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Abstract. We present a logic for the specification of static analysis
problems that goes beyond the logics traditionally used. Its most promi-
nent feature is the direct support for both inductive computations of
behaviors as well as co-inductive specifications of properties. Two main
theoretical contributions are a Moore Family result and a parametrized
worst case time complexity result. We show that the logic and the associ-
ated solver can be used for rapid prototyping and illustrate a wide variety
of applications within Static Analysis, Constraint Satisfaction Problems
and Model Checking. In all cases the complexity result specializes to the
worst case time complexity of the classical methods.

1 Introduction

Static analysis [12,20] is a successful approach to the validation of properties of
programming languages. It can be seen as a two-phase process where we first
transform the analysis problem into a set of constraints that, in the second
phase, is solved to produce the analysis result of interest. The constraints may
be expressed in a language tailored to the problem at hand, or they may be
expressed in a general purpose constraint language such as Datalog [1,5] or ALFP
[21].

Model checking [13,2] is an automatic technique for verifying hardware and
more recently software systems. Specifications are expressed in modal logic,
whereas the system is modeled as a transition system or a Kripke structure.
Given a system description the model checking algorithm either proves that the
system satisfies the property, or reports a counterexample that violates it.

Constraint Satisfaction Problems (CSPs) [18] are the subject of intense re-
search in both artificial intelligence and operations research. They consist of
variables with constraints on them, and many real-world problems can be de-
scribed as CSPs. A major challenge in constraint programming is to develop
efficient generic approaches to solve instances of the CSP.

In this paper we present a logic for specification of analysis problems that
goes beyond the logics traditionally used. Its most prominent feature is the direct
support for both inductive computations of behaviors as well as co-inductive
specifications of properties. At the same time the approach taken falls within
the Abstract Interpretation [9,8] framework, thus there always is a unique best
solution to the analysis problem considered. We show that the logic and the
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associated solver can be used for rapid prototyping and illustrate a wide variety
of applications within Static Analysis, Constraint Satisfaction Problems and
Model Checking.

One can notice a resemblance of the logic to modal µ-calculus [16,13], which is
extensively used in various areas of computer science such as e.g computer-aided
verification. Its defining feature is the addition of least and greatest fixpoint
operators to modal logic; thus it achieves a great increase in expressive power,
but at the same time an equally great increase in difficulty of understanding.

The paper is organized as follows. In Section 2 we define the syntax and
semantics of LFP. In Section 3 we establish a Moore Family result and estimate
the worst case time complexity. In Section 4 we show an application of LFP to
Static Analysis. We continue in Section 5 with an application to the Constraint
Satisfaction Problem. An application to Model Checking in presented in Section
6. We conclude in Section 7.

2 Syntax and Semantics

In this section, we introduce Layered Fixed Point Logic (abbreviated LFP).
The LFP formulae are made up of layers. Each layer can either be a define
formula which corresponds to the inductive definition, or a constrain formula
corresponding to the co-inductive specification. The following definition intro-
duces the syntax of LFP.

Definition 1. Given a fixed countable set X of variables, a non-empty universe
U , a finite set of function symbols F , and a finite alphabet R of predicate symbols,
we define the set of LFP formulae, cls, together with clauses, cl, conditions, cond,
constrains, con, definitions, def, and terms u by the grammar:

u ::= x | f(u)
cond ::= R(x) | ¬R(x) | cond1 ∧ cond2 | cond1 ∨ cond2

| ∃x : cond | ∀x : cond | true | false
def ::= cond ⇒ R(u) | ∀x : def | def1 ∧ def2
con ::= R(u) ⇒ cond | ∀x : con | con1 ∧ con2

cli ::= define(def) | constrain(con)
cls ::= cl1, . . . , cls

Here x ∈ X , R ∈ R, f ∈ F and 1 ≤ i ≤ s. We say that s is the order of the
LFP formula cl1, . . . , cls.

We allow to write R(u) for true ⇒ R(u), ¬R(u) for R(u) ⇒ false and we
abbreviate zero-arity functions f() as f ∈ U . Occurrences of R(x) and ¬R(x)
in conditions are called positive and negative queries, respectively. Occurrences
of R(u) on the right hand side of the implication in define formulas are called
defined occurrences. Occurrences of R(u) on the left hand side of the implication
in constrain formulas are called constrained occurrences. Defined and constrained
occurrences are jointly called assertions.



In order to ensure desirable theoretical and pragmatic properties in the pres-
ence of negation, we impose a notion of stratification similar to the one in Data-
log [1,5]. Intuitively, stratification ensures that a negative query is not performed
until the predicate has been fully asserted (defined or constrained). This is im-
portant for ensuring that once a condition evaluates to true it will continue to
be true even after further assertions of predicates.

Definition 2. The formula cl1, . . . , cls is stratified if for all i = 1, . . . , s the
following properties hold:

– Relations asserted in cli must not be asserted in cli+1, . . . , cls
– Relations positively used in cli must not be asserted in cli+1, . . . , cls
– Relations negatively used in cli must not be asserted in cli, . . . , cls

The function rank : R → {0, . . . , s} is then uniquely defined as

rank(R) = max({0} ∪ {i | R is asserted in cli})

Example 1. Using the notion of stratification we can define equality eq and non-
equality neq predicates as follows

define(∀x : true ⇒ eq(x, x)), define(∀x : ∀y : ¬eq(x, y) ⇒ neq(x, y))

According to Definition 2 the formula is stratified, since predicate eq is negatively
used only in the layer above the one that defines it.

To specify the semantics of LFP we introduce the interpretations ̺, ζ and ς
of predicate symbols, function symbols and variables, respectively. Formally we
have

̺ :
∏

k R/k → P(Uk)
ζ :

∏

k F/k → Uk → U
ς : X → U

In the above R/k stands for a set of predicate symbols of arity k, then R is a dis-
joint union ofR/k, henceR =

⊎

k R/k. Similarity F/k is a set of function symbols
of arity k and F =

⊎

k F/k. The interpretation of variables is given by JxK(ζ, ς) =
ς(x), where ς(x) is the element from U bound to x ∈ X . Furthermore, the in-
terpretation of function terms is defined as Jf(u)K(ζ, ς) = JfK(ζ, [ ])(JuK(ζ, ς)).
It is generalized to sequences u of terms in a point-wise manner by taking
JaK(ζ, ς) = a for all a ∈ U , and J(u1, . . . , uk)K(ζ, ς) = (Ju1K(ζ, ς), . . . , JukK(ζ, ς)).

The satisfaction relations for conditions cond, definitions def and constrains
con are specified by:

(̺, ς) |= cond, (̺, ζ, ς) |= def and (̺, ζ, ς) |= con

The formal definition is given in Table 1; here ς [x 7→ a] stands for the mapping
that is as ς except that x is mapped to a.



Table 1. Semantics of LFP

(̺, ς) |= R(x) iff JxK([ ], ς) ∈ ̺(R)
(̺, ς) |= ¬R(x) iff JxK([ ], ς) /∈ ̺(R)
(̺, ς) |= cond1 ∧ cond2 iff (̺, ς) |= cond1 and (̺, ς) |= cond2
(̺, ς) |= cond1 ∨ cond2 iff (̺, ς) |= cond1 or (̺, ς) |= cond2
(̺, ς) |= ∃x : cond iff (̺, ς[x 7→ a]) |= cond for some a ∈ U
(̺, ς) |= ∀x : cond iff (̺, ς[x 7→ a]) |= cond for all a ∈ U
(̺, ς) |= true iff always

(̺, ς) |= false iff never

(̺, ζ, ς) |= R(u) iff JuK(ζ, ς) ∈ ̺(R)
(̺, ζ, ς) |= def1 ∧ def2 iff (̺, ζ, ς) |= def1 and (̺, ζ, ς) |= def2
(̺, ζ, ς) |= cond ⇒ R(u) iff (̺, ζ, ς) |= R(u) whenever (̺, ς) |= cond

(̺, ζ, ς) |= ∀x : def iff (̺, ζ, ς[x 7→ a]) |= def for all a ∈ U

(̺, ζ, ς) |= R(u) iff JuK(ζ, ς) ∈ ̺(R)
(̺, ζ, ς) |= con1 ∧ con2 iff (̺, ζ, ς) |= con1 and (̺, ζ, ς) |= con2

(̺, ζ, ς) |= R(u) ⇒ cond iff (̺, ς) |= cond whenever (̺, ζ, ς) |= R(u)
(̺, ζ, ς) |= ∀x : con iff (̺, ζ, ς[x 7→ a]) |= con for all a ∈ U

(̺, ζ, ς) |= cl1, . . . , cls iff (̺, ζ, ς) |= cli for all 1 ≤ i ≤ s

3 Optimal Solutions

Moore Family. First we establish a Moore family result for LFP, which guaran-
tees that there always is a unique best solution for LFP formulae.

Definition 3. A Moore family is a subset Y of a complete lattice L = (L,⊑)
that is closed under greatest lower bounds: ∀Y ′ ⊆ Y :

d
Y ′ ∈ Y .

It follows that a Moore family always contains a least element,
d
Y , and a

greatest element,
d
∅, which equals the greatest element,⊤, from L; in particular,

a Moore family is never empty. The property is also called the model intersection
property, since whenever we take a meet of a number of models we still get a
model.

Let ∆ = {̺ | ̺ :
∏

k R/k → P(Uk)} denote the set of interpretations ̺ of
predicate symbols in R over U . We define a lexicographical ordering ⊑ defined
by ̺1 ⊑ ̺2 if and only if there is some 0 ≤ j ≤ s , where s is the order of the
formula, such that the following properties hold:

(a) ̺1(R) = ̺2(R) for all R ∈ R with rank(R) < j,
(b) ̺1(R) ⊆ ̺2(R) for all R ∈ R with rank(R) = j and either j = 0 or R is a

defined relation,
(c) ̺1(R) ⊇ ̺2(R) for all R ∈ R with rank(R) = j and R is a constrained

relation,
(d) either j = s or ̺1(R) 6= ̺2(R) for some relation R ∈ R with rank(R) = j.



Lemma 1. ⊑ defines a partial order.

Proof. See Appendix A. ⊓⊔

Lemma 2. (∆,⊑) is a complete lattice with the greatest lower bound given by

(
l

M)(R) =







⋂
{̺(R) | ̺ ∈ Mj} if rank(R) = j and

either j = 0 or R is defined in clj.⋃
{̺(R) | ̺ ∈ Mj} if rank(R) = j and

R is constrained in clj.

where

Mj = {̺ ∈ M | ∀R′ : rank(R′) < j ⇒ (
l

M)(R′) = ̺(R′)}

Proof. See Appendix B. ⊓⊔

Note that
d
M is well defined by induction on j observing that M0 = M

and Mj ⊆ Mj−1.

Proposition 1. Assume cls is a stratified LFP formula, ς0 and ζ0 are interpre-
tations of the free variables and function symbols in cls, respectively. Further-
more, ̺0 is an interpretation of all relations of rank 0. Then {̺ | (̺, ζ0, ς0) |=
cls ∧ ∀R : rank(R) = 0 ⇒ ̺(R) ⊇ ̺0(R)} is a Moore family.

Proof. See Appendix C. ⊓⊔

The result ensures that the approach falls within the framework of Abstract
Interpretation [8,9]; hence we can be sure that there always is a single best
solution for the analysis problem under consideration, namely the one defined
in Proposition 1.

Complexity. The least model for LFP formulae guaranteed by Proposition 1 can
be computed efficiently as summarized in the following result.

Proposition 2. For a finite universe U , the best solution ̺ such that ̺0 ⊑ ̺ of
a LFP formula cl1, . . . , cls (w.r.t. an interpretation of the constant symbols) can
be computed in time

O(|̺0|+
∑

1≤i≤s

|cli||U|
ki)

where ki is the maximal nesting depth of quantifiers in the cli and |̺0| is the
sum of cardinalities of predicates ̺0(R) of rank 0. We also assume unit time
hash table operations (as in [19]).

Proof. See Appendix D. ⊓⊔



For define clauses a straightforward method that achieves the above complex-
ity proceeds by instantiating all variables occurring in the input formula in all
possible ways. The resulting formula has no free variables thus it can be solved
by classical solvers for alternation-free Boolean equation systems [10] in linear
time.

In case of constrain clauses we first dualize the problem by transforming the
co-inductive specification into the inductive one. The transformation increases
the size of the input formula by a constant factor. Thereafter, we proceed in the
same way as for the define clauses.

In addition we need to take into account the number of known facts, which
equals to the cardinality of all predicates of rank 0. As a result we get the
complexity from Proposition 2.

The solver. We developed a state-of-the-art solver for LFP, which is implemented
in continuation passing style using Haskell. The solver computes the least model
guaranteed by Proposition 1 and has a worst case time complexity as given by
Proposition 2. For many clauses it exhibits a running time substantially lower
than the worst case time complexity. Indeed, [19] gives a formula estimating the
less than worst case time complexity on a given clause.

The solver deals with stratification by computing the relations in increasing
order on their rank and therefore the negations present no obstacles. The re-
lations are represented as Ordered Binary Decision Diagrams (OBDDs), which
were originally used in hardware verification. OBDDs can efficiently store a large
number of states that share many commonalities [4,3], and have already been
used in a number of program analyses proving to be very efficient. The algorithm
is an extension of the symbolic algorithm presented in [11] and is based on the
top-down solving approach of Le Charlier and van Hentenryck [6].

The solver automatically translates LFP formulae into highly efficient OBDD
implementations. Since the OBDDs represent sets of tuples, the solver operates
on entire relations at a time, rather than individual tuples. The cost of the OBDD
operations depends on the size of the OBDD and not the number of tuples in
the relation; hence dense relations can be computed efficiently as long as their
encoded representations are compact.

4 Application to Data Flow Analysis

Datalog has already been used for program analysis in compilers [25,22,23]. In
this section we present how the LFP logic can be used to specify analyses that
are instances of Bit-Vector Frameworks, which are a special case of the Monotone
Frameworks [20,14].

A Monotone Framework consists of (a) a property space that usually is a
complete lattice L satisfying the Ascending Chain Condition, and (b) transfer
functions, i.e. monotone functions from L to L. The property space is used
to represent the data flow information, whereas transfer functions capture the
behavior of actions. In the Bit-Vector Framework, the property space is a power



set of some finite set and all transfer functions are of the form fn(x) = (x \
killn) ∪ genn.

Throughout the section we assume that a program is represented as a control
flow graph [15,20], which is a directed graph with one entry node (having no
incoming edges) and one exit node (having no outgoing edges), called extremal
nodes. The remaining nodes represent statements and have transfer functions
associated with them.

Backward may analyses. Let us first consider backward may analyses expressed
as an instance of the Monotone Frameworks. In the analyses, we require the least
sets that solve the equations and we are able to detect properties satisfied by at
least one path leading to the given node. The analyses use the reversed edges in
the flow graph; hence the data flow information is propagated against the flow
of the program starting at the exit node. The data flow equations are defined as
follows

A(n) =

{
ι if n = nexit⋃
{fn(A(n

′) | (n, n′) ∈ E} otherwise

where A(n) represents data flow information at the entry to the node n, E is a
set of edges in the control flow graph, and ι is the initial analysis information.
The first case in the above equation, initializes the exit node with the initial
analysis information, whereas the second one joins the data flow information
from different paths (using the revered flow). We use

⋃
since we want be able

detect properties satisfied by at least one path leading to the given node.

The LFP specification for backward may analyses consists of two conjuncts
corresponding to two cases in the data flow equations. Since in case of may
analyses we aim at computing the least solution, the specification is defined in
terms of a define clause. The formula is obtained as

define

(
∀x : ι(x) ⇒ A(nexit, x)∧

(s,t)∈E ∀x : (A(t, x) ∧ ¬kills(x)) ∨ gens(x) ⇒ A(s, x)

)

The first conjunct initializes the exit node with initial analysis information,
denoted by the predicate ι. The second one propagates data flow information
agains the edges in the control flow graph, i.e. whenever we have an edge (s, t)
in the control flow graph, we propagate data flow information from t to s, by
applying the corresponding transfer function.

Notice that there is no explicit formula for joining analysis information from
different paths, as it is the case in the data flow equations, but rather it is done
implicitly. Suppose there are two distinct edges (s, p) and (s, q) in the flow graph,
then we get

∀x : (A(p, x) ∧ ¬kills(x)) ∨ gens(x)
︸ ︷︷ ︸

condp(x)

⇒ A(s, x)

∀x : (A(q, x) ∧ ¬kills(x)) ∨ gens(x)
︸ ︷︷ ︸

condq(x)

⇒ A(s, x)



which is equivalent to

∀x : condp(x) ∨ condq(x) ⇒ A(s, x)

Forward must analyses. Let us now consider the general pattern for defining
forward must analyses. Here we require the largest sets that solve the equations
and we are able to detect properties satisfied by all paths leading to a given
node. The analyses propagate the data flow information along the edges of the
flow graph starting at the entry node. The data flow equations are defined as
follows

A(n) =

{
ι if n = nentry⋂
{fn(A(n′)) | (n′, n) ∈ E} otherwise

where A(n) represents analysis information at the exit from the node n. Since
we require the greatest solution, the greatest lower bound

⋂
is used to combine

information from different paths.
The corresponding LFP specification is obtained as follows

constrain

(
∀x : A(nentry , x) ⇒ ι(x)

∧

(s,t)∈E ∀x : A(t, x) ⇒ (A(s, x) ∧ ¬killt(x)) ∨ gent(x)

)

Since we aim at computing the greatest solution, the analysis is given by means
of constrain clause. The first conjunct initializes the entry node with the initial
analysis information, whereas the second one propagates the information along
the edges in the control flow graph, i.e. whenever we have an edge (s, t) in the
control flow graph, we propagate data flow information from s to t, by applying
the corresponding transfer function.

The general patterns for defining forward may and backward must analyses
follow similar pattern. In case of forward may analyses the data flow information
is propagated along the edges of the flow graph and since we aim at computing
the least solution, the analyses are given by means of define clauses. Backward
must analyses, on the other hand, use reversed edges in the flow graph and are
specified using constrain clauses.

In order to compute the least solution of the data flow equations, one can
use a general iterative algorithm for Monotone Frameworks. The worst case
complexity of the algorithm is Ø(|E|h), where |E| is the number of edges in the
control flow graph, and h is the height of the underlying lattice [20]. For Bit-
Vector Frameworks the lattice is a powerset of a finite set U ; hence h is Ø(|U|).
This gives the complexity Ø(|E||U|).

According to Proposition 2 the worst case time complexity of the LFP specifi-
cation is Ø(|̺0|+

∑

1≤i≤|E| |U||cli|). Since the size of the clause cli is constant and

the sum of cardinalities of predicates of rank 0 is Ø(|N |) we get Ø(|N |+ |E||U|).
Provided that |E| > |N | we achieve Ø(|E||U|) i.e. the same worst case complexity
as the standard iterative algorithm.

It is common in the compiler optimization that various analyses are pre-
formed at the same time. Since LFP logic has direct support for both least fixed
points and greatest fixed points, we can perform both may and must analyses
at the same time by splitting the analyses into separate layers.



5 Application to Constraint Satisfaction

Arc consistency is a basic technique for solving Constraint Satisfaction Problems
(CSP) and has various applications within e.g. Artificial Intelligence. Formally
a CSP [18,26] problem can be defined as follows.

Definition 4. A Constraint Satisfaction Problem (N,D,C) consists of a finite
set of variables N = {x1, . . . , xn}, a set of domains D = {D1, . . . , Dn}, where
xi ranges over Di, and a set of constraints C ⊆ {cij | i, j ∈ N}, where each
constraint cij is a binary relation between variables xi and xj.

For simplicity we consider binary constraints only. Furthermore, we can rep-
resent a CSP problem as a directed graph in the following way.

Definition 5. A constraint graph of a CSP problem (N,D,C) is a directed
graph G = (V,E) where V = N and E = {(xi, xj) | cij ∈ C}.

Thus vertices of the graph correspond to the variables and an edge in the
graph between nodes xi and xj corresponds to the constraint cij ∈ C.

The arc consistency problem is formally stated in the following definition.

Definition 6. Given a CSP (N,D,C), an arc (xi, xj) of its constraint graph
is arc consistent if and only if ∀x ∈ Di, there exists y ∈ Dj such that cij(x, y)
holds, as well as ∀y ∈ Dj, there exists x ∈ Di such that cij(x, y) holds. A CSP
(N,D,C) is arc consistent if and only if each arc in its constraint graph is arc
consistent.

The basic and widely used arc consistency algorithm is the AC-3 algorithm
proposed in 1977 by Mackworth [18]. The complexity of the algorithm is O(ed3),
where e is the number of constraints and d the size of the largest domain. The
algorithm is used in many constrains solvers due to its simplicity and fairly good
efficiency [24].

Now we show the LFP specification of the arc consistency problem. A domain
of a variable xi is represented as a unary relation Di, and for each constraint
cij ∈ C we have a binary relation Cij ⊆ Di ×Dj. Then we obtain

constrain

(
∧

cij∈C

(∀x : Di(x) ⇒ ∃y : Dj(y) ∧ Cij(x, y))∧
(∀y : Dj(y) ⇒ ∃x : Di(x) ∧ Cij(x, y))

)

which exactly captures the conditions from Definition 6.
According to the Proposition 2 the above specification gives rise to the worst

case complexityO(ed2). The original AC-3 algorithm was optimized in [26] where
it was shown that it achieves the worst case optimal time complexity of O(ed2).
Hence LFP specification is as efficient as the improved version of the AC-3
algorithm.

Example 2. As an example let us consider the following problem. Assume we
have two processes P1 and P2 that need to be finished before 8 time units have
elapsed. The process P1 is required to run for 3 or 4 time units, the process P2



/.-,()*+s1
c11�� c12 // /.-,()*+s2

c22 

Fig. 1. Arc consistency.

is required to run for precisely 2 time units, and P2 should start at the exact
moment when P1 finishes.

The problem can be defined as an instance of CSP (N,D,C) where N =
{s1, s2} denoting the starting times of the corresponding process. Since both
processes need to be completed before 8 time units have elapsed we have D1 =
D2 = {0, . . . , 8}. Moreover, we have the following constrains C = {c12 = (3 ≤
s2 − s1 ≤ 4), c11 = (0 ≤ s1 ≤ 4), c22 = (0 ≤ s2 ≤ 6)}. We can represent the
above CSP problem as a constraint graph depicted in Figure 1. Furthermore it
can be specified as the following LFP formulae

define
(∧

0≤x≤4 C1(x) ∧
∧

0≤y≤6C2(y) ∧
∧

3≤z≤4 C12(z)
)
,

constrain

(
(∀x : D1(x) ⇒ ∃y : D2(y) ∧C12(y − x))∧
(∀y : D2(y) ⇒ ∃x : D1(x) ∧C12(y − x))

)

where we write y − x for a function fsub(y, x).

6 Application to Model Checking

This section is concerned with the application of the LFP logic to the model
checking problem [2]. In particular we show how LFP can be used to specify a
prototype model checker for a special purpose modal logic of interest. Here we
illustrate the approach on the familiar case of Computation Tree Logic (CTL)
[7]. Throughout this section, we assume that TS is finite and has no terminal
states.

CTL distinguishes between state formulae and path formulae. CTL state
formulae over the set AP of atomic propositions are formed according to the
following grammar

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | Eϕ | Aϕ

where a ∈ AP and ϕ is a path formula. CTL path formulae are formed according
to the following grammar

ϕ ::= XΦ | Φ1UΦ2 | GΦ

where Φ, Φ1 and Φ2 are state formulae. The satisfaction relation |= is defined
for state formula by

s |= true iff true
s |= a iff a ∈ L(s)
s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Eϕ iff π |= ϕ for some π ∈ Paths(s)
s |= Aϕ iff π |= ϕ for all π ∈ Paths(s)



where Paths(s) denote the set of maximal path fragments π starting in s. The
satisfaction relation |= for path formulae is defined by

π |= XΦ iff π[1] |= Φ
π |= Φ1UΦ2 iff ∃j ≥ 0 : (π[j] |= Φ2 ∧ (∀0 ≤ k < j : π[k] |= Φ1))
π |= GΦ iff ∀j ≥ 0 : π[j] |= Φ

where for path π = s0s1 . . . and an integer i ≥ 0, π[i] denotes the (i+1)th state
of π, i.e. π[i] = si.

The CTL model checking amounts to a recursive computation of the set
Sat(Φ) of all states satisfying Φ, which is sometimes referred to as global model
checking. The algorithm boils down to a bottom-up traversal of the abstract
syntax tree of the CTL formula Φ. The nodes of the abstract syntax tree cor-
respond to the sub-formulae of Φ, and leaves are either a constant true or an
atomic proposition a ∈ AP .

Table 2. LFP specification of satisfaction sets

define(∀s : Sattrue(s))
define(∀s : La(s) ⇒ Sata(s))
define(∀s : SatΦ1

(s) ∧ SatΦ2
(s) ⇒ SatΦ1∧Φ2

(s))
define(∀s : ¬SatΦ(s) ⇒ Sat¬Φ(s))

define(∀s : (∃s′ : T (s, s′) ∧ SatΦ(s
′)) ⇒ SatEXΦ(s))

define(∀s : (∀s′ : ¬T (s, s′) ∨ SatΦ(s
′)) ⇒ SatAXΦ(s))

define

(

(∀s : SatΦ2
(s) ⇒ SatE[Φ1UΦ2](s))∧

(∀s : SatΦ1
(s) ∧ (∃s′ : T (s, s′) ∧ SatE[Φ1UΦ2](s

′)) ⇒ SatE[Φ1UΦ2](s))

)

define

(

(∀s : SatΦ2
(s) ⇒ SatA[Φ1UΦ2](s))∧

(∀s : SatΦ1
(s) ∧ (∀s′ : ¬T (s, s′) ∨ SatA[Φ1UΦ2](s

′)) ⇒ SatA[Φ1UΦ2](s))

)

constrain

(

(∀s : SatEGΦ(s) ⇒ SatΦ(s))∧
(∀s : SatEGΦ(s) ⇒ (∃s′ : T (s, s′) ∧ SatEGΦ(s

′)))

)

constrain

(

(∀s : SatAGΦ(s) ⇒ SatΦ(s))∧
(∀s : SatAGΦ(s) ⇒ (∀s′ : ¬T (s, s′) ∨ SatAGΦ(s

′)))

)

Now let us consider the LFP specification, where for each formula Φ we
define a relation SatΦ ⊆ S characterizing states where Φ hold. The specification
is defined in Table 2. The clause for true is straightforward and says that true
holds in all states. The clause for an atomic proposition a expresses that a state
satisfies a whenever it is in La, where we assume that we have a predicate La ⊆ S



for each a ∈ AP . The clause for Φ1 ∧ Φ2 captures that a state satisfies Φ1 ∧ Φ2

whenever it satisfies both Φ1 and Φ2. Similarly a state satisfies ¬Φ if it does not
satisfy Φ. The formula for EXΦ captures that a state s satisfies EXΦ, if there is
a transition to state s′ such that s′ satisfies Φ. The formula for AXΦ expresses
that a state s satisfies AXΦ if for all states s′: either there is no transition
from s to s′, or otherwise s′ satisfies Φ. The formula for E[Φ1UΦ2] captures two
possibilities. If a state satisfies Φ2 then it also satisfies E[Φ1UΦ2]. Alternatively
if the state s satisfies Φ1 and there is a transition to a state satisfying E[Φ1UΦ2]
then s also satisfies E[Φ1UΦ2]. The formulaA[Φ1UΦ2] also captures two cases. If
a state satisfies Φ2 then it also satisfies A[Φ1UΦ2]. Alternatively state s satisfies
A[Φ1UΦ2] if it satisfies Φ1 and for all states s′ either there is no transition from
s to s′ or A[Φ1UΦ2] is valid in s′. Let us now consider the formula for EGΦ.
Since the set of states satisfying EGΦ is defined as a largest set satisfying the
semantics of EGΦ, the property is defined by means of constrain clause. The first
conjunct expresses that whenever a state satisfies EGΦ it also satisfies Φ. The
second conjunct says that if a state satisfies EGΦ then there exists a transition
to a state s′ such that s′ satisfies EGΦ. Finally let us consider the formula
for AGΦ, which is also defined in terms of constrain clause and distinguishes
between two cases. In the first one whenever a state satisfiesAGΦ, it also satisfies
Φ. Alternatively, if a state s satisfies AGΦ then for all states s′: either there is
no transition from s to s′ or otherwise s′ satisfies AGΦ.

The generation of clauses for SatΦ is performed in the postorder traversal
over Φ; hence the clauses defining sub-formulas of Φ are defined in the lower
layers. It is important to note that the specification in Table 2 is both correct
and precise. It follows that an implementation of the given specification of CTL
by means of the LFP solver constitutes a model checker for CTL.

We may estimate the worst case time complexity of model checking performed
using LFP. Consider a CTL formula Φ of size |Φ|; it is immediate that the
LFP clause has size Ø(|Φ|), and the nesting depth is at most 2. According to
Proposition 2 the worst case time complexity of the LFP specification is Ø(|S|+
|S|2|Φ|), where |S| is the number of states in the transition system. Using a more
refined reasoning than that of Proposition 2 we obtain Ø(|S| + |T ||Φ|), where
|T | is the number of transitions in the transition system. It is due to the fact
that the ”double quantifications” over states in Table 2 really correspond to
traversing all possible transitions rather than all pairs of states. Thus our LFP
model checking algorithm has the same worst case complexity as classical model
checking algorithms [2].

Example 3. As an example let us consider the Bakery mutual exclusion algo-
rithm [17]. Although the algorithm is designed for an arbitrary number of pro-
cesses, we consider the simpler setting with two processes. Let P1 and P2 be the
two processes, and x1 and x2 be two shared variables both initialized to 0. We
can represent the algorithm as an interleaving of two program graphs [2], which
are directed graphs where actions label the edges rather than the nodes. The
algorithm is as follows



'&%$ !"#1
x1:=x2+1

��'&%$ !"#2

x2=0∨x1<x2
��

¬(x2=0∨x1<x2)mm

'&%$ !"#3

x1:=0

== '&%$ !"#1
x2:=x1+1

��'&%$ !"#2

x1=0∨x2<x1
��

¬(x1=0∨x2<x1)mm

'&%$ !"#3

x2:=0

==

The variables x1 and x2 are used to resolve the conflict when both processes
want to enter the critical section. When xi is equal to zero, the process Pi is not
in the critical section and does not attempt to enter it — the other one can safely
proceed to the critical section. Otherwise, if both shared variables are non-zero,
the process with smaller “ticket” (i.e. value of the corresponding variable) can
enter the critical section. This reasoning is captured by the conditions of busy-
waiting loops. When a process wants to enter the critical section, it simply takes
the next “ticket” hence giving priority to the other process.

From the algorithm above, we can obtain a program graph corresponding to
the interleaving of the two processes, which is depicted in Figure 2.
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a11 : x1 := x2 + 1
a12 : (x2 = 0) ∨ (x1 < x2)
a13 : ¬((x2 = 0) ∨ (x1 < x2))
a14 : x1 := 0
a21 : x2 := x1 + 1
a22 : (x1 = 0) ∨ (x2 < x1)
a23 : ¬((x1 = 0) ∨ (x2 < x1))
a24 : x2 := 0

Fig. 2. Interleaved program graph.

The CTL formulation of the mutual exclusion property is AG¬(crit1∧crit2),
which states that along all paths globally it is never the case that crit1 and crit2
hold at the same time.

As already mentioned, in order to specify the problem we proceed bottom
up by specifying formulae for the sub problems. After a bit of simplification we



obtain the following LFP clauses

define(∀s : Lcrit1(s) ∧ Lcrit2(s) ⇒ Satcrit(s)),

constrain

(
(∀s : SatAG(¬crit)(s) ⇒ ¬Satcrit(s))∧
(∀s : SatAG(¬crit)(s) ⇒ (∀s′ : ¬T (s, s′) ∨ SatAG(¬crit)(s

′)))

)

where relation Lcrit1 (respectively Lcrit1) characterizes states in the interleaved
program graph that correspond to process P1 (respectively P2) being in the
critical section. Furthermore, the AGmodality is defined by means of a constrain
clause. The first conjunct expresses that whenever a state satisfies a mutual
exclusion property AG(¬crit) it does not satisfy crit. The second one states
that if a state satisfies a mutual exclusion property then all successors do as
well, i.e. for an arbitrary state, it is either not a successor or else satisfies the
mutual exclusion property.

7 Conclusions

In the paper we introduced the Layered Fixed Point Logic, which is a suitable
formalism for the specification of analysis problems. Its most prominent feature
is the direct support for both inductive as well as co-inductive specifications of
properties.

We established a Moore Family result that guarantees that there always is
a best solution for the LFP formulae. More generally this ensures that the ap-
proach taken falls within the general Abstract Interpretation framework. Other
theoretical contribution is the parametrized worst case time complexity result,
which provide a simple characterization of the running time of the LFP pro-
grams.

We developed a state-of-the-art solving algorithm for LFP, which is a con-
tinuation passing style algorithm based on OBDD representations of relations.
The solver achieves the best known theoretical complexity bounds, and for many
clauses exhibit a running time substantially lower than the worst case time com-
plexity.

We showed that the logic and the associated solver can be used for rapid pro-
totyping by presenting applications within Static Analysis, Constraint Satisfac-
tions Problems and Model Checking. In all cases the complexity result specializes
to the worst case time complexity of classical results.
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These appendices are not intended for publication and references to them
will be removed in the final version.

A Proof of Lemma 1

Proof. Reflexivity ∀̺ ∈ ∆ : ̺ ⊑ ̺.
To show that ̺ ⊑ ̺ let us take j = s. If rank(R) < j then ̺(R) = ̺(R) as
required. Otherwise if rank(R) = j and either R is a defined relation or j = 0,
then form ̺(R) = ̺(R) we get ̺(R) ⊆ ̺(R). The last case is when rank(R) = j
and R is a constrained relation. Then from ̺(R) = ̺(R) we get ̺(R) ⊇ ̺(R).
Thus we get the required ̺ ⊑ ̺.
Transitivity ∀̺1, ̺2, ̺3 ∈ ∆ : ̺1 ⊑ ̺2 ∧ ̺2 ⊑ ̺3 ⇒ ̺1 ⊑ ̺3.
Let us assume that ̺1 ⊑ ̺2 ∧ ̺2 ⊑ ̺3. From ̺i ⊑ ̺i+1 we have ji such that
conditions (a)–(d) are fulfilled for i = 1, 2. Let us take j to be the minimum of j1
and j2. Now we need to verify that conditions (a)–(d) hold for j. If rank(R) < j
we have ̺1(R) = ̺2(R) and ̺2(R) = ̺3(R). It follows that ̺1(R) = ̺3(R), hence
(a) holds. Now let us assume that rank(R) = j and either R is a defined relation
or j = 0. We have ̺1(R) ⊆ ̺2(R) and ̺2(R) ⊆ ̺3(R) and from transitivity of
⊆ we get ̺1(R) ⊆ ̺3(R), which gives (b). Alternatively rank(R) = j and R is
a constrained relation. We have ̺1(R) ⊇ ̺2(R) and ̺2(R) ⊇ ̺3(R) and from
transitivity of ⊇ we get ̺1(R) ⊇ ̺3(R), thus (c) holds. Let us now assume that
j 6= s, hence ̺i(R) 6= ̺i+1(R) for some R ∈ R and i = 1, 2. Without loss of
generality let us assume that ̺1(R) 6= ̺2(R). In case R is a defined relation we
have ̺1(R) ( ̺2(R) and ̺2(R) ⊆ ̺3(R), hence ̺1(R) 6= ̺3(R). Similarly in case
R is a constrained relation we have ̺1(R) ) ̺2(R) and ̺2(R) ⊇ ̺3(R). Hence
̺1(R) 6= ̺3(R), and (d) holds.
Anti-symmetry ∀̺1, ̺2 ∈ ∆ : ̺1 ⊑ ̺2 ∧ ̺2 ⊑ ̺1 ⇒ ̺1 = ̺2.
Let us assume ̺1 ⊑ ̺2 and ̺2 ⊑ ̺1. Let j be minimal such that rank(R) = j
and ̺1(R) 6= ̺2(R) for some R ∈ R. If j = 0 or R is a defined relation, then
we have ̺1(R) ⊆ ̺2(R) and ̺2(R) ⊆ ̺1(R). Hence ̺1(R) = ̺2(R) which is a
contradiction. Similarly if R is a constrained relation we have ̺1(R) ⊇ ̺2(R) and
̺2(R) ⊇ ̺1(R). It follows that ̺1(R) = ̺2(R), which again is a contradiction.
Thus it must be the case that ̺1(R) = ̺2(R) for all R ∈ R. ⊓⊔

B Proof of Lemma 2

Proof. First we prove that
d
M is a lower bound of M ; that is

d
M ⊑ ̺ for all

̺ ∈ M . Let j be maximum such that ̺ ∈ Mj; since M = M0 and Mj ⊇ Mj+1

clearly such j exists. From definition of Mj it follows that (
d
M)(R) = ̺(R) for

all R with rank(R) < j; hence (a) holds.
If rank(R) = j and either R is a defined relation or j = 0 we have (

d
M)(R) =

⋂
{̺′(R) | ̺′ ∈ Mj} ⊆ ̺(R) showing that (b) holds.

Similarly, if R is a constrained relation with rank(R) = j we have (
d

M)(R) =
⋃
{̺′(R) | ̺′ ∈ Mj} ⊇ ̺(R) showing that (c) holds.



Finally let us assume that j 6= s; we need to show that there is some R with
rank(R) = j such that (

d
M)(R) 6= ̺(R). Since we know that j is maximum

such that ̺ ∈ Mj , it follows that ̺ /∈ Mj+1, hence there is a relation R with
rank(R) = j such that (

d
M)(R) 6= ̺(R); thus (d) holds.

Now we need to show that
d
M is the greatest lower bound. Let us assume that

̺′ ⊑ ̺ for all ̺ ∈ M , and let us show that ̺′ ⊑
d
M . If ̺′ =

d
M the result

holds vacuously, hence let us assume ̺′ 6=
d
M . Then there exists a minimal j

such that (
d
M)(R) 6= ̺′(R) for some R with rank(R) = j. Let us first consider

R such that rank(R) < j. By our choice of j we have (
d

M)(R) = ̺′(R) hence
(a) holds.
Next assume that rank(R) = j and either R is a defined relation of j = 0. Then
̺′ ⊑ ̺ for all ̺ ∈ Mj. It follows that ̺′(R) ⊆ ̺(R) for all ̺ ∈ Mj. Thus we
have ̺′(R) ⊆

⋂
{̺(R) | ̺ ∈ Mj}. Since (

d
M)(R) =

⋂
{̺(R) | ̺ ∈ Mj}, we have

̺′(R) ⊆ (
d

M)(R) which proves (b).
Now assume rank(R) = j and R is a constrained relation. We have that ̺′ ⊑ ̺
for all ̺ ∈ Mj. Since R is a constrained relation it follows that ̺′(R) ⊇ ̺(R)
for all ̺ ∈ Mj . Thus we have ̺′(R) ⊇

⋃
{̺(R) | ̺ ∈ Mj}. Since (

d
M)(R) =

⋃
{̺(R) | ̺ ∈ Mj}, we have ̺′(R) ⊇ (

d
M)(R) which proves (c).

Finally since we assumed that (
d

M)(R) 6= ̺′(R) for some R with rank(R) = j,
it follows that (d) holds. Thus we proved that ̺′ ⊑

d
M . ⊓⊔

C Proof of Proposition 1

In order to prove Proposition 1 we first state and prove two auxiliary lemmas.

Definition 7. We introduce an ordering ⊆/j defined by ̺1 ⊆/j ̺2 if and only if

– ∀R : rank(R) < j ⇒ ̺1(R) = ̺2(R)
– ∀R : rank(R) = j ⇒ ̺1(R) ⊆ ̺2(R)

Lemma 3. Assume a condition cond occurs in clj, and let ς be a valuation of
free variables in cond. If ̺1 ⊆/j ̺2 and (̺1, ς) |= cond then (̺2, ς) |= cond.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the condition cond occurring in clj.
Case: cond = R(x)
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= R(x)

From Table 1 it follows that

JxK([ ], ς) ∈ ̺1(R)

Depending of the rank of R we have two sub-cases.
(1) Let rank(R) < j, then from Definition 7 we know that ̺1(R) = ̺2(R) and
hence

JxK([ ], ς) ∈ ̺2(R)



Which according to Table 1 is equivalent to

(̺2, ς) |= R(x)

(2) Let us now assume rank(R) = j, then from Definition 7 we know that
̺1(R) ⊆ ̺2(R) and hence

JxK([ ], ς) ∈ ̺2(R)

which is equivalent to

(̺2, ς) |= R(x)

and finishes the case.
Case: cond = ¬R(x)
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= ¬R(x)

From Table 1 it follows that

JxK([ ], ς) /∈ ̺1(R)

Since rank(R) < j, then from Definition 7 we have ̺1(R) = ̺2(R) and hence

JxK([ ], ς) /∈ ̺2(R)

Which according to Table 1 is equivalent to

(̺2, ς) |= ¬R(x)

Case: cond = cond1 ∧ cond2
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= cond1 ∧ cond2

From Table 1 it follows that

(̺1, ς) |= cond1 and (̺1, ς) |= cond2

The induction hypothesis gives

(̺2, ς) |= cond1 and (̺2, ς) |= cond2

Hence we have

(̺2, ς) |= cond1 ∧ cond2

Case: cond = cond1 ∨ cond2
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= cond1 ∨ cond2

From Table 1 it follows that

(̺1, ς) |= cond1 or (̺1, ς) |= cond2



The induction hypothesis gives

(̺2, ς) |= cond1 or (̺2, ς) |= cond2

Hence we have
(̺2, ς) |= cond1 ∨ cond2

Case: cond = ∃x : cond’
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= ∃x : cond’

From Table 1 it follows that

∃a ∈ U : (̺1, ς [x 7→ a]) |= cond’

The induction hypothesis gives

∃a ∈ U : (̺2, ς [x 7→ a]) |= cond’

Hence from Table 1 we have

(̺2, ς) |= ∃x : cond’

Case: cond = ∀x : cond’
Assume ̺1 ⊆/j ̺2 and

(̺1, ς) |= ∀x : cond’

From Table 1 it follows that

∀a ∈ U : (̺1, ς [x 7→ a]) |= cond’

The induction hypothesis gives

∀a ∈ U : (̺2, ς [x 7→ a]) |= cond’

Hence from Table 1 we have

(̺2, ς) |= ∀x : cond’

⊓⊔

Lemma 4. If ̺ =
d
M and (̺′, ζ, ς) |= clj for all ̺′ ∈ M then (̺, ζ, ς) |= clj.

Proof. We proceed by induction on j and in each case perform a structural
induction on the form of the clause cl occurring in clj .
Case: clj = define(cond ⇒ R(u))
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= cond ⇒ R(u) (1)

Let us also assume
(̺, ς) |= cond



Since ̺ =
d
M we know that

∀̺′ ∈ M : ̺ ⊑ ̺′ (2)

Let R′ occur in cond. We have two possibilities; either rank(R′) = j and R′ is
a defined relation, then from (2) if follows that ̺(R′) ⊆ ̺′(R′). Alternatively
rank(R′) < j and from (2) it follows that ̺(R′) = ̺′(R′). Hence from Definition
7 we have that ̺ ⊆/j ̺

′. Thus from Lemma 3 it follows that

∀̺′ ∈ M : (̺′, ς) |= cond

Hence from (1) we have

∀̺′ ∈ M : (̺′, ζ, ς) |= R(u)

Which from Table 1 is equivalent to

∀̺′ ∈ M : JuK(ζ, ς) ∈ ̺′(R)

It follows that
JuK(ζ, ς) ∈

⋃

{̺′(R) | ̺′ ∈ M} = ̺(R)

Which from Table 1 is equivalent to

(̺, ζ, ς) |= R(u)

and finishes the case.
Case: clj = define(def1 ∧ def2)
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= def1 ∧ def2

From Table 1 we have that for all ̺′ ∈ M

(̺′, ζ, ς) |= def1 and (̺′, ζ, ς) |= def2

The induction hypothesis gives

(̺, ζ, ς) |= def1 and (̺, ζ, ς) |= def2

Hence from Table 1 we have

(̺, ζ, ς) |= def1 ∧ def2

Case: clj = define(∀x : def)
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= ∀x : def (3)

From Table 1 we have that

̺′ ∈ M : ∀a ∈ U : (̺′, ζ, ς [x 7→ a]) |= def



Thus
∀a ∈ U : ̺′ ∈ M : (̺′, ζ, ς [x 7→ a]) |= def

The induction hypothesis gives

∀a ∈ U : (̺, ζ, ς [x 7→ a]) |= def

Hence from Table 1 we have

(̺, ζ, ς) |= ∀x : def

Case: clj = constrain(R(u) ⇒ cond)
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= R(u) ⇒ cond (4)

Let us also assume
(̺, ζ, ς) |= R(u)

From Table 1 it follows that

JuK(ζ, ς) ∈
⋃

{̺′(R) | ̺′ ∈ M}

Thus there is some ̺′ ∈ M such that

JuK(ζ, ς) ∈ ̺′(R)

From (4) it follows that
(̺′, ς) |= cond

Since ̺ =
d
M we know that

∀̺′ ∈ M : ̺ ⊑ ̺′ (5)

Let R′ occur in cond. We have two possibilities; either rank(R′) = j and R′ is a
constrained relation, then from (5) if follows that ̺(R′) ⊇ ̺′(R′). Alternatively
rank(R′) < j and from (5) it follows that ̺(R′) = ̺′(R′). Hence from Definition
7 we have that ̺′ ⊆/j ̺. Thus from Lemma 3 it follows that

(̺, ς) |= cond

which finishes the case.
Case: clj = constrain(con1 ∧ con2)
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= con1 ∧ con2

From Table 1 we have that for all ̺′ ∈ M

(̺′, ζ, ς) |= con1 and (̺′, ζ, ς) |= con2

The induction hypothesis gives

(̺, ζ, ς) |= con1 and (̺, ζ, ς) |= con2



Hence from Table 1 we have

(̺, ζ, ς) |= con1 ∧ con2

Case: clj = constrain(∀x : con)
Assume

∀̺′ ∈ M : (̺′, ζ, ς) |= ∀x : con (6)

From Table 1 we have that

̺′ ∈ M : ∀a ∈ U : (̺′, ζ, ς [x 7→ a]) |= con

Thus
∀a ∈ U : ̺′ ∈ M : (̺′, ζ, ς [x 7→ a]) |= con

The induction hypothesis gives

∀a ∈ U : (̺, ζ, ς [x 7→ a]) |= con

Hence from Table 1 we have

(̺, ζ, ς) |= ∀x : con

⊓⊔

Proposition 1: Assume cls is a stratified LFP formula, ς0 and ζ0 are interpreta-
tions of the free variables and function symbols in cls, respectively. Furthermore,
̺0 is an interpretation of all relations of rank 0. Then {̺ | (̺, ζ0, ς0) |= cls∧∀R :
rank(R) = 0 ⇒ ̺(R) ⊇ ̺0(R)} is a Moore family.

Proof. The result follows from Lemma 4. ⊓⊔

D Proof of Proposition 2

Proposition 2: For a finite universe U , the best solution ̺ such that ̺0 ⊑ ̺ of
a LFP formula cl1, . . . , cls (w.r.t. an interpretation of the constant symbols) can
be computed in time

O(|̺0|+
∑

1≤i≤s

|cli||U|
ki)

where ki is the maximal nesting depth of quantifiers in the cli and |̺0| is the
sum of cardinalities of predicates ̺0(R) of rank 0. We also assume unit time
hash table operations (as in [19]).

Proof. Let cli be a clause corresponding to the i-th layer. Since cli can be either
a define clause, or a constrain clause, we have two cases.

Let us first assume that cli = define(def); the proof proceed in three phases.
First we transform def to def’ by replacing every universal quantification ∀x :
defcl by the conjunction of all |U| possible instantiations of defcl , every existential
quantification ∃x : cond by the disjunction of all |U| possible instantiations of



cond and every universal quantification ∀x : cond by the conjunction of all |U|
possible instantiations of cond. The resulting clause def’ is logically equivalent
to def and has size

Ø(|U|k|def|) (7)

where k is the maximal nesting depth of quantifiers in def. Furthermore, def’ is
boolean, which means that there are no variables or quantifiers and all literals
are viewed as nullary predicates.

In the second phase we transform the formula def’, being the result of the
first phase, into a sequence of formulas def” = def’1, . . . , def’l as follows. We first
replace all top-level conjunctions in def’ with ”,”. Then we successively replace
each formula by a sequence of simpler ones using the following rewrite rule

cond1 ∨ cond2 ⇒ R(u) 7→ cond1 ⇒ Qnew, cond2 ⇒ Qnew, Qnew ⇒ R(u)

where Qnew is a fresh nullary predicate that is generated for each application
of the rule. The transformation is completed as soon as no replacement can be
done. The conjunction of the resulting define clauses is logically equivalent to
def’.

To show that this process terminates and that the size of def” is at most
a constant times the size of the input formula def’ , we assign a cost to the
formulae. Let us define the cost of a sequence of clauses as the sum of costs of
all occurrences of predicate symbols and operators (excluding ”,”). In general,
the cost of a symbol or operator is 1 except disjunction that counts 6. Then the
above rule decreases the cost from k + 7 to k + 6, for suitable value of k. Since
the cost of the initial sequence is at most 6 times the size of def, only a linear
number of rewrite steps can be performed. Since each step increases the size at
most by a constant, we conclude that the def” has increased just by a constant
factor. Consequently, when applying this transformation to def’, we obtain a
boolean formula without sharing of size as in (7).

The third phase solves the system that is a result of phase two, which can
be done in linear time by the classical techniques of e.g. [10].

Let us now assume that the cli = constrain(con). We begin by transform-
ing con into a logically equivalent (modulo fresh predicates) define clause. The
transformation is done by function fi defined as

fi(constrain(con)) = define(g(con)), define(hi(con))

g(∀x : con) = ∀x : g(con)
g(con1 ∧ con2) = g(con1) ∧ g(con2)

g(R(u) ⇒ cond) = (¬cond[R∁(u)/¬R(u)] ⇒ R∁(u))

hi(∀x : con) = ∀x : hi(con)
hi(con1 ∧ con2) = hi(con1) ∧ hi(con2)
hi(R(u) ⇒ cond) = let cond’ = cond[true/(R′(v) | rank(R′) = i)] in

cond’ ∧ ¬R∁(u) ⇒ R(u)



where R∁ is a new predicate corresponding to the complement of R. The size of
the formula increases by a number of constraint predicates; hence the size of the
input formula is increased by a constant factor. Then the proof proceeds as in
case of define clause.

The three phases of the transformation result in the sequence of define clauses
of size

Ø(
∑

1≤i≤s

|cli||U|
ki)

which can then be solved in linear time. We also need to take into account the
size of the initial knowledge i.e. the cardinality of all predicates of rank 0; thus
the overall worst case complexity is

Ø(|̺0|+
∑

1≤i≤s

|cli||U|
ki)

⊓⊔
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