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Abstract
This paper investigates the compilation of a committed-choice rule-
based language, Constraint Handling Rules (CHR), to specialized
hardware circuits. The developed hardware is able to turn the intrin-
sic concurrency of the language into parallelism. Rules are applied
by a custom executor that handles constraints according to the best
degree of parallelism the implemented CHR specification can offer.

Our framework deploys the target digital circuits through the
Field Programmable Gate Array (FPGA) technology, by first com-
piling the CHR code fragment into a low level hardware description
language.

We also discuss the realization of a hybrid CHR interpreter, con-
sisting of a software component running on a general purpose pro-
cessor, coupled with a hardware accelerator. The latter unburdens
the processor by executing in parallel the most computational inten-
sive CHR rules directly compiled in hardware. Finally the perfor-
mance of a prototype system is evaluated by time efficiency mea-
sures.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords CHR, Hardware synthesis, Hardware acceleration

1. Introduction
In this paper we focus on the hardware compilation of Constraint
Handling Rules (CHR) [10] programs. CHR is a committed-choice
rule-based language, first developed for writing constraint solvers
[11, 12], and nowadays well-known as a general-purpose lan-
guage [6, 15]. The plain and clear semantics of CHR makes it
suitable for concurrent computation, thus allowing programs to be
interpreted in a parallel computation model [9].

The hardware compilation technique presented in this paper
takes advantage of these nice features of CHR. Given a program
in a suitable subset of CHR, it generates a parallel hardware whose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’12, September 19–21, 2012, Leuven, Belgium.
Copyright c© 2012 ACM 978-1-4503-1522-7/12/09. . . $10.00

ANNOTATED PROGRAM 

Hardware 
Compilation 

CHR subset 

VHDL 

Synthesizer 

FPGA 

Figure 1. Hardware compilation diagram flow

components are: (i) a set of parallel hardware blocks, realizing the
rewriting procedures expressed by the CHR rules in the program,
and (ii) a custom unit that interconnects the blocks, and concur-
rently enacts the rules embedded in the hardware blocks with the
constraints in the store.

Indeed, our technique to generate the final hardware digital cir-
cuit is based on an intermediate compilation phase, during which a
CHR code fragment is first translated into a low level Hardware De-
scription Language (HDL), namely VHDL [33]. From VHDL we
can then easily generate synchronous digital circuits, by using au-
tomatic tools and the well known Field Programmable Gate Array
(FPGA) [14] as deployment technology. Our methodology exploits
the programmability features of FPGAs to generate specialized dig-
ital circuits for each specific code fragments occurring in a CHR
program, in turn compiled in VHDL. The overall hardware compi-
lation flow is depicted in Figure 1. As mentioned above the source
language is a subset of CHR: this is due to the intrinsic limitations
of hardware circuits, whose resources must be statically allocated.
Still, the considered subset of CHR is Turing-complete [25] and
it allows to provide a natural solutions of several interesting prob-
lems.

Concerning the chosen hardware deployment technology, it is
worth recalling that nowadays FPGAs take advantage of the growth
in the number of transistors that can be integrated within a chip,
and can also include more complex components, i.e., processors,
memory blocks or special-purpose units. VHDL, the HDL target



language of our compilation methodology, works at a very low
level, i.e. very close to the Register Transfer Level (RTL). It mod-
els a synchronous digital circuit in terms of the flow of digital
signals (data) between hardware registers, and the logical oper-
ations performed on those signals. The VHDL code can directly
feed a vendor-specific design automation tool (the synthesizer) that
through different steps produces a gate-level netlist to configure the
FPGA. We could also adopt different behavioral HDLs (other than
VHDL) as target languages of our hardware compilation methodol-
ogy, provided that synthesizer tools to program the FPGA circuits
are available for those HDLs. Finally, it is worth noting that a FPGA
can be programmed multiple times, thus producing specialized cir-
cuits for different CHR code fragments at hand.

In order to overcome the limitations of a pure hardware compi-
lation, which forces us to restrict to a subset of the CHR language,
we also investigate a hybrid execution architecture for general CHR
programs. It combines the custom hardware device described above
with a CPU-based software interpreter. The idea is to move the
heavier computational burden of a CHR program to this specialized
parallel hardware (co-processor), by keeping the remaining part of
the program on the main processor. Roughly, the CPU-based in-
terpreter takes care of producing the constraints, while the custom
hardware can efficiently consume or rewrite them.

In the current approach, the hardware-software partition for
hybrid execution of a CHR program is established a priori by the
programmer, who specifies the rules to deploy to the hardware
accelerator. A wrapper function virtually encapsulates those rules.
It is used as a call, which takes some constraints as input arguments.
These are converted as a query for the hardware in a suitable
format. The constraints resulting from the hardware execution are
given back to the wrapper and made available to the software level.

We also evaluate our hardware compiling methodology in terms
of performance. We prototyped the hardware specialized circuits
for several significant CHR programs, and compared the execution
times obtained. In most cases, we get an improvement of one (or
many) order(s) of magnitude in the completion time over standard
and optimized software-based CHR interpreters.

In summary, in this paper we provide the following original
contributions:

• A novel technique for synthesizing behavioral hardware com-
ponents starting from a subset of CHR;
• An implementation of an efficient and optimized parallel execu-

tion model of CHR by means of hardware blocks, implemented
on FPGA (through an intermediate compilation into a low level
VHDL language);
• The development of a custom reconfigurable hardware co-

processor that significantly speeds up the execution of a CHR
program.

The work is based on some preliminary results that appeared in
informal workshop proceedings [30, 31].

The paper is organized as follows. An overview of the CHR
language and of the FPGA architecture is presented respectively in
Section 2 and 3. In Section 4 we focus on the technique adopted for
generating hardware blocks from CHR rules and in Section 5 we
show how to efficiently accommodate in hardware parallel rules
execution. In Section 6 we illustrate how the FPGA can fit into a
complete computing architecture. Beyond a running example that
drives the reader through the description of the parallelism between
CHR and hardware, several complete practical examples of imple-
mentations are provided. Classical algorithms usually adopted for
showing the expressiveness of CHR in multiset transformation or

constraint solving, are chosen as case studies. Section 7 discusses
related works and finally Section 8 draws the concluding remarks.

2. CHR overview
Constraint Handling Rules is a declarative multi-headed guarded
rule-based programming language. It employs two kinds of con-
straints: built-in constraints, which are predefined by the host lan-
guage, and CHR constraints, which are user-defined by program
rules. Each constraint can have multiple arguments and its num-
ber is called arity. Null-arity built-in constraints are true (empty
constraint) and false (inconsistent constraint). A CHR program is
composed of a finite set of rules acting on constraints. We can dis-
tinguish two kinds of rules:

Simplification: Name @H ⇔ G | B
Propagation: Name @H ⇒ G | B

Where Name is an optional unique identifier of the rule, H (head)
is a non-empty conjunction of CHR constraints, G (guard) is an
optional conjunction of built-in constraints, and B (body) is the
goal, a conjunction of built-in and CHR constraints. These rules
logically relate head and body provided that the guard is true.
Simplification rules mean that the head is true if and only if the
body is true and propagation rules mean that the body is true
if the head is true. Rules are applied to an initial conjunction
of constraints (query) until no more changes are possible. The
intermediate goals of a computation are stored in the so called
constraint store. During the computation if a simplification rule
fires the head constraints are removed from the store and they are
replaced by the body constraints. If the firing rule is a propagation
rule the body constraints are added to the store keeping the head
constraints. A third rule called simpagation permits to perform both
a simplification and propagation rule:

Simpagation: Name @H1\H2 ⇔ G | B
This rule means that the first part of the head (H1) is kept while
the second is removed from the constraint store. Simplification and
propagation rules are special cases of simpagation when either H1

or H2, respectively, are empty.

EXAMPLE 1. We use, as a running example, the program below
which computes the greatest common divisor (gcd) of a set of
integers using the Euclid’s algorithm.

R0 @ gcd(N) <=> N = 0 | true.
R1 @ gcd(N) \ gcd(M) <=> M>=N | Z is M-N, gcd(Z).

Starting from a ground query gcd(n1),...,gcd(nk) the program
computes the gcd of n1, . . . , nk. Rule R0 states that the constraint
gcd with the argument equal to zero can be removed from the store,
while R1 states that if two constraints gcd(N) and gcd(M) are
present, the latter can be replaced with gcd(M-N) if M>=N.

A central property of CHR is monotonicity: if a rule can fire in a
given state then the same firing is possible in a state including some
additional constraints. In symbols, for conjunctions of constraints
A, B and E:

A 7−→ B

A ∧ E 7−→ B ∧ E
(1)

A direct consequence is the online property, i.e., the fact that con-
straints can be added incrementally during the execution of a pro-
gram. In fact, monotonicity implies that a final state reached after
an execution with an incremental addition of constraints could have
been equivalently obtained by having all constraints since the be-
ginning.

Monotonicity is also at the basis of the parallelism of CHR [9].
In fact, it implies that rules operating on disjoint parts of the con-
straint store can be safely fired in parallel. This property is referred



as weak parallelism. Formally, if A, B, C and D are conjunctions
of constraints:

A 7−→ B C 7−→ D

A ∧ C 7−→ B ∧D
(2)

Weak parallelism cannot be applied to rules that operate on
non disjoint sets of constraints. Strong parallelism, instead, allows
for the parallel execution of rules operating on some common
constraints provided that they do not attempt to modify them. In
symbols:

A ∧ E 7−→ B ∧ E C ∧ E 7−→ D ∧ E

A ∧ E ∧ C 7−→ B ∧ E ∧D
(3)

3. FPGA overview
FPGAs are instances of reconfigurable computing, i.e. computer
architectures able to merge the flexibility of software with the
performance of hardware, using as processing element high speed
configurable hardware fabric [14].

FPGAs are devices containing programmable interconnections
between logic components, called logic blocks, that can be pro-
grammed to perform complex combinational functions. In most
FPGAs the logic blocks contain memory elements like simple flip-
flops or complete blocks of memory. FPGAs can also host hardware
components like embedded hard microprocessors or IP (Intellec-
tual Property) cores that use the logic blocks themselves to make
predefined structures like soft microprocessor cores, i.e, real CPUs
entirely implemented using logic synthesis.

The architecture of an FPGA is model and vendor dependent,
but in most cases it consists of a bi-dimensional array of configura-
tion logic block (CLB), I/O pads, and routing channels. CLBs are
made of few logic cells commonly called slices. Each of them con-
sists of some n-bit lookup tables (LUT), full adders (FAs) and D-
type flip-flops. The n-bit LUT realizes the combinatorial part of the
circuit: it can encode any n-input boolean function by a truth table
model. The FA is used when there is the need to perform arithmetic
functions, otherwise it can be bypassed by a multiplexer. Likewise
the final D flip-flop can be skipped if we wish an asynchronous
output.

The FPGA programmer usually begins the design flow by de-
scribing the behavior of the desired hardware in a HDL. The HDLs
commonly adopted by the hardware engineers are VHDL [33]
(used in all the implementations proposed in this paper) and Ver-
ilog [32]. HDL code can directly feed a vendor-specific design au-
tomation tool (called synthesizer) that through different steps gen-
erates a technology-mapped netlist used to configure each CLB.
Since each FPGA differs from design architecture, a dedicated pro-
cess, named place-and-route, takes care of choosing which CLBs
need to be employed and how to physically connect them. Before
the actual implementation in hardware, the programmer can vali-
date the map via timing analysis, simulation, and other verification
methodologies. The final result of the design flow is then a bit-
stream file that can be transferred via a serial interface to the FPGA
or to an external memory device charged to deploy it at every boot
of the FPGA.

The key factor that brought FPGAs to success is their pro-
grammability. Such a feature guarantees a very short time to pro-
duction which can easily explain why they quickly emerged as
a way for generating effective and low cost hardware prototypes.
However, nowadays FPGAs are not only used for prototyping, but,
due to the decreasing cost per gate, they are employed as a principal
component in many digital hardware designs.

4. Compilation to hardware
Here we discuss the main ideas behind our CHR-based hardware
specification approach. First, we investigate the features of CHR

that could hamper the hardware synthesis, then we address the
correspondences between CHR rule and hardware and finally we
describe how to reproduce in hardware the execution from the
query to the result. As depicted in Fig. 1, the complete compilation
flow starts from a subset of CHR and goes to an implementation
on FPGA passing through the low level VHDL language. Part of
the produced VHDL code from the running example is reported in
Appendix ??.

4.1 The CHR subset
Since the hardware resources can be allocated only at compile time
(dynamic allocation is not allowed in hardware due to physical
bounds), we need to know the largest number of constraints that
must be kept in the constraint store during the computation. In
order to establish an upper bound to the growth of constraints,
we consider a subset of CHR, which does not include propagation
rules. Programs are composed of simpagation rules of the form:

rule@ c1(X1), . . . , cp(Xp)\cp+1(Xp+1), . . . , cn(Xn)⇔
g(X1, . . . , Xn) |
Z1 is f1(X1, . . . , Xn), . . . , Zm is fm(X1, . . . , Xn),
ci1 (Z1), . . . , cim (Zm).

(4)
where Xi (i ∈ {1, . . . , n}) can be a set of variables and the number
of body constraints is less than or equal to the number of constraints
removed from the head (m ≤ n−p) and no new type of constraints
is introduced: {i1, . . . , im} ⊆ {p + 1, . . . , n}. In this way, the
number of constraints cannot increase and the constraint store size
is bounded by the width of the initial query.

Additionally, we will consider only computations starting from
a ground goal. Note that, since the variables in the body of a rule
are included in those occurring in the head, this implies that all
constraints generated during the computations will be ground, a
fact which will make possible the translation into hardware.

It is worth recalling that the CHR subset identified by the above
conditions is still Turing-complete. A proof can be found in [25],
where several subclasses of CHR are shown to be Turing-complete,
in particular CHR with only one kind of rule. This specific re-
sult comes from an analysis of a RAM machine implemented in
CHR [26] which requires neither propagation nor free variables.

4.2 Design of the hardware blocks
The framework we propose logically consists of two parts: (i)
Several hardware blocks representing the rewriting procedure ex-
pressed by the program rules; (ii) an interconnection scheme
among the blocks specific for a particular query. The first one is
the hardware needed to implement the concurrent processes ex-
pressed by the CHR rules of the program, while the second one is
intended for reproducing the query/solution mechanism typical of
constraint programming.

The proposed hardware design scheme is outlined in Fig. 2. A
Program Hardware Block (PHB) is a collection of Rule Hardware
Blocks (RHBs), each corresponding to a rule of the CHR program.
Constraints are encoded as hardware signals and their arguments
as the values that signals can assume. The initial query is directly
placed in the constraint store from which several instances of the
PHB concurrently retrieve the constraints, working on separate
parts of the store. The newly computed constraints replace the input
ones. A Combinatorial Switch (CS) sorts, partitions and assigns the
constraints to the PHBs taking care of mixing the constraints in
order to let the rules be executed on the entire store. The following
paragraphs explain in detail the construction of the blocks.

4.2.1 Rule Hardware Blocks
The RHB corresponding to the CHR rule in Eq. (4) inputs n signals
that have the value of the variables X1 . . . Xn (the arguments of the
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Figure 2. Hardware design scheme.
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Figure 3. The Rule Hardware Blocks for the gcd rules.

head constraints). If X1 . . . Xn are sets of variables, we use vectors
of signals (records in VHDL). The computational part of the RHB
is given by the functions f1 . . . fm that operate on the inputs. The
resulting output signals have the value of the variables X1 . . . Xp

and Z1 . . . Zm.
We exploit processes, the basic VHDL concurrent statement, to

translate the computational part of a rule to a sequential execution.
Each rule is mapped into a single clocked process containing an if
statement over the guard variables.

Since, due to constraint removals, the number of constraints can
become smaller during the computation, each output signal for a
given constraint is coupled with a valid signal. This tells to the
other components whether the signal should be ignored.

EXAMPLE 2. Figure 3 sketches the RHBs resulting from the two
rules of the gcd program in Example 1. Notice that each constraint
is associated with two signals: one contains the value of the vari-
able of the constraint (solid line), and the other one models its va-
lidity (dashed line).

The block in Fig. 3(a) corresponds to Rule R0. It has as input
the value for variable N together with its valid signal. It performs a
check over the guard and if the guard holds the valid signal is set
to false whereas the value of the gcd signal is left unchanged. This

simulates at the hardware level the removal of a constraint from the
constraint store.

The block in Fig. 3(b) is the translation of Rule R1. It has four
input signals, corresponding to the values of the variables N and
M, with their valid signals. According to the guard M>=N of R1,
the inputs N and M feed a comparator that checks if the value
of the second signal is greater than or equal to the first. If the
condition is satisfied, the value of the second signal is replaced by
Z = M-N, as computed by a subtractor, while the value of the first
signal remains unchanged. If the guard does not hold, the outputs
of the block coincide with the inputs. In both cases the valid signals
remain unchanged. The computational part is carried out by the
subtraction operator.

4.2.2 Program Hardware Block
The PHB is the gluing hardware for the RHBs: it executes all the
rules of the CHR program and hence it contains all the associated
RHBs, with the corresponding input signals. Intuitively, for any
constraint type, the PHB inputs the largest number of constraints
of that type in input to the underlying RHBs. Additionally, the
PHB takes as input the two global input signals clk and reset used
for synchronization and initialization purposes. It provides for the
finish control signal used to denote when the outputs are ready to be
read by the following hardware blocks. The RHBs keep on applying
the rules they implement until the output remains unchanged for
two consecutive clock cycles.

Note that in the hardware each constraint is represented as
a different signal. If the head of a rule contains more than one
constraint of the same type, the corresponding signals must be
considered as input in any possible order by a RHB encoding the
rule. This is obtained by replicating the RHB a number of times
equal to the possible permutations of the constraints of the same
type.

More precisely, for the sake of simplicity, assume that there
is a unique type of constraint and let k be the total number of
input constraints to the PHB. For a rule whose head contains n
constraints (as in the generic rule in Eq. (4)), the number of copies
of RHBs needed is k!/(k − n)!, i.e., the number of sequences of
length n over the set of k inputs. Finally there is a mechanism
for ensuring that only one copy of the RHB can execute per clock
cycle.

EXAMPLE 3. Let us consider the PHB corresponding to the gcd
program in Example 1. As depicted in Fig. 4, it takes as input two
signals corresponding to gcd constraints (the maximum between
the number of inputs of R0 and R1). According to the general
argument above, the number of RHB instances for Rule R1 is
2 = 2!/(2 − 2)!. To see why these are required, note that when
N is greater than M, the rule can fire only if fed with the constraint
in reverse order, as it happens for the second copy RHB. Similarly
the number of RHB instances needed for R0 is 2 = 2!/(2− 1)!.

A certain degree of parallelism for rules is set at the level of
the PHB. Here, according to the notion of strong parallelism for
CHR, introduced in Section 2, we allow for the parallel firing
of rules sharing constraints which are not rewritten. Actually, all
rule instances in the PHB are executed by one or more concurrent
processes that fire synchronously at every clock cycle. Then, the
commit block at the output stage selects only the outputs of a
subset of rules which can fire in parallel, chosen according to
some priority criteria. For instance in the PHB of the gcd example,
Rule R0 cannot be executed in parallel with R1 because they could
rewrite the same constraint.
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Figure 4. The Program Hardware Block for the gcd program

4.2.3 Combinatorial Switch (CS)
A further level of parallelization is achieved by replicating the
PHBs into several copies that operate on different parts of the
global constraint store, according to weak parallelism as described
in Section 2. PHBs can compute independently and concurrently
because they operate on different constraints. Although they pro-
cess data synchronously, since they share a common clock, it is not
required that they terminate their computation at the same time. In-
deed the CS acts as synchronization barrier letting the faster PHBs
wait for the slower ones. It is also in charge to manage communi-
cation among hardware blocks exchanging data: once all the PHBs
have provided their results, it reassigns the output signals as input
for other PHBs, applying first some permutation to guarantee that
all the combinations will be considered.

In practice, the implementation of this interconnection element
relies on a signal switch that sorts the n constraints in the query
according to all the possible k-combinations on n (where k is the
number of inputs to the single PHB) and connects them to the
inputs of the PHBs. The maximum number of PHBs that can work
in parallel on the constraint store is bn/kc, since, according to weak
parallelism, the same signal (and hence the same constraint) cannot
be fed to different PHBs at the same time.

Implementing CS as a finite state machine leads to a total
number of states S equal to the number of possible combina-

tions divided by the number of concurrent PHBs: S =
(nk)
bn/kc ≈∏k−1

i=1 n−i

(k−1)!
. Despite the good degree of parallelization achieved by

the CS (it allows bn/kc PHBs to execute in parallel), it needs a
number of states O(nk−1) in order to try all the possible combina-
tions on the input signals. Since the time necessary for evaluating
the query is proportional to the number of states, it is important
to limit the number k of inputs for each PHB. This leak in per-
formance is related to the complexity of the search for matching
problem: a very well known issue in CHR [27] and in general in
multi-headed constraint languages. An additional problem is that
CS simply combines all the constraints (including the invalid ones)
in all possible ways. In presence of algorithms that considerably
reduce the number of constraints during computation this can be
highly inefficient. In fact, constraints that have been removed by
the PHBs still continue to be shuffled by the CS uselessly. In Sec-
tion 5 we will discuss how to improve time complexity to space
complexity’s cost giving optimized structures for the CS.
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4.2.4 Some experiments with gcd

Here we describe the hardware implementation of the algorithm
presented in Example 1 tailored for finding the greatest common
divisor of at most 128 integers. The resulting hardware design re-
lies on 64 PHBs deriving in parallel the gcd. The CS pairs the con-
straints in a round robin tournament scheme where each constraint
is coupled once with each other. For comparison purposes we im-
plement the same algorithm directly in behavioral VHDL using a
parallel reduction that exploits the associative property of the gcd
operation. Both hardware specifications are then synthesized in a
Xilinx Virtex4 FPGA (xc4vfx60) running at 100MHz. Figure 5 re-
ports the execution times for 16, 32, 64 and 128 2-byte integers.
The two FPGA implementations are labeled respectively as FPGA
(CHR) and FPGA (VHDL). The curves labeled CPU (SWI) and
CPU (CCHR) refer to the computational time of the CHR gcd
program, compiled respectively with the K.U.Leuven CHR sys-
tem of SWI Prolog [22] and the fast C-based system CCHR [35],
and running on Intel Xeon 3.60GHz processor with 3GB of mem-
ory. Observe that the FPGA implementations are at least one order
of magnitude faster than the software implementations (including
CCHR which is claimed to be the fastest CHR implementation cur-
rently available). This is somehow expected, due to the completely
different hardware nature, but still it provides an indication of the
appropriateness of our approach.

Compared to the VHDL solution, the execution time can be
more than an order of magnitude larger. This is primarily due to the
fact that, as mentioned above, the CS does not take into account that
the number of constraints can drastically decrease. An optimization
addressing this issue will be discussed in Section 5.1 (the outcome
of such an optimization is reported in Fig. 5, labeled FPGA (CHR
SP)).

The area needed for the largest gcd implementation we tried is
about 2 · 105 LUTs corresponding to about 8% of occupation of
a medium size FPGA. Finally we should notice that the resulting
highest frequencies of operations are all above 250 MHz and up to
350 MHz, which is quite good for a non pipelined architecture.

5. Optimizing hardware compilation
With the aim of facing the problem of time efficiency, three opti-
mizations are proposed relying on different degrees of paralleliza-
tion. In particular, in Section 5.1 we discuss how the property of
strong parallelism can be further exploited with simple changes in
the hardware framework. In Section 5.2 we show how the adoption
of a set based semantics for CHR can open the door to a higher level
of parallelism. Finally, in Section 5.3, the online property of CHR
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Figure 6. Optimization model for strong parallelism.

(see Section 2) is used for boosting the computation of a merge sort
algorithm.

5.1 Strong parallelism
Here we propose an optimization which exploits the strong paral-
lelism property of CHR also at the level of the CS. The idea consists
of distinguishing between constraints that are either read or rewrit-
ten by the PHBs. Then, the same read constraints can be processed
in parallel by all the PHBs. A hardware block, obtained as a mod-
ification of the CS used before, takes care of feeding the various
PHBs instances with the same read constraints combined with dif-
ferent sets of rewritten constraints.

For instance, consider the gcd program. The PHB now contains
a single instance of RHB for each Rule R0 and R1. The PHB inputs
a read constraint (the first input of R1) and a removed constraint
(shared between the two rules). Note that in this case, since there is
no rule duplication inside the PHB, the order of signals matters.

Figure 6 shows a possible refined CS for a five constraints query
but the design can be easily adapted (with a linear growth) to a
larger number of constraints. It relies on a circular shift register1

preloaded with the query constraints and with one cell connected
to all the first input (read constraint) and all the others connected
to the second input (removed constraint) of each PHB. Each time
the PHBs terminate their computation the new output constraints
replace the old ones in the shift register and they shift until a valid
constraint fills the first position of the register. Note that since the
outputs carrying the read constraint refer to the same constraint for
all PHBs, they are all left disconnected apart from the first one (see
Figure 6).

Experimental results for the proposed strong parallel architec-
ture are reported in Fig. 5, labeled by FPGA (CHR SP). The re-
duction in execution time is relevant for all the experiments with
different number of constraints, reaching up to one order of magni-
tude of speed up.

5.2 Massive parallelism
The set-based semantics CHRmp [20] relies on the idea that con-
straints can be considered as multiplicity independent objects so
that additional copies of them can be freely used. In such a con-
text, a duplicate removal of one constraint can be replaced by the
removal of two copies of the same constraint. The degree of paral-
lelism introduced by this change of perspective is extremely high
since multiple rule instances removing or reading the same con-
straint can be applied concurrently (intuitively each one operates on

1 A shift register is a cascade of registers in chain, with the data input of
the first element connected to the output of the last one. An enable signal
determines a circular shift of one position of the stored data.
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Figure 7. Prime execution time (log scale)

a different copy of the constraint). The main drawback of CHRmp

is that it is not sound with respect to the sequential semantics when
the program is not deletion-acyclic (i.e., when two distinct con-
straints are responsible for their mutual removal).

CHRmp is particularly suited for algorithms that considerably
reduce the number of constraints like the filtering ones. Consider
as an example the program below that, starting from the query
prime(2), ..., prime(n) extracts the prime numbers in the
interval [2, n]:

Prime @ prime(X) \ prime(Y) <=> Y mod X = 0 | true.

Note that Rule Prime is in the CHR fragment defined by Eq. (4)
as the number of prime constraints decreases every time the rule
fires. The program is also deletion-acyclic since two integers cannot
be one a proper multiple of the other. Moreover, the execution of
the program can take advantage also from strong parallelism since
multiple instances of the rule can use the same prime constraint for
reading.

The idea for exploiting massive parallelism consists of provid-
ing all possible combinations of constraints (order matters) in in-
put to distinct parallel PHB instances in a single step. This time
the same constraint will be fed to several PHBs. Valid outputs are
collected: a constraint is valid if no PHB has removed it. This is
realized in hardware by suitable AND gates. Finally, valid outputs
are used as input in the next round. The architecture thus ideally
uses

(
n
k

)
PHBs where n is the number of query constraints and k is

the number of inputs of each PHB. In practice, physical bounds can
impose to use a smaller number of PHBs, in a way that processing
all possible combinations of constraints will require more than one
step.

Figure 7 reports the execution time for the Prime program.
The strong parallelism and massive parallelism optimizations are
tagged as FPGA (CHR SP) and FPGA (CHR MP), respectively.
The improvement determined by the massive parallelism is about
an order of magnitude for queries with a low number of constraints,
and it decreases with higher numbers of constraints. This is due
to the fact that the physical bounds of the hardware are quickly
reached. The occupied area of the FPGA determined by a complete
parallelization would increase as

(
n
k

)
. Even though in this case k is

small (k = 2), we obtain a quadratic growth that is not sustainable
and a partial serialization is needed.

5.3 Online optimization
In this section we illustrate the optimizations which can be allowed
by the online property, working on a typical CHR program imple-
menting the merge sort algorithm with optimal complexity [10].



M0 @ arc(X,A) \ arc(X,B) <=> A<B | arc(A,B).
M1 @ seq(N,A), seq(N,B) <=>

A<B | seq(N+N,A), arc(A,B).

⇓
M0 @ c(0,X,A) \ c(0,X,B) <=> A<B | c(0,A,B).
M1 @ c(1,N,A), c(1,N,B) <=>

A<B | c(1,N+N,A), c(0,A,B).

Figure 8. Merge sort algorithm

The CHR program consists of the Rules M0 and M1 in the upper
part of Fig. 8. Given a ground query of the form seq(1,n1), . . . ,
seq(1,nk) the program returns the ordered sequence of the input
numbers n1, . . . , nk, represented as a chain of arcs using the con-
straint arc/2. For instance, starting from seq(1,9), seq(1,3),
seq(1,7), seq(1,4) the program returns the following arc con-
straints: arc(3,4), arc(4,7), arc(7,9).

Rule M0, where two arcs arc(X,A) and arc(X,B) start from
the same number X, performs their ordered merge into a chain. The
arc with the smaller target is kept by the rule, while the other is
replaced by an arc between A and B. The insertion in the store
of such a constraint may cause a new branch in the sequence,
and hence the rule keeps firing until all the branches have been
removed. In order to reach the optimal complexity O(n log(n)),
the chains which are merged should have the same length. Rule M1
is responsible for the initialization of the arc/2 constraints in order
to meet such a requirement. In a constraint seq(l,n) the second
argument n is one of the numbers to be ordered, while the first
argument l represents the number of elements reachable from n
via arc connections. In the initial query, since no arc connections
exist, all constraints are of the kind seq(1,ni).

The program, strictly speaking, does not belong to the CHR
subset implementable in hardware. In fact, while Rule M0 leaves
unchanged the number of arc/2 constraints, Rule M1 reduces by
one the number of seq/2 constraints but introduces a new arc/2
constraint. However, the program can be easily transformed into an
equivalent one falling in the CHR subset of interest. In fact, since
in Rule M1 the total number of constraints is left unchanged, it is
sufficient to flatten the two types of constraints involved, i.e., arc/2
and seq/2, into a single one c/3, with an additional argument
used to encode the constraint type. The transformed program can
be found in the bottom part of Fig. 8.

Note that such constraint flattening is always possible using
a new constraint with an arity equal to the greatest arity of the
original constraints plus one.

Following the methodology described in Section 4.2, the trans-
formed program for merge sort can be compiled into hardware.
Each PHB has two inputs and two outputs and it includes four
RHBs. In fact, since both Rules M0 and M1 have two constraints
of the same type in the head, as in the running example (see in par-
ticular Example 3), two RHBs are needed for each rule. Note that
the commit stage of a PHB selects the result of a single RHB since
after the constraint flattening no parallelization is possible between
rules. The actual parallelization is performed by the CS that pairs
the query constraints and assigns each couple to a different instance
of the PHB. The number of instances of PHB which works in paral-
lel on the constraint store is thus bn/2c, where n is the total number
of constraints in the store.

We next propose an alternative architecture, which further par-
allelizes rule executions by exploiting the online property of CHR.
The key observation is that, relying on this property, the merging
operation performed by Rule M0 can be executed in parallel to the
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Figure 9. Merge sort execution time (log scale)

generation of the arc constraints as carried out by Rule M1. Hence
the program can be naturally split into two parts corresponding to
the two rules and some of the resulting constraints of one part can
be used to populate runtime the constraint store of the second one.
The arc/2 constraints produced by Rule M1 are consumed only
by Rule M0 while seq/2 constraints are produced and consumed
only by Rule M1. If we consider the two rules as separate programs
joined by the arc production and consumption, we can design a
hardware constituted by two executors linked by a one-way FIFO
buffer.

The executor for each rule consists of a CS and n/2 instances
of the PHB described above, where n is the number of query
constraints.

The seq/2 query constraints are loaded in the CS of the first
executor and, as new arc/2 constraints are created (actually c/3
constraint with the first argument equal to 0), they are inserted in
the FIFO that feeds the CS of the second executor. Such a CS at the
beginning of the computation is empty, a fact which is concretely
implemented by preloading the CS with constraints which are all
non valid. Then, whenever a new constraint is received from the
buffer it will replace one of the non valid constraints. The two CS
and the FIFO should have the same dimension since, in a normal
execution, all the seq constraints (except the last that always re-
mains unpaired) are converted in arc constraints. The FIFO depth
has to take into account the possibility that the second CS is not
able to receive immediately the sent constraint because the receiv-
ing cell is occupied by a valid constraint.

Figure 9 shows a comparison between the execution time of the
non optimized and optimized hardware implementations, labeled
as FPGA(CHR) and FPGA(CHR) CS + CS, respectively. The
optimized implementation, when the number of elements to be or-
dered increases, outperforms the non-optimized one. This shows
the advantage of exploiting the online property that gives the pos-
sibility of dividing the problem into two parts running in parallel.
Also these experiments confirm that the FPGA implementations
are much more efficient than the software ones, in SWI Prolog and
CCHR.

Finally, we note that in the optimized FPGA architecture the CS
of the second executor could be replaced by a shift register, like the
one used in presence of strong parallelism (see Section 5.1). In fact,
multiple instances of Rule M0 can be strongly parallelized, because
one constraint of the head is kept and hence can be shared among
multiple rules. However experimental results shows that such a
architecture does not speed up the execution at all. This is due to
the fact that when the last arc/2 constraint is generated by the first
executor, the partial result of the second one approximates very
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closely the final result (which could be already the correct one).
Thus when the last constraint is retrieved by the second executor,
it has to apply just a single rule to reach the end of the execution.
Hence the chosen parallelism for sorting the constraints does not
matter.

6. An accelerator for CHR
In Section 4 it was shown how to synthesize hardware starting
from a subset of CHR that does not allow constraint propagation.
Since dynamic allocation is not permitted in hardware due to phys-
ical bounds, such a restriction might be expected for a hardware
designer, but it turns out to be very restrictive for software pro-
grammer. In order to overcome this limitation, we propose a mixed
(hardware/software) system where some rules, whose execution
represents the heavier computational task, are executed by special-
ized hardware (synthesized through the aforementioned technique),
while the remaining ones are executed by the main processor that
can overcome the hardware deficiency. The processor can easily
take care of producing constraints, while the custom hardware can
efficiently consume or rewrite them.

The issue of partitioning between hardware and software im-
plementations is left to the programmer, who specifies which rules
should be deployed to the hardware accelerator. A wrapper func-
tion virtually encapsulates those rules. It is used as a call, which
takes some constraints as input arguments. These are converted to
a query for the hardware in a suitable format. The constraints re-
sulting from the hardware execution are given back to the wrap-
per and made available to the software level. The wrapper allows
the programmer to access to lower level instructions (in this case a
call to a hardware driver), which speed up the execution. This kind
of modularity is known in the literature as hierarchical composi-
tion [7, 23] and an implementation similar to ours can be found for
instance in [27].

The entire system compilation is split into two branches (see
Fig. 10) related to software and hardware parts. The source program
is annotated by the programmer who specifies the rules that have to
be executed by the hardware accelerator. The hardware compilation
is performed according to the method in Section 4.2 which results
in a bit stream directly deployable on an FPGA. On the other hand
the standard software compilation will be necessarily altered to deal
with the hardware realization of some rules of the program. Since
our implementation relies on a CHR system that adopts Prolog as
host language, the execution of the hardware implemented rules
will be embedded in a custom made built-in foreign Prolog pred-

icate (the wrapper). When it is called, all the constraints needed
by the hardware are sent to the accelerator, which will return the
resulting constraints back to the constraint store.

GCD matrix calculation. As a first case study, let us consider a
program that, given a set of integers, computes the gcd of all the
pairs of inputs. To this end it builds a bi-dimensional triangular
upper matrix whose elements will contain the gcd of all pairs of
integers belonging to the set. The query is formulated using the
constraint set/2, where the second argument represents a number
in the input set, while the first expresses its (arbitrary) order in
the set, e.g., set(1,N1),. . .,set(k,Nk), computes the gcd for
the set {N1, . . . , Nk}. The matrix is built by using the constraint
gcd/3. In the constraint gcd(X,Y,M) the first two arguments,
X,Y denote the position of the element in the matrix whereas the
third one will contain the gcd of NX and NY. The first and the
last two rules reported in Fig. 11 are the CHR implementation of
the matrix computation. The computation of the gcd according to
Euclid’s algorithm is then expressed by Rules GCD0 and GCD1. The
propagation Rules Matrix0 and Matrix1 are employed to build
the matrix from the initial set of inputs. Rule Matrix0 produces
the upper half of the matrix (due to the guard X<Y), creating the
initial query gcd(X,Y,N),gcd(X,Y,M) for the computation of the
gcd between the numbers N and M. Rule Matrix1, in contrast,
generates the diagonal elements. In this case the gcd is trivially
equal to the set element N. These two rules cannot be implemented
in hardware because they are propagation rules that generate new
gcd constraints.

In the hardware accelerator we deploy the functionality of rules
GCD0 and GCD1with the hardware blocks technique reported in Sec-
tion 4.2. The remaining program running on the main processor
consists of the two Rules Matrix0 and Matrix1, with the addition
of the rules reported in the central part of Fig. 11. Rule Pack is in-
tended to append all the constraints of type gcd/3 to a list that has
to be delivered to the hardware accelerator. Call is used to trigger
the invocation of the custom Prolog predicate hw_gcd/2 that is the
actual responsible of the data transfer to and from the hardware ac-
celerator. The constraint call/0 is available to the programmer to
make the rule fire at the preferred time. For instance, in our exam-
ple we could use the query set(1,N1),. . .,set(k,Nk),call if
we wish that the gcd constraints were processed after the complete
production of all of them. Finally the Rule Unpack transforms the
output list returned by the hardware accelerator into constraints. In
this particular example the application of such a rule would not be
necessary because the output of the gcd computation is just one
constraint, which could be returned by using the Rule Call it is
reported for generality purpose.

The hardware setup of the test bench relies on a Xilinx Virtex4
FPGA (xc4vfx60) running at 100MHz and connected to a PCI-E
root complex of an ASUS P7P550 motherboard hosting an Intel
Core i7 CPU running at 2.8GHz. On the software side we use
the CHR system [22] for SWI-Prolog that lets us easily integrate
memory mapping instructions thanks to the embedded interface to
C [34] that we employ for the wrapper implementation. In order to
determine the total system execution time we used a single thread
implementation in which the CPU is kept idle until the FPGA has
performed its computation. Figure 12 compares the execution times
of the gcd matrix running on the plain CPU and with the help of the
FPGA (labeled CPU+FPGA in the plot). Even if the speed achieved
is not comparable with the one obtained by the execution of the gcd
algorithm entirely in FPGA (see Section 4.2.4), the execution time
improvement with respect to the plain CPU is still in the range of
one order of magnitude. This poorer speed up is rewarded by a
higher flexibility.

A comparison of the extra time introduced with the addition of
the hardware accelerator is presented in Fig. 13, for 16, 32, 64, and



GCD0 @ gcd(_,_,0) <=> true.
GCD1 @ gcd(X,Y,N) \ gcd(X,Y,M) <=> M>=N | gcd(X,Y,M-N).

Pack @ gcd(X,Y,N), list_in(L)#passive <=> list_in([(X,Y,N)|L]).
Call @ call, list_in(L1) <=> hw_gcd(L1,L2), list_out(L2).
Unpack @ list_out([(X,Y,N)|L]) <=> list_out(L), gcd(X,Y,N).

Matrix0 @ set(X,N), set(Y,M) ==> X<Y | gcd(X,Y,N), gcd(X,Y,M).
Matrix1 @ set(X,N) ==> gcd(X,X,N).

Figure 11. Gcd matrix program
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Figure 12. GCD matrix execution time (log scale)
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Figure 13. Additional time introduced by the hardware accelerator
measured at different sizes of the query

128 1-byte constraints. We measured the elapsed time as the sum
of three different components: data formatting, data transfer and
FPGA computation. The first one is the required time by a CHR
rule for calling the foreign Prolog predicate that converts terms
in basic C-type, arranges the constraint values in data packets,
decodes the incoming packets and unifies the C-type values with
terms. The remaining two components are, respectively, the routing
time to send data through the PCI-E bus and the time needed by the
FPGA for packing/unpacking and processing data. The measures
show that the most expensive phase is the data handling at the level
of the CHR rule, responsible of the built-in execution that sets up
the FPGA computation. Clearly such burden of few microseconds
per constraint is fully paid off by the speed up gained in the further
concurrent execution of CHR rules in FPGA.

Interval domain solver. As a further case study we consider a clas-
sical problem for constraint programming, i.e., a finite domains
system [1]. In the literature about CHR we can find several pro-
grams working on interval or enumeration constraints [13]. Here
we implement a simple interval domains solver for bound consis-
tency, whose CHR code can be found in Fig. 15. The solver uses
the CHR constraint ::/2 for stating that a given variable ranges on
a finite set denoted by the custom operator :. For example, the con-
straint X::a:b means that the variable X can assume any integer
value between a and b. Also le/2, eq/2 and ne/2 are CHR con-
straints, representing the less or equal, the equal and the not equal
operators, while min and max are Prolog built-in operators. Rule
Redundant eliminates all the intervals that contain a subset interval
of the same variable. Rule Intersect replaces two intervals with
their intersection by calculating the maximum of the lower bounds
and the minimum of the upper bounds. Rule Inconsistent iden-
tifies empty intervals (where lower bound is greater than the up-
per bound). Rules LessEqual, Equal and NotEqual represent the
corresponding arithmetic relations. A sample query for the program
can be: X le Y, X::3:5, Y::2:4. The program first produces
the new constraints X::3:4, Y::3:4, and then it eliminates the
redundant intervals giving as result X le Y, X::3:4, Y::3:4.

The first two Rules Redundant and Intersect are deployed
on FPGA. Note that they are in the CHR fragment defined by
Eq. (4): Redundant removes a constraint without introducing any
new one while Intersect introduces a new constraint, but it
removes two of them.

Observe that the typical queries include free logical variables as
arguments for the constraints (e.g., X and Y occur free in the sample
query above). This is not a problem for the hardware computation
since during the whole program execution such variables are never
bound. Hence they can be replaced by suitable indexes in the
step of packing and formatting the constraints to be sent to the
accelerator. When the output constraints from the accelerator are
received the indexes can be replaced back with the corresponding
logical variables.

The execution time of the interval domains solver is reported
in Fig. 14. The times correspond to queries of different length
depending on the number of variables taken into account. More
precisely, the queries contain 20 interval constraints (e.g. X::3:15)
and one arithmetic relation (e.g. X le Y) for each variable. As in
the case of the computation of the gcd matrix, the speed up obtained
with the support of the hardware accelerator is over one order of
magnitude on all the queries we considered.

7. Related work
Our hardware compilation method, which starts from a subset of
CHR to arrive at generating a synchronous digital circuit, can also
be seen as an attempt to overcome the too low level feature of tra-
ditional HDLs, such as VHDL [33] and Verilog [32]. They are well
proven and established standard languages for hardware design, but
force the hardware designer to think at the Register Transfer Level
(RTL) level, thus modeling a synchronous digital circuit in terms
of the flow of digital signals (data) between hardware registers, and



Redundant @ X::A:B \ X::C:D <=> C=<A, B=<D | true.
Intersect @ X::A:B, X::C:D <=> X::max(A,C):min(B,D).

Inconsistent @ _::A:B <=> A>B | fail.
LessEqual @ X le Y, X::A:_, Y::_:D ==> Y::A:D, X::A:D.
Equal @ X eq Y, X::A:B, Y::C:D ==> Y::A:B, X::C:D.
NotEqual @ X ne Y, X::A:A, Y::A:A <=> fail.

Figure 15. Interval domains solver algorithm
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Figure 14. Interval domains solver execution time (log scale)

the logical operations performed on those signals. From these low
level language, is pretty easy to end in a gate-level netlist that can
be directly mapped into hardware.

Many alternative environments have been proposed to unify the
hardware engineers and the software developers through the use of
a common high-level language, mainly based on imperative lan-
guages, but the inherent lack of concurrency and timing (essential
elements for the hardware synthesis) of such languages made none
of them a standard [8]. On the other hand, extensions of commonly
adopted HDLs like SystemVerilog [29] still require to the program-
mers to own a strong hardware background and are too specific to
be used as general purpose languages.

We can count a large number of successful approaches to hard-
ware description among the functional languages. Since the 80s one
of the most popular domains in which functional languages have
been extensively used is hardware design [24]. General purpose
functional languages, like Haskell, have been widely used as host
languages for embedding HDL (e.g. Hydra [19] or Lava [5]). More
recent approaches like SAFL [18] moves from a structural to a be-
havioural description of the hardware. They allow the programmer
to directly describe the algorithm to be implemented rather then the
interconnections among low-level hardware components.

Logic programming and especially Prolog have been used for
many years as formalisms for hardware design specification and
verification as well. We can mention some recent approaches [2, 3]
that present a Prolog-based hardware design environment hinged
on a high-level structural language called HIDE+. Such a language
was developed with the purpose of filling the gap of the structural
HDL languages that can only deal with small circuits. Indeed the
HDL description tends to be very complex due to the need of
making all the connections explicit. Another work on the track of
the behavioural style was presented in [17]. It adopts Byrd boxes
for providing an execution model for Prolog that is used to identify
a statically allocable subset which can be executed by associating a
single Byrd box with each predicate symbol.

As regards parallelism in CHR – a feature of the language
we have largely exploited in our hardware compilation frame-
work – although it is deemed as a highly concurrent language,
CHR is broadly accepted that a parallel computation model is still
in fieri. The first example of parallel implementation was due to
Frühwirth [9] where it was shown how to evaluate the degree of
concurrency starting from the confluence analysis of a sequential
program execution. Further works by Sulzmann and Lam [16, 28]
focus on the formal specification and the development of a parallel
implementation of the CHR goal-based execution schema: multi-
ple processor cores run multiple threads following a single CHR
goal. Other attempts to exploit concurrency in CHR were pursued
in the last years, mainly driven by the CHR set-based operational
semantics [21]. Although CHR programs usually adopt a multi-
set based semantics, it was shown how a large class of programs
can benefit from a tabled rule execution schema that eliminates the
need of a propagation history, and acquires a natural parallelism
by the notion of set. The persistent constraint semantics presented
in [4], which exploits the idea of a mixed store where the con-
straints can behave like a set or a multiset, achieves a higher degree
of declarativity, keeping the potentiality of concurrency of the stan-
dard semantics. Finally, we should mention the parallel execution
strategy, introduced in [20], that gives the possibility of applying
multiple removals to the same constraint. Such semantics elimi-
nates the conflicts in the constraint removals by different instances
of the same rule remaining sound w.r.t. the sequential execution.

8. Conclusion
We described the general outline of an efficient hardware imple-
mentation of a CHR subset able to comply with the restricted
bounds that hardware imposes. The level of parallelization achieved
provides a time efficiency comparable with that obtained with a de-
sign directly implemented in HDL. At the same time, the proposed
solution offers a more general framework reusable for a wide range
of tasks and easily integrable with existing low level HDLs. Dif-
ferent degrees of parallelization naturally embedded in CHR were
pointed out and fully exploited thanks to the development of cus-
tom hardware structure. The proposed hardware compilation was
validated on several case studies related to classical algorithms like
Euclid’s algorithm, a sieve for prime numbers and merge sort.

In order to cope with the fixed nature of hardware, which pre-
vents a dynamic allocation, our translation has been restricted to a
proper subset of CHR, not including propagation rules. For over-
coming this limitation we proposed a classical CHR executor cou-
pled with a hardware accelerator dedicated to simple tasks like the
fast rewriting of some constraints. Such hybrid system can increase
the performance of CHR, achieving a stronger coupling between
algorithms and platforms. In case of data intensive algorithm, the
burden of setting up the accelerator computation was fully paid off
by the speed up gained in the concurrent execution of CHR rules in
hardware.

Further improvements to the general framework, especially in
terms of applicability to problems where the number of constraints
does not necessarily decrease during the computation, will be sub-



ject to future research. A general treatment of rules dependency at
the PHB level is still missing and only appropriate considerations
on rules interaction can lead to a hardware performing parallel exe-
cution, pipelining and balancing out circular dependencies. Regard-
ing the hardware accelerator, we should mention the possibility of
automating the process of rule selection for the hardware deploy-
ment. Results coming from a profiler could help a static analysis on
the CHR program to identify the rules that are the most expensive to
be executed. Moreover our preliminary tests carried out on simple
CHR programs could be extended to more complex applications.
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