
Testing Shift-Equivalence of Polynomials Using Quantum Machines

D. Grigorievl

Department of Computer Science &

Department of Mathematics

Penn State University

University Park, PA 16802 USA

emaik dima@cse.psu.edu

The polynomials ~, g G F’[Xl,..., X~] are called shift-
equivalent if there exists a shift (al, an) E Fn such that
j(Xl + al,..., X~ + an) = g. The algorithms in three
different cases are designed which produce the set of all shift-
equivalences of ~, g in polynomial time, herewith in the case

of a

1.

2.

3.

zero-characteristics field F the designed algorithm is

deterministic;

prime residue field F = FP and a reduced polynomial
j, i.e. degx, (~) < p – 1, 1< i < n, the algorithm is

randomized;

finite field F = F. of the characteristic 2 the algorithm

is quantum. For an arbitrary finite field F~ a quantum

machine is designed which computes the group of all
shift-self-equivalences of ~, i.e. (~1, . . . ,,&) G F& such
that~(Xl+~l,...,X~+P~)=~.

1 Introduction

In the paper we deal with the problem (of testing, whether
two given polynomials ~, g c F’IXl,. ... -L] are shift-equivalent,

i.e. there exists a shift al, . . ., an such that ~(Xl+cIl, X~+

cr~) = g. The issue of considering polynomials up to the

shifts appeared already in the context of the interpolation
of shifted-sparse polynomials (see [8, 10, 7]), namely, the
polynomials which become sparse after a suitable shift.

We present the algorithms for computing the group Sf,f
of the shifts (,61, . . . ,/3~) such that ~(~fl + ,81,.. . ,Xn +

&= ? and for testing, whether the sel~ Sf,g of the shifts
. . . . an) for which j(XI +cM, . . . ,X~, +a~) = g is non-

empty (in the latter case Sf,g = (al,. ... Ian) + Sf,~ and the
algorithm yields a certain (al, . . . , an) ● S’f,9). The nature
and the complexity of the algorithms dramatically depends on

the characteristic of the ground field F. F’or the characteris-
tic zero we design in the section 1 a deterministic algorithm
for testing shift-equivalence which has a polynomial time

complexity, if the degree of ~ grows slower than n.

‘Supported by NSF grant CCR-9424358.

Permission to make digitaI/hard copies of all or part of this material
for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or cc)mmercial advantage,
the copyright notice, the title of the publication and its date appear,
and notice is given that copyright is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires specific permission and/or fee. ISSAC’96, Zurich,
Switzerland; 01996 ACM 0-89791-796-0/96/07. ..$3.50

For the positive characteristic p when F = F= is the

field of residues mod p and the polynomial ~ is reduced, i.e.
the degree with respect to each variable degx. (j) < p – 1,
1< i <n, we design in the section 2 a randomi~ed algorithm
for testing shift-equivalence which has a polynomial running-

time, if p grows slower than a certain polynomial in n/d.
For an arbitrary finite ground field F and the degree of f

we design in the section 3 a quantum machine (for this com-
putational model and the background see e.g. [1, 13, 14, 16])

which computes the group Sf,f. Observe that the developed
in the section 3 methods actually allow one to design a quan-

tum machine which for a given action of an abelian group on
a finite set, computes the st abilizator subgroup of a given

element from the set (as the author recently learned, the

problem of computing the stabilizator subgroup by a quan-
tum machine was also solved in [17] with a better complexity
bound). In [18] a quantum machine was constructed which

allows one to test, whether a given function has a hidden lin-
ear structure, or to find the period of a periodic univariate
function with small preimages (the latter result generalizes

[13]). The method exhibited in the section 3 has a com-

mon point with [18] in applying the Fourier transform to
the similar initial configurations (actually, this idea rises to

[14]), but it is easier since it does not use the uniqueness of

a hidden linear structure and estimations of the amplitudes

as in [18], but rather exploites the duality of Sf,f with its
group of characters.

When the characteristic of F is 2 we design a quantum
machine which computes Sf,g. Moreover, if the abelian

group being a dh-ect product of cyclic groups each of the
order 2 acts on a finite set, one can design a quantum ma-

chine, which tests, whether two elements from the set lie in

the same orbit of the action of the group. It seems to be

an open question, whether one could solve the latter prob-
lem by a quantum machine over a finite field of an arbi-

trary characteristics. The designed quantum machines run
in polynomial time, if p grows slower than a certain polyno-

mial in the input size
()

n ~ d (being the number of the

coefficients of f).
Now we formulate the main result of the paper.
Theorem 1) Let f,g G QIX1,. . . ,-%], deg(f), deg(g) S

d and the bit-size of the coefficients of f, g be less than M.
A (deterministic) algorithm is designed which finds a ba-

sis (over C) m, vk ~ Qn of the linear space Sf,f C C“
of all the shift-selfequivalences of f. Moreover, the algo-
rithm tests, whether the set of all shift-equivalences Sf,9 C

C is nonempty and in the later case produces an element

49

http://crossmark.crossref.org/dialog/?doi=10.1145%2F236869.236897&domain=pdf&date_stamp=1996-10-01

(al,. . . . an) E Sf,, n Q~. The running time of the algo-

rithm can be bounded by (lf(dn)~)o(l).

2) Let f, g G FP [Xl,X~] for a prime p, the degrees
deg(j), deg(g) ~ d and degx, (f), degx, (g) < p – 1, 1 s
i < n. A randomized algorithm is designed which finds a

b=is over FP of the linear space S’f, ~ c F;. Moreover, the
algorithm tests, whether Sf,9 # @ and in the latter case
produces an element (al, an) E S’f, g.The running time

of the algorithm does not exceed (pd
(‘id))o(’)

3) Let ~, g ● FPm [Xl,..., X~], the’degrees ~eg(f), deg(g)
< d. A quantum machine is designed which finds a basis over

FP of Sf,f C (FPm)n. Moreover, when the fields character-

istics p = 2, a quantum machine is designed which computes

Sf,9 C (Fz~)n in the form similar to 2). The running times

()n+d
of the quantum machines are less than (pm d)0(1),

2 Testing shift-equivalence of polynomials over

zero-characteristic field: deterministic algorithm

Let ~, g ~ QIXI,. . . . X~] be two polynomials with deg(~),
deg(g) < d and with the size of rational coefficients less than
hf. Actually, one could consider the coefficients of ~, g from

a larger (say, algebraic number) field, but we stick with the
rational coefficients just for simplifying the bounds on the
size of the output data.

Denote by Sf,g C ~ (herewith the bar denotes the al-

gebraic closure) the set of all shift-equivalence of ~ and g,

i.e. (,fll,~n)e~such that ~(Xl +f?l, Xn+~n)=

9(X1,..., X.). If Sf,g # @we say that f and g are shift-

equivalent. In this section we design a deterministic algo-
rithm which computes S’f ,g. Observe that if (al, cr~) G

Sf,f then for any integer m we have (mm,. . . . man) G Sf,f.

Hence (tal, tan) 6 Sf,f holds for any t ~ ~. Thus, con-
sidering tasa new variable, we get that

~ = df(Xl+tcrl,. ... X~+tan)

dt

(–df b’f——
al axl)

— (X, +tcu,.,., x.+ta.)
““”+anaxn

Substituting t = O in the latter identity, we obtain that
al ~ + . . . + an -&& = O. Inversing this arguing, we con-

clude that Sf, f c @ is a linear sub space. Therefore, Sf ,g
is a linezu variety of the same dimension as Sf,f (if Sf,g is
nonempty).

Observe that the variety Sf ,g is defined over Q, therefore
the subspace S’f,f has a basis from Qn (one could obtain it

from the system of linear equations al ~ +. ~.+an ~ = O

in the variables a 1, an). Furthermore, Sf ,g contains a
vector from Q”, indeed, take any vector ~ ~ Sf,g and all its

conjugates @ = ~1(@), d2 (@), ~JV(@) ~ Sf,g over Q, then

+ ~ J,(D) ~ sf,, nQn, thus Sf,g is definable by a linear

lQ<N

system over Q.

For brevity denote S(’) = Saf/ax% ,ag!axz, 1 S i < n.

Lemma 1 Sf,g = fll<~<~s ‘i) n {(w, ..., Cin) G@:
foal,..., ck)=g(o, o)}, o)}.

Relying on lemma 1, the algorithm finds each S(’), 1<

i < n by a linear over Q system defining S(’), using the

recursion on the degree. Then the algorithm finds a linear

over Q system defining the intersection n 1< i< n S “) and sub-

stitutes the general (parametric) solution (Al, An) = v+
Alvl -t-. ~+Akvk of the latter system (here Al & are pa-

(t)
rameters, the vectorsv, v1, ,vk ● Qn, k = dim fll<; <nS ,

and V1 v~ are linearly independent) into j. Duet; ~emma
1 the set of the vectors (Al, An) satisfying the equation
j(Al,. ,A~) = g(O,. . . . O), coincides with Sf,g.

Hence the equation f(Al, An) = g(O, O) deter-

mines a linear variety V in the space A N ~k of parameters

(Al, &). There could occur one of the following three
cases. In the first case V = LO,i.e. Sf,g = 0, this means that

the polynomial j(Al, . . . ,A~) – g(O,. ,0) c Q[k, . . ,Ak]
equals to a nonzero constant from Q. In the second case

V = A, i.e. Sf,g = fll<,<~S “), it is equivalent to identi-
cal vanishing of the polynomial f(Al, An) – g(O, O).
In the last case V is a hyperplane in A, given by a linear

equation
x

CJJj – co = O for suitable CJ ~ Q. Therefore,

l<~<k

f(A,,..., A~)–g(O,... ,O)=c

(&cJA3-cO)’—

for an appropriate c ~ Q, where J = deg~l, ,,~k f(AI, An).

Let us find all c~. Checking, whether the polynomial
$(AI, An)–g(O, O) is homogeneous, we detect, whether
CO=O. IfcO#Owe setco=land for every l<j<
k replace Al, for all I # j by zeroes in j(Al, An) –
g(O, O), as a result we obtain a univariate polynomial

~, = j(Al, ,An) - g(o, ~ ,O)l~,=o,/~, = c(c,~j - 1)’.. .
The algorithm finds CJ calculating GCD (~j, ~~ = Cj Jj –

1. If on the opposite co = O, then for eac~ pair 1”< jl, jz < k

we make a substitution AJI = 1 and Al = O for all 1 # jl, j2,

as a result the algorithm either finds the quotient CJ~/cf ~
or returns cj ~ = O similar to the situation co = 1. This
completes the description of the recursive algorithm which
computes Sf,g.

In particular, this allows one to test, whether f and g

are shift-equivalent.
Now we estimate the number of arithmetic operations in

the described algorithm. The number of monomials in ~, g

and the number of taking the derivatives can be bounded by

()d+n
0(1)

d’
At each step of recursion for constructing

“) the algorithm solves a linear sYs-the intersection fll ~,<n S

tern in n variables, it requires no(l) arithmetic operations.
After that the calculating of the substitution f(Al, An)-..

()d + n 0(1)
needs

a’
operations, and finally computing Cj

. ,
takes no(l) operations. Thus, the number of arithmetic op-

()

d+ n 0(1)
erations of the algorithm does not exceed

d’\ /
i.e. is polynomial in the input size.

Now we estimate the bit-size of the occurring interme-

diate coefficients. The bit-size of the coefficients of any in-
volved partial derivative is less than d(log n) M. Denote by
Me, O < b ~ d the bit-size of the coefficients of the linear

systems representing Sfl ,gl for intermediate in the recursion
polynomials of degrees 1. Then at the current step of the
recursion the size of the coefficients in a linear system rep-

resenting nl<t<ns ‘t) can be bounded by no(l) Ml, then the

50

size of the coefficients Cj does not exceecl (nd)o(l) ilfl by the

subresultant theorem [11]. Hence Lfl+l ~ (nd)”[l) Mt and

we conclude that ikfd < (nd)o(d) M ancl the bit-size of all

occurring coefficients is also less than M(nd)”(d). There-

fore, the running time of the described algorithm does not

exceed (A4 (nd)d) ‘(lJ which completes t h~eproof of theorem

()d+n
o(1)

1). When d = nO(l) then (nd)o(d) <
n

and

the bit complexity of the described algori~hrn is p~lynomial.
When d grows faster than, say, n2 it is more profitable for
computing Sf,g to solve a system of polynomial equations
~(XI + QI,..., Xn + an) = g(Xl,... Xn)n) in n variables

al, an with the running time (Md~2)0(l) [3].

3 Testing shift-equivalence of reduced polynomials over a
prime residues field: randomized algorithm

Let the polynomials f, g ~ FPIX1,. . . . X,,], deg(~), deg(g) ~
d, where p is a prime, be reduced, namely degx. (~), degx,,(g) <

P – 1, 1< ~ < n. In this section we design a Phomial-time
randomized algorithm which computes Sf,g C F;. Observe
that Sf,f is a linear subspace over FP and Sf,g = v + Sf,f

for an arbitrary vector v ~ Sf,g (if Sf,9 i~ 0).

Notice that since ~, g are reduced, lemma 1 from the

section 1 holds for Sf,9 also in the case under consideration.
Let g = pm, a polynomial h c Fq[X1, X.]. The

following lemma 2 was told the author by R. Smolensky
[15] and strengthens Schwartz’s lemma [12] for finite fields.
Observe that when n < q deg h and deg.x, (h) S q – 2, 1 S

i ~ n, lemma 2 follows from [9] (for arbitrary h a weaker

bound was proved in [5]).
Lemma 2 If h has a zero in F: then h has at least

q
~–d%(~) zeroes.

Now we describe a randomized algorithm which com-

putes Sf,g C F;. Similar to the section 1 the algorithm by

recursion on the degree computes S(’), 1 ~ i < n represent-

ing each S(i) by a linear system over FP. Then the algo-
rithm produces a linear system which represents the inter-

section nl<i<ns “) yields the general (parametric) solution
(Al,..., A~=v+Jl vl++Akvk, wherere V,vl,..., vkc

F; J k = dimFp (nl<~+s(i)) of this linear system (cf. sec-
tion 1). After that the algorithm substitutes (Al, An)
in f. Due to lemma 1 Sf,9 is isomorphic to the set of the so-
lutions of the polynomial over FP equaticm f(Al, An) =
g(o,. ... O) in the parameters Al,. . . . ~k, one could consider

w.1.o.g. Sf,g as a linear over FP variety in the space A & F:

of the parameters. Lemma 2 implies that s = dimFP S’f,g >

k–deg~> k–d(if Sf,g #O).
In [8] it is proved that if in a set U to choose randomly

independently lV times elements u ● U then the number
g of the times when a chosen u belongs to a fixed subset

@# A C U, satisfies with the robability greater than 1 – J
&< X<?ti wherethe following inequalities: ~ ~u _ ~ _ ~ ~u,

iV = ~ .16 ~log2(2/J).

The randomized algorithm under description for comput-
ing Sf ,g checks first, whether O ~ Sf,9, if yes then we set the
vector U. = O c Sf ,g. If not then the algorithm chooses N
times randomly independently elements from the set U = A,

‘erewithA=AO=sfgand’= (n(n~d))-2Hence

~ < pd. Then with the probability greater than 1 – d

among the chosen N = O(pdd log n) vectors there would be

a vector uo E Sf,,, (one could easily check the membership
to Sf,g), provided that Sj,g # 0. If none of the chosen N
vectors belongs to Sf,~, the algorithm returns that Sf,~ = 0.

After that the algorithm makes 21V independent choices
of the elements from U. Among them with the probability
greater than 1 – J there is a vector U1 c Sf,g such that U1 –
U. # O (herewith we take A = Al = S~,g\{uo }, obviously

#Al > ~#Ao). Thereupon making again 2N independent
choices the algorithm with the probability greater than 1 – J
finds a vector uz ~ Sf,g such that the vectors u’ – Uo, U1 –
uo are linearly independent. Herewith we take A = A2 =
Sf,9\Z {uo, U1} where L (uL, . ~., uj) denotes the minimal
linear variety which contains the points u~, uj (clearly

L {UO, U1} is a line), obviously #Az > ~#Ao. Continuing in
this way, the algorithm makes at most s < k rounds of 2N
independent choices, while it is possible to find the vectors

UIJ, ul, . . . , Us. c Sf,9, so < s such that the differences U1 —
uo,uso — uo are linearly independent. The algorithm

— —
returns that Sf,~ = uo + Al (u1 — UO) + + & (u.O – UO),

—
where Al, ..., ~so are parameters from FP.

The algorithm finds S’f,g correctly with the probability at

least (1 – J) ‘(n:d)>~_(n(n~d))-’, because

the algorithm calls recursively to itself at most
(“:d)

times since the number of nonvanishing partial ~erivativ&

()n+d
of j does not exceed

d>
and at each recursive step

the algorithm makes at most b rounds of 2N independent

choices as described above. Notice that if Sf,g = !?J,the

algorithm always returns the correct answer.

Finally, estimate the running time of the algorithm. As

already mentioned, there are at most
[‘id) ‘ecursive

calls of the algorithm to itself. At each r>cursive ~tep the al-

gorithm first finds (deterministically) the intersection nl ~i~n S(’),
by means of solving a linear over FP system with at most

n variables, that requires ((log p) n)o(1) running time. Then
the algorithm makes at most n rounds of choosing 2N vec-

‘OrsfrOmu=Aittakes(pd(n~d))O(l)
pletes the proof of theorem 2).

Notice that the time bound of the algorithm is better

than the time bound p“ of the trivial search in F; when
d = o(n). In this case the time bound of the algorithm is

[)n+d
polynomial in the input size log p

d
when p =

.

(%)0(1)
4 Testing shift-equivalence of polynomials over a finite

field: quantum computation

Let g = pm and the polynomials ~, g ~ Fg[Xl, ,,, , X.],
deg(~), deg(g) s d. In this section we design a quantum
machine which computes S~,f C F; and, furthermore, in the
case of the fields characteristic p = 2 we design a quantum
machine which computes Sf,9. Observe as above that Sf, ~
k an abelian group and Sf,g = v + Sf,f for an arbitrary

v E Sf,g (if Sf,g # 0).

51

The core of a quantum machine, a concept being an ex-
tension of a randomized algorithm (see e.g. [1, 16]), is a
fast unitary transformation. In [13] it was shown that a

quantum machine could compute in polynomial time the

Fourier transform ~~ for the cyclic group Z. of the order
n for “smooth” n, namely n = PI . .pt being a product of
pairwise distinct small primes. In [4] $b~k was computed by

a quantum machine baaed on the fast Fourier transform.

First we show (although we do not immediately use it be-

low) that (f)Pk for any small p could be computed recursively
on k by a quantum machine in a more succinct way using
the product-formula for Fourier transform [2], which in its
turn easdy entails the fast Fourier transform algorithm.

The matrix ~, = ~ (exp (~sl)) ,~~,1<, the quantum

machine computes directly. For the recursi~e step, let w be

a primitive root of unity of the degree p ‘+1. Denote by D a

square pk x pk diagonal matrix with the diagonal elements

beirw successive Dowers of w : 1. w. W2. Wpk’1. Denote
by I; the unit 1 ‘x 1?matrix. Then
formula

th~ following product-

01 (d++@?h)
‘.

DP-~

allows one to compute r#JPh+ 1 recursively by a quant urn ma-

chine within time O((kp) 2). Also observe that this gives a
represent ation of ~P~+ I as a product of O(k) matrices, while

[4] provides for it the product of 0(k2) matrices.

Remark that as any finite abelian group G is a direct
product ZP;I x . . . x ZP:t of the cyclic groups its Fourier

be computed by a quantum machine within time O
(x @)2)
\l~t<e

First we design a quantum machine which computes the

group Sf, ~ C F:. This construction extends essentially the
idea from [14]. We utilize the notations and terminology
from the quantum computations which one could find in
[1, 13, 14, 16]. Actually, the described algorithm and the
above quantum computation of @G allows one to solve the
following problem by means of a quantum machine. Let a

finite abelian group G with all the primes dividing its order,
being small, act on a set. The algorithm enables one to

find for each element of the set the subgroup of G which

preserves this element (the stabilizator subgroup, see also
[17]). Furthermore, if G is a direct product of cyclic groups
each oft he order 2, one can design a quantum machine which
for any pair of elements of the set tests, whether these two
elements are on the same orbit of the action of G. In the
case under consideration G = 2P x . . . x 2P is the dkect
product of mn copies of 2P, herewith the action of (ZP)~
on each variable X,, 1 < i < n is isomorphic to the action
of the additive group of F~ by the shifts.

The quantum machine under description starts with the
initial configuration (cf. [1, 13, 14, 16, 18])

1

c

jcM,...,an,f(xl+cu, xn+,@J), @J),

i.e. each basic state Icu,.. ,a~,f(XI +cYl,.. .,X~ +an))

is taken with the amplitude —
(;)”

Notice that each basic

(‘(”))n+d
d

state is a basic ort in qm . q -dimensional C-

space with the Hermite~n metric. Let W1l J, w(~) ~ Fq

be a basis over Fp. Then one can represent each basic
state [al,crm. ~(Xl + crl, ,X~ + cr~)) in the form

lclf),..., aft),...,
~~1), ,a~m)

where al =
E “:)W(’) Q?)’:(:p:::e’:”+:::

I<j<m

additive group of F; acts on the first nm components as a
direct product (ZP)n~.

(n+d~

Denote Q = q ~ d ~. Thequantummachine applies

to C the matrix (see above) @p @ . . ~@ ~P @ IQ where the

tensor product of #p is taken nm times (cf. [18]). Then in

the resulting configuration any basic state 1x1, x~~, 7)
where Xl : Z/pZ ~ C, 1 <1< nm are the characters of the

cyclic additive group of Fp, i.e. XI(a) = exp (w) for a

suitable band~= f(X]+~l, . ,X~+,&) ~ F~[Xl,. . . ,Xnl

l<j<m

occurs with the amplitude (cf. [13, 14, 18])

+ /3p)...Xm(cp+pp) ..Xnm-m+l

(a:) +&J ~. Xnm(ay)+ fp))

— +X1(P:l)) Xnm(pim))
(~cif)w(i),

xl (cry)..~Xnm(clw)

For every restriction of the character

x = -yl @.. @ xnmls the sum
f,f

{

o ifx+l
.

#sf,f ifx~l

where CY= (~o~)w(~), ~ Q$)w(f)). Thus, each of the

basic states [XI,. . . . x~~, ~) for which xl @. . Bxnm Isf,f =
1 (and only these basic states) occurs in the resulting con-
figuration with the same for each of them probability (which
equals to the square of the absolute value of the ampli-

tude, see [1, 13, 14, 16, 18]) ‘w~~~~)’ Hence, each vector

(Xl,..., X~~) such that xl~..~x~~ Is, , S 1, occurs as

52

the first nrn coordinates of the basic states in the resulting
configuration with the same for each of them probability

&_&l., because fortherest of Qcoordinates there are &
.,.

possibilities for ~, each of them appearing with the same
probability.

Since Sf,f is an abelian subgroup of the additive group

of (F~)n, the order #Sf,f = p~ for a certain O < k ~ nnz.
All the vectors of the characters (xl, ... x~~) such that

tiplicative) group S being isomorphic to the vector space

(F,) ‘m–k over FP.

Applying nm times independently the described quan-

tum machine and each time observing the projection onto

the first nm coordinates of a basic state of the resulting

configuration, we obtain a sequence of nm elements from

S. The probability that the first nm - k vectors (one can
assume that they are chosen independently as each of them

appears with the same probability, see above) among them
form a basis of S over FP is greater or ec~ual to (1 – P-l)(1 –
P-2)(1 _p-3) . . . > +.

Therefore, making 4 rounds each consisting of nm de-
scribed applications of the quantum machine, with the prob-
ability y greater than 1 – (1 – ~)4 > ~, the quantum algorithm
yields at one of the rounds a basis for the space S over FP.
The algorithm returns as a basis the maximal set of lin-

early independent over F= elements of S obtained at one of

4 rounds.

Having a basis of S, the algorithm can uniquely select

the subgroup Sf,f. Indeed, for every element (xl, ..., x~~)

from the yielded basis let xt(a) = exp (?-), 1 ~ t ~ nm

for appropriate O ~ & <p, then for any e~ement

(E &)w(~) x JJ)W(J),. ...) E Sf,f we have

I<j<m l~j~m
(m)

Xl(o\l)) ~. ~xn~(cr~~)) = 1, i.e. Plllcr\l) + ~~+ ln~am
Conversely, if the latter divisibility holds for every element

/ \

[lgj<?n l<j<m)

Sf, f. These divisibility conditions constitute a (homoge-
neous) linear system over FP. Producing a basis of this lin-

ear system, the algorithm produces thereby a basis of Sf,f.
This completes the description of the algorithm which com-

putes Sf, f.
Now in the case of the fields characteristic p = 2 we

design a quantum machine which tests, whether Sf,g # @,
and if it is the case the machine yields an element v 6 Sf,g.
Together with the described above construction of Sf,f this

computes Sf,9 = v+ Sf, f. First the machine checks, whether
j z g, and if it is the case we are done by the above con-
struction of Sf ,f, so we can suppose w.1.o.g. that f $ g.
Then applying the described above construction, the ma-

chine computes the groups Sf, f and S9,9. If Sf, f # S’g,9
then Sf,9 = ~. So we can assume that Sf,f = Sg,g.

Observe that S = Sf,f U Sf,g is a grcmp since p = 2. No-
tice also that S coincides with the grcmp of all the shifts
(Cr,,..., ~m) ~ F; which preserve the unordered pair of

the polynomials {f(XI,. . . ,X~), g(Xl,... ,X~)} = {~(Xl +
cll,xn+an). g(xl+cll,xn+ c%)}.

To compute S the quantum machine w the basic states
takes

Ial,..., %,{ f(xl+al, xn+am),gm), g
(X, +a,,..., xn+an)})

where (al,a~) E F;. Thus, a basic state could be

treated w an ort from C-space of the dimension q“. a, where

a = -. As in the above construction, the quantum
machine applies the Fourier transform 4 = gh B . . . @ @z
(nm times) to the first n coordinates, formally the machine
multiplies the initial configuration

&~al,,.,anGFq lala~{f (xl+alx~+a~)
g(xl+al,, ... xn+ an})

by the matrix @@ la. Then as above the quantum machine
computes the group S (by means of its basis over F2).

Obviously, Sf,g # ~ u Sf,f # S, and in this case

we can take as v any element of the basis of S which does
not belong to Sf, f. This completes the description of the

quantum machine which computes Sf,9.

Finally, we estimate the complexity of the designed quan-

tum machines. In the course of computing Sf,f the machine
computes (deterministically) for any (al, an) E F; the

coefficients of the polynomial ~(Xl +al, . . . ,X. +a~) which

‘equires (mlOgf@d))O(l)time ‘rOducingFOurier
transform 4P takes p

o(l) time. So, the application of ‘he

‘ouriertransformrunsin (mp(n~d))o(’)time ‘he
machine makes O(nm) such rounds and at the end solves (de-

terministically) a linear over FP system of the size O(nm).

Thus, the running time of the designed quantum machine

‘oesnotexceed (mp(‘~d))O(l) ‘hesimilMbOund
is valid for the quantum machine which computes Sf,g, this

completes the proof of theorem 3.
Notice that this bound is always not worse that the com-

plexity bound for the randomized algorithm designed in the

()

o(1)
n+d

section 2 (for m = 1). When p grows like
d

the running time of the designed quantum machine is poly-
nomial which is not the case for the randomized algorithm

from the section 2.

Acknowledgements. The author is grateful to Aliosha
Kitaev for valuable remarks.

References

[1]

[2]

[3]

[4]

[5]

[6]

E. Bernstein, U. Vazirani, Quantum complexity theory,

Proc. STOC, (ACM, 1993), 11-20

T. Beth, Verfahren der schnellen Fourier-transfor-

mation, (Teubner, Stuttgart, 1984)

A. Chistov, D. Grigoriev, Solving algebraic systems in

subexponential time. I, II., Preprints LOMI E-9-83, E-
10-83, Leningrad, 1983

D. Coppersmith An approximate Fourier transform use-

ful in quantum factoring Research report 19642, IBM,
1994

D. Grigoriev, M. Karpinski, An approximate algorithm

for the number of zeroes of arbitrary polynomials over
GF[q], Proc. FOCS (IEEE, 1991), 662-669

D. Grigoriev, M. Karpinski, A zero-test and a inter-

polation algorithm for the shifted sparse polynomials,
Proc. AEECC 1993, Lect. Notes in Comput. Sci., vol.
673, (Springer, Berlin, 1993) 162-169

53

[7] D. Grigoriev, Lakshman Y. N., Algorithms for comput-
ing sparse shifts for multivariate polynomials, Proc. In-
tern. Symp. on Symbol. Algebr. Comput. (ACM, Mon-
treal, 1995) 96-103

[8] R. Karp, M. Luby, N. Madras, Monte-Carlo approxi-
mation algorithms for enumeration problems, J. of AL

gorithms, 10, N3 (1989), 429-448

[9] M. Karpinski, I. Shparlinski, Efficient approximation
algorithms for sparse polynomials over finite fields,
Technical Report 94-029, ICSI, Berkeley, 1994

[10] Lakshman Y. N., D. Saunders, On computing sparse
shifts for univariate polynomials, Proc. Intern. Symp.
on Symbol. Algebr. Comput. (ACM, Oxford, 1994)

[11] R. Loos, Generalized polynomial remainder sequences,
in B. Buchberger, J. Calmet, R. Loos, eds., Computer

Algebra, (Springer, Berlin, 1982)

[12] T. Schwartz, Fast probabilistic algorithms for verifica-
tion of polynomial identities, J. ACM, 27 (1980), 701-

717

[13] P. W, Shor, Algorithms for quantum computation: dis-
crete logarithms and factoring, Proc. FOCS, (IEEE,

1994), 124-134

[14] D. R. Simon, On the power of quantum computation,
Proc. FOCS (IEEE, 1994), 116-123

[15] R. Smolensky, Private communication, 1995

[16] A. Yao, Quantum circuit complexity, Proc, FOCS
(IEEE, 1993), 352-360

[17] A. Yu. Kitaev, Quantum measurements and the
Abelian stabilizer problem, Preprint of the Institute for
Theoretical Physics, Moscow, October 1995

[18] D. Boneh, R. Lipton, Quantum cryptanalysts of hidden
linear functions, Lect. Notes Comput. Sci., 963 (1995),

424-437

DIMA GRIGORIEV is a Professor in the Department of Com-

puter Science and in the Department of Mathematics at the
Pennsylvania State University at University Park, Pennsyl-
vania, USA. Prof. Grigoriev obtained his Ph.D. and Dr.
of Science degrees from the Mathematical Institute of the

Academy of Sciences of Russia in St. Petersburg, Russia.
His main research interests are in Complexity Theory and

Computer Algebra and he is the author of 64 research papers
in these areas.

54

