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Abstract

We consider a cluster of m zeros of a multivariate polynomial system which we inter-
pret as a perturbation of a system with an m-fold zero. By algebraic techniques, we find
a first order correct representation of the primary ideal of the cluster zeros from which
we obtain approximations for the individual zeros in the cluster.

1 Conceptual Background

Our considerations will proceed in the conceptual context of numerical nonlinear algebra: We
will consider sets P of polynomials p, € C[z1,...,zs] =: IP* whose coefficients have specified
numerical values. Throughout, we will assume that (P) is a 0-dimensional ideal and that we
have a complete intersection case, with P containing exactly s polynomials. Our analysis is a
contribution to the following overall task: Find sufficiently good approximations for all zeros
of P. Note that some or all zeros of P will generally be irrational complex s-tuples , even if P
has integer coeflicients, so that a numerical specification of a zero will necessarily have to be
an approzimation. However, the concepts of zero and sufficiently good in the above sentence
need further clarification. In agreement with standard practice in numerical mathematics we
distinguish two cases:

Case 1: All coefficients in P may be assumed to be exact as specified. Here, we have the
classical algebraic meaning of a zero:

zeC® isazeroof P <= p,(2)=0, v=1(1)s,
and an approximation z is suffictently good if, for some appropriate norm in C*,
l(p,(2))]| < @ for a specified a > 0.

Case 2: Some of the (non-vanishing) coefficients in P are only known to a specified level
of accuracy. Then P represents an equivalence class P of polynomial sets P; the members
of P cannot be distinguished in the given context. Thus, the concept of a zero has to be
widened to that of a pseudozero:

z € ©° is a pseudozero of P <= 3P € P: p,(2)=0, p, € P,



and z is a suffictently good approxzimation if it is a pseudozero of P. Case 2 occurs predom-
inantly in the simulation of real-world phenomena by mathematical models whose data are
generally not known to an arbitrary accuracy.

Contrary to a first impression, this distinction — which is omnipresent in numerical com-
putations — does not affect the design of solution procedures, due to a general Design Principle
of Numerical Mathematics:

Step 1: Find a reasonable approximation of the solution efficiently and robustly.
Step 2: Verify the quality of the approximation; if not sufficient goto Step 3.

Step 3: Improve the present approximation; goto Step 2.

The distinction of the above cases 1 and 2 only appears in Step 2 whereas Steps 1 and 3
are independent of this distinction. Naturally, the potentially iterative improvement in Steps
2/3 needs an emergency exit: solution procedures may fail to a give a satisfactory answer.

For the determination of a well-isolated zero z of P , the classical procedure in Step 3
is Newton’s method. In the case of a sufficiently dense cluster of zeros, however, where the
Jacobian of P is nearly rank-deficient over a large part of the region occupied by the cluster,
this approach meets with great difficulties; without very accurate starting approximations, no
or only a few of the zeros of the cluster may be found by Newton’s method or some variant of
it. Therefore, the main part of this paper will present an alternate approach for a localization
of all individual cluster zeros.

Such an approach must take into account the fact that the task of localizing the zeros of a
cluster is severely #ll-conditioned: The accurate locations of the zeros are extremely sensitive
to small changes in the data (i.e. the polynomial coefficients). However, the location of the
cluster and its multiplicity (the number of zeros in the cluster) generally do not share this
sensitivity; this has been well-known for some time, an early analysis has been given, e.g.,
by [1]. Actually, the occurrence of a cluster of m zeros (an m-cluster) is equivalent to the
presence of an m-fold zero in a system whose data are close to those of the specified problem;
the location of such an m-fold zero depends moderately on the specified data. Therefore, the
appropriate version of Step 1 with respect to an m-cluster of zeros is:

Find the approximate location zg of an m-fold zero of a reasonably close system Py, by a
stable and efficient floating-point computation.

While the realization of this task, e.g. on the basis of a stabilized floating-point Groebner
basis computation, is in itself extremely interesting and presently under investigation, we will
assume the result of this Step 1 as given for the purpose of this paper. Step 2 then amounts
to the verification of the distance between Py and P. If the criteria specified for the particular
situation are met, we are finished: Within the specified accuracy level, our system P cannot
be distinguished from the system Py with a genuine m-fold zero at zg.

On the other hand, if Py is not sufficiently close to P by our standards, we must design
a Step 3 procedure which splits the m-fold zero zy into m individual zeros and finds their
approximate locations. This is the task to which we will now devote ourselves.



Since we will use floating-point arithmetic, the condition of this task depends essentially
on the relative separation of the individual zeros in the cluster. This can be significantly
improved by moving the “cluster center” 2y to the origin. However, the computation of some
of the coefficients in the shifted polynomials 7,(£) := p,(20 + &) will meet with extreme
cancellation of leading digits as these coeflicients vanish in the shifted versions of the pg,,
with their m-fold zero at the origin. Therefore, in order to retain the accuracy level of the
specified problem, this computation of the p,, must be done with special provisions. Although
floating-point techniques are available for maintaining the accuracy in polynomial shifts under
cancellation, it appears simplest to perform the computation of the p, in rational arithmetic,
with a subsequent return to floating-point data. Algebraic manipulations with polynomials
will be needed throughout the following in any case, and every computer algebra system has
rational arithmetic readily available.

We can now formulate our task in its final form. We will drop the arrows in the following
for a simpler notation but retain £ and ¢ for the shifted variables and zeros.

Cluster analysis problem: Given a system P of s polynomials p,, € IP*, v = 1(1)s, with
a cluster of m zeros about the origin, and a system Py = {pg,,v = 1(1)s}, with an m-fold
zero at the origin, with P — Py small (in a sense to be defined rigorously in the following).
Find sufficiently good approximations for the individual zeros ¢, of P, p = 1(1)m, in the
cluster.

2 The Univariate Case

For the case s = 1, the cluster analysis problem has been solved in [3]; see also the Ph.D.
Thesis [2] of V. Hribernig. However, the presentation in [3] is not well suited as a basis for
a generalization to s > 1. Therefore, in this section, we sketch the procedure for s =1 in a
form which may serve as a guideline for the multivariate procedure.

At first, we introduce a shorthand notation for polynomials of degree m —1; the usefulness
of this notation will become obvious in the multivariate case:

1
Z a6 = (a1...am)T 6 = a’t, acC™ t:=(1¢... 6™ HT,
p=1 : 1
&
A polynomial p with an m-cluster at the origin may be written in the form
p(€) = (e"t)+(d t) €™+ (d3 t) €™+ ..., (1)

with ||e|| small and |d11| not small; a neighboring polynomial pg with a genuine m-fold zero
at the origin is

po(€) = (d{ &) €™+ (d3 £) 2™+ ... .
The reason for writing p and pg as “polynomials” in £™, with coefficients from the span of the

normal set of (£™), will become clear below. The distance between p and pg may be defined
by [le™]-



Now consider an analogous representation of p as a polynomial in (é™+cT t), with c € C™ :
p(€) = (eT(e)t) + (dT () t) (€™ + T t) + (d3 () t) (€™ +cTt) + ... (2)

The coefficients e(c), d1(c) etc. of this representation are uniquely defined as the remainders
of a recursive division of p and its quotients by (€™ +¢T t). (2) defines a map F : €™ — €™,
which maps a coefficient vector ¢I' € €™ into the residual vector el (¢) of the representation
(2); this map satisfies

F(0) = €T(0) = €.

Since ||eT|| is small, we may expect to find a small coefficient vector ¢*7 € €™ such that
F(eT)y = 0. (3)

Then
p(€) = [dF () t) ™ +Tt)+ (@3 () t) ™+ T )2+,

and the m zeros of g*(€) := (€™ + ¢*T't) are the individual zeros ¢, of the cluster. Note that
g is simply the factor [[};(§ — () of p; thus the existence of a solution c*T of (3), with
|c*T || small, is immediate.

Naturally, we do not strive to solve (3) exactly; instead we perform one Newton step,
from ¢ = 0: Since F(cT) = e'(c), we obtain an approximation & for ¢*7 from

& F'(0) = —eT. (4)
To find the m x m-matrix F'(0), we differentiate (2) w.r.t. ¢:
O =F (M t+dF( ey rt+...,

where all further terms contain at least one factor (€™ + ¢T t). Setting ¢’ = 0 and observing
that

din di2 ... dim
dTt) It = s dl”jkl t mod ™,
0 dn
we obtain
di1 dizg ... dim
o) - du o dines
0 dn

Thus, our approximate coefficient vector & is obtained from the triangular linear system (4),
with dy, and e, are from the original expansion (1) of p in powers of £™.

Since the m zeros 5” of §(¢) = €™ + &' t are generally well isolated in a relative sense,

any state-of-the-art (floating-point) polynomial solver will produce good approximations for
them. For the same reason, individual improvement by Newton steps, starting from these



éﬂ, will generally work. An exception is the occurrence of (secondary) clustering in § which
could be remedied by another application of our procedure, presumably with a much smaller
value of m. Thus the construction of § by the solution of a linear system of size m is the
appropriate instrument for the “splitting” of the m-fold zero { = 0 into approximations fﬂ
for the m individual cluster zeros (.

For use in the multivariate case, we may interpret the Newton step for (3) as a first order
perturbation procedure: We perturb the factor polynomial gg = €™ of pg by a small element
from the span of the associated normal set such that the perturbed polynomial §j = go + ¢’ t
becomes a first order correct approximation of g*:

g = O(l*) -

Altogether, this suggests the following fully algebraic interpretation of our approach as a
basis for a multivariate generalization:

(&™) primary ideal Zg of the m-fold zero at the origin

go(§) =&™ Groebner basis Gy of Zy

I,D,..., D'"*1|§:O linear functionals which form a dual basis Dy of Zg (D := 8/ 8¢)
{1,¢,...,6m 1) normal set A of Gy, basis of the residue class ring Ro = P /7y
t=(1,..., 6™ HT vector of (ordered) terms in A/

p=(eTt) + E(d;fpt)(go)j representation of p in terms of Gy

Em+ctt perturbation of Gy by an element from N = span A/
@) =¢m+eTt basis G* of the primary ideal Z* of the m-cluster
&) =€em+él't 1st order correct approximation of g*

g(&)=0 generates approximations f# of the m cluster zeros,

i.e. it splits the m-fold zero

3 Multivariate Cluster Analysis

3.1 Layout of the Procedure

In accordance with the problem formulation at the end of section 1, we begin with systems
Py = {pov, v =1(1)s} and P = {p,, v = 1(1)s} of polynomials from P*. P, has an m-fold
zero at the origin; therefore, the neighboring system P must have m zeros close to the origin
since we have assumed a complete intersection situation where zeros depend continuously
on the data and cannot disappear except to infinity. We will now generalize our univariate
approach described in section 2, cf. the table at the end of that section.

In a first stage of our analysis, we must find a dual basis Dy and a Groebner basis Gg of the
primary ideal Zg of the m-fold zero of Py. This is no longer trivial: The differential structure
of an m-fold zero in C° may take many different forms. Readers unfamiliar with this situation



are referred to [5] and [7], e.g., for a detailed analysis. The backbone which connects Dy and
Go is the residue class ring Rg = IP* /Zp and its basis AV, the normal set of Zy. Naturally, the
appearance of these objects depends on the chosen term order; in the following we assume
that a consistent term order has been specified and is kept fixed throughout. The following
sequence of steps appears appropriate:

1) From Py, find a basis {L,, u = 1(1)m} of the closed vector space U of differentials
which describes the structure of the m-fold zero of Py at the origin. These linear functionals
form a dual basis Dy of Zy; cf. [5].

2) From Dy, determine a closed set A of terms t,,, u = 1(1)m, such that the Gram matriz
(Lu[t]), with t := (t1,...,tm)T is nonsingular. N is a basis of Ry.

3) From Dy and N, determine the multiplication table matrices A,, o = 1(1)s, which
describe the multiplicative structure of Rg. From these A,, the elements g, of the Groebner
basis Gy are obtained immediately.

So far we have not dealt with the given system P at all. In the second stage of our
analysis, we represent P in terms of Go; the residual vectors el in NF g,y pv = el't display
the distance of P from Py. If this distance is significant (cf. section 1) we must split the
m-fold zero by perturbing Gy into an approximation Gz for the basis G* of the primary ideal
Z* of the cluster. This stage consists of the following steps:

4) Expand the p, of P, v = 1(1)s, into “polynomials” in the elements g, of Gy :

k k

e = (L) + (05 9ot Y (@hrrt) Guars + - (5)
k=1 K12 K2

If k = s, the expansion is unique (see section 3.3); for £ > s, we must also find and expand a

generating set of syzygies of Go.

5) Modify each element g, € Go by a generic perturbation cLt and consider the analogous
expansions of the p, which define residual vectors e (c), with eI (0) = eI of (5); find ¢*T =
(e3T,...,ciT) such that el (¢*) = 0, v = 1(1)s. For this purpose, we linearize the relation
between the ¢ and the e and compute the matrices which represent the linearized relations.
If £ > s, we also have to perturb the syzygy equations of Gy and linearize them w.r.t. to the

perturbation coefficients cZ.

6) Solve the linear system of equations obtained in step 5, with the original residuals el
from (5) as right-hand sides; this yields perturbation coefficients & which are first order
correct approximations of the ¢*7.

In the third and last stage of our procedure, we compute approximations f# for the m
zeros (y, = 1(1)m, of Z* which are the zeros of P in its m-cluster about the origin:

7) Compute approximations A, for the multiplication tables A% of R* = P° /T*, from
the §. = gx + Lt obtained in step 6, cf. section 3.4. Here we retain the normal set N as
basis for the representation of R*.

8) Compute the eigenvectors of the A, by any state-of-the-art matrix eigenproblem code
(e.g. from [8]). In the rare case of secondary clustering, such a cluster may be resolved
by the same procedure that we have just described. The (approximately) joint eigenvectors



(normalized with ﬁ{st component 1) of the /10 are interpreted as evaluations of the normal
set vector t at the (.

9) Check the residuals p,,(fu) — evaluated with appropriate care — for significance relative
to our specified accuracy level. If some f# has significant residuals we perform a classical
Newton step from E,L for further refinement. Otherwise, we accept the C~,L, u = 1(1)m, as
sufficiently good approximations for the individual zeros in the cluster.

The complete procedure may appear unduly complicated and lengthy. But all numerical
computations may be performed in floating-point arithmetic and, generally, m will not be a
very large number; thus the computational effort will be small. In any case, we do not know
of another algorithmic procedure which splits an m-fold zero of a multivariate polynomial
system with high accuracy. In the following subsections, we will explain the individual steps
with more detail.

3.2 Determination of the Primary Ideal of the m-fold Zero

In €°, an m-fold zero zy of a set Py of polynomials from IP? is characterized by an m-
dimensional vector space U of linear differential operators which satisfy

L[p](zo) =0, VLeU,peF,. (6)
The set of all polynomials for which (6) holds is an ideal if and only if
L[.]eU = Llz,.1€U, o=1(1)s, (7)

see, e.g., [6]; then U is called closed. Thus step 1 of our procedure requires the construction
of a basis Dy for the closed vector space U of linear differential operators which characterize
the m-fold zero {y = 0 of our set Py. Dy is then a dual basis for the primary ideal Zy of this
m-fold zero of Pj.

This task has been discussed in [7] where an algorithm for its solution has also been
proposed. It is based on the fact that a criterion for the closedness of U is (cf. [6])

LeU = o, LeU, i=11)s, (8)

where o; denotes “antidifferentiation” w.r.t. z; :

. 1 :
For L = D(@’) = 0,1 ---0,. , o; L :== D(27/z;), 9)
J1teo sl m Zs
where D(z7/z;) = O (zero functional) if 2; [ 27; furthermore, 0;(3 ¢, L,) =3 cuoi L.

The construction of Dy therefore begins with Ly = D(1) = I and proceeds by checking
suitable candidates with leading differential D(z7) in increasing term order: These are tested
for consistency with the closedness criterion (8) and against the duality condition (6) for Pp.
The candidates are linear combinations of derivatives of functionals already in Dg and of
functionals which have previously been found consistent with (8) but not (6); if coefficients
for the linear combination exist such that (8) and (6) are satisfied, a new element of Dy has



been found. The algorithm stops when no further leading differentials consistent with (7) are
available. This also determines m if it was not known a priori.

According to the authors of [7], their algorithm has never been implemented. In his com-
plete implementation of the cluster analysis procedure, G. Thallinger has also implemented
the above construction procedure for Dy in a slightly modified form. The algorithm and its
implementation are nontrivial; details will be published in [9].

After the dual basis Dy = {Li,..., Ly} of Iy has thus been determined, we form the
normal set NV for a representation of Zg w.r.t. the chosen term order in step 2 of our procedure:
We consider the terms ¢ of IP* in increasing order, beginning with ¢; = 1, and form the row
vectors L[t] := (L1[t],..., Ln[t]), with all functionals evaluated at (o = 0. If L[t] is linearly
independent of the vectors L[t,] for the ¢, already in A, we admit ¢ into N, too. If it is not,
we delete its multiples from further consideration. After m elements have been selected, the
set N'={t1,...,tm} which we have obtained satisfies

ty=2'eN = al/z;eN forz;|z!, i=1(1)s, (10)

i.e. N is closed. The closedness of N is a neccessary and sufficient condition that it can
function as a normal set of an ideal. From now on, t,, s = 1(1)m, will denote the terms in
N and t the (column) vector (t1 ... t,)7.

In step 3 of our procedure, we interpret A as basis of the residue class ring Ry = P* /T
and determine the multiplication table matrices A, of its multiplicative structure. We observe
that

z,t = A,t modZy, <& L”[;Egt] = A, L”[t], L‘,, € Dy,

since Dy is a dual basis of Zy. Hence
A, = Liz,t]- L[t Y, o=1(1)s, (11)

where L[t] and L[z,t] are the matrices formed by the row vectors L,[t] and L,[z,t], resp.

Remark: Algorithmically, the checking of the linear independence of the L[t,] generates
L[t] in the triangular form T' = M,y, ... Mo L[t]P; ... Pp_1, with elimination matrices M, and
permutations P,. Hence Lt ' =P ... P 1T M,, ... M3 in the evaluation of (11). Note
that L[t] is the Gram matrix of the interpolation problem

Find pespanN : L,pleg=0 = [, €C®, p=11)m. O (12)
From N, we obtain a set LT[G] of leading terms for a generating set Go of Zj:
LT[G] := {t: t¢ N, t/z; € N forz;|t, i = 1(1)s}. (13)

Obviously, each element of LT[G] is a component of one or several vector(s) z,t; hence the
corresponding row of A,t defines the remaining terms of the respective element g, of G.
Proposition 3.1: The generating set G thus obtained is the Groebner basis Gy of Zj for
the specified term order.
Proof: Let Ny be the normal set of Gy. If Ay = N, the polynomials g, from the A,
must be the elements of Gy. Assume Ny # N since |[Ng| = |V, there exists ¢ :== min



{t € N,t &€ No}. By (10), for all ¢ with z,[t, t/z, € N and (trivially) t/z, < %, hence
t/z, € Ny. Since t ¢ N this implies ¢ € LT[Go|; the remaining terms in the respective
Groebner basis element g must be smaller than ¢ and from A, hence also from A. This
implies g € span N which is a contradiction. O

Remark: While our determination of A/ naturally follows the respective algorithm in [6],
our computation of the Groebner basis via (11) differs slightly from the approach in [6]. O

3.3 Perturbation of Z; into the Primary Ideal of the Cluster

We have now obtained a complete quantitative representation of the primary ideal Zg of the
m-fold zero (o = 0 of the polynomial set Py through its Groebner basis G, its dual basis Dy,
and its residue class ring Ry with basis A and the multiplication tables A,.

These quantities now serve as our reference in the analysis of the given set P of polynomials
which has an m-cluster of zeros ¢, . = 1(1)m, about the origin. We can immediately compute
the residual vectors el € C™ of the p,,, from

NF<go>p,, = Zewtﬂ = eft (14)
v=1

by a normal form algorithm; they are unique since Gg is a Groebner basis.

Naturally, we expect the residual vectors el to be small since we have assumed P to be
close to Fy. On the other hand, for the following to be meaningful for not fully accurate data
(cf. case 2 in section 1), the size of the el must be significant relative to the specified data
accuracy: If the polynomials 5, := p, — el t € Ty constitute a set P in the equivalence class
P, then this equivalence class contains polynomial systems which have a genuine m-fold zero
at the origin and thus the origin is an m-fold pseudozero of P. We will assume that this is
not the case throughout the following.

For the further analysis, we also need the coefficient vectors dI. of (5). They can be
computed from representations

k
pu_eft = qucgna v=1(1)s, (15)

k=1

by further application of the NF-algorithm:
dit = NFigy que, £=11)k, v=1(1)s. (16)

The representations (15) are unique except for syzygies:
k
Z Sxk gx = O (the zero polynomial), X = 1(1)I, (17)
k=1

where the A refer to some generating set of the syzygy module Sy of Gp.

In the case k& = s, all LT[g,] are monomials £J7,0 = 1(1)s; thus a generating set of Sg
consists only of the trivial syzygies g, 9ry — 9r,9x; = O, and such syzygies do not affect the
dT_in (16). Hence the d_ — and all further coefficient vectors in (5) — are unique for k = s.



Unfortunately, this case of a rectangular normal set rarely occurs in our primary ideals
of m-fold zeros. For k£ > s, we denote the k — s elements in Gy whose leading term is not a
monomial by gs+1,.-.,9k. The elements of a generating set of Sy are then formed as follows:
Let LT[gx],x € {s +1,...,k}, contain a power of z,,_; then form the S-polynomial S[gs, gs,]
where the leading term of g, is a power of z,, and represent it in terms of Gy. The collection
of all identities obtainable in this fashion is a generating set of Sy (cf., e.g., [10]).

In analogy to our transition from (15) to (16), we now form coefficient vectors s, through
Sxet = NF (g sae, £=1(1Dk, XA=1(1), (18)

where the polynomials sy, on the right-hand side are from (17). These s1. € €™ characterize
the ambiguity in the dZ, of (16).

We have now finished step 4 in the second stage of our procedure. In step 5, we have to
consider the mapping F : C¥™ — ©*™ which is defined by expansions like (5) of the p, in
terms of perturbed Groebner basis elements g + cLt,x = 1(1)k:

k k
P = (e () + (A0 ()t) (gutcit)+ D (dh,w, (1) (g +er, ) (g i, )+ o (19)
k=1

K12>Ka

through F(c, k = 1(1)k) = (el (c), v =1(1)s).

Such Perturbed Groebner Basis Representations have been considered in our paper [4];
there it has been shown that they are the appropriate means to represent all polynomials
in a neighborhood of a degenerate set of polynomials in a continuous and uniform way. We

have assembled some basic information about perturbed Groebner bases in the Appendix.

In the case k > s, where there are more perturbation vectors c¢I than residual vectors el ,

the representation (19) has to be supplemented by the analogously perturbed version of (17):

k k
O = D (3(O)t) (g +eft) + D (Shayny (OF) (g + €y t) (g +cpt) +..0, (20)
k=1 K12 K2
/\ = 1(1), which provides the restrictions on the c. needed to make the restriced mapping
F: €*™N(20) — ©*™ bijective in a neighborhood of (¢I) = 0; cf. the Appendix.
Obviously, the solution ¢* = (¢}T,...,c;T) of the polynomial system in the c,
F(E,....¢5y = (0,...,0) (21)

generates the primary ideal Z7* = (G*) := (g1 + cit,...,gr + cjt) of the m-cluster of P.
However, the exact determination of the ¢*T is far too involved; instead, we determine per-
turbation vectors &L which solve the linearization of (21) about ¢I = 0. This simplification
of the task posed by (21) may also be considered as one Newton step for (21) from ¢ = 0; the
approximate elements g, := g, + ¢ t satisfy

g —gr = O(lel®, &=1(1)k. (22)

10



T

To determine the linear system of equations which defines these ¢, we set
k
ey (¢) = ey + ) i Bux +O(llcc]?), (23)
k=1
dye(c) = dy +O(llexl) (24)
and, in the case k > s, analogously
() = 85+ O(llegl) (25)

for the respective values of the subscripts on the left-hand side. Then we introduce (23), (24),
and (25) into (19) and (20) resp. and subtract the unperturbed representations (5) and (17)
resp. Since the left-hand sides vanish, the normal form of the right-hand sides w.r.t. Zg must
vanish. Thus we obtain, for v = 1(1)s,

k k
0 = (L Bu)t+ NFigy D2 (d48)(cFe) +O(llcl) (26)

k=1 k=1

and, for A = 1(1)! in the case k > s,

k
Z sxnt) (cat) + O(llel?) 5 (27)

all terms not explicitly spelt out above either contain at least one factor g, € Gy or they are
quadratic in the ¢ (or both). The normal forms of products of elements from span N are
computed by

Proposition 3.2: Denote the multiplication table matrices for ¢, = 2 eN by Az, =

() (v
[TA" ... 43" Then
NFz,(a't)(b7t) = [b" (a"t(4))]t,

where

t(4) == (Ay ... A7, (aTt(4)) = ia,,Aty.

Proof:

(a®t)(bTt) Za,, DO buty) = D0, avtuty)
=I Z b#(z ayAg, )t = Z bu(a”t(A)), t
p v I

where (matrix), denotes the p-th row of the matrix. O
Thus, (26) and (27) imply

— By = (d5,t(4)) and Sy = (s3.t(4)) . (28)

11



With (28), our request for eX(c) =O(||cZ||?) in (23) turns into the following linear system for
the cl:

—Fi1 ... —FEq S11 ... Sp

—Fr ... —Eg4 Slk Slk

The system (29) looks overdetermined for [ > k — s. However,

Si1 ... Sn
rk : : =(k—s)m (30)
Slk . Slk

and the rank of the complete matrix in (29) is km so that (29) has a unique solution &, k =
1(1)k. Details are explained in the Appendix.

By (22), the perturbation vectors ¢ from (29) provide good approximations for the
elements g} of the perturbed Groebner basis G* of the primary ideal Z* of the m zeros of P
clustered about the origin.

3.4 Computation of the Cluster Zeros

The cluster zeros (,, i = 1(1)m, of P are the zeros of the polynomial system G*:

ge(&) = ge(O) +Tt(E) = 0, k=1(1)k,

whose zeros are normally well-separated in a relative sense. If there is secondary clustering
within the cluster, the primary ideal for these zeros can be found (after a shift to the origin)
by another application of our approach; therefore we do not pursue this possibility further.

However, to obtain approximations g’# for the ¢, we cannot — except in the case k = s —
replace the system G* by the system G:

gn(f) = QN(£)+E£t(£) =0, "3:1(1)]@7

because this system will generally be inconsistent and may have no zeros at all. Instead
we must use the information from the éX to solve G* approximately. For this purpose, we
compute approximations A, for the multiplication table matrices A* of the residue class
ring R* = IP* /Z7*, with basis A/. Since the joint eigenvectors of the commuting family of
m X m-matrices A, are the evaluations t({,) of the normal set vector t at the ¢, (after
normalization of the first components to 1; cf., e.g., [11]), the eigenvectors of the A, will
provide approximations for the t(¢,) and thus for the (.

At first, we remember that the rows af;ﬂ, p = 1(1)m, of the A} are determined by &,t, =
aylt mod G*. Naturally, if £,t, = t,, € N, we set a2, := ail, = el . If {51, = LT[g,], we
set

I~}

Zpt = —(Gx — &oty) = —(gx — Eotu) -
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Each remaining &,t, is in the border set of N (cf. [6]) and thus a multiple of some LT[g,].
If, e.g., {oty = &0 LT gx] = &1 (o tp, ), We set

ELZIL = ELZKMA(,:
since this relation would hold for the A%. In this way, all &Zu can be found recursively or

from linear relations between them.

In step 8, we compute the m eigenvectors 95, € C°, p = 1(1)m, of the A, by some
linear algebra package (e.g. [8]) and normalize their first components to 1 (these components
cannot vanish; see [11]). Naturally, our approximate multiplication table matrices A, are
not strictly commuting; some elements in A,, 4,, — A,,A,, may be of O(||&|?). Thus the
eigenvector systems of the individual A, may differ slightly. However, due to A, ~ A, we
have

"70;1. ~ t(ép) y M= 1(1)m ) (31)

Only if two or more of the u have extremely close values in their {,-components, the asso-
ciated eigenvectors may not satisfy (31) individually but only span the repective eigenspace
approximately. This situation may be diagnosed by consistency checks between the compo-
nents of the U,,.

Since it is generally not clear which A, yields the best approximations for the (,, we
have used the arithmetic means of the matching @5, to obtain vectors ¥, which we interpret
as t((,). Each variable &, is either a term in A or the leading term of a g,; thus the
components of the zeros g:# may either be read from the 9, directly or computed from the
other components via a gj.

After we have obtained these approximations gl, = 1(1)m, for all zeros in the m-cluster
of P about the origin and thus successfully split the m-fold zero of Py, we must check whether
a further numerical improvement of the g’,t is necessary (Step 9): We compute the residuals
(¢ 1), preferably in rational arithmetic to cope with the heavy cancellation of leading digits.

To judge the significance of the residuals, it may suffice to consider their order of mag-
nitude relative to the specified accuracy level. For a more refined judgement, we consider
the interpolation of each residual vector (p,(C1) ... pu(Cm)) by a polynomial from N: Let
p:-ft(g:”) = p,,(gtﬂ), p = 1(1)m, for v = 1(1)s; then the neighboring system P, = {p, —pL't, v =
1(1)s} has exact zeros at the fﬂ.

If all || pZ || are below our specified accuracy limit, we can safely accept the , as suficiently
good approximations of the cluster zeros. Otherwise, we may improve a fp which generates
unduly large residuals by a standard Newton step from that ¢ u- For arbitrarily accurate data,
each zero can — in principle — be approximated individually to arbitrary accuracy since we
are now close enough for the local convergence of the Newton method.

4 Example

Exclusively for reasons of display, we have used an indeterminate perturbation parameter &
in steps 1 through 5. Beginning with step 6, we have taken ¢ = 10~* and displayed only a
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few digits of the resulting decimal fractions, because the rational expressions in € would have
been prohibitive for printing. Steps 8 and 9 require floating-point computation in any case.

In agreement with the task formulated at the end of section 1, we start with a system Fp
in 3 variables &7,&2,&3 which has a multiple zero at the origin, and with a near-by system P
whose zero cluster about the origin we wish to find:

po1(1,€2,83) = &1+ — 468 +463
Py = { poa(61,62,83) = -2 +&+&3
po3(€1,€2,83) = &1éals + E5€3 + €263

p1(61,62,63) = po1(€1,62,83) + € (2&1éa — 163 + 3283 — 8)
P = { pa€1,62,83) = poa(é1,€2,83) + € (&1 —3&+5&+1)
p3(£1,62,63) = pos(é1,€2,83) + e (6§ +3&&s+36&5+63)

Throughout the following, the term order is lexicographic, with £ > &2 > £3.

Step 1: Determination of Dg

It is obvious that D(1), D(£3), D(&2) are in Dy and also D(£2 — 3 €263 — €2) and D(&1 +
%5253 + 25%) Our algorithm finds no more 2nd order differential operators linearly inde-
pendent of these and consistent with the closedness of U which vanish for Py. For a 3rd
order differential operator which vanishes for pgs, the closedness criterion (8) is the main
restriction. Our algorithm yields

B 1 17 .5 3.5 3. ., 11 4 ,
Lg = D(&162 1 §1é3 + - £+ 75263 75253 o £3), with

1 1
Lg = D(&— — = ——ILy+ 1L
o1 Le (€2 = 576s) TRCRREE
17 3 3 17
oo Lg = D(£1+7£§+?£2£3_?£§) = 7L4+L5 ,
1 3 3 11 3 1
L = D(——€1+—€2— 2383 — —£€2) = —Ly— — Ls .
786 (cqpéltzte— 78— 578) = 7la-57 s
No further closed extension of U is feasible; thus m = 6 and Dy consists of L1, ..., Lg found

above. Note the non-trivial form of Lg in the specification of the differential structure of the
6-fold zero of Py at the origin.
Step 2: Determination of the normal set A of Zg

1 and the first three powers of &3 yield independent row vectors L[t,], and so do &2 and

§2£3- Thus N = {17 63, 6%7 f??,’a 527 6263}) and

100 0 0 0
010 0 0 0
000 -1 2 0

Lt = 11
000 0 0 -4
001 0 0 O
000 -3 32 o0



Naturally, the linear algebra in the actual algorithm triangularizes L[t] during its formation
by permutations and eliminations; this information is used in

Step 3: Determination of the multiplication tables A,
L[¢1t], L[é2 t], and L[€3t] are easily evaluated and yield, via (11),

00 -1 0 0 % 00 0 0 10
00 0 & 00 00 0 0 01
00 0 0 00O 00 o0 £ 00
_ _ 11

A 000 0 00| 00 0 0 00|’
00 0 -2 00 0o0-3 0 o038
00 0 0 00 00 0 -2 00

0100 00

001 0 00

000 1 00

A =1000 0 00

0000 01

000 2 00

From (13), the LT[g,] are {&1, €3, £2€2, €4} and the multiplication tables yield

g1 = & — 3683+ 62,
_ ) g2 = & - 568 +363,
Go = 2
g3 _2 63 a9
94 = &263 — 563

as Groebner basis of the primary ideal Zg. In terms of Gy, Py appears as

Po1 = g1+ 92,
8 16 56 29
poz = (—2— 265+ -&283) g1+ (14+ —63) g2+ —=&394 — — g3+ (91)°,
3 9 27 11
4 21 11 23
po3 = £283 91 + (&3 + 5532, 92— 1793t (? + 353) 94 .

Step 4: Representation of the system P in terms of Gg
By polynomial division, we obtain (cf. section 3.3):

34 ]
9 ?

p1 = por+e [(—8 - %63 +38283) + (—€3+2&2) g1 + (253) g2+ (=) 94

b = poake (L4 56+ € = 36— 508) + (Vo] |

6 16 3 87 431 56 116
P3 = poste [(639,’) + (3§§ + ﬁfg) g1+ (?53) g2+ (ﬁ - ﬁ§3 — WE‘%) g3+ (463 + ?&2, - mfg) gat...|,
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where the dots indicate higher order terms in the g,. The representation of the syzygies of
Go takes the form (cf. (20))

61 9
33 3+ &) 95— &304

§3+62)0a, O = (—11

180
O =—-g+—g+(-

121
Step 5: Formation of the blocks of the matrix in (29)
The E,, and S\x are determined by (28), with dZ_ and sf_from (5) and (17) resp. We
indicate only the formation of E11: From d%; = (1,-1,0,0,2,0),

1 —¢ 0 0 2¢ 0
0 1 —& 0 0 2
0 0 1 e 0 0
—E11:I—EA3+2€A2: 0 0 0 118 0 0
0 0 —6s 0 1 3
00 o0 -2 0 1

All columns of the Ss, block column are linearly dependent on the 6 columns of the Si.
blocks.

Step 6: Solution of the linear system (29)
For ¢ = 107*, the final 24 x 24 system for the &. yields

el = (-2.99990,—1.66644,+1.11105,—3.21078,+1.00017, —0.41657) -10~%,
& = (-5.00010,+1.66696,—1.11089, —0.69919, —0.99957, +3.41650) -10~*,
¢l = (+0.00000,+0.00000, —1.66670, +1.21714,+0.00000, —0.91669) -10~*,
& = (+40.00000,+1.36366, —0.45452,40.70033,+0.00000, +0.61349) -10~%.

The perturbation coefficients are clearly of O(g). The §x = gx + Lt are now determined.
Note that the coefficient of £363 in g3 is # 0; thus our basis Gy of the primary ideal of the
cluster is not a genuine Groebner basis.

Step 7: Determination of the multiplication tables A,

From the g, we obtain immediately (cf. section 3.4)
the 1st row of A,
the 3rd and 5th row of /12, the 1st and 2nd row are trivial,
the 4th and 6th row of A, all other rows are trivial.

The complete knowledge of A3 permits the computation of @ %, = ad3 A3 and ady = a;As
which completes Ay. The remaining rows of A; are obtained analogously.

Step 8: Computation of the eigenvectors of the A,

The eigenvectors have been computed numerically by the respective Maple routine. Since
the A, are not fully commutative (cf. section 3.4) their eigenvector systems differ slightly
(after normalization of first components to 1). Also — due to the closeness of some eigenvalues
— two eigenvectors of some A, are inconsistent as evaluations of t at a point in €3 but span
the correct eigenspace (approximately). We have not attempted to correct such eigenvectors
but simply taken the arithmetic means of the matching eigenvectors.
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The 2nd and 5th components of these “joint” eigenvectors are the {3- and {»-components
of the approximate zeros (,, resp., u = 1(1)6. The £;-components are found from g;. This
yields the following approximations for the 6 zeros in the cluster of P:

.0003022 .0002977 .0001278 .0001221 .0001306 .0001360
—.0223110 |, | .0224109 |,| —.0086180 |, .0087033 [, | —.0000965 |,| —.0001003
0 0 .0086604 —.0086612 —.0129974 .0128216

Step 9: Residual formation, individual Newton steps

The evaluation of the p, at the above éﬂ yields residuals whose absolute values are all
below 1.6 - 1076, many are considerably smaller. Also the components of the pl-vectors are
below that value. This means that there exist polynomial systems with exact zeros at the 5”
which differ from P only by polynomials from span A with coefficients of O(1076).

Assume that the accuracy level of P is better than that. Then we perform one (or more)
classical Newton step(s) from each of the ¢ o separately; due to the good starting values, the
convergence is extremely rapid. The “exact” zeros of P thus obtained are, rounded to the
decimals given:

.0003023 .0002978 .0001285 .0001216 .0001305 .0001362
—.0223103 |, .0224103 ,| —.0087233 |,| .0086008 |, .0000013 |.| —.0000013
—.56-10"11 —52.1071 .0085957 —.0087232 —.0129372 .0128816

A comparison shows that our approximate zeros 5 » have been rather good approximations of
the correct zeros ¢, of P in its 6-cluster about the origin. Thus our linearization procedure
has been successful in a situation with a perturbation level of O(10~%) at a 6-fold zero of a
system of 3 polynomials in 3 variables.

5 Conclusions

We have shown how one may locate the zeros in an m-cluster of a multivariate polynomial
system which arises through a small perturbation of an m-fold zero by an approach which
combines algebraic techniques and analytic and numeric reasoning. We believe that this
combination will be necessary and successful also in other applications of algebraic algorithms
to problems with not fully accurate data. Our principal tool has been the use of perturbed
Groebner bases for the representation of ideals near degenerate situations. The motivation
for this concept and techniques for its handling have been further explained in a separate
publication ([4]).

After a shift of the m-fold zero to the origin, our approach uses only a well-defined set of
coefficients of (relatively) low order terms in the polynomials. Therefore, the same approach
may immediately be extended to the analysis of a zero cluster about the origin of a system
of s analytic functions in s variables with a sufficiently large radius of convergence of their
Taylor series about the origin. This may be of interest for polynomial systems which contain
some trigonometric or exponential terms, even for s = 1.

My understanding of the situation has profited a good deal from various discussions
with Prof. H.M. Moeller for which I wish to express my sincere gratitude. The complete
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procedure for the solution of the cluster analysis problem stated at the end of section 1 has
been implemented in Maple by my student G. Thallinger in his Diploma Thesis [9]. T wish
to thank him for his help in the preparation of this paper, particularly for the running of the
example in Section 4 at a time when his program was still in a preliminary state.

6 Appendix: Perturbed Groebner Bases

The following is a synopsis of the author’s paper [4] on perturbed Groebner bases. It has
been included to make the present paper understandable without the knowledge of [4].

For fixed term order, the mapping from a given ideal Z to its (reduced) Groebner basis G
(with leading coefficients 1) is well-defined; G may be computed from any generating set of
Z. In the conceptual context of numerical nonlinear algebra (cf. section 1), the continuity of
this mapping attains prime importance. For 0-dimensional ideals in IP*, a topology may be
introduced in the set of all ideals with a given fixed number m of zeros through the bijective
relation between ideals Z and zero sets V[Z] where the natural topology in €™ may be used.
This topology may be extended to the case of confluent zeros with the aid of the differential
conditions at a multiple zero; thus m will always count multiplicities. Informally, continuity
of 7 — G means that a small change in V[Z] leads to a small change in G, in particular that
it leaves its number of elements and its leading terms unchanged.

But simple examples show that the mapping V[Z] — G has structural discontinuities:
There exist manifolds RS in €™ such that Vj € RS implies: In each neighborhood of
Vo there exist Vi, Vs such that G(V1),G(V2) have different normal sets. This excludes a
continuous transition from G(V7) to G(Va).

The reason for this is immediate: In €°, s > 1, no set A/ of m terms is a proper interpolation
basis for all V. € (€*)™. Whichever A arises as normal set of some Z, the Gram matrix
(NM(V)) has rank deficiencies along certain manifolds RS € C™*. As V approaches such a
manifold, some coefficients in the associated Groebner basis G(V') diverge to infinity; on the
manifold, a structurally different G(V'), with a different normal set, appears. These manifolds
of representation singularities are commonly associated with non-generic positions of zeros:
symmetries, confluences, and the like. Since such degeneracies often occur in applications,
this intrinsic shortcoming of classical Groebner bases is deplorable.

However, at least in the complete intersection case, our observation which explains the
phenomenon also points to a natural way of relief: For fized N, the Gram matrix (N (V))
depends continuously on V'; therefore, the normal set Ay for V; on a representation singularity
is a proper interpolation basis also in a full neighborhood of V. This permits a continuous
extension of G(Vj) into bases for the ideals of all V' near Vj:

Definition: For a fixed term order, consider the Groebner basis Go = {gx, £ = 1(1)k}
for the ideal Zg, with normal set Ny = {t,, p = 1(1)m} and zero set V5. A basis G for an
ideal Z with a zero set V close to Vj is called a perturbed Groebner basis of 7 if it has the
form

g = {gn = gx + Z%ﬁtt# » K= 1(1)k} .o (32)
M
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The perturbation vectors ¢t = (vy4,) € €™ are defined through interpolation at V: If ¢
solves (with our previous notation for the normal term vector t)

cat(Q) = gx(Q), CeV,

then G(V) = {g« — cLt, k = 1(1)k} is a perturbed Groebner basis of the ideal Z(V) and
the ¢L' depend continuously on V, for V sufficiently close to V;.

If Vp is at a representation singularity, some of the perturbed Groebner bases G(V) for
V near Vy cannot be genuine Groebner bases; this happens through the introduction into
some §, of a term ¢ from N with ¢t > LT[g.]. However, for sufficiently small ¢, perturbed
Groebner bases are nearly as well-suited for computational purposes as classical Groebner
bases, — or even more so, considering their continuous behavior.

For ideals with m zeros, a neighborhood of Vj is a region in (€*)™ while G of (32) contains
k coefficient vectors ¢/ € €™. Thus, for k = s, the neighborhood of V; is mapped onto a
full neighborhood of the origin in the coefficient space. For k > s, on the other hand, the ¢
which may appear in G must lie in an m s-dimensional manifold within the m k-dimensional
neighborhood of the origin. This manifold SZ is defined by the extension of the syzygies of
Go which pose restrictions on the values which the ¢. may take.

Our use of this bijective mapping between a neighborhood of V4 and a neighborhood of
the origin (on SZ) in the coefficient space is explained by the following diagram:

system Py — zero set Vj «—— mult. tables «—— Groebner basis Gg
system P — zero set V' —— mult. tables A* «—— pert. Groebner basis G*(V)
AN appr. zero set V. «— appr.mult.tables A —— appr. pert. Gr. basis Gz
. linearization of P — G*(V) yields &g /

In order to obtain V from P, we should find G*(V') directly from P and then obtain V' via the
associated multiplication tables. The computation of the perturbation coefficients in G*(V)
is generally too involved; since we expect them to be small for P close to Py we linearize
the mapping from P to G*(V) about ¢. = 0 and proceed with the approximate perturbation
vectors &L thus obtained towards an approximation V of V. In the computation of the ér,
we restrict them to the m X s-dimensional tangent space of the manifold SZ at the origin
which is obtained by linearization of the syzygies of G*(V) w.r.t. the ¢I at 0.

The computational details have been explained in section 3.3; cf. also section 4. A more
concise technical description of the preceeding explanations is to be found in [4].
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