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Abstract
Copyless messaging is a communication mechanism in which only
pointers to messages are exchanged between sender and receiver
processes. Because of its intrinsically low overhead, copyless mes-
saging can be profitably adopted for the development of complex
software systems where processes have access to a shared address
space. However, the very same mechanism fosters the proliferation
of programming errors due to the explicit use of pointers and to the
sharing of data. In this paper we study a type discipline for copy-
less messaging that, together with some minimal support from the
runtime system, is able to guarantee the absence of communication
errors, memory faults, and memory leaks in presence of exceptions.
To formalize the semantics of processes we draw inspiration from
software transactional memories: in our case a transaction is a pro-
cess that is meant to accomplish some exchange of messages and
that should either be executed completely, or should have no ob-
servable effect if aborted by an exception.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Control primitives,
Type structure; D.3.3 [Programming Languages]: Language Con-
structs and Features; F.1.2 [Computation by Abstract Devices]:
Modes of Computation—Parallelism and concurrency

General Terms Languages, Theory

1. Introduction
Communication has become a central aspect of all modern software
systems, which range from distributed processes connected by wide
area networks down to collections of threads running on different
cores within the same processing unit. In all these scenarios, mes-
sage passing is a flexible paradigm that allows autonomous entities
to exchange information and to synchronize with each other. The
term “message passing” seems to suggest a paradigm where mes-
sages move from one entity to another, although more often than not
messages are in fact copied during communication. While this is in-
evitable in a distributed setting, the availability of a shared address
space makes it possible to implement a copyless form of message
passing, whereby only pointers to messages are exchanged.

The Singularity Operating System (Singularity OS for short) [10,
11] is a notable example of a system that heavily relies on the copy-
less paradigm. In Singularity OS, processes have access to a shared
region called the exchange heap that is explicitly managed (for
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practical reasons, objects on the exchange heap cannot be garbage
collected, but must be explicitly allocated and deallocated by pro-
cesses). Inter-process communication solely occurs by means of
message passing over channels allocated on the exchange heap and
messages are themselves pointers to the exchange heap.

The copyless paradigm has obvious performance advantages
over more conventional forms of message passing. At the same
time, it fosters the proliferation of subtle programming errors aris-
ing from the explicit management of objects and the sharing of
data. For this reason the designers of Singularity OS have equipped
Sing#, the programming language used for the development of Sin-
gularity OS, with explicit constructs, types, and static analysis tech-
niques to assist programmers in writing code that is free from a
number of programming errors, including: memory faults (the ac-
cess to unallocated/deallocated objects in the heap); memory leaks
(the accumulation of unreachable allocated objects in the heap);
communication errors, which could cause the abnormal termina-
tion of processes and trigger the previous kinds of errors.

Earlier works [1, 5, 12, 13] have studied and formalized some
aspects of Sing#. In particular, in [1] it was shown that Sing# chan-
nel contracts can be conveniently represented as a variant of session
types [8, 9], and that the information given by session types along
with a linear type discipline can prevent memory leaks, memory
faults, and communication errors. In the present paper we focus
on exception handling. In particular, we contribute an extension of
Sing# types together with an enhancement in the semantics of ex-
ception handling to prevent the aforementioned programming er-
rors even in presence of exceptions, if suitable exception handlers
are provided. Copyless messaging and exceptions are at odds with
each other: on the one hand, copyless messaging requires a very
disciplined and controlled access to memory; on the other hand,
exceptions are in general unpredictable and disrupt the normal con-
trol flow of programs. Consequently, and perhaps not surprisingly,
these two aspects can be reconciled only with some native support
from the runtime system.

Structure of the paper. Section 2 illustrates the problem we are
attacking and informally sketches our solution in terms of types and
a revised exception handling construct. In Section 3 we formally
define the syntax and the semantics of a language of processes to
model Sing# programs. The section ends with the definition of well-
behaved processes, namely of those processes in which memory
faults, memory leaks, and communication errors do not occur. Sec-
tion 4 develops a type system for the process language presented in
Section 3 and shows its soundness (well-typed processes are well
behaved). Section 5 discusses similarities and differences between
the present work and related ones. Section 6 concludes with a brief
summary of the work and hints at possible extensions of the type
system, in light of the common pattern usage of exception handling
mechanisms as found in the source code of Singularity OS. Appen-
dices A and B contain additional technical material and the proofs
of the presented results.



1 void GetNextDiskPath(out string! diskName,
2 out SPContract.Exp! expService) {
3 DSContract.Imp:Ready ns = DS.NewClientEndpoint();
4 try {
5 while (true) {
6 SPContract.Imp! imp;
7 SPContract.Exp! exp;
8 SPContract.NewChannel(out imp, out exp);
9 diskName = pathPrefix + nextDiskNumber.ToString();

10 ns.SendRegister(Bitter.FromString2(diskName), imp);
11 switch receive {
12 case ns.AckRegister():
13 nextDiskNumber++;
14 expService = exp;
15 return;
16 case ns.NakRegister(nakImp, error):
17 if (error == ErrorCode.AlreadyExists)
18 nextDiskNumber++;
19 else
20 throw new Exception(error);
21 delete exp;
22 delete nakImp;
23 break;
24 }
25 }
26 } finally {
27 delete ns;
28 }
29 }

Figure 1. Example of Sing# function.

2. Motivating Example
To introduce the context in which we operate and the kind of
problems we have to face let us take a look at a real fragment of
Singularity OS. In the discussion that follows it is useful to keep in
mind that Singularity channels consist of pairs of related endpoints,
called the peers of the channel. Messages sent over one peer are
received from the other peer, and vice versa. Each peer is associated
with a FIFO buffer containing the messages sent to that peer that
have not been received yet.

Figure 1 shows a Sing# function that computes the name for a
newly allocated RAM disk.1 The function has two output parame-
ters, the computed disk name and the endpoint that links the disk
to the DirectoryService (abbreviated DS in the code) which is
part of the file system manager. The function begins by retriev-
ing an endpoint ns for communicating with DirectoryService
(line 3). Then the function repeatedly creates a new channel, rep-
resented as the peer endpoints imp and exp (lines 6–8), computes
a new disk name (line 9), and tries to register the chosen name
along with imp to DirectoryService through ns (line 10). The
switch receive construct (lines 11–24) is used to receive mes-
sages and to dispatch the control flow to various cases depending
on the kind of message that is received. Each case block specifies
the endpoint from which a message is expected and the tag of the
message. In this example, one of two kinds of messages are ex-
pected from the ns endpoint: either an AckRegister-tagged mes-
sage (lines 12–15) or a NakRegister-tagged message (lines 16–
23). In the first case the registration is successful (line 12), so the
output parameter expService is properly initialized and the func-
tion terminates correctly (line 15). In the second case the registra-

1 This function has been taken from ./Services/RamDisk/
ClientManager/RamDiskClientManager.sg in the Singularity OS
source code available at http://www.codeplex.com/singularity/.
Here we have shortened some identifiers to fit the available space.

contract DSContract {
out message Success();
in message Register(char[]! in ExHeap path,

SPContract.Imp:Start! imp);
out message AckRegister();
out message NakRegister(SPContract.Imp:Start imp,

ErrorCode error);

// ...more message types

state Start : one { Success! → Ready; }

state Ready : one {
Register? → DoRegister;
CreateDirectory? → ...
// ...more transitions

}

state DoRegister : one {
AckRegister! → Ready;
NakRegister! → Ready;

}
}

Figure 2. Example of Sing# contract.

tion is unsuccessful (line 16), hence a new registration is attempted
if the error is recoverable (lines 17–18), otherwise an exception is
thrown to abort the execution of the function (line 20). The main
loop (lines 5–25) is protected within a try block with a finally
clause that is executed regardless of whether the function termi-
nates correctly or not. In the example, the clause deallocates the ns
endpoint (line 27).

Sing# uses channel contracts to detect communication errors.
Figure 2 shows (part of) the DSContract contract associated with
endpoint ns in Figure 1. A contract is made of message spec-
ifications and of states connected by transitions. Each message
specification begins with the message keyword and is followed
by the tag of the message and the type of its arguments. In Fig-
ure 2, DSContract defines the Register message with two ar-
guments (a string and another endpoint) and the AckRegister
message with no arguments. The in and out qualifiers specify
the direction of messages from the point of view of the process
exporting the contract. The state of the contract gives informa-
tion about which messages can be sent/received at every given
point in time. In DSContract we have a Ready state from which
Register, CreateDirectory, and other (here omitted) messages
can be received. After receiving a Register message, the contract
moves to state DoRegister, from which one of AckRegister or
NakRegister messages can be sent, and then the contract goes
back to the Ready state. In fact, each contract has two complemen-
tary views – called exporting and importing views – which are as-
sociated with the two peer endpoints of the channel. By convention,
a contract declaration like that in Figure 2 specifies the exporting
view of the contract: a provider of DSContract must adhere to its
exporting view. On the contrary, the function GetNextDiskPath in
Figure 1 acts as a consumer of DSContract, therefore the function
performs complementary actions by sending a Register message
and then waiting for either an AckRegister or a NakRegister
message. In the code, the importing and exporting views corre-
spond to the types obtained by appending .Imp and .Exp suffixes
to the name of the contract. For example, the declaration on line 3
specifies that ns is an endpoint having as type the importing view of
DSContract in state Ready. After line 10, the type associated with
ns changes to DSContract.Imp:DoRegister and then it goes

./Services/RamDisk/ClientManager/RamDiskClientManager.sg
./Services/RamDisk/ClientManager/RamDiskClientManager.sg
http://www.codeplex.com/singularity/


back to DSContract.Imp:Ready after any of the receive opera-
tions on lines 12 and 16. Note that the changes in the state of the
contract associated with ns (and therefore of the type of ns) are not
explicit in the source code. They follow from the initial declaration
that brings ns into scope (line 3) and from the way ns is used in the
function. By keeping track of the contract state of ns, the compiler
can statically check that the actions performed on ns (for sending
and receiving messages) match corresponding co-actions (for re-
ceiving and sending) performed on its peer endpoint, which is in
use by some other process in the system.

The code structure in Figure 1, involving channel allocation and
deallocation, messaging, delegation (sending endpoints over other
endpoints), and exception handling, is in fact typical throughout the
whole Singularity OS and shows that these aspects are frequently
mixed in non-trivial ways. We can identify two main problems
caused by exceptions:

(1) Since communication errors are prevented by the comple-
mentarity of actions performed by processes accessing peer end-
points, a sudden jump in the control flow of one of these processes,
like that caused by an exception, may disrupt the alignment of the
two peers of a channel and compromise the correctness of subse-
quent interactions. Therefore, exceptions cannot be handled locally
within a single try block, but must be propagated to all the pro-
cesses affected so that they can move in a coordinated way to a
new stage of the interaction.

(2) Messages that have been sent but not yet received and
other objects allocated since the beginning of a try block cannot
be simply forgotten if an exception is thrown, for they would
immediately turn into memory leaks. In general, it is necessary
to keep track of the allocated memory and of all the messages
that have been circulating since the beginning of a try block so
that these are properly deallocated or moved back to their original
owner in case an exception is thrown.

Sing# provides limited and not fully satisfactory solutions for
these problems. Regarding the first one, Sing# compensates the
lack of a coordinated recovery for the processes affected by an
exception by means of dynamic typing: endpoints have an InState
method through which it is possible to query, at runtime, the actual
state of an endpoint. This information can be used to attempt
recovery from a possibly inconsistent state of the endpoints. The
second problem seems to have been neglected. For example, the
function in Figure 1 is prone to leak memory on line 20 in case
the exception is thrown, since neither exp nor nakImp are properly
deallocated. In this example it would suffice to move the delete
instructions on lines 21 and 22 between lines 16 and 17 but, in
general, it may be impossible to identify the exact point where an
exception can be thrown and therefore when it is appropriate to
deallocate resources. At the same time it is unreasonable to require
the code in the exception handler to take care of deallocations, if
only because the handler may not be in the scope of these resources:
in the example, exp and nakImp are not visible in finally block
so, by the time the exception has been thrown, it is too late to
prevent the leak.

In the present paper we put forward an alternative solution that
combines static analysis (inspired by existing works on exception
handling for sessions [2, 3]) and a transaction-like, all-or-nothing
semantics of try blocks: either a try block is executed completely
by all processes affected, and then its effects are committed and
become permanent, or its execution is aborted by an exception and
the state of the affected processes is restored to the one they had at
the beginning of the try block, except that control is passed to their
exception handlers. To keep the cost of state restoration reasonable,
we devise the following mechanisms:

(A) We decorate try blocks with the set of endpoints used
in them and we synchronize the initiation of these blocks so that

P ::= Process
done (inaction)

| open(a,a).P (open channel)
| close(u).P (close endpoint)
| u!m(u).P (send)
| ∑i∈I u?mi(xi).Pi (receive)
| P⊕P (conditional)
| P |P (parallel)
| try(U) {P}P (initiate transaction)
| throw (exception)
| commit(U).P (commit transaction)
| X〈ũ〉 (invocation)

D ::= Definition
X(ũ) def

= P (rule)

Table 1. Syntax of processes and definitions.

any message sent through one of these endpoints will be received
from another endpoint from the same set. In this way, we identify
a (small) portion of the heap that needs to be restored in case an
exception is thrown.

(B) Inside try blocks, we “seal” the type of any endpoint that
is not in the decoration of the block and we forbid processes to
use endpoints with a sealed type. In this way, the type system
can statically ensure that well-typed processes do not modify any
portion of the heap outside the restorable one.

(C) We forbid the deallocation of endpoints inside try blocks,
unless they have been allocated within the very same block. In
this way, state restoration does not involve reallocations, which are
difficult to implement correctly.

To prevent memory leaks, we need to dynamically keep track
of the memory allocated within a try block so that this memory is
properly reclaimed in case an exception is thrown. It is unsafe to
deallocate an endpoint if its peer is not deallocated simultaneously:
mechanism (A) guarantees that these deallocations are safe even if
the type of these endpoints would not normally allow it.

3. Language
Syntax. We assume given an infinite set Pointers ranged over by
a, b, . . . representing heap addresses and an infinite set Variables
ranged over by x, y, . . . . We let names u, v, . . . range over elements
of Pointers∪Variables. We use A, B, . . . to denote sets of pointers,
U to denote sets of names, and ũ, ṽ to denote sequences of names
(we will sometimes use ũ to denote also the set of names in ũ).
Process variables are ranged over by X , Y , . . . .

Processes are defined by the grammar in Table 1. The term
done denotes the idle process that performs no action. The term
open(a,b).P denotes a process that allocates a new channel, repre-
sented as the two peer endpoints a and b, in the heap and continues
as P. The term u!m(v).P denotes a process that sends the message
m(v) on the endpoint u and then continues as P. A message is made
of a tag m and an argument v. The term ∑i∈I u?mi(xi).Pi denotes
a process that waits for a message from endpoint u. According to
the tag mi of the received message, the variable xi is instantiated
with the argument of the message in the continuation process Pi.
We assume that the set I is always finite and non-empty. The term
P⊕Q denotes a process that nondeterministically decides to be-
have as either P or Q, while the term P |Q denotes the standard
parallel composition of P and Q. The term try(U) {Q}P denotes a
process willing to initiate a transaction involving the endpoints U .
The process P is the body of the transaction and is executed when
the transaction is initiated, while Q is the handler of the transaction



GetNextDiskPath(DS,ret) def
=

DS?NewClientEndpoint(ns).
try(ns) {Finally〈ns,DS,ret〉}Loop〈ns,DS,ret〉

Loop(ns,DS,ret) def
=

open(imp,exp).ns!Register(imp).
ns?AckRegister().commit(ns).

ret!SetService(exp).Finally〈ns,DS,ret〉
+ns?NakRegister(nakImp).

throw⊕close(exp).close(nakImp).
Loop〈ns,DS,ret〉

Finally(ns,DS,ret) def
= close(ns).ret!Result(DS).close(ret)

Figure 3. Encoding of the function in Figure 1.

which is executed if the transaction is aborted during the execution
of the body. The term throw denotes the throwing of an exception,
whose effect is to abort the currently running transaction and to ex-
ecute its handler. The term commit(U).P denotes a process willing
to terminate the currently running transaction (involving the end-
points U). As soon as the transaction has ended, the process con-
tinues as P. The term X〈ũ〉 denotes the invocation of the process
associated with the process variable X . We assume to work with a
global environment of process definitions of the form

X(ũ) def
= P

defining these associations.
The binders of the language are open(a,b).P, which binds a

and b in P, the input prefix u?m(x).P, which binds x in P, and
X(ũ) def

= P which binds the names ũ in P. The formal definitions of
free and bound names of a process P, respectively denoted by fn(P)
and bn(P), can be found in Table 8 of Appendix A. We identify
processes modulo alpha renaming of bound names.

Syntactic conventions. We adopt some standard conventions re-
garding the syntax of processes: we sometimes use an infix form
for receive operations and write, for example u1?m1(x1).P1 + · · ·+
un?mn(xn).Pn instead of ∑i=1..n ui?mi(xi).Pi; we omit message ar-
guments when they are not used; we sometimes use a prefix form
for parallel compositions and write, for example, ∏i=1..n Pi instead
of P1 | · · · |Pn; we identify done with ∏i∈ /0 Pi and we omit trailing
occurrences of done.

To ease the formalization, our process language sports a min-
imal set of critical features: we focus only on monadic messag-
ing (messages have exactly one endpoint argument) and exception
handling, disregarding other constructs and data types of Sing#;
we assume that receive operations use the same endpoint in every
branch, forbidding processes like u?a(x).P+ v?b(y).Q which are
allowed by the switch receive construct in Sing#; we work with
a purely prefix-based language without sequential composition, en-
coding try-catch-finally blocks in Sing# with transaction bod-
ies and handlers and commit processes within bodies; we assume
there is only one kind of exception which is implicitly thrown by a
throw process, whereas Sing# supports multiple kinds. We claim
that none of the choices we have made affects the results presented
hereafter in a significant way.

Example 3.1. Figure 3 shows the encoding of the function in
Figure 1 using the syntax of our process language. The structure
of the process follows quite closely that of the function, except for
some details which we explain here.

µ ::= Heap
/0 (empty heap)

| a 7→ [a,Q] (endpoint structure)
| µ,µ (heap composition)

Q ::= Queue
ε (empty queue)

| m(a) (message)
| Q :: Q (queue composition)

P ::= Runtime process
· · · (as in Table 1)

| 〈A,A,{P}P〉 (running transaction)

Table 2. Syntax of heaps, queues, and runtime processes.

The loop on lines 5–25 is encoded as a recursive process Loop
parameterized on its free names. The finally block on lines 26–
28 is factored out as a named process Finally, since it must be ex-
ecuted regardless of whether the try block is terminated success-
fully (line 15) or not (line 20). Consequently, Finally is invoked
twice in the encoding.

The main difference between the function Figure 1 and its en-
coding concerns parameter passing, which is encoded using explicit
communication on the ret endpoint. In particular, the initialization
of expService with exp on line 14 corresponds to the output op-
eration ret!SetService(exp) in Figure 3.

Finally, note that in Figure 1 the function uses a free name DS for
accessing a system service. In the encoding we explicitly mention
DS as a parameter of the GetNextDiskPath process, implying that
its ownership is transferred to GetNextDiskPath upon invocation.
To preserve the linear usage of resources (of DS in this case), the
Finally process sends DS back on ret before ret is closed (a more
detailed example of ownership transfer can be found in [1]). �

Operational semantics. In order to describe the operational se-
mantics of processes, we need to represent the heap where channels
are allocated and through which messages are exchanged. Indeed,
channels are accessed through the pointers to their endpoints and
message arguments are themselves pointers to heap objects. Intu-
itively, a heap µ is a finite map from pointers a to endpoint struc-
tures [b,Q], where b is the peer endpoint of a and Q is the queue of
messages waiting to be received from a. In the model, we represent
heaps and message queues as terms generated by the grammar in
Table 2. The term /0 denotes the empty heap, in which no endpoints
are allocated. The term a 7→ [b,Q] denotes an endpoint allocated at
a pointing to the endpoint structure [b,Q]. The term µ,µ ′ denotes
the composition of the heaps µ and µ ′. We write dom(µ) for the
domain of the heap µ , that is the set of pointers for which there is
an allocated endpoint structure. The heap composition µ,µ ′ is well
defined provided that dom(µ)∩dom(µ ′) = /0 (there cannot be two
endpoint structures allocated at the same address). In the following,
we work modulo commutativity and associativity of heap compo-
sition and assume that /0 is neutral with respect to composition. We
write a 7→ [b,Q] ∈ µ to indicate that the endpoint structure [b,Q] is
allocated at location a in µ .

Message queues, ranged over by Q, are also represented as
terms: ε denotes the empty queue, m(c) is a queue made of an m-
tagged message with argument c, and Q :: Q′ is the queue compo-
sition of Q and Q′. We identify queues modulo associativity of ::
and we assume that ε is neutral for ::.

Before defining the operational semantics of processes we for-
malize two notions. The first one is that of peer endpoints:



Definition 3.1 (peer endpoints). We say that a and b are peer
endpoints in µ , written a

µ←→ b, if a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈
µ .

The notion of “closed scope” that we mentioned in the introduc-
tion is formalized as a predicate on sets of pointers:

Definition 3.2 (balanced set of pointers). We say that A⊆ dom(µ)

is balanced in µ , written µ-balanced(A), if, for every a∈ A, a
µ←→ b

implies b ∈ A.

In words, A is balanced if for every a in A, the peer of a is also
in A provided that it is still allocated. Since a message sent over a
ends up in the queue of its peer, this means that any communication
occurring on one of the endpoints in A remains within the scope
identified by A.

In the operational semantics of processes, we need to distin-
guish between a transaction that has not started yet (and which
is represented using the try construct of Table 1), and a running
transaction. This need arises for two reasons: First, a running trans-
action generally involves more than one process, each with its own
handler. Therefore, it is technically convenient to devise an explicit
construct that defines the scope of the transaction. Second, it is nec-
essary to keep track of the part of the heap that has been allocated
since the initiation of the transaction. Table 2 extends the syntax of
processes with the term 〈A,B,{Q}P〉where A is the set of endpoints
involved in the transaction, B is the set of endpoints that have been
allocated since the transaction has started, and P and Q respectively
represent the (residual) body and the handler of the transaction. In
general, P and Q will be parallel compositions of the bodies and
the handlers of the processes that have cooperatively initiated the
transaction.

The operational semantics of processes is defined in terms of
a structural congruence over processes (identifying structurally
equivalent processes) and a reduction relation. Structural congru-
ence is the least relation including alpha conversion and the laws
in Table 3, stating that parallel composition is commutative, as-
sociative, and has done as neutral element. As process interaction
mostly occurs through the heap, the reduction relation describes the
evolution of configurations µ # P rather than of processes alone, so
that

µ # P→ µ
′ # P′

denotes the fact that process P evolves to P′ and, in doing so, it
changes the heap from µ to µ ′.

We devote the following paragraphs to an informal description
of the reduction rules of Table 3. Rule (R-OPEN) describes the
creation of a new channel, which causes the allocation of two new
endpoint structures in the heap. The endpoints are initialized with
empty queues and are allocated at fresh locations, for otherwise the
resulting heap would be ill formed. Since we have assumed that
Pointers is infinite, it is always possible to alpha rename a and b to
fresh pointers, so that an open(a,b).P is always able to reduce.

Rule (R-CLOSE) describes the closing of an endpoint, which
deallocates its structure from the heap and discards its queue.
Note that both endpoints of a channel are created simultaneously
by (R-OPEN), but each is closed independently by (R-CLOSE).

Rule (R-CHOICE) (and its symmetric, omitted) states that a
process P⊕Q nondeterministically reduces to P or Q.

Rule (R-SEND) describes the sending of a message m(c) on the
endpoint a. The message is enqueued at the right end of the queue
associated with the peer endpoint b of a. The operation may change
the ownership of c, if b is owned by a process different from the
sender. Note that, for this rule to be applicable, it is necessary for
both endpoints of a channel to be allocated.

Rule (R-RECEIVE) describes the receiving of a message from
endpoint a. In particular, the message at the left end of the queue

associated with a is removed from the queue, its tag mk is used to
select one branch of the process, and its argument c instantiates the
corresponding variable xk.

Rule (R-PARALLEL) describes the independent evolution of
parallel processes. Note how the heap is treated globally even when
it is only one subprocess to reduce.

Rule (R-START TRANSACTION) describes the initiation of a
transaction by a number of processes. The transaction is identified
by a set of endpoints

⋃
i∈I Ai which are distributed among the pro-

cesses. In order for the transaction to start, this set of endpoints
must be balanced, so that for every endpoint in the set its peer is
also in the set. The rule is nondeterministic, in the sense that there
can be multiple combinations of processes that can initiate a trans-
action. We leave the choice of a particular strategy (for example,
requiring

⋃
i∈I Ai to be non-empty, minimal, and µ-balanced) to

the implementation. The residual process is the tuple

〈
⋃

i∈I Ai, /0,{∏i∈I Qi}∏i∈I Pi〉
combining the bodies and the handlers of the processes involved
in the transaction. The second component is /0 indicating that at
this stage no new endpoints have been allocated yet within the
transaction.

Rule (R-END TRANSACTION) reduces a running transaction
to its continuation when its body has terminated. The handler is
discarded.

Rule (R-RUN TRANSACTION) allows the reduction of a trans-
action according to the reductions of its body. The rule keeps track
of the memory (de)allocated by the body of the transaction by up-
dating the B set according to the changes of the heap.

Rule (R-ABORT TRANSACTION) describes the abnormal ter-
mination of a running transaction when an exception is thrown
within it. In this case, the queues of all the endpoints involved in the
transactions are emptied, the memory allocated within the transac-
tion is deallocated, and the handler is run.

Finally, rule (R-INVOKE) describe process invocations simply
as the replacement of a process variable with the process it is
associated with, modulo the substitution of its parameters. In this
rule and in (R-RECEIVE), P{ũ/ṽ} denotes the capture-avoiding
substitution of ũ in place of ṽ in P.

We write µ # P→ if µ # P→ µ ′ # P′ for some µ ′ and P′ and
µ # P X→ if not µ # P→.

Well-behaved processes. We conclude this section providing a
characterization of well-behaved processes, those that are free from
memory leaks, memory faults, and communication errors. A mem-
ory leak occurs when no pointer to an allocated region of the heap
is retained by any process. In this case, the allocated region has no
owner, it occupies space, but it is no longer accessible. A memory
fault occurs when a pointer is accessed and the endpoint it points
to is not (or no longer) allocated. A communication error occurs
when some process receives a message of unexpected type. To for-
malize well-behaved processes, we need to define the reachability
of a heap object with respect to a set of root pointers. Intuitively, a
process P may directly reach any object located at some pointer in
the set fn(P) (we can think of the pointers in fn(P) as of the local
variables of the process stored on its stack); from these pointers, the
process may reach other heap objects by reading messages from the
endpoints it can reach, and so forth.

Definition 3.3 (reachable pointers). We say that c is reachable
from a in µ , notation c ≺µ a, if a 7→ [b,Q :: m(c) :: Q′] ∈ µ . We
write 4µ for the reflexive, transitive closure of ≺µ and we define
µ-reach(A) = {c ∈ Pointers | ∃a ∈ A : c4µ a}.

The last auxiliary notion we need provides a syntactic charac-
terization of those configurations that cannot reduce but that do not
represent any of the errors described above.



Structural congruence

(S-PAR IDLE)
P |done≡ P

(S-PAR COMM)
P |Q≡ Q |P

(S-PAR ASSOC)
P | (Q |R)≡ (P |Q) |R

Reduction relation

(R-OPEN)
µ # open(a,b).P→ µ,a 7→ [b,ε],b 7→ [a,ε] # P

(R-CLOSE)
µ,a 7→ [b,Q] # close(a).P→ µ # P

(R-CHOICE)
µ # P⊕Q→ µ # P

(R-SEND)
µ,a 7→ [b,Q],b 7→ [a,Q′] # a!m(c).P→ µ,a 7→ [b,Q],b 7→ [a,Q′ :: m(c)] # P

(R-END TRANSACTION)
µ # 〈A,B,{Q}∏i∈I commit(Ai).Pi〉 → µ # ∏i∈I Pi

(R-RECEIVE)
k ∈ I

µ,a 7→ [b,mk(c) :: Q] # ∑i∈I a?mi(xi).Pi→ µ,a 7→ [b,Q] # Pk{c/xk}

(R-PARALLEL)
µ # P→ µ

′ # P′

µ # P |Q→ µ
′ # P′ |Q

(R-START TRANSACTION)
µ-balanced(

⋃
i∈I Ai)

µ # ∏i∈I try(Ai) {Qi}Pi→ µ # 〈
⋃

i∈I Ai, /0,{∏i∈I Qi}∏i∈I Pi〉

(R-STRUCT)
P≡ P′ µ # P′→ µ

′ # Q′ Q′ ≡ Q
µ # P→ µ

′ # Q

(R-RUN TRANSACTION)
µ # P→ µ

′ # P′

µ # 〈A,B,{Q}P〉 → µ
′ # 〈A,(B∪ (dom(µ ′)\dom(µ)))\ (dom(µ)\dom(µ ′)),{Q}P′〉

(R-INVOKE)

X(ũ) def
= P

µ # X〈ã〉 → µ # P{ã/ũ}

(R-ABORT TRANSACTION)
µ1,{ai 7→ [bi,Qi]}i∈I ,µ2 # 〈{ai}i∈I ,dom(µ2),{Q}throw |P〉 → µ1,{ai 7→ [bi,ε]}i∈I , #Q

Table 3. Operational semantics of processes.

Definition 3.4 (stuck configuration). We say that the configuration
µ # P is stuck if the judgment µ # P ↓ is inductively derivable by the
rules:

(ST-INPUT)
µ,a 7→ [b,ε] # ∑i∈I a?mi(xi).Pi ↓

(ST-COMMIT)
µ # commit(A).P ↓

(ST-TRY)
¬µ-balanced(A)

µ # try(A) {Q}P ↓

(ST-PARALLEL)
µ # P ↓ µ # Q ↓

µ # P |Q ↓

(ST-IDLE)
µ # done ↓

(ST-RUNNING TRANSACTION)
µ # P ↓ P 6≡∏i∈I commit(Ai).Pi

µ # 〈A,B,{Q}P〉 ↓
Rules (ST-IDLE) and (ST-PARALLEL) are obvious, while rules

(ST-TRY) and (ST-COMMIT) state that transaction initiations and
termination are stuck, if taken in isolation. In the former case, the
set of involved endpoints must not be balanced, for otherwise the
transaction could initiate. Rule (ST-RUNNING TRANSACTION)
states that a running transaction is stuck if its body is stuck and
different from a combination of processes willing to terminate the
transaction, for otherwise the transaction could terminate. Finally,
rule (ST-INPUT) states that a process waiting for a message from
endpoint a is stuck only if the endpoint a is allocated and its queue
is empty. Then, a configuration whose processes are all waiting for
a message corresponds to a genuine deadlock. From these rules we
deduce that a process willing to send a message on a is never stuck,
and so is a process willing to receive a message from a if the queue
associated with a is not empty.

Definition 3.5 (well-behaved process). We say that P is well be-
haved if /0 # P⇒ µ # Q implies:

1. dom(µ) = µ-reach(fn(Q));

2. Q≡ Q1 |Q2 and µ # Q1 X→ imply µ # Q1 ↓.
In words, a process P is well behaved if every residual Q of

P is such that Q can reach every pointer in the heap and every
subprocess Q1 of Q that does not reduce is stuck. Here are a few
examples of ill-behaved processes to illustrate the sort of errors we
want to spot with our type system:

• The process open(a,b).done violates condition (1), since it
leaks endpoints a and b.

• The process open(a,b).(close(a).close(a) | close(b)) tries
to deallocate the same endpoint a twice. This is an example of
fault.

• The process open(a,b).(a!a().close(a) | b?b().close(b)) vi-
olates condition (2) since it reduces to a parallel composition of
subprocesses where one has sent an a-tagged message, but the
other one was expecting a b-tagged message.

• The process

open(a,b).try( /0) {done}
throw⊕commit( /0).close(a).close(b)

may leak a and b if the exception is thrown.

4. Type System
4.1 Syntax of Types
We assume given an infinite set of type variables ranged over by
α; we use t, s, . . . to range over types, and T , S, . . . to range over
endpoint types. The syntax of types and endpoint types is defined in
Table 4. An endpoint type describes the behavior of a process with
respect to a particular endpoint: the process may send messages
over the endpoint, receive messages from the endpoint, deallocate
the endpoint, initiate and terminate transactions involving the end-



t ::= Type
T (endpoint type)

| [t] (sealed type)

T ::= Endpoint type
end (termination)

| α (type variable)
| {!mi(Ti).Ti}i∈I (internal choice)
| {?mi(Ti).Ti}i∈I (external choice)
| {T}JT (initiate transaction)
| KT (commit transaction)
| rec α : r.T (recursive type)
| {T}T (running transaction)

Table 4. Syntax of types and endpoint types.

point. The endpoint type end denotes an endpoint that can only
be deallocated. An internal choice {!mi(Si).Ti}i∈I denotes an end-
point on which a process may send any message with tag mi for
i ∈ I. The message has an argument of type Si and, depending on
the tag mi of the message, the endpoint can be used thereafter ac-
cording to Ti. In a dual manner, an external choice {?mi(Si).Ti}i∈I
denotes an endpoint from which a process must be ready to receive
any message with tag mi for i ∈ I and, depending on the tag mi of
the received message, the endpoint is to be used according to Ti. In
endpoint types {!mi(Si).Ti}i∈I and {?mi(Si).Ti}i∈I we assume that
I 6= /0 and mi = m j implies i = j for every i, j ∈ I. That is, the tag mi
of the message that is sent or received identifies a unique continu-
ation Ti. The endpoint type {S}JT denotes an endpoint on which it
is possible to initiate a transaction. The types T and S respectively
specify how the endpoint is used within the transaction and if an
exception aborts the transaction. The endpoint type KT denotes the
termination of the transaction in which an endpoint with this type
is involved. As soon as the transaction is properly terminated, the
endpoint can be subsequently used according to T . Terms α and
rec α : r.T can be used to specify recursive behaviors, as usual. The
annotation r associated with α represents the rank of α , which will
be explained shortly. Finally, the endpoint type {S}T is analogous
to {S}JT , except that it specifies the type of an endpoint involved
in a transaction which has already been initiated, but has not ter-
minated yet. In fact, this type is needed for technical reasons only,
and will be used in conjunction with running transaction processes
〈A,B,{Q}P〉. The programmer is in no case supposed to deal with
endpoint types of this form.

Clearly, not every endpoint type written according to the syn-
tax in Table 4 makes sense. For example, it is possible to write
unbalanced terms such as Kend or {end}Jend or terms where re-
cursions do not respect the intended nesting of transactions, like
in rec α.{end}Jα or in {end}Jrec α.Kα . As far as our analysis is
concerned, the syntax does not even prevent end subterms from oc-
curring within transactions, which as we have argued in Section 2 is
undesirable since endpoints involved in transactions should not be
closed. For all these reasons we define a subset of well-formed end-
point types based on a notion of rank. Intuitively, the rank of a term
T is the number of transactions in which T is supposed to occur to
make sense, with the proviso that end and, in general, well-formed
endpoint types must have rank 0.

In general, we say that the endpoint type T is well formed and
has rank r in Θ if Θ ` T : r is inductively derivable by the ax-
ioms and rules in Table 5, where Θ ranges over ranking contexts
associating ranks to type variables. Then, a derivation of /0 ` T : 0
means that T is a closed endpoint type where transaction initia-
tions and terminations are properly nested. Rules (WF-INITIATE),
(WF-RUN), and (WF-COMMIT) count the number of nested trans-

(WF-END)
Θ ` end : 0

(WF-VAR)
Θ,{α : r} ` α : r

(WF-REC)
Θ,{α : r} ` T : r
Θ ` rec α : r.T : r

(WF-PREFIX)

† ∈ {?, !} Θ ` Si : 0 (i∈I) Θ ` Ti : r (i∈I)

Θ ` {†mi(Si).Ti}i∈I : r

(WF-COMMIT)
Θ ` T : r

Θ ` KT : r+1

(WF-INITIATE)
Θ ` S : r Θ ` T : r+1

Θ ` {S}JT : r

(WF-RUN)
Θ ` S : r Θ ` T : r+1

Θ ` {S}T : r

Table 5. Rank of endpoint types.

actions. Rule (WF-PREFIX) requires all branches of a choice to
have the same rank, while rules (WF-REC) and (WF-VAR) deal
with recursive types in a standard way, by respectively augmenting
and accessing the ranking context. In the following we will omit Θ
from judgments Θ ` T : r if Θ is empty.

As welcome side effects of well formedness, note that:

• message types have rank 0 (rule (WF-PREFIX)). Then, well-
typed processes will not be able to send/receive endpoints in-
volved in pending transactions;

• end cannot occur inside transactions (rule (WF-END)). Then,
well-typed processes will not be able to close endpoints in-
volved in pending transactions.

The rank annotation r in recursive terms rec α : r.T guarantees
that every well-formed endpoint type has a uniquely determined
rank. Without this annotation a term like rec α.!m(end).α could be
given any rank. The following proposition guarantees that the rank
of well-formed endpoint types is unaffected by folding/unfolding
of recursions:

Proposition 4.1. If ` rec α : r.T : r, then ` T{rec α : r.T/α} : r.

In what follows, we will assume that all endpoint types are well
formed and we will usually omit the rank annotation from recur-
sive terms with the assumption that they can be properly anno-
tated so that they are well formed; we will also write rank(T ) for
the rank of T . We will identify endpoint types modulo alpha re-
naming of bound type variables (the only binder being rec ) and
folding/unfolding of recursions knowing that this does not change
their rank (Proposition 4.1). In particular, we have rec α.T =
T{rec α.T/α}. Finally, we will sometimes use an infix nota-
tion for internal and external choices and write !m1(S1).T1⊕·· ·⊕
!mn(Sn).Tn instead of {!mi(Si).Ti}i∈{1,...,n} and ?m1(S1).T1 + · · ·+
?mn(Sn).Tn instead of {?mi(Si).Ti}i∈{1,...,n}.

Types are possibly sealed endpoint types of the form [· · ·[T ]· · ·]
for some arbitrary number of seals [· · ·]. Seals protect the endpoints
not involved in a transaction: they are applied when the transaction
is initiated (the try primitive is executed) and are stripped off when
the transaction terminates (the commit primitive is executed). The
type system prevents endpoints with a seal from being used, since
any change to them would not be undoable in case the currently
running transaction is aborted.

Example 4.1. According to the process definitions in Figure 3,
the endpoint ns is involved in the transaction around the Loop pro-
cess, it is used for sending a Register-tagged message and then
for receiving either an AckRegister- or a NakRegister-tagged
message. The same endpoint is then closed regardless of whether
the transaction completes successfully or not. We can describe the
overall behavior of GetNextDiskPath, Loop, and Finally on ns with



the following endpoint type:

Tns = {end}Jrec α.!Register(Timp).
(?AckRegister().Kend+ ?NakRegister(Timp).α)

where Timp is the (unspecified) endpoint type associated with the
imp and nakImp endpoints.

The endpoint ret is not used within the transaction, but its usage
differs depending on whether or not the exception is thrown:

Tret = rec α.!Result(TDS).end⊕ !SetService(Texp).α

If no exception is thrown, ret is used for sending a SetRegister-
tagged message followed by a Result-tagged one; if an exception
is thrown, only the Result-tagged message is sent. The above type
Tret takes into account both possibilities using conventional features
of behavioral types (choices, sequentiality, and recursion). �

In order to avoid communication errors, we associate peer end-
points with endpoint types describing complementary actions: if a
process sends a message of some kind on one endpoint, another
process is able to receive a message of that kind from the peer end-
point; if one process initiates a transaction involving one endpoint,
the other process will do so as well on the peer endpoint; if one
process has finished using an endpoint, the process owning the peer
endpoint has finished too. We formalize this complementarity of ac-
tions by defining a function that, given an endpoint type, computes
its dual:

Definition 4.1 (duality). Duality is the function · on endpoint types
defined coinductively by the equations:

end = end

{?mi(Si).Ti}i∈I = {!mi(Si).Ti}i∈I
{!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I

{S}JT = {S}JT
KT = KT

{S}T = {S}T

Roughly speaking, the dual of an endpoint type T is obtained
from T by swapping internal and external choices. For example,
the dual of the endpoint type Tret defined in Example 4.1 is

Tret = rec α.?Result(TDS).end+ ?SetService(Texp).α

Note that the dual T of T cannot be defined by a simple induction
on the structure of T according to this intuition because the type of
message arguments is unaffected by duality. In particular we have

rec α.?m(α).end = ?m(rec α.?m(α).end).end
= !m(rec α.?m(α).end).end
6= rec α.!m(α).end .

The interested reader may refer to [1] for an equivalent inductive
definition of duality.

We list here two important properties of duality, namely that it
is an involution and it preserves ranks:

Proposition 4.2. The following properties hold:

1. T = T ;
2. rank(T ) = rank(T ).

4.2 Type Weight
In previous work [1] it was observed that the delegation of end-
points having some particular type can generate memory leaks even
if the delegating process appears to behave correctly with respect
to the type of the endpoints it uses. For example, the process

P def
= open(a,b).a!m(b).close(a) (1)

uses a and b according to the endpoint types

T = !m(S).end and S = rec α : 0.?m(α).end (2)

respectively. Note that T = S, therefore the complementarity of ac-
tions performed on the peer endpoints a and b is guaranteed. Now,
the process P sends endpoint b over endpoint a. According to T , the
process is indeed entitled to send an m-tagged message with argu-
ment of type S on a and b has precisely that type. After the output
operation, the process no longer owns endpoint b and endpoint a is
deallocated. Despite its apparent correctness, P generates a leak, as
shown by the reduction:

/0 # P → a 7→ [b,ε],b 7→ [a,ε] # a!m(b).close(a)
→ b 7→ [a,m(b)] # done

In the final configuration we have µ-reach(fn(done)) = /0 while
dom(µ) = {b}. In particular, the endpoint b is no longer reach-
able and therefore this configuration violates condition (1) of Def-
inition 3.5. A closer look at the heap in the reduction above re-
veals that the problem lies in the cycle involving b: it is as if the
b 7→ [a,m(b)] region of the heap needs not be owned by any process
because “it owns itself”. To avoid these cycles we compute, for
each endpoint type, a value in the set N∪{∞}, that we call weight,
estimating the length of any chain of pointers originating from the
queue of the endpoints it denotes. A weight equal to ∞ means that
this length can be infinite, in the sense that cycles such as the one
shown above may be generated. Then, the type system makes sure
that only endpoints having a finite-weight type can be sent as mes-
sages, and this has been shown to be enough for preventing these
kinds of memory leaks.

We proceed by recalling here the definition of weight from [1],
adapted to our context where we deal also with transaction types:

Definition 4.2 (weight). We say that W is a coinductive weight
bound if (T,n) ∈W implies either:

• T = end or T = {S}JT ′ or T = KT ′ or T = {!mi(Si).Ti}i∈I , or
• T = {?mi(Si).Ti}i∈I and n > 0 and (Si,n−1) ∈W and (Ti,n) ∈

W for every i ∈ I, or
• T = {S}T ′ and (T ′,n) ∈W .

We write T :: n if (T,n)∈W for some coinductive weight bound
W . The weight of an endpoint type T , denoted by ‖T‖, is defined
by ‖T‖ = min{n ∈ N | T :: n} where we let min /0 = ∞. When
comparing weights we extend the usual total orders < and ≤ over
natural numbers so that n < ∞ for every n ∈ N and ∞≤ ∞.

The weight of T is defined as the least of its weight bounds, or
∞ if there is no such weight bound. For example we have ‖end‖=
‖{!mi(Si).Ti}i∈I‖ = 0. Indeed, the queues of endpoints with type
end and those in a send state are empty and therefore the chains of
pointers originating from them have zero length. The same happens
for endpoints whose type is {S}JT and KT , since we will enforce
the invariant that when a transaction is initiated or successfully ter-
minated, the endpoints involved in it have empty queues. Endpoint
types in a receive state have a strictly positive weight. For instance
we have ‖?m(end).end‖ = 1 and ‖?m(?m(end).end).end‖ = 2. If
we go back to the endpoint types in (2) that we used to motivate
this discussion, we have ‖T‖= 0 and ‖S‖= ∞, from which we de-
duce that endpoints with type S, like b in (1), are not safe to be used
as messages.

4.3 Typing Processes
We can now proceed to defining a type system for processes. A type
environment is a finite map Γ = {ui : ti}i∈I from names to types. We
write dom(Γ) for the domain of Γ , namely the set {ui}i∈I ; we write
Γ ,Γ ′ for the union of Γ and Γ ′ when dom(Γ)∩dom(Γ ′) = /0; finally,
we write Γ ` u : t if Γ(u) = t. We say that a type t is local, written



(T-INACTION)
/0 `n done

(T-THROW)
Γ `n+1 throw

(T-CLOSE)
Γ `n P

Γ ,u : end `n close(u).P

(T-INVOKE)
Σ(X) = (t̃,n)
ũ : t̃ `n X〈ũ〉

(T-OPEN)
` T : 0 Γ ,a : T,b : T `n P

Γ `n open(a,b).P

(T-SEND)
k ∈ I ‖Sk‖< ∞ Γ ,u : Tk `n P
Γ ,u : {!mi(Si).Ti}i∈I ,v : Sk `n u!mk(v).P

(T-CHOICE)
Γ `n P Γ `n Q

Γ `n P⊕Q

(T-RECEIVE)

Γ ,u : Ti,xi : Si `n Pi
(i∈I)

Γ ,u : {?mi(Si).Ti}i∈I `n ∑i∈I u?mi(xi).Pi

(T-PARALLEL)
Γ1 `n P Γ2 `n Q

Γ1,Γ2 `n P |Q

(T-TRY)
[Γ ],{ui : Ti}i∈I `n+1 P Γ ,{ui : Si}i∈I `n Q
Γ ,{ui : {Si}JTi}i∈I `n try({ui}i∈I) {Q}P

(T-COMMIT)
local(Γ2) Γ1,{ui : Ti}i∈I ,Γ2 `n P

[Γ1],{ui : KTi}i∈I ,Γ2 `n+1 commit({ui}i∈I).P

Table 6. Typing rules for processes.

local(t), if t is not sealed and has a null rank, namely t = T for
some T such that rank(T ) = 0. Intuitively, a local type denotes an
endpoint that can be modified (its type is not sealed) and is not
involved in any transaction. We extend the notion of local types
to type environments so that local(Γ) holds if every type in the
codomain of Γ is local.

The typing rules for processes are inductively defined in Table 6.
Judgments have the form Γ `n P and state that process P within
n nested transactions is well typed in the type environment Γ .
The type system makes use of a global process environment Σ
associating process variables X with pairs (t̃,n) containing the type
of the parameters of X as well as the nesting level n at which
X is supposed to be invoked. It is understood that the process
environment Σ contains associations for all the global definitions
D and that the judgment Σ ` D defined by

Σ(X) = (t̃,n) ũ : t̃ `n P

Σ ` X(ũ) def
= P

holds. In particular, all of the free names of P must occur in its
binding variable X .

We describe the typing rules for processes in the following para-
graphs. Rule (T-IDLE) states that the idle process is well typed only
in the empty type environment. This is a standard rule for linear
type systems implying, in our case, that the terminated process has
no leaks.

Rule (T-CLOSE) states that a process close(u).P is well typed
provided that u corresponds to an endpoint with type end, on
which no further interaction is possible, and P is well typed in the
remaining type environment.

Rule (T-OPEN) deals with the creation of a new channel, which
is visible in the continuation process as two peer endpoints typed
by dual endpoint types. The premise ` T : 0 means that it is not
possible to create endpoints with pending transactions on them.

Rule (T-SEND) states that a process u!m(v).P is well typed if
u is associated with an endpoint type T that permits the output
of m-tagged messages. The type S of the argument v must be

unsealed, finite-weight, and has to match the expected type in the
endpoint type. Finally, the continuation P must be well typed in a
type environment where the endpoint u is typed according to the
continuation Tk of T and the endpoint v is no longer visible.

Rule (T-RECEIVE) deals with inputs: a process waiting for a
message from an endpoint u : {?mi(Si).Ti}i∈I is well typed if it can
deal with all of the message tags mi. The continuation processes
may use the endpoint u according to the endpoint type Ti and can
access the message argument xi of type Si.

Rules (T-CHOICE) and (T-PARALLEL) are standard. In the
latter, the type environment is linearly split into two environments
to type the processes being composed.

Rule (T-INVOKE) declares that a process invocation X〈ũ〉 is
well typed provided that the number and type of actual parameters
ũ match the number and type of formal parameters in Σ(X) and that
the process is invoked at the correct nesting level.

All the rules discussed so far can be applied at arbitrary nesting
levels and do not change it. We now turn our attention to the
constructs dealing with transactions and exceptions.

Rule (T-THROW) states that the process throw is well typed in
any type environment, provided that it occurs within a transaction
(the nesting level must be strictly positive). For this reason, the
violation of linearity for the assumptions in the type environment
is only apparent, as control will be transferred at runtime to some
appropriate exception handler.

Rule (T-TRY) deals with transaction initiations. All the end-
points in the decoration U must have a type allowing them to be
involved in a transaction, while the type of other names is sealed so
that P is prevented from using them until the transaction is termi-
nated. Seals are not applied in the type environment for the handler
since Q executes only if and when the transaction is aborted and
therefore acts outside of the transaction. Note that the nesting level
is increased inside P but does not change in Q.

Rule (T-COMMIT) is almost the dual of rule (T-TRY) and deals
with transaction termination. Again, the endpoints in the decoration
U must have a matching type in the context indicating the end of
the transaction. Names with a sealed type must have been inherited
from the context surrounding the transaction being terminated, so
a seal is stripped off them in the continuation P. Names with a
local type must have been created within the transaction being
terminated, and can be used in the continuation as well. Note
that the nesting level is decreased in P, since it executes after the
transaction has terminated.

Example 4.2. Using the types defined in Example 4.1, the reader
can verify that the bodies of the process definitions in Figure 3 for
GetNextDiskPath, Loop, and Finally are respectively well typed
according to the type environments

Γ1 = DS : ?NewClientEndpoint(Tns).TDS,ret : Tret
Γ2 = ns : T ′ns,DS : TDS,ret : Tret
Γ3 = ns : end,DS : TDS,ret : Tret

where

T ′ns = !Register(Timp).(?AckRegister().Kend+
?NakRegister(Timp).Tns)

is an appropriate residual of the unfolding of Tns. �

4.4 Typing the Heap
The typing rules in Table 6 are not sufficient for proving the sound-
ness of the type system, because they are solely concerned with
the static syntax of processes. At runtime, we must take care of
running transaction processes (see Table 2) as well as of the heap.
Indeed, since inter-process communication relies on heap-allocated
structures, several properties of well-behaved processes depend on
properties of the heap saying that its content is consistent with a



given type environment. In this section and in the following one we
develop a type system for the runtime components of our process
language. We remark that the programmer is solely concerned with
the typing rules for static processes presented in Section 4.3, while
the technical material presented hereafter, which builds on and ex-
tends the previous one, is only required for proving that the type
system is sound.

Just as we have type checked a process P against a type environ-
ment that associates types with the names occurring in P, we also
need to check that the heap is consistent with respect to the same
environment. This leads to a notion of well-typed heap that we de-
velop in this section. More precisely, well-typedness of a heap µ

is checked with respect to a pair Γ0;Γ of type environments: the
context Γ0,Γ must provide type information for all the allocated
structures in µ (that is, dom(Γ0,Γ) = dom(µ)); the splitting Γ0;Γ
distinguishes the pointers in dom(Γ) from the pointers in dom(Γ0)
so that Γ contains the roots of µ , namely the pointers that are not
referenced from any endpoint structure in the heap, while Γ0 con-
tains pointers that are referenced from some endpoint structure.

Among the properties that a well-typed heap must enjoy is the
complementarity between the endpoint types associated with peer
endpoints. This notion of complementarity does not coincide with
duality because the communication model is asynchronous: since
messages can accumulate in the queue of an endpoint before they
are received, the types of peer endpoints can be misaligned. The
two peers are guaranteed to have dual types only when their queues
are both empty. In general, we need to compute the actual endpoint
type of an endpoint by taking into account the messages in its
queue. To this aim we introduce a tail(·, ·) function for endpoint
types such that

tail(T,m1(S1) · · ·mn(Sn)) = T ′

indicates that messages having tag mi and an argument of type Si
can be received in the specified order from an endpoint with type
T , which can be used according to type T ′ thereafter. The function
is inductively defined by the following rules:

tail(T,ε) = T

k ∈ I
tail({?mi(Si).Ti}i∈I ,mk(Sk)) = Tk

tail(T,m(S)) = T ′

tail({S′}T,m(S)) = T ′

tail(T,m1(S1)) = T ′ tail(T ′,m2(S2) · · ·mn(Sn)) = T ′′

tail(T,m1(S1)m2(S2) · · ·mn(Sn)) = T ′′

Note that tail(T,m(S)) is undefined when T = end or T is an
internal choice or T denotes the initiation or the termination of
a transaction. This will enforce the property that the queue of
endpoints having these types must be empty.

We now have all the notions to express the well-typedness of a
heap µ with respect to a pair Γ0;Γ of type environments.

Definition 4.3 (well-typed heap). Let dom(Γ0)∩dom(Γ) = /0. We
write Γ0;Γ  µ if all of the following conditions hold:

1. a 7→ [b,Q] ∈ µ and b 7→ [a,Q′] ∈ µ implies either Q = ε or
Q′ = ε .

2. a 7→ [b,m1(c1) :: · · · :: mn(cn)] ∈ µ implies

tail(T,m1(S1) · · ·mn(Sn)) = S

where Γ0,Γ ` a : T and Γ0 ` ci : Si and ‖Si‖< ∞ and ` Si : 0 for
1≤ i≤ n and b 7→ [a,ε]∈ µ implies Γ0,Γ ` b : S and b 6∈ dom(µ)
implies S = end.

3. dom(µ) = dom(Γ0,Γ) = µ-reach(dom(Γ));
4. A ∩ B = /0 implies µ-reach(A) ∩ µ-reach(B) = /0 for every

A,B⊆ dom(Γ).

(T-RUNNING PROCESS)
Γ0;ΓR,Γ  µ Γ `n P

Γ0;ΓR;Γ `n µ # P

(T-RUNNING PARALLEL)
Γ0;ΓR,Γ2;Γ1 `n µ # P Γ0;ΓR,Γ1;Γ2 `n µ # Q

Γ0;ΓR;Γ1,Γ2 `n µ # P |Q

(T-RUNNING TRANSACTION)
µ-balanced({ai : Si}i∈I) µ-balanced(B) local(Γ2)

{ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2))
Γ0;ΓR; [Γ1],{ai : Ti}i∈I ,Γ2 `n+1 µ # P Γ1,{ai : Si}i∈I `n Q

Γ0;ΓR;Γ1,{ai : {Si}Ti}i∈I ,Γ2 `n µ # 〈{ai}i∈I ,B,{Q}P〉

Table 7. Typing rules for configurations.

Condition (1) requires that at least one of the queues of peer
endpoints in a well-typed heap is empty. This invariant corresponds
to half-duplex communication and is ensured by duality of endpoint
types associated with peer endpoints, since a well-typed process
cannot send messages on an endpoint until it has read all the
pending messages from the corresponding queue. Condition (2)
requires that the content of the queue of an endpoint must be
consistent with the type of the endpoint, in the sense that the
messages in the queue have the expected tag and an argument
with the expected type. In addition, the endpoint types of message
arguments must all have finite weight and null rank. Finally, the
endpoint types of peer endpoints are dual of each other, modulo
the content of the non-empty queue. Condition (3) states that the
type environment Γ0,Γ must specify a type for all of the allocated
objects in the heap and, in addition, every object (located at) a
in the heap must be reachable from a root b ∈ dom(Γ). Finally,
condition (4) requires the uniqueness of the root for every allocated
object. Overall, since the roots are distributed linearly among the
processes of the system, conditions (3) and (4) guarantee that every
allocated object belongs to one and only one process.

There are a few subtleties regarding conditions (1) and (2)
and the fact that, in condition (2), the property b 7→ [a,ε] ∈ µ is
the head of an implication. First of all, condition (2) must hold
for both peers of a channel, therefore if a is the peer with the
empty queue (n = 0) while b has messages in its queue, then
the type of a is not necessarily the dual of the type of b. The
correct dual correspondence is checked when the symmetric pair
of endpoints is considered. Second, it is possible that at some point
only one endpoint of a channel is allocated. For example, the well-
typed process open(a,b).close(b).close(a) reduces to close(a)
in a configuration where the heap contains only a 7→ [b,ε]. When
this happens, the type of the remaining endpoint forbids any send
operation (last property of condition (2)). Note that condition (1) is
not implied by condition (2) and both conditions are necessary.

4.5 Typing Configurations
Table 7 defines typing rules for configurations µ # P as an extension
of the typing rules for processes. Judgments have the form

Γ0;ΓR;Γ `n µ # P

and state that the configuration µ # P is well typed at nesting
level n with respect to the triple Γ0;ΓR;Γ of type environments.
Intuitively, Γ is the type environment used to type check P, ΓR is
the type environment describing the type of root pointers owned by
processes that are running in parallel with P, and Γ0 describes the
type of pointers that occur in some queue.



Rule (T-RUNNING PROCESS) lifts well-typed processes to
well-typed configurations by requiring the heap to be well typed
with respect to the pair of environments Γ0;ΓR,Γ where ΓR,Γ rep-
resents the whole set of roots obtained from those owned by the
process being typed (in Γ ) and those owned by processes in parallel
with it (in ΓR).

Rule (T-RUNNING PARALLEL) is analogous to (T-PARALLEL),
except that it deals with three type environments which are appro-
priately rearranged for keeping track of the roots of the heap.

Rule (T-RUNNING TRANSACTION) captures the basic proper-
ties regarding running transactions 〈{ai}i∈I ,B,{Q}P〉, which we
describe here. The rule makes use of a balancing predicate over
type environments that generalizes the notion of balancing for sets
of pointers (Definition 3.2):

Definition 4.4 (balanced context). We say that Γ is balanced in
µ , written µ-balanced(Γ), if a ∈ dom(Γ) and a

µ←→ b imply b ∈
dom(Γ) and Γ(a) = Γ(b).

First of all, it must be possible to partition the type environment
in three parts Γ1, {ai : {Si}Ti}i∈I , and Γ2 such that: the environ-
ment Γ1 corresponds to the endpoints owned by P but which are
not involved in the transaction. Consequently, the type of these end-
points are sealed in the judgment corresponding to the typing of P.
The environment {ai : {Si}Ti}i∈I corresponds to the endpoints in-
volved in the transaction (the first component of the running trans-
action process), and their type indicates that the transaction is in
progress. The environment Γ2 corresponds to the endpoints that
have been allocated inside the transaction. Their type is not sealed
in the judgment corresponding to the typing of P. The two premises
µ-balanced({ai : Si}i∈I) and µ-balanced(B) indicate that the set
of all the endpoints to which P has full access is balanced. There-
fore, the transaction operates in a closed scope and cannot have
“side effects” from the point of view of other processes. The first
premise indicates, in addition, that the types Si associated with peer
endpoints are dual of each other (this property is a consequence
of well-typedness of the heap before the transaction initiates, but
it must be explicitly recovered in (T-RUNNING TRANSACTION)
where the heap is checked against a type environment where the
Si’s do not occur any more). The premise local(Γ2) identifies the Γ2
partition of the context corresponding to the endpoints that have
been created inside the transaction. The premise {ai}i∈I ∪ B =
µ-reach({ai}i∈I ∪dom(Γ2)) states that all the endpoints allocated
within the transaction have not escaped the scope of the transaction.
The last two premises correspond to the premises of rule (T-TRY).
In particular, note that the nesting level is increased by one when
typing the body of the transaction.

Since running transaction processes appear only at runtime as
the result of (R-START TRANSACTION) reductions, they can never
occur behind a prefix and therefore the three rules in Table 7 are
sufficient to cover all possible forms of runtime configurations.

4.6 Type Soundness
We conclude this section with the two main results about our
framework: well-typedness is preserved by reduction, and well-
typed processes are well behaved. Subject reduction takes into
account the possibility that types in the environment may change as
the process reduces, which is common in behavioral type theories.

Theorem 4.1 (subject reduction). Let Γ0;ΓR;Γ `n µ # P and µ #
P→ µ ′ # P′. Then Γ ′0;ΓR;Γ ′ `n µ ′ # P′ for some Γ ′0 and Γ ′.

In fact, the proof of this theorem requires to specify a number
of additional properties showing the precise relationship between
Γ and Γ0 (before the reduction) and Γ ′ and Γ ′0 (after the reduction).
The details are omitted here, but can be found in Appendix B.

Theorem 4.2 (safety). Let /0 `0 P. Then P is well behaved.

5. Related work
This work follows the type-based formalization of Singularity OS
detailed in [1]. To simplify the formal development of the present
paper we dropped polymorphism and non-linear types from the
type system in [1]. These are orthogonal features that are indepen-
dent of exception handling and can be added without affecting the
results we have presented here. A radically different approach for
the static analysis of Singularity processes is explored in [13, 14],
where the authors develop a proof system based on a variant of sep-
aration logic. Exceptions are not taken into account in these works.

The works more closely related to ours, and which we used as
starting points, are [3] and [2]. In [3], which was the first to in-
vestigate exceptions in calculi for session-oriented interactions and
to propose type constructs to describe explicitly, at the type level,
the handling of exceptional events, it is possible to associate an ex-
ception handler to a whole (dyadic) session; [2] generalizes this
idea to multiparty sessions (those with multiple participants) and
allows the same channel to be involved, at different times, in dif-
ferent try blocks, each with its own dedicated exception handler.
In both [3] and [2] it is possible that messages already present in
channel queues at the time an exception occurs are discarded. In our
context, this would easily lead to undesired memory leaks, which
we avoid by keeping track of the resources allocated during a trans-
action and by restoring the system to a consistent configuration in
case an exception is thrown. Neither [3] nor [2] consider session
delegation, namely the communication of channels. Also, in [2] the
type system forces inner try blocks to use a subset of the chan-
nels involved in outer blocks. We relax this restriction and allow
locally created channels to be involved in inner transactions. The
most notable difference between [2] and the present work regards
the semantics of exceptions in nested transactions: in [2], an ex-
ception thrown in one transaction is suspended as long as there are
active handlers in the nested ones. This semantics is motivated by
the observation that, in a distributed setting, it may be desirable to
complete the execution of potentially critical handlers before outer-
most handlers take control. Our semantics allows handlers of outer
transactions to take control at any time following the throwing of
an exception. As a consequence, more constrained policies, such
as the one adopted in [2], can be implemented without invalidating
the results presented in our work.

The recent interest on Web services has spawned a number
of works investigating (long running) transactions in a distributed
setting; a detailed survey with lots of references is provided in [6].
In our context, the component Q of a process 〈A,B,{Q}P〉 is
analogous to a compensation handler. The main difference between
our handlers and compensations is that, in the latter case, it is
usually made the assumption that it is not possible to restore the
state of the system as it was at the beginning of the transaction.
In our case, state restoration is made possible by the fact that
the system is local and all the interactions occur through shared
memory. In this context, we can rely on some native support from
the runtime system to properly cleanup the state of the system and
avoid memory leaks.

The operational semantics of exceptions and exception handling
in the present paper has been loosely inspired by that of Haskell
memory transactions described in [7]. In particular, our semantics
describes what happens when an exception is thrown but not how
exception notification and state restoration are implemented. In this
sense our semantics is somewhat more abstract than the semantics
given in similar works [2]. The semantics of [7] uses a clever com-
bination of small- and big-step reduction rules and is even more
abstract than ours, but we find it more appropriate in a functional



setting since non-terminating functions have smaller practical in-
terest than non-terminating processes.

The authors of [4] put forward a programming abstraction called
transactional events for the modular composition of communica-
tion events into transactions with an all-or-nothing semantics. Their
approach focuses on finding synchronization paths between threads
communicating synchronously, while in our case transactions are
required for preserving type consistency of endpoints and for un-
doing the effects of asynchronous communication.

Inadequacy of the standard error handling mechanisms provided
by mainstream programming languages has already been recog-
nized, even in sequential and communication-free scenarios. The
authors of [15–17] develop a static analysis technique that spots
error handling mistakes concerning proper resource release. Their
technique is based on finite-state automata (in other words, a basic
form of behavioral type) for keeping track of the state of resources
along all possible execution paths. They also propose a more ef-
fective mechanism for preventing runtime errors. The basic idea is
to accumulate compensation actions regarding resources on a com-
pensation stack as resources are allocated. This technique closely
resembles dynamic compensations in [6]. Because of their dynamic
nature, compensation stacks do not provide any assistance as far as
type consistency is concerned.

6. Conclusions and future work
We have formalized a core language for modeling Singularity pro-
cesses that can throw exceptions and have studied a type system
guaranteeing some safety properties, in particular that well-typed
processes do no leak memory even in presence of (caught) excep-
tions. This property has fundamental importance in systems relying
on copyless message passing, where the sharing of data and explicit
memory allocation require controlled policies on the ownership of
heap-allocated objects.

The choice of Sing# as our reference language has been moti-
vated by the fact that the Singularity code base provides concrete
programming patterns that the formal model is supposed to cover.
In addition, Sing# already accommodates channel contracts, which
play a crucial role in our formalization. However, we claim that our
approach is abstract enough to be applicable to other programming
languages and paradigms, provided that suitable type information
(possibly in the form of code annotations) is attached to channel
endpoints.

Future work. The one major theoretical aspect we are investi-
gating is how to relax the type system and allow a wider set of
messages to be exchanged within transactions. Currently, only lo-
cal endpoints (those that are unsealed and have null rank) can
be sent as messages inside transactions. This restriction results
from the syntax of endpoint types (requiring that message argu-
ments must have an unsealed type) and from rule (WF-PREFIX)
regarding well-formed endpoint types (requiring that message ar-
gument types must have null rank). We claim that endpoints with
a sealed type are also safe to be sent as messages, although the
proof of this fact seems to require a non-trivial modification of
rule (T-RUNNING TRANSACTION) which is already quite elabo-
rate in the present state. There are two main reasons why we think
this extension is interesting: first of all, because it would grant
transactions the ability to change the ownership of existing heap-
allocated objects, in addition to that of new ones as is currently the
case; second, because endpoints with a sealed type can be safely
sent regardless of the weight of their type. In other words, trans-
actions provide an effective mechanism to safely circumvent the
finite-weight restriction imposed by the typing rule (T-SEND).

On the practical side, we plan to work on prototype implemen-
tations of the exception handling mechanism in a few different pro-
gramming languages so as to explore its practical costs.
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Table 8. Free and bound names of processes.

fn(done) = fn(throw) = /0
fn(open(a,b).P) = fn(P)\{a,b}
fn(close(u).P) = {u}∪ fn(P)

fn(u!m(v).P) = {u,v}∪ fn(P)
fn(∑i∈I u?mi(xi).Pi) = {u}∪

⋃
i∈I(fn(Pi)\{xi})

fn(P⊕Q) = fn(P |Q) = fn(P)∪ fn(Q)
fn(try(U) {Q}P) = U ∪ fn(P)∪ fn(Q)
fn(〈A,B,{Q}P〉) = A∪B∪ fn(P)∪ fn(Q)
fn(commit(U).P) = U ∪ fn(P)

fn(X〈ũ〉) = ũ

bn(done) = bn(throw) = bn(X〈ũ〉) = /0
bn(open(a,b).P) = {a,b}∪bn(P)
bn(close(u).P) = bn(u!m(v).P) = bn(P)

bn(∑i∈I u?mi(xi).Pi) =
⋃

i∈I({xi}∪bn(Pi))
bn(P⊕Q) = bn(P |Q) = bn(P)∪bn(Q)

bn(try(U) {Q}P) = bn(P)∪bn(Q)∪bn(R)
bn(〈A,B,{Q}P〉) = bn(P)∪bn(Q)∪bn(R)
bn(commit(U).P) = bn(P)

A. Supplementary definitions
Table 8 reports the formal definition of free and bound names for processes.

B. Proofs
Proposition B.1 (Proposition 4.1). Let ` S : r. Then Θ,α : r ` T : r′ implies Θ ` T{S/α} : r′.

Proof. A simple induction on the derivation of Θ,α : r ` T : r′.

Proposition B.2 (Proposition 4.2). The following properties hold:

1. T = T ;
2. rank(T ) = rank(T ).

Proof. Item (1) is an easy consequence of the definition of duality (Definition 4.1). Item (2) follows from the fact that duality is only affected
by the nesting of transaction types in T and internal/external choices are treated in the same way by rule (WF-PREFIX).

B.1 Subject reduction
The two following lemmas are standard and prove that typing is preserved by structural congruence and by substitutions.

Lemma B.1. Let Γ `n P and P≡ Q. Then Γ `n Q.

Proof. By case analysis on the derivation of P≡ Q.

Lemma B.2 (substitution). If Γ ,u : T `n P and v 6∈ dom(Γ)∪bn(P), then Γ ,v : S `n P{v/u}.

Proof. For notational simplicity we prove the result when u = x and v = a. We proceed by induction on the derivation of Γ ,x : T `n P and by
cases on the last rule applied. We only prove a few cases.

• (T-INACTION) This case is impossible.
• (T-CLOSE) In this case:

P = close(u).P′;
Γ ,x : T = Γ ′,u : end;
Γ ′ `n P′.

If x ∈ dom(Γ ′) then Γ ′ = Γ ′′,x : T and Γ = Γ ′′,x : T,u : end. By induction hypothesis we have Γ ′′,a : T `n P′{a/x}. Since we know that
a 6= u, from rule (T-CLOSE) we obtain Γ ,a : T `n close(u).P′{a/x}.
If x = u then Γ = Γ ′, T = end and P′ = P′{a/x}. From rule (T-CLOSE) we obtain Γ ,a : end `n close(a).P′{a/x} which is what we
needed to prove.

• (T-OPEN) In this case:
P = open(c,d).P′

Since we know x /∈ {c,d} the proof is concluded by a straightforward induction.
• (T-SEND) In this case:

P = u!mk(v).P′;



Γ ,x : T = Γ ′,u : {!mi(Si).Ti}i∈I ,v : Sk;
k ∈ I;
‖Sk‖< ∞;
Γ ′,u : Tk `n P′.

If x ∈ dom(Γ ′) then Γ ′ = Γ ′′,x : T and Γ = Γ ′′,u : {!mi(Si).Ti}i∈I ,v : Sk. From Γ ′,u : Tk `n P′ by induction hypothesis we obtain Γ ′′,a :
T,u : Tk `n P′{a/x}. Since a /∈ dom(Γ) we know that a /∈ {u,v} and from rule (T-SEND) we can conclude Γ ,a : T `n u!mk(v).P′{a/x}.
If x = u then Γ = Γ ′,v : Sk and T = {!mi(Si).Ti}i∈I . From Γ ′,u : Tk `n P′ by induction hypothesis we obtain Γ ′,a : Tk `n P′{a/x} and the
from rule (T-SEND) we get Γ ′,a : {!mi(Si).Ti}i∈I ,v : Sk `n a!mk(v).P′{a/x}.
If x = v then x /∈ dom(Γ ′)∪{u} and P′ = P′{a/x}. We conclude with an application of rule (T-SEND).

The next lemma connects well-typed configurations to well-typed heaps and shows the irrelevance of the middle component ΓR in typing
processes.

Lemma B.3. Let Γ0;ΓR;Γ `n µ # P. Then:

(1) Γ0;ΓR,Γ  µ;
(2) Γ ′0;Γ ′R,Γ  µ ′ implies Γ ′0;Γ ′R;Γ `n µ ′ # P.

Proof. By induction on the derivation of Γ0;ΓR;Γ `n µ # P and by cases on the last rule applied. The only interesting case is the case of rule
(T-RUNNING TRANSACTION), where we have:

• P = 〈{ai}i∈I ,B,{R}Q〉;
• Γ = Γ1,{ai : {Si}Ti}i∈I ,Γ2;
• µ-balanced({ai : Si}i∈I);
• µ-balanced(B);
• local(Γ2);
• {ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2));
• Γ0;ΓR; [Γ1],{ai : Ti}i∈I ,Γ2 `n+1 µ # Q;
• Γ1,{ai : Si}i∈I `n R.

Regarding (1), from [Γ1],{ai : Ti}i∈I ,Γ2 `n+1 µ # Q by induction hypothesis we obtain [Γ1],{ai : Ti}i∈I ,Γ2  µ and then from the definition
of function tail and µ-balanced({ai : Si}i∈I) we deduce Γ0;ΓR,Γ  µ .

Regarding (2), From Γ ′0;Γ ′R,Γ  µ ′ and the definition of function tail we deduce Γ ′0;Γ ′R,Γ1,{ai : Ti}i∈I ,Γ2  µ ′ and then from Γ0;ΓR; [Γ1],{ai :
Ti}i∈I ,Γ2 `n+1 µ # Q by induction hypothesis we obtain Γ ′0;Γ ′R; [Γ1],{ai : Ti}i∈I ,Γ2 `n+1 µ # Q. We conclude with an application of rule
(T-RUNNING TRANSACTION).

The following lemma provides a connection between the typing rule (T-PARALLEL) for processes and rule (T-RUNNING PARALLEL) for
configurations. It is used for simplifying some cases in the proof of subject reduction (Lemma B.5).

Lemma B.4. If Γ0;ΓR;Γ `n µ # P1 |P2 is derivable using rule (T-RUNNING PROCESS) it is also derivable using (T-RUNNING PARALLEL).

Proof. From Γ0;ΓR;Γ `n µ # P1 |P2 and rule (T-RUNNING PROCESS) we obtain:

• (H.1) Γ `n P1 |P2;
• (H.2) Γ0;ΓR,Γ  µ .

From (H.1) and rule (T-PARALLEL) we obtain:

• (T.1) Γ = Γ1,Γ2;
• (P.i) Γi `n Pi for i ∈ {1,2}.

From (H.2), (T.1), (P.i) and rule (T-RUNNING PROCESS) we obtain Γ0;ΓR,Γ3−i;Γi `n µ # Pi for i ∈ {1,2}. We conclude with an application
of rule (T-RUNNING PARALLEL).

When a new channel is allocated in the heap, it always comes as a pair of peer endpoints. This easy property is formalized thus:

Proposition B.3. If µ # P→ µ ′ # P′ then µ ′-balanced(dom(µ ′)\dom(µ)).

Proof. Simple induction on the reduction that occurs.

The next lemma is in fact the full version of Theorem 4.1 proving that reductions preserve well typedness and showing the relationship
between the contexts used for typing the two configurations involved.

Lemma B.5 (Theorem 4.1). Let Γ0;ΓR; [ΓS],Γ `n µ # P where unsealed(Γ) and µ # P→ µ ′ # P′. Then there exist Γ ′0 and Γ ′ such that:

(1) Γ ′0;ΓR; [ΓS],Γ
′ `n µ ′ # P′, and

(2) unsealed(Γ ′) and for every a ∈ dom(Γ)∩ dom(Γ ′) we have rank(Γ(a)) = rank(Γ ′(a)) and for every a ∈ dom(Γ) \ dom(Γ ′) we have
rank(Γ(a)) = 0 and for every a ∈ dom(Γ ′)\dom(Γ) we have rank(Γ ′(a)) = 0, and

(3) for every ΓI ⊆ ΓR, [ΓS] such that µ-balanced(µ-reach(dom(ΓI ,Γ))) we have

µ-reach(dom(ΓR,ΓS)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS)\dom(ΓI)).



Proof. By induction on the derivation of µ # P→ µ ′ # P′ and by cases on the last rule applied.

• (R-OPEN) In this case:
P = open(a,b).P′;
µ ′ = µ,a 7→ [b,ε],b 7→ [a,ε].

From rule (T-RUNNING PROCESS) we obtain:
(H.1) [ΓS],Γ `n open(a,b).P′;
(H.2) Γ0;ΓR, [ΓS],Γ  µ .

From (H.2) and rule (T-OPEN) we obtain:
` T : 0;
(C.1) [ΓS],Γ ,a : T,b : T `n P′.

Let Γ ′0 = Γ0 and Γ ′ = Γ ,a : T,b : T . The proof of (C.2) Γ ′0;ΓR, [ΓS],Γ
′  µ ′ is trivial.

From (C.1), (C.2) and (T-RUNNING PROCESS) we obtain (1). We conclude by noting that items (2) and (3) hold trivially.
• (R-CLOSE) In this case:

P = close(a).P′;
µ = µ ′,a 7→ [b,Q].

From rule (T-RUNNING PROCESS) we obtain:
(H.1) [ΓS],Γ `n close(a).P′;
(H.2) Γ0;ΓR, [ΓS],Γ  µ ′,a 7→ [b,Q];

From the hypothesis (H.1) and rule (T-CLOSE) we obtain:
(L.1) Γ = Γ ′,a : end;
(C.1) Γ ′ `n P′.

Let Γ ′0 = Γ0. We only have to show that (C.2) Γ ′0;ΓR, [ΓS],Γ
′  µ ′. We prove the items of Definition 4.3 in order.

1. Straightforward from hypothesis (H.2).
2. Straightforward from hypothesis (H.2).
3. We only need to prove dom(Γ ′0,ΓR, [ΓS],Γ

′) = µ ′-reach(dom(Γ ′R, [ΓS],Γ
′)) since dom(µ ′) = dom(Γ ′0,ΓR, [ΓS],Γ

′) is obvious. First we
show that Q is empty. Suppose by contradiction that this is not the case. Then the endpoint type associated with a before the reduction
occurs must begin with an external choice or running transaction, which contradicts (L.1). So we obtain

µ
′-reach(dom(ΓR, [ΓS],Γ

′)) = µ-reach(dom(ΓR, [ΓS],Γ))\{a}.
From the hypothesis (H.2) we obtain

µ-reach(dom(ΓR, [ΓS],Γ))\{a}= dom(Γ0,ΓR, [ΓS],Γ)\{a}
which equals to dom(Γ ′0,ΓR,Γ

′).
4. Straightforward from hypothesis (H.2).

From (C.1), (C.2) and (T-RUNNING PROCESS) we conclude (1). Item (2) holds trivially. Item (3) holds because µ-reach(dom(ΓR,ΓS)) =
µ ′-reach(dom(ΓR,ΓS)).

• (R-CHOICE) Trivial.
• (R-PARALLEL) In this case:

P = P1 |P2;
µ # P1→ µ ′ # P′1;
P′ = P′1 |P2.

According to Lemma B.4 we can assume that Γ0;ΓR, [ΓS],Γ `n µ # P was derived by rule (T-RUNNING PARALLEL). Then:
Γ = Γ1,Γ2 and ΓS = ΓS1,ΓS2;
(P.1) Γ0;ΓR, [ΓS2],Γ2; [ΓS1],Γ1 `n µ # P1;
(P.2) Γ0;ΓR, [ΓS1],Γ1; [ΓS2],Γ2 `n µ # P2.

From (P.1) by induction hypothesis we deduce that there exist Γ ′0 and Γ ′1 such that:
(1’) Γ ′0;ΓR, [ΓS2],Γ2; [ΓS1],Γ

′
1 `n µ ′ # P′1, and

(2’) unsealed(Γ ′1) and for every a ∈ dom(Γ1)∩ dom(Γ ′1) we have rank(Γ1(a)) = rank(Γ ′1(a)) and for every a ∈ dom(Γ1) \ dom(Γ ′1) we
have rank(Γ1(a)) = 0 and for every a ∈ dom(Γ ′1)\dom(Γ1) we have rank(Γ ′1(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [ΓS],Γ2 such that µ-balanced(µ-reach(dom(ΓI ,Γ1))) we have

µ-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)).

Let Γ ′ = Γ ′1,Γ2. From (1’) and Lemma B.3(1) we obtain (N.1) Γ ′0;ΓR, [ΓS],Γ
′  µ ′. From (P.2), (N.1) and Lemma B.3(2) we deduce (P.2’)

Γ ′0;ΓR, [ΓS1],Γ
′
1; [ΓS2],Γ2 `n µ ′ # P2.

From (1’), (P.2’) and rule (T-RUNNING PARALLEL) we deduce (1).
Regarding (2), notice that unsealed(Γ ′).
Regarding (3), for every ΓJ ⊆ ΓR, [ΓS] we have ΓI = ΓJ ,Γ2 and we know ΓI ⊆ ΓR, [ΓS],Γ2, so we can conclude from (3’) that if ΓI is such
that µ-balanced(µ-reach(dom(ΓI ,Γ1))) we have

µ-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ2)\dom(ΓI))

which is exactly (3).



• (R-SEND) In this case:
P = a!m(c).P′;
µ = µ ′′,a 7→ [b,Q],b 7→ [a,Q′];
µ ′ = µ ′′,a 7→ [b,Q],b 7→ [a,Q′ :: m(c)].

From the hypothesis and rule (T-RUNNING PROCESS) we obtain:
(H.1) [ΓS],Γ `n a!m(c).P′;
(H.2) Γ0;ΓR, [ΓS],Γ  µ ′′,a 7→ [b,Q],b 7→ [a,Q′].

From the hypothesis (H.1) and rule (T-SEND) for some k ∈ I we obtain:
(L.1) Γ = Γ ′′,a : {!mi(Si).Ti}i∈I ,c : Sk;
m= mk;
‖Sk‖< ∞;
(C.1) [ΓS],Γ

′′,a : Tk `n P′.
Let Γ ′0 = Γ0,c : Sk and Γ ′ = Γ ′′,a : Tk. We show (C.2) Γ ′0;ΓR, [ΓS],Γ

′  µ ′ by proving the items of Definition 4.3 in order.
1. We only need to show that Q is empty. Suppose by contradiction that this is not the case. Then the endpoint type associated with a

before the reduction occurs must begin with an external choice or running transaction, which contradicts (L.1).
2. Let Q′ = m1(c1) :: · · · :: mp(cp). From hypothesis (H.2) we deduce Γ0,ΓR, [ΓS],Γ ` b : Tb and Γ0,ΓR, [ΓS],Γ ` ci : S′i for 0≤ i≤ p where

tail(Tb,m1(S′1) · · ·mp(S′p)) = {!mi(Si).Ti}i∈I = {?mi(Si).Ti}i∈I

and we conclude
Tk = tail(Tb,m1(S′1) · · ·mp(S′p)m(Sk)) .

3. From hypothesis (H.2) we have dom(µ) = dom(Γ0,ΓR,Γ) and for every a′ ∈ dom(µ) there exists b′ ∈ dom(ΓR,ΓS,Γ) such that
a′ 4µ b′. Clearly dom(µ ′) = dom(Γ ′0,ΓR,ΓS,Γ

′) since dom(µ ′) = dom(µ) and dom(Γ ′0)∪dom(Γ ′) = dom(Γ0)∪dom(Γ).
Let b4µ b0 and ΓR,ΓS,Γ ` b0 : T0. We have c≺µ ′ b4µ ′ b0, namely c4µ ′ b0. Now

‖Sk‖< ‖tail(Tb,m1(S′1) · · ·mp(S′p))‖ ≤ ‖Tb‖ ≤ ‖T0‖

therefore c 6= b0. We conclude b0 ∈ dom(ΓR,ΓS,Γ
′).

4. Immediate from hypothesis (H.2).
Item (2) holds trivially.
Regarding (3), let ΓI ⊆ ΓR, [ΓS] such that µ-balanced(µ-reach(dom(ΓI ,Γ))). From a ∈ dom(Γ) we deduce that b ∈ µ-reach(dom(ΓI ,Γ))
and c4µ ′ b, therefore µ-reach(dom(ΓR,ΓS)\dom(ΓI)) = µ ′-reach(dom(ΓR,ΓS)\dom(ΓI)).

• (R-RECEIVE) In this case:
P = ∑i∈I a?mi(xi).Pi;
µ = µ ′′,a 7→ [b,m(c) :: Q] where Q= m1(c1) :: · · · :: mp(cp);
m= mk for some k ∈ I;
P′ = Pk{c/xk};
µ ′ = µ ′′,a 7→ [b,Q].

From the hypothesis and rule (T-RUNNING PROCESS) we obtain:
(H.1) [ΓS],Γ `n ∑i∈I a?mi(xi).Pi;
(H.2) Γ0;ΓR, [ΓS],Γ  µ ′′,a 7→ [b,m(c) :: Q] where Q= m1(c1) :: · · · :: mp(cp).

From the hypothesis (H.1) and rule (T-RECEIVE) we obtain:
Γ = Γ ′′,a : {?mi(Si).Ti}i∈J with J ⊆ I;
(N.1) Γ ′′,a : Tk,xk : Sk `n Pk

If we take Γ0 = Γ ′0,c : Sk and Γ ′ = Γ ′′,a : Tk,c : Sk then from (N.1) and Lemma B.2 we conclude (C.1) Γ ′ `n Pk{c/xk}.
Now we only have to show (C.2) Γ ′0;ΓR, [ΓS],Γ

′  µ ′ and we do it by proving the items of Definition 4.3 in order.
1. If a = b there is nothing to prove. Suppose a 6= b. Since the queue associated with a is not empty in µ , the queue associated with its

peer endpoint b must be empty. The reduction does not change the queue associated with b, therefore condition (1) of Definition 4.3
is satisfied.

2. Suppose a 6= b for otherwise there is nothing to prove. From hypothesis (H.2) we deduce Γ0,ΓR, [ΓS],Γ ` b : Tb and

Tb = tail({?mi(Si).Ti}i∈J ,m(Sk)m1(S′1) · · ·mp(S′p))
= tail(Tk,m(Sk)m1(S′1) · · ·mp(s′p))

where Γ0,ΓR, [ΓS],Γ ` ci : S′i for 1≤ i≤ p.
3. Straightforward by definition of Γ ′0 and Γ ′.
4. Immediate from hypothesis (H.2).

From (C.1), (C.2) and rule (T-RUNNING PROCESS) we conclude Γ ′0;ΓR, [ΓS],Γ
′ `n µ ′ # P′.

Regarding (2), from (H.2) and condition (2) of Definition 4.3 we know that rank(Sk) = 0.
Regrading (3), from c ∈ dom(Γ ′) we deduce µ-reach(dom(ΓR,ΓS))) = µ ′-reach(dom(ΓR,ΓS)).

• (R-START TRANSACTION) In this case:
P = ∏i∈I try(Ai) {Qi}Pi;
P′ = 〈

⋃
i∈I Ai, /0,{∏i∈I Qi}∏i∈I Pi〉;



µ ′ = µ;
µ-balanced(

⋃
i∈I Ai).

According to Lemma B.4 we can assume that Γ0;ΓR, [ΓS],Γ `n µ # P was derived by rule (T-RUNNING PARALLEL). Then:
(L.1) ΓS =

⊔
i∈I ΓSi and Γ =

⊔
i∈I Γi;

(P.i) Γ0;ΓR,
⊔

j∈I\{i}[ΓS j],
⊔

j∈I\{i} Γ j; [ΓSi],Γi `n µ # try(Ai) {Qi}Pi for every i ∈ I.
From (L.1), (P.i) and rule (T-RUNNING PROCESS) we obtain:

(H.1) [ΓSi],Γi `n try(Ai) {Qi}Pi where unsealed(Γi) for every i ∈ I;
(H.2) Γ0;ΓR, [ΓS],Γ  µ;

From (H.1) and rule (T-TRY) we obtain, for every i ∈ I:
(L.2) Γi = Γ ′i ,{a : {Sa}JTa}a∈Ai ;
[[ΓSi],Γ

′
i ],{a : Ta}a∈Ai `n+1 Pi;

[ΓSi],Γ
′
i ,{a : Sa}a∈Ai `n Qi;

By rule (T-PARALLEL) we obtain:
(P.1) [[ΓS],

⊔
i∈I Γ

′
i ],{a : Ta}i∈I,a∈Ai `n+1 ∏i∈I Pi;

(P.2) [ΓS],
⊔

i∈I Γ
′
i ,{a : Sa}i∈I,a∈Ai `n ∏i∈I Qi.

It is easy to see that the queue associated with a is empty for every i ∈ I and a ∈ Ai since otherwise would contradict (L.2). Hence, from
(H.2) and (L.2) and the fact that µ-balanced(

⋃
i∈I Ai) we have µ-balanced({a : Sa}i∈I,a∈Ai) and

⋃
i∈I Ai = µ-reach(

⋃
i∈I Ai). Also, from

(H.2) we have
(H.1’) Γ0;ΓR, [[ΓS],

⊔
i∈I Γ

′
i ],{a : Ta}i∈I,a∈Ai  µ;

From (H.1’), (P.1) and rule (T-RUNNING PROCESS) we obtain
(T.1) [[ΓS],

⊔
i∈I Γ

′
i ],{a : Ta}i∈I,a∈Ai `n+1 ∏i∈I Pi.

Let Γ ′0 = Γ0 and Γ ′ =
⊔

i∈I Γ
′
i ,{a : {T}a}i∈I,a∈Ai . From rule (T-RUNNING TRANSACTION), (T.1), (P.2) and facts proven above we

obtain (1).
We conclude by observing that item (2) is trivial and (3) holds since µ ′ = µ .

• (R-END TRANSACTION) In this case:
P = 〈A,B,{Q}∏i∈I commit(Ai).Pi〉;
P′ = ∏i∈I Pi;
µ ′ = µ .

From rule (T-RUNNING TRANSACTION) we obtain:
Γ = Γ1,{a : {Sa}Ta}a∈A,Γ2;
(T.1) Γ0;ΓR; [[ΓS],Γ1],{a : Ta}a∈A,Γ2 `n+1 ∏i∈I commit(Ai).Pi;
µ-balanced({a : Sa}a∈A);
µ-balanced(B);
local(Γ2);
A∪B = µ-reach(A∪dom(Γ2)).

Then, from (T.1) and rules (T-RUNNING PARALLEL) and (T-RUNNING PROCESS) we deduce:
ΓS =

⊔
i∈I ΓSi and Γ1 =

⊔
i∈I Γ1i and {a : Ta}=

⊔
i∈I{a : Ta}a∈Bi and Γ2 =

⊔
i∈I Γ2i where rank(Γ2i) = 0 for every i ∈ I;

[[ΓSi],Γ1i],{a : Ta}a∈Bi ,Γ2i `n+1 commit(Ai).Pi for every i ∈ I.
From rule (T-COMMIT) we deduce:

Bi = Ai;
Ta = KT ′a for every i ∈ I and a ∈ Ai;
[ΓSi],Γ1i,{a : T ′a}a∈Ai ,Γ2i `n Pi for every i ∈ I.

From rule (T-PARALLEL) we deduce (C.1) [ΓS],Γ1,{a : T ′a}i∈I,a∈Ai ,Γ2 `n P′.
Let Γ ′0 = Γ0 and Γ ′ = Γ1,{a : T ′a}i∈I,a∈Ai ,Γ2. From Γ0;ΓR; [ΓS],Γ `n µ # P and Lemma B.3(1) we obtain (H.1) Γ0;ΓR, [ΓS],Γ  µ . From the
fact that the queues associated with pointers a are empty, since {a : {Sa}KT ′a}, and (H.1) we deduce (C.2) Γ0;ΓR, [ΓS],Γ

′  µ ′.
From (C.1), (C.2) and rule (T-RUNNING PROCESS) we deduce (1).
We observe that (2) holds since rank({Sa}Ta) = rank(T ′a) for a ∈ A and (3) holds trivially.

• (R-RUN TRANSACTION) In this case:
P = 〈A,B,{R}Q〉;
P′ = 〈A,B′,{R}Q′〉 where B′ = (B∪ (dom(µ ′)\dom(µ)))\ (dom(µ)\dom(µ ′));
µ # Q→ µ ′ # Q′;

Let A =
⋃

i∈I{ai}. From rule (T-RUNNING TRANSACTION) we deduce:
Γ = Γ1,{ai : {Si}Ti}i∈I ,Γ2;
(T.1) Γ0;ΓR; [[ΓS],Γ1],{ai : Ti}i∈I ,Γ2 `n+1 µ # Q;
(T.2) Γ1,{ai : Si}i∈I `n R;
(T.3) µ-balanced({ai : Si}i∈I);
(T.4) µ-balanced(B);
(T.5) local(Γ2);
(T.6) {ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2));

Let Γ3 = {ai : Ti}i∈I ,Γ2. From (T.1) and unsealed(Γ) by induction hypothesis we obtain that there exist Γ ′0 and Γ ′3 such that:



(1’) Γ ′0;ΓR; [[ΓS],Γ1],Γ
′
3 `n+1 µ ′ # Q′, and

(2’) unsealed(Γ ′3) and for every a ∈ dom(Γ3)∩ dom(Γ ′3) we have rank(Γ3(a)) = rank(Γ ′3(a)) and for every a ∈ dom(Γ3) \ dom(Γ ′3) we
have rank(Γ3(a)) = 0 and for every a ∈ dom(Γ ′3)\dom(Γ3) we have rank(Γ ′3(a)) = 0, and

(3’) for every ΓI ⊆ ΓR, [[ΓS],Γ1] such that µ-balanced(µ-reach(dom(ΓI ,Γ3))) we have

µ-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)).

Since rank(Ti)> 0 for all i ∈ I we know that all the ai’s are still in the environment for Q′ and we have Γ ′3 = {a : T ′i }i∈I ,Γ
′
2.

Let Γ ′ = Γ1,{ai : {Si}T ′i }i∈I ,Γ
′
2.

Regarding (1), from (T.4) and Proposition B.3 we obtain (T.4’) µ ′-balanced(B′). From (2’) we deduce (T.5’) local(Γ ′2). In order to
prove (T.6’) {ai}i∈I ∪B′ = µ-reach({ai}i∈I ∪dom(Γ ′2)) we will use following two sequences of equalities:

(*) dom(µ ′) = (dom(µ)∪ (B′ \B))\ (B\B′) from definition of B′
= (µ-reach(dom(ΓR, [ΓS],Γ1,Γ2)∪{ai}i∈I)∪ (B′ \B))\ (B\B′) from item (3) of Definition 4.3
= (µ-reach(dom(ΓR, [ΓS],Γ1))]µ-reach(dom(Γ2)∪{ai}i∈I)∪ (B′ \B))\ (B\B′) from item (4) of Definition 4.3
= (µ-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I ∪B∪ (B′ \B))\ (B\B′) from (T.6)
= µ-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I ∪B′

From (1’) and Lemma B.3(1) we obtain Γ ′0;ΓR; [[ΓS],Γ1],Γ
′
3  µ ′, so we have:

(**) dom(µ ′) = µ ′-reach(dom(ΓR, [ΓS],Γ1,Γ
′
2)∪{ai}i∈I) from item (3) of Definition 4.3

= µ ′-reach(dom(ΓR, [ΓS],Γ1))]µ ′-reach(dom(Γ ′2)∪{ai}i∈I) from item (4) of Definition 4.3.

From (T.3), (T.4) we obtain µ-balanced({ai}i∈I ∪B), and then from (T.6) we get µ-balanced(µ-reach({ai}i∈I ∪dom(Γ2))). Therefore,
if we take ΓI = /0 in (3’) we obtain µ-reach(dom(ΓR, [ΓS],Γ1)) = µ ′-reach(dom(ΓR, [ΓS],Γ1)) and then from (*) and (**) we obtain (T.6’).
We conclude this part of the proof with an application of rule (T-RUNNING TRANSACTION) to (T.1), (T.2), (T.3), (T.4’), (T.5’) and (T.6’).
From (2’) and rule (WF-RUN) of Definition 5 we obtain (2).
Regarding (3), for every ΓJ ⊆ ΓR, [ΓS] we have ΓI = ΓJ , [Γ1] and we know ΓI ⊆ ΓR, [[ΓS],Γ1], so we can conclude from (3’) that if ΓI is such
that µ-balanced(µ-reach(dom(ΓI ,Γ2)∪{ai}i∈I)) we have

µ-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI)) = µ
′-reach(dom(ΓR,ΓS,Γ1)\dom(ΓI))

which is exactly (3).
• (R-ABORT TRANSACTION) In this case:

P = 〈{ai}i∈I ,dom(µ2),{P′}(throw |P′′)〉;
µ = µ1,{ai 7→ [bi,Qi]}i∈I ,µ2;
µ ′ = µ1,{ai 7→ [bi,ε]}i∈I ;

From rule (T-RUNNING TRANSACTION) we deduce:
(L.1) Γ = Γ1,{ai : {Si}Ti}i∈I ,Γ2;
(C.1) [ΓS],Γ1,{ai : Si}i∈I ` P′.
(T.1) µ-balanced({ai : Si}i∈I);
(T.2) local(Γ2);
(T.3) {ai}i∈I ∪dom(µ2) = µ-reach({ai}i∈I ∪dom(Γ2));

Let Γ ′0 = Γ0\dom(µ2) and Γ ′= Γ1,{ai : Si}i∈I . We only have to show that (C.2) Γ ′0;ΓR, [ΓS],Γ
′  µ ′ and we prove the items of Definition 4.3.

Items (1), (2), and (4) are trivial because µ ′ has no more pointers than µ , some queues in µ have been emptied in µ ′, and duality of
endpoint types associated with peer endpoints is preserved. Regarding item (3), we have to show that dom(µ ′) = dom(Γ ′0,ΓR, [ΓS],Γ

′) =
µ ′-reach(dom(ΓR, [ΓS],Γ

′)). The first equality is easy. Regarding the second equality, we derive:

dom(µ) = µ-reach({ai}i∈I ]dom(ΓR,Γ1,Γ2)) from item (3) of Definition 4.3
= µ-reach(dom(ΓR,Γ1))]µ-reach({ai}i∈I ∪dom(Γ2)) from item (4) of Definition 4.3
= µ-reach(dom(ΓR,Γ1))]{ai}i∈I ]dom(µ2) from (T.3)
= dom(µ1)]{ai}i∈I ]dom(µ2) by definition of µ

where we write ] for disjoint union. From the last equality we deduce
(*) dom(µ1) = µ-reach(dom(ΓR, [ΓS],Γ1)) = µ1-reach(dom(ΓR, [ΓS],Γ1))

and now we conclude
dom(µ ′) = dom(µ1)]{ai}i∈I by definition of µ ′

= µ1-reach(dom(ΓR, [ΓS],Γ1))∪{ai}i∈I from (*)
= µ ′-reach(dom(ΓR, [ΓS],Γ

′)) by definition of Γ ′ and µ ′

From (C.1), (C.2) and rule (T-RUNNING PROCESS) we obtain (1).
Regarding (2), from (L.1) we know that ranks of all pointers ai are preserved and from (T.2) that that the rank of all pointers that are no
more in the environment is 0.
(3) holds trivially.

• (R-INVOKE) Trivial.
• (R-STRUCT) Follows from Lemma B.1 and induction.

B.2 Type soundness
The next four results show the relationship between free names of a process and the names occurring in the context used for typing it.



Proposition B.4. If Γ `n P, then fn(P)⊆ dom(Γ).

Proof. A simple induction on the derivation of Γ `n P.

Lemma B.6. If Γ `0 P and rank(Γ) = 0, then fn(P) = dom(Γ).

Proof. By induction on the derivation of Γ `0 P and by cases on the last rule applied.

• (T-INACTION) Then P = done. From the hypotheses Γ `0 done we conclude that Γ = /0.
• (T-THROW) This case is impossible since throw processes are well typed only at nesting greater than 0.
• (T-INVOKE) Trivial.
• (T-OPEN) Then P = open(a,b).P′ and Γ ,a : T,b : T `0 P′. By induction hypothesis we obtain fn(P′) = dom(Γ ,a : T,b : T ) and then we

conclude fn(P) = fn(P′)\{a,b}= dom(Γ ,a : T,b : T )\{a,b}= dom(Γ).
• (T-CLOSE) Then P = close(a).P′, Γ = Γ ′,u : end and Γ ′ `0 P′. By induction hypothesis we obtain fn(P′) = dom(Γ ′) and then we

conclude fn(P) = {u}∪ fn(P′) = {u}∪dom(Γ ′) = dom(Γ).
• (T-SEND) Then P = u!mk(v).P′, Γ = Γ ′,u : {!mi(Si).Ti}i∈I ,v : Sk and Γ ′,u : Tk `0 P′ for k ∈ I. By induction hypothesis we obtain
fn(P′) = dom(Γ ′,u : Tk) and then we conclude fn(P) = {u,v}∪ fn(P′) = {u,v}∪dom(Γ ′,u : Tk) = dom(Γ).

• (T-RECEIVE) Then P = ∑i∈I u?mi(xi).Pi, Γ = Γ ′,u : {?mi(Si).Ti}i∈I and for all i ∈ I we have Γ ′,u : Ti,xi : Si `0 Pi. By induction hypothesis
for all i ∈ I we obtain fn(Pi) = dom(Γ ′,u : Ti,xi : Si) and then we conclude fn(P) = {u}∪

⋃
i∈I(fn(Pi)\{xi}) = {u,}∪

⋃
i∈I(dom(Γ ′,u :

Ti,xi : Si))\{xi}) = dom(Γ).
• (T-CHOICE) Then P = P1⊕P2 and Γ `0 Pi for i ∈ {1,2}. By induction hypothesis we obtain fn(Pi) = dom(Γ) for i ∈ {1,2} and then we

conclude fn(P) = fn(P1)∪ fn(P2) = dom(Γ).
• (T-PARALLEL) Then P = P1 |P2, Γ = Γ1,Γ2 and Γi `0 Pi for i ∈ {1,2}. By induction hypothesis we obtain fn(Pi) = dom(Γi) for i ∈ {1,2}

and then we conclude fn(P) = fn(P1)∪ fn(P2) = dom(Γ1)∪dom(Γ2) = dom(Γ).
• (T-TRY) Then P = try({ui}i∈I) {R}Q, Γ = Γ ′,{ui : {Si}JTi}i∈I and [Γ ′],{ui : Ti}i∈I `1 Q and Γ ,{ui : Si}i∈I `0 R. By Proposition B.4

applied to Q we deduce fn(Q) ⊆ dom(Γ ′)∪{ui}i∈I . By induction hypothesis on R we deduce fn(R) = dom(Γ ′)∪{ui}i∈I . We conclude
by noting that fn(P) = {ui}i∈I ∪ fn(Q)∪ fn(R) = dom(Γ ′)∪{ui}i∈I = dom(Γ).

• (T-COMMIT) This case is impossible since commit processes are well typed only at nesting greater than 0.

Proposition B.5. If Γ0;ΓR;Γ `n µ # P, then µ-reach(fn(P))⊆ µ-reach(dom(Γ)).

Proof. Straightforward consequence of Proposition B.4 and the fact that µ-reach is a closure.

Lemma B.7. If Γ0;ΓR;Γ `0 µ # P and rank(Γ) = 0, then µ-reach(fn(P)) = µ-reach(dom(Γ)).

Proof. By induction on the derivation of Γ0;ΓR;Γ `0 µ # P and by cases on the last rule applied.

• (T-RUNNING PROCESS) Then Γ `0 P. From Lemma B.6 we deduce fn(P)= dom(Γ), from which we conclude immediately µ-reach(fn(P))=
µ-reach(dom(Γ)).

• (T-RUNNING PARALLEL) Then Γ = Γ1,Γ2 and P = P1 | P2 and Γ0;ΓR,Γ3−i;Γi `0 Pi for i ∈ {1,2}. From the hypothesis rank(Γ) = 0
we deduce rank(Γi) = 0 for i ∈ {1,2}. By induction hypothesis we deduce µ-reach(fn(Pi)) = µ-reach(dom(Γi)). From the fact that
the heap is well typed (Lemma B.3) and item (4) of Definition 4.3, we conclude µ-reach(fn(P)) = µ-reach(fn(P1) ∪ fn(P2)) =
µ-reach(fn(P1))∪µ-reach(fn(P2)) = µ-reach(dom(Γ1))∪µ-reach(dom(Γ2)) = µ-reach(dom(Γ1)∪dom(Γ2)) = µ-reach(dom(Γ)).

• (T-RUNNING TRANSACTION) Then:
P = 〈{ai}i∈I ,B,{R}Q〉;
Γ = Γ1,{ai : {Si}Ti}i∈I ,Γ2;
{ai}i∈I ∪B = µ-reach({ai}i∈I ∪dom(Γ2));
Γ0;ΓR; [Γ1],{ai : Ti}i∈I ,Γ2 `1 µ # Q;
Γ1,{ai : Si}i∈I `0 R.

From the hypothesis rank(Γ) = 0 we deduce rank(Γ1,{ai : Si}i∈I) = 0. From Proposition B.5 and Lemma B.6 we obtain:
µ-reach(fn(Q))⊆ µ-reach({ai}i∈I ∪dom([Γ1],Γ2));
fn(R) = {ai}i∈I ∪dom(Γ1).

We conclude µ-reach(fn(P))= µ-reach({ai}i∈I∪B∪fn(Q)∪fn(R))= µ-reach(dom(Γ1)∪dom(Γ2)∪{ai}i∈I)= µ-reach(dom(Γ)).

We conclude with the soundness proof of the type system.

Theorem B.1 (Theorem 4.2). Let `0 P. Then P is well behaved.

Proof. From the hypothesis we deduce that /0; /0; /0 `0 /0 # P. Consider a derivation /0 # P⇒ µ # Q. From Lemma B.5 we deduce that there exist
Γ0 and Γ such that Γ0; /0;Γ `0 µ # Q and rank(Γ) = 0 and, from Lemma B.3, we obtain Γ0;Γ  µ .

Regarding condition (1) of Definition 3.5, then from Definition 4.3 we know dom(µ) = µ-reach(dom(Γ)). By Lemma B.7 we conclude
µ-reach(dom(Γ)) = µ-reach(fn(Q)).

Regarding condition (2) of Definition 3.5, suppose that Q≡Q1 |Q2 and µ # Q1 X→ and Q1 6≡ throw |Q′1 (the last hypothesis being granted
by the fact that Q is well typed at nesting 0). We prove µ # Q1 ↓ by induction on Q1.

• (Q1 = done) We conclude with an application of rule (ST-IDLE).



• (Q1 = open(a,b).R) Without loss of generality we may assume a,b 6∈ dom(µ) and now µ # Q1 → which contradicts the hypothesis,
therefore this case is impossible.

• (Q1 = close(a).R) From Proposition B.4 and Definition 4.3 we deduce a ∈ dom(Γ) ⊆ dom(µ), and now µ # Q1 → which contradicts
the hypothesis, therefore this case is impossible.

• (Q1 = R1⊕R2) This case is impossible because µ # R1⊕R2 always reduces.
• (Q1 = a!m(c).R) From rules (T-RUNNING PROCESS), (T-RUNNING PARALLEL) and (T-SEND) we obtain Γ ` a : T where T is an internal

choice and a ∈ dom(µ). From item (2) of Definition 4.3 we deduce that the queue associated with a is empty and also that the peer of a,
say b, is still allocated in µ for otherwise T would have to be end. Then µ # Q1→ which contradicts the hypothesis, therefore this case
is impossible.

• (Q1 = ∑i∈I a?mi(xi).Ri) Then a 7→ [b,Q] ∈ µ and the messages and arguments in Q are consistent with the type of endpoint a. The only
case when µ # ∑i∈I a?mi(xi).Ri does not reduce is when Q= ε , therefore we conclude µ # Q1 ↓ by an application of rule (ST-INPUT).

• (Q1 = R1 |R2) From the hypothesis µ # Q1 X→ we deduce µ # Ri X→ for i ∈ {1,2}. From the hypothesis Q1 6≡ throw |Q′1 we deduce
Ri 6≡ throw | R′i for i ∈ {1,2}. By induction hypothesis we obtain µ # Ri ↓ for i ∈ {1,2}. We conclude with an application of
rule (ST-PARALLEL).

• (Q1 = try(A) {R2}R1) From the hypothesis µ # Q1 X→ we deduce ¬µ-balanced(A). We conclude with an application of rule (ST-TRY).
• (Q1 = throw) This case is impossible by hypothesis.
• (Q1 = commit(A).R) We conclude immediately with an application of rule (ST-COMMIT).

• (Q1 = X〈ã〉) From rule (T-INVOKE) we deduce X(ũ) def
= R is a definition and ã and ũ have the same length. Then µ # X〈ã〉 → which

contradicts the hypothesis, therefore this case is impossible.
• (Q1 = µ # 〈A,B,{R2}R1〉) From the hypothesis µ # Q1 X→ we deduce µ # R1 X→ and R1 6≡∏i∈I commit(Ai).Ri and R1 6≡ throw |R′1 since

these are the cases when µ # Q1 does reduce. By induction hypothesis we deduce µ # R1 ↓ and therefore we conclude with an application
of rule (ST-RUNNING TRANSACTION).
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