms (the proof of (2) is
straightforward for the degree). Hence, any algebraic com-
putation tree testing membership to S must have the height
not less than fl(log(deg(S))). This bound appears to be
a useful complement to topological lower bounds, because
it can be nontrivial for sets S having simple topology (for
example for a neighbourhood of a smooth point of a real
variety of high degree).

To get a better lower bound, take as v(S) the sum of
degrees of subsets of points of s of a fixed local dimension,

8 Appendix

Here we formulate some propositions describing the fun-
damental procedures used as subroutines in our algorithm,
coming from [4] and [8].

Consider the ring F = Z[T’1,. . . . 2’1] = Z[T] = where el-
ements T’1, . . . . Te are algebraically independent over Q and
denote by C’ the algebraic closure of F.

Let V c C’n by a variety irreducible over

F’ = Ca~g(Tl,...,Tl)

of affine dimension dim’C (V) = pLet tl, . . . .tpbe algebraical-

ly independent over F. A generic point can be described by
the following isomorphism of fields:

F’(tI,. ..)tp)[@] =F’(xjl,. ... xjp,xl, xn),xn) c~’(v),

where 6’ is an algebraic element over the field F’ (t1,...,tp).
Let @ c F’ (t1,....tp)[Z] with be the monic minimal poly-
nomial of O. The elements X3 are considered as regular func-
tions on V; under the above isomorphism, t, + xj, where
1 $ i ~ p. Formally we shall describe a generic point by
a hst: @, x 1, . . . . xn, where these polynomials a given in a
standard representation

Proposition 3 ([.4],[81). Consider a complex algebraic va-
riety

V={hl=... =h, =o} c”’”
where h, E FIY1, . . . . Y~] = F[Y]; the degrees degy(h, ) < d,

degT (h,) < dl; the b%t-lengths of integral coejictents of h,
are less than M.

There is an algorithm whzch gxven V and m, 1< m s n
outputs all its absolutely irreducible over F’ in CT compo-
nents Vi,..., Vq of codtmension m. The number of the com-
ponents q ZS less than d~ and the degree deg(V) is less than
d“ (by B&out’s theorem). Each component V., 1 < a < q

is represented by tts genertc point

and by a system of equattons:

wdh la < (3(d + dl)m)n+~, and every h!) 6 F’[YI, Yn]
is given in a standard representation with degrees

((d + CZ,)cm, (dmd,)c)

and bit lengths

(M(d + dl)c+-m+~), A/f(dmdl)ct)

for a certain integer c >0.
Herewith, the following esttmates hold:

deg(V. ) < dm degT,y(h~”)) < (d+ dl)cm

degZ(@(”)) < dm

degT)t(@(a)), degT,t($)) < (dmdl)c

for a certain integer c >0.

Every O(a), x!) ZSg~ven m a standard representation
with degrees

(dm, (dmd,)c),
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and bit lengths References

((fYf+n+q(f.imddc,(M+n-Ewmdl)c)

for a certain integer c >0.
The running time of the algorithm does not exceed

~o(l)(~+~l)o(~(~+e))

Proposition 4 ([4], [8]). Let

Va={hp) =... =hg)=()} c”’”

be an absolutely irreducible variety of codimension m and
degree deg(V@) ~ drn. Here the polynomials

h(a)e F’IY1, . . ..Yn]?

are given in a standard ~epresentation with degrees

((d+ (i,)cm, (d~dl)”)

and bat lengths

(M(d + d,) cm(n-m+’), N(d’’%)ce)

for a certain integer c >0.
Let also a representation of V= in the form of the generic

point be given, described by a list @(a), Xp), . . . . X9). Each

@(@), x: ~) M given in a standard representation with degrees

(dm,(dmddc),

and bit lengths

((M + n +l)(d~d~)c, (M + n + l)(dmd~)c)

for a certain integer c >0.
Suppose that the same bounds as in the conclusion of

Proposition 3 are true for

ea> d%ly@ja)),

degZ(@(@)), degT ~(~(a)), degT t(zje)).

Then there is an algorithm which outputs all irreducible
over F’ components V.,p of the variety >~ n{Yl = O} c C’”.
The number of the components is less than dm (by BLzout ’s

theorem). Each component Va,8 of the codimension m + 1
is represented by its generic point

and by a system of equations:

(a>@) ~ Ff[y] iswith l~,p < (3(d + dl)m)n+~, and eve~y h,

given in a standard representation with the same bounds as

‘~) in Proposition 3. Estimates for polyno-for polynomials h;
m~als @(%P), x:~,m are the same as for @(a), z~m) in Propo-
sition 3. The running time of the algorithm does not exceed

j’bfO(l)(d+ dl)o(m(n+~))
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