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Abstract
We describe COTERIE, a toolkit that provides languag
level support for building distributed virtual environment
COTERIE is based on the distributed data-object paradi
for distributed shared memory. Any data object in COT
RIE can be declared to be a Shared Object that is replica
fully in any process that is interested in it. These Sha
Objects support asynchronous data propagation with ato
serializable updates, and asynchronous notification 
updates. COTERIE is built in Modula-3 and uses existi
Modula-3 packages that support an integrated interpre
language, multithreading, and 3D animation. Unlike oth
VE toolkits, COTERIE is based on a set of general-purpo
parallel and distributed language concepts designed with
needs of virtual environments in mind. We summarize t
requirements that we identified for COTERIE, describe 
implementation, compare it with other toolkits, and provid
examples that show COTERIE’s advantages.

Keywords: distributed virtual environments, distributed
shared memory, shared-data object model, virtual reality.

1  Introduction
Over the past several years, our group has built a numbe
single-user, distributed, virtual environment (VE) proto
types [e.g., 12, 13, 15]. These were constructed usin
multi-process client-server architecture, allowing us to e
ily incorporate several monolithic applications that we h
developed previously. However, the next steps in extend
most of these projects proved to be much more difficult.

We wanted to support multiple users interacting in shar
environments using many different kinds of devices, inclu
ing displays that are head-worn, hand-held, desk-top, a
wall-mounted. Attempting to extend our single-user prot
types in these originally unforeseen ways was becom
increasingly infeasible with each modification. Adding ne
processes often involved the need to share previou
unshared data, effectively turning clients into servers. T
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resulted in an unmanageable welter of client-server relati
ships, with each of a dozen or more processes needin
create and maintain explicit connections to each other an
handle inevitable crashes.

We spent a sufficiently large portion of our time reengine
ing client-server code that it became clear to us that 
implementation of the client-server model was unsuitab
for exploratory programming of distributed research prot
types. The heart of the problem, as we saw it, was a lac
support for data sharing that was both efficient and easy
programmers to use in the face of frequent and unant
pated changes. Our solution was to build a toolkit based o
set of general-purpose language extensions. These ex
sions provide high-level mechanisms for distributed VE pr
gramming, coupled with an assortment of building bloc
common to typical VE systems.

The infrastructure that we developed, COTERIE (Columb
Object-oriented Testbed for Exploratory Research in Int
active Environments), is the topic of this paper. In Section
we present our design requirements for COTERIE. Th
we survey related work in Section 3 and describe how w
it addresses these requirements. In Section 4, we introd
COTERIE’s design and implementation, showing how 
was influenced by and builds on the Modula-3 environme
in which it is implemented. The key component of the sy
tem, the Shared Object package, is discussed in Section 
Section 6, we provide examples of high-level support f
VEs that we are developing in COTERIE. This is followe
by a discussion of our conclusions and future work 
Section 7.

2  Design Requirements
The requirements we set for COTERIE reflect our desire
experiment with distributed, multi-user VEs that combine
variety of paradigms, including immersive, “fishtank” [32
see-through, and handheld worlds. For example, Figur
shows a prototype COTERIE application that uses a s
through display to overlay a combination of 2D and 3
information on a telephone “crossbox.” 

We identified a set of core requirements to make it poss
to create robust prototypes quickly and easily to allow us
explore different design alternatives. Our requirements f
into three main categories, related to distributed syste
rapid prototyping, and practical application needs.
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Figure 1: A prototype augmented-reality application created using COTERIE. Images are photographed through an optical
see-through, head-worn display. (a) The bottom of a phone company “crossbox” that connects customer phone lines to
company wiring. (b) The top of the crossbox with a graphical overlay designed to be presented to the field serviceperson on
the head-worn display. The overlay highlights major blocks of the crossbox and a number of user-defined groups of connec-
tion posts. It also contains 2D information windows connected to the post groups by stretchable leader lines that allow
selected windows to be pulled into and out of view. (c) The view when the user looks down and to the left from (b).

(a) (b) (c)
2.1  Distributed Systems Requirements

The key to building a flexible toolkit for prototyping VE
applications is efficient and easy-to-use support for data
sharing. Therefore, it was central to our design that our
infrastructure exhibit satisfactory distributed system charac-
teristics [11], especially network data transparency, scalabil-
ity, openness and fault tolerance. Furthermore, while client-
server data sharing is common, VE systems require that cer-
tain key pieces of data be replicated. The replicated data
should be updated asynchronously for efficiency, and asyn-
chronous notification of these updates should be provided
for ease of programming.

Network data transparency.  To build a distributed system,
some data-sharing mechanism is needed. Our experience
has demonstrated that creating a distributed system that pro-
vides facilities for distributing only “virtual environment
data,” such as tracker readings or graphical objects, is far too
restrictive. By treating some kinds of data differently than
others, we have occasionally found ourselves in the situation
where one piece of data we needed, such as a tracker record,
could be easily distributed to a new piece of the system, but
another piece of data, such as the layout of a user’s informa-
tion space, could not. Therefore, we require that data types
seen by programmers have a high degree of network trans-
parency: the programmer should need to be aware that a
data value is not local to their machine only when absolutely
necessary, and should be able to use remote and local data
objects interchangeably whenever possible.

Other distributed system characteristics.  While an initial
implementation need not be optimized for high perfor-
mance, many measures of a distributed system are a func-
tion of design rather than implementation. It is vital,
therefore, that our system should scale well as more users or
processors per user are added. It should also be open so that
it can be extended in new and interesting directions. Basic
fault tolerance is an absolute requirement: as the number of
machines and processes per machine increases, so does the
likelihood that one of them will crash, especially during

development. At the very least, we wanted to be able to e
ily construct applications that can recover from a single fa
ure. 

Data replication. Many of the objects in a VE system mus
be replicated, rather than merely shared, because the 
grams using them cannot afford to pay the price of rem
access. A good example is the description of a graph
scene. The programs that update the displays must red
their scenes as often as possible. Programs that do colli
detection must likewise access their scenes on a contin
basis and are often themselves distributed over multi
machines. However, for maximum flexibility, we wanted 
be able to replicate any user-defined data, not just typica
VE data such as tracker reports or scene objects.

Fast, asynchronous data propagation. Remote procedure
or method calls are unsatisfactory for propagating rapid
changing information because they are synchronous, and
therefore too slow when used with a large number of clien
We wanted a method of asynchronous data propagation 
would scale well as the number of distributed proces
increased.

Asynchronous update notification. When many threads
distributed over many processes share data, it is unacc
able for them to have to poll the data to check for chang
Instead, there must be some facility for interested thread
be notified of changes to relevant data items. For exam
the thread that renders a graphical scene should be auto
ically notified of changes to the data structure. 

2.2  Rapid Prototyping Requirements

Given a well-designed distributed substrate, two major co
ponents are needed to enable fast prototyping of distribu
applications: an interpreted language, and a programm
model that encourages building easily distributable appli
tions.

Embedded interpreted language.  To support rapid proto-
typing well, a system should have an embedded general-
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pose interpreted language, enabling entire applications to be
developed without writing compiled code, as exemplified by
several existing toolkits [5, 25, 29]. The interpreted and
compiled components of the system should be tightly inte-
grated so that interpreted code can be easily rewritten in the
compiled language when efficiency is required. This implies
that the programming model in both languages should be
similar, and all data structures should be equally accessible
from both languages. We also believe that both languages
should be strongly typed, either statically or dynamically, to
assist the programmers as much as possible in creating reli-
able and robust programs.

Object-oriented, multithreaded environment. Conceptu-
ally, VE systems are composed of many independent enti-
ties that perform tasks such as monitoring trackers,
rendering to displays, and controlling the objects that popu-
late the environment. This maps well to a programming
model that has many threads of control communicating via
shared objects. When combined with transparently distribut-
able objects, this model is equally suited for programming
within one process or between many, as an individual thread
does not need to be aware of the location of any other
thread. However, using heavy-weight processes for all
threads of control is unacceptably inefficient. Furthermore,
creating processes that are inherently multithreaded without
programming language or operating system thread support
is error prone and requires considerable work to ensure all
conceptual threads are serviced fairly. Therefore, we believe
that thread support should be integrated into the interpreted
and compiled programming languages so threads may be
used cleanly and uniformly on all operating systems and
architectures.

2.3  Practical Application Requirements

We wanted to develop our applications in as platform-inde-
pendent a fashion as possible, while simultaneously sup-
porting many users and devices across a heterogeneous set
of machines, ranging from UNIX workstations to portable
computers running Microsoft Windows 95.

High-level, platform-independent, extensible, 3D graph-
ics and GUI packages.  We wanted to support a wide vari-
ety of hardware and operating systems without having to use
a different graphics or GUI package on each. Furthermore,
we wanted to be able to cleanly integrate new kinds of
graphical objects, such as the workstation windows of [12]. 

Support for multiple users, displays, and devices. In
addition to supporting multiple simultaneous users, we
wanted to make it possible for any individual user to use
multiple displays and interaction devices in a variety of
combinations: opaque and see-through head-mounted dis-
plays; palmtop, tablet, desktop, and wall-mounted displays;
speech input and output; spatialized sound; 2D and 3D
mice, styli, and other hand-held controllers. Therefore, it
would have to be easy to add new devices and coordinate
their interactions.

3  Related Work
A large number of VE toolkits have been developed. We d
cuss only those that are intended to support distributed e
ronments. In addition, we discuss some of the work that 
been done using shared data for distributed groupware.

3.1  Distributed VE Systems

MR implements a simple shared virtual memory mod
[28]. Raw memory locations can be marked as shared 
local changes explicitly “flushed” to the other copies, whic
must then explicitly receive the changes. MR has no fac
ties for handling heterogeneous architectures and provid
single, fully replicated VE, in which each process has
complete copy of the same world. DIVE [8] is built on to
of the ISIS [3] fault-tolerant distributed system, and is sim
lar to MR in supporting only fully replicated VEs. VEOS [5
is an extensible environment for prototyping distributed V
applications. MR, VEOS, and DIVE all use point-to-poin
communication, with all processes directly connected to 
others. This prevents these systems from scaling beyon
relatively small number of distributed processes.

SIMNET [6] is perhaps the best known large-scale distr
uted VE system. It uses a well-defined communication p
tocol that is also used by NPSNet [34] and VERN [5
SIMNET was designed to support a single, large-sca
shared, military VE. Broadcasting is used to send messa
between nodes. While this cuts down on network traffic, 
processes must handle all messages, preventing SIMN
from scaling beyond a few hundred users. NPSNet h
recently been extended to accommodate a significan
larger number of simultaneous users (thousands instea
hundreds) by spatially partitioning its world to reduce me
sage traffic [23]. 

VR-DECK [10] allows multiple users on a set of homog
neous workstations to share a single simulation and can
be easily extended to support heterogeneous workstati
Message traffic is reduced by sending events only 
machines known to be interested in them.

WAVES [20] uses message managers to mediate comm
cation between processes. Each message manager cont
group of clients. All messages are distributed by the m
sage managers to interested clients. WAVES supports 
ability to filter messages to a given client, reducing the ty
and frequency of updates sent. However, it supports o
coarse parallelism, with each process performing one w
defined function. The single shared VE comprises a se
objects that encapsulate the behavior and state of the en
in the world. Each object is owned and updated by only o
client, but can move freely between clients.

RING [16] and BrickNet [29] both use a communicatio
mechanism similar to that of WAVES, with centralized ser
ers each controlling a set of clients, and communicat
routed through the servers. All message traffic goes thro
the servers, with no provision made for direct client-clie
propagation for time-critical data. RING is geared towa
realistic simulations and uses physical visibility to lim
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message traffic. Its VE is a set of shared entities, each with a
geometric description and a behavior. Each entity is owned
by one client, and only that client may update it. RING can
support a large number of simultaneous users. BrickNet is
geared toward creating multi-user distributed VEs in which
each client has its own world composed of a combination of
local and shared objects. Like WAVES, its objects have
behaviors as well as state and can move between clients.

dVS [17] is a commercial distributed VE system for single-
user applications. Its components and message formats are
fixed and not extensible, making it unsuitable for non-
immersive VEs.

Spline [1] is a recent system that seems similar in intent to
our system, and shares many features, but is more focused
toward efficient creation of exclusively immersive VEs. It
supports a single virtual world and achieves scalability by
spatially partitioning this world to reduce message traffic,
starting with a scheme similar to [23] and extending it by
partitioning the object space based on this spatial partition.

None of the VE systems come sufficiently close to support-
ing enough of the features we need to justify attempting to
extend them to support the rest. With the exception of
DIVE, none provide true preemptive threads, but use only
heavyweight UNIX processes. With the exception of Brick-
Net, none support more than a single shared VE. In addition,
these systems are geared toward VEs in which each user has
only a single (stereo) display, and interacts with an entirely
virtual world composed of 3D objects. In contrast, consider
our hybrid user-interface window manager [14], a prototype
of the kind of application that we would like to support. It
combines a flat-panel display with a see-through head-worn
display to create a workspace within which one display’s
image is embedded in the other’s. This would be difficult to
implement with a conventional VE system.

3.2  Distributed Groupware

A number of groupware systems have been built using
shared object techniques. Colab [30] uses a fully replicated
database in which changes are broadcast to all sites without
synchronization. Colab relies on social and application solu-
tions to avoid, or recover from, inconsistencies. For exam-
ple, if inconsistencies arise when multiple people are
working on the same area of a document, they will quickly
become obvious because of the nature of these applications.
The users can then decide how best to deal with them.

GroupKit [27] applications run the same program at all sites
and communicate by using multicast remote procedure calls
to execute procedures at all sites. Data is shared via shared
data directories called environments. While supporting noti-
fication of the addition, deletion or modification of items in
an environment, there is no support for concurrency control.
As with Colab, social solutions are relied upon to solve this
problem. 

Object World [31] implements shared objects in LISP, and
defines shared operations by allowing programmers to
define broadcast methods. These methods are executed at

any site that has a copy of any of the object parameters, with
all additional parameters automatically copied to that s
Object World does not provide any consistency guarante
but accomplishes consistency detection by requiring that
broadcast methods operate on the same version of t
object parameters at all sites. Correction of inconsistenc
is performed at an application level, possibly with the ass
tance of the user.

DistView [26] allows window and application objects to b
replicated. When an object is replicated, it is wrapped in
proxy that implements the replication semantics, such
sending method invocation messages to remote copies
execution. There is no distinction between read and w
methods, and consistency is guaranteed by requiring lo
to be acquired for all object accesses. While DistView ha
fairly intelligent scheme to minimize the cost of acquirin
global locks, the system would not scale well and would n
perform well in the face of continuous access from multip
sites.

The techniques for object sharing implemented in the new
groupware toolkits share some of our goals, particula
automatic replication of data to ease construction of distr
uted applications. However, none have integrated the dis
bution of data into the object model of their respecti
programming languages as tightly as we desire. As a res
they do not provide sufficiently strong consistency guara
tees. In groupware applications, inconsistencies tend to a
from multiple users attempting to perform conflictin
actions: the results are usually obvious to the users and
be corrected using social protocols. This is not an accepta
solution for VE applications. Finally, none of these obje
systems provide any support for asynchronous update no
cation, nor are they designed to support the kind of la
scale distribution we have in mind. 

4  The Modula-3 Environment
COTERIE is written in the Modula-3 programming lan
guage [18]. We decided to use Modula-3 because of the 
guage itself and the availability of a set of packages t
provide a solid foundation for our infrastructure. The key 
COTERIE is the Shared Object package that we built a
which we discuss in Section 5. It provides language-le
support for data replication and fast update propagation.

Modula-3 is a descendent of Pascal that corrects many o
deficiencies. In particular, Modula-3 retains strong ty
safety, while adding facilities for exception handling, co
currency, object-oriented programming, and automatic g
bage collection1. One of its most important features for ou
work is that it gives us uniform access to these faciliti

1. The Modula-3 compiler is written and distributed by DEC’s Sy
tems Research Center. A commercially supported version of t
SRC compiler is available from Critical Mass, Inc. as part of th
Reactor programming environment. The SRC compiler, and th
our system, runs on all the operating systems we use: Solaris
IRIX, HP-UX, Linux, and Windows NT and 95.
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across all architectures. We depend on three key packages:
Network Objects, Obliq, and Obliq-3D. 

The Network Object package [4] supports a client-server
model of distributed data sharing through remote method
calls that are virtually transparent to the programmer. These
include distributed garbage collection, exception propaga-
tion back to the calling site, and automatic marshalling and
unmarshalling of method arguments and return values of
virtually any data type. We enhanced this package to pro-
vide automatic data conversion between heterogeneous
machines. Obliq [7] is a lexically-scoped untyped language
for distributed object-oriented computation that is tightly
integrated with Modula-3. Like Modula-3, it supports multi-
ple threads within a single process. Obliq’s distributed com-
putation mechanism is based on Network Objects, allowing
transparent support for multiple processes on heterogeneous
machines. Objects are local to a site, while computation can
roam over the network. 

Obliq-3D [24] is a high-level 3D animation system that con-
sists of two parts: a Modula-3 library that provides a set of
graphical objects and animation primitives, and the same
primitives embedded in Obliq. Obliq-3D programs can be
written in any combination of Modula-3 and Obliq, because
all data structures are simultaneously available from both
languages. Obliq-3D’s structure and interface also make it
relatively easy to extend.

Together, the language and packages provide us with closely
matched compiled and interpreted languages that support
object-oriented, multi-threaded programming. They also
provide a clean basis for reliable distributed programming
via transparent remote method calls, and a high-level, exten-
sible 3D graphics system with animation support. What we
needed to do was add support for replicated objects with
asynchronous update propagation and notification, build a
library of objects to support the various VE devices we use,
and build an application framework that would allow us to
create prototype applications with the distributed system
characteristics we desired.

5  The Shared Object Package
To provide COTERIE’s replicated object support, we devel-
oped a Shared Object package that, when combined with the
Network Object package, provides a distributed language
infrastructure geared toward the needs of VEs. The remain-
der of COTERIE is implemented using this package.

The Shared Object Package consists of about 15,000 lines of
Modula-3 code and supports general purpose, asynchro-
nously updated, replicated objects. It is based on two con-
cepts: Distributed Shared Memory via the Shared Data-
Object Model, and Callback Objects.

5.1  Distributed Shared Memory

Distributed Shared Memory (DSM)[22] allows a network of
computers to be programmed much like a multiprocessor,
since the programmer is presented with the familiar para-
digm of a common shared memory. DSM mechanisms use

message-passing protocols between machines to implem
some model of shared memory access that is used by
programmer. The Shared Data-Object Model of DSM is p
ticularly well suited to our needs since it is a high-lev
approach that can be implemented efficiently at the appli
tion layer. In this model, shared data is encapsulated in u
defined objects and can only be accessed through 
objects’ method calls. The DSM address space is partitio
implicitly by the application programmer, with an objec
being the smallest unit of sharing. The shared data is re
cated in each process that is interested in the object. E
process can call any method of an object it shares, just a
can with a non-shared object. The model follows two prin
ples:

1. All operations on an instance of an object are atomic and
serializable. All operations are performed in the sam
order on all copies of the object. If two methods a
invoked simultaneously, the order of invocation is no
deterministic.

2. Property 1 applies to operations on single objects. M
ing sequences of operations atomic is up to the progra
mer.

The advantages of this model over techniques that exp
the shared memory at a lower layer are discussed in [2
For our purposes, the programming aspects are espec
important:

• The model directly supports Modula-3 type safety, ma
ing accidental incorrect usage of shared memo
unlikely. This is helpful because debugging parallel pr
grams is difficult.

• The implicit atomicity of method calls makes the mod
easy to understand and program because no exp
locks are required.

• A high-level, object-oriented approach to DSM mea
the programmer does not need to know the details of 
implementation in order to use the objects efficiently.

5.2  Callback Objects

Callback Objects allow the programmer to receive notific
tion of changes to a Shared Object in an object-orien
fashion. For any Shared Object, an associated Callb
Object exists with a similar set of methods. An instance CO
of a Callback Object is associated with an instance SO of a
Shared Object by passing SO to the constructor of CO.
When a method of SO is invoked and changes the state 
SO, the corresponding method of CO is called. Since the
internal representation of a Shared Object is hidden, 
details of the change are indicated to CO by passing the
arguments of the original method call on SO to the corre-
sponding method of CO. A programmer simply overrides
the methods corresponding to the changes for which no
cation is desired with methods that react appropriately
those changes. Callback Objects remove the need for ob
polling and enable a “data-driven” flow of control.
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A Callback Object contains two callback methods for each
update method in the corresponding Shared Object. These
callback methods can be overridden to receive notification
before or after an update to the Shared Object. An additional
pair of “catch-all” callback methods can be overridden to
receive notification before or after an update of any changes
not handled by overriding the specific update callback meth-
ods.

5.3  Implementation

To create a Shared Object type OBJ, the programmer creates
a Modula-3 object with no publicly accessible data fields
that inherits from the SharedObj type. Modula-3 source
code implementing the shared data-object semantics is gen-
erated automatically, and includes:

• a subtype of OBJ that overrides the methods of OBJ to
implement the shared object semantics, and

• a Callback Object for OBJ.

5.3.1  Relationship to Network Objects

Semantically, Shared Objects are fully replicated in all pro-
cesses that are interested in them. This contrasts with Mod-
ula-3 Network Objects, in which one copy of an object is
maintained in the process in which the object was created,
and a proxy that performs remote method calls is main-
tained in all other interested processes. All the information
used to perform remote method calls is encapsulated in the
Network Object’s proxy object.

Network and Shared Objects share a number of properties
that facilitate distributed programming. As with the sub-
types used to implement the Shared Object semantics, the
Network Object proxies are subtypes of the original objects,
allowing them to be used exactly like the original objects.
Automatically-generated code takes care of marshalling and
unmarshalling arbitrarily complex method arguments and
return values, such as large recursive data structures,
between heterogeneous machines across the network. Both
runtime systems automatically establish and monitor con-
nections for liveness (to a reasonable degree), maintain
threads to service incoming remote method calls and per-
forms such tasks as distributed garbage collection. The end
result is that, from the programmer’s point of view, they are
virtually indistinguishable from local objects. Shared
Objects are passed between processes using Network
Objects. Our implementation ensures that there is one and
only one copy of any Shared Object in any process. 

5.3.2  Replication Approach

We based our implementation of the Shared-Data Object
Model on the fully replicated approach used in Orca [2]. A
full replication scheme, where a single object is either fully
replicated in a process or not, is significantly simpler than a
partial replication scheme, in which an object may or may
not be replicated in a process that accesses it, and satisfies
our primary rationale for replication: fast read-access to
shared data. Furthermore, when used in conjunction with the

Network Object package, partial replication can be mim
icked, with a slight loss of data transparency, using a com
nation of the two types of objects: a Network Object can 
“wrapped around” a Shared Object and used to access
Shared Object remotely without replicating it in the loc
process. When a Shared Object is embedded in the O
language, this dual behavior comes for free since all Ob
objects (aside from basic types such as integers or boole
are automatically treated as Network Objects. Thus, 
added complexity of partially replicated objects gives 
very little benefit.

To maintain replication consistency we chose an upd
scheme (where updates are applied to all copies) instea
an object invalidation scheme (where changes to one c
of an object invalidate all other copies, requiring a new co
be obtained). This choice was primarily motivated by o
needs for timely asynchronous data propagation and as
chronous update notification. First, invalidation requires
extra refresh step, which would increase the lag for distrib
tion of time-sensitive data such as tracker changes. Sec
the update messages used to implement the update sch
contain exactly the information needed to provide asynch
nous update notification. The final factor in choosing 
update scheme is that, in our applications, large objects s
as graphical models will be updated frequently, but t
updates will affect only a small part of the object, so refetc
ing the object will be wasteful. It is not surprising that w
know of no existing distributed VE systems that uses 
invalidation-based replication scheme.

5.3.3  Communication architecture

To provide the Shared-Data Object property of serializa
updates, all updates to a given object result in an event b
sent to one distinguished (heavy-weight) process called 
sequencer. Each process is statically associated with a p
ticular sequencer at run-time and all objects created in t
process have their updates sequenced by that sequenc
set of processes associated with the same sequencer is c
a cluster. The sequencer for an object simply assigns
sequence number to each update event it receives and
wards them to all processes with a copy of the Sha
Object. Updates are applied only after they are receiv
from the sequencer. Any process with the Shared Ob
runtime system compiled into it may serve as a sequence
addition to its other tasks.

The sequencer currently sends direct updates only to p
cesses in its cluster. If a process in another cluster has a 
of this Shared Object, the update is sent to its sequen
which will then forward the update to the processes in 
cluster that have a copy of the object. Thus, all update m
sages between clusters are currently sent through 
sequencers.

Consider what happens when a thread initiates an updat
calling a method that changes the object state. The threa
blocked until the update event is received back from t
sequencer, at which time it applies the update to the ob
and returns. Figure 2 shows the control and data flow o
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typical update method call. A similar connection topology is
used by many VR systems (WAVES, BrickNet, Ring) to
reduce network traffic, but none have isolated it in this fash-
ion. For example, in BrickNet and Ring, the low-level func-
tionality of the sequencer is combined with other high-level
functions such as object lookup and management. In
WAVES, these are assigned to separate modules, but these
modules exist in a one-to-one relationship with each other.

It is undesirable to overlap high- and low-level functionality
like this. For example, all these systems have a one-to-one
relationship between the number of sequencers and object
management servers. In contrast, we can partition object
management based on conceptual process groupings, but
partition sequencer duties based on physical network char-
acteristics. These two partitions are not always identical, as
shown in Figure 3. We are experimenting with different
approaches to object management, and discuss one possible
approach in Section 6.4.

To allow for efficient read access, we distinguish between
operations that do not change the object data (read opera-

tions) and those that do (update operations). Read opera
tions access the local copy directly. Update operations 
handled as described above. Access to an object is c
trolled by locks, so that all update operations are execu
atomically and multiple reads may be performed simul
neously. 

We modified the Orca semantics in minor ways to suit o
needs and the Modula-3 environment. For example, 
added the ability to globally lock an object, so multip
methods could be accessed atomically. 

5.3.4  Restrictions

As with Network Objects, there are restrictions on wh
Modula-3 types are valid for use as arguments to meth
calls. For Shared Objects, the restrictions arise from 
need to package arguments to update methods into 
update events. Therefore, no data value can be used th
specifically associated with one process (e.g., a thread 
condition variable) or that has state that cannot be acces
repeatedly with consistent results (e.g., a file reader
writer).

6  COTERIE Examples
We are using COTERIE to develop a library of standa
objects that form a framework for building VE application
along with a number of prototype applications. Although w
do not discuss the specifics of our actual library here, 
simple examples in this section are designed to empha
the ease of creating such a framework.

6.1  Shared Tracker Object

Figure 4 shows the code for TrackerPosition, a simplified
position tracker. It is based on the first Shared Object 
developed, which was a general-purpose shared trac
object. Here, we have simplified the type definition for Data
and have reduced the number of methods for clarity. The init
method is used to initialize a new object, the set method
changes the value of the shared tracker object (a 3D p
tion), and the get method returns the current value. Sinc
Modula-3 supports garbage collection, the get returns to
each caller a newly allocated copy of the data, which can
freely modified without worrying about affecting othe
threads.

In Modula-3, when a type in an interface is used, it must
qualified by the interface name. Thus, the type Data in
Figure 4(a) is used elsewhere as TrackerPosition.Data. The
notation “T <: S” is read as “T is a subtype of S.” The pro
grammer REVEALs the details of S :< Public in
Figure 4(b). The Shared Object semantics are implemen
in the generated code (not shown) by REVEALing th
implementation of the T <: S relationship in an analogous
fashion. By convention, the primary type for an interface
T, so when programmers use TrackerPosition.T, they will
use the Shared Object type.

Figure 5 shows part of the generated code associated 
the tracker object: the interface to the Callback Object. 

Figure 2: Control and data flow for a typical Shared
Object update method call. Process p1 calls an update
method at time t1. It blocks after a message is sent to the
sequencer s. The message arrives at time t2 and is sent
to all interested clients (p1, p2 and p3). p1 receives the
message back at time t3, is unblocked, executes the orig-
inal method call and continues.

p1

s

p2

p3

t1 t2 t3

Figure 3: The partitioning of clients (C) among sequenc-
ers (S) and object managers (OM). The partitioning of
sequencers can be based on efficiency considerations,
whereas the partitioning of object managers can be
based on the semantic grouping of processes, which are
generally not the same.

S

C CC C C

OM

S
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described in Section 5.2, pre_set and post_set are the call-
back methods for set, and pre_anyChange and
post_anyChange are the catch-all callback methods. Nex
we show how this Callback Object can be used.

6.2  Filtered Tracker Object

More advanced tracker objects can be implemented us
the object in Figure 4. For example, suppose a client wa
to receive a tracker report only when the tracker has mo
more than a specified distance since the last report. A s
ond tracker object, lp (for “lowpass”), can be created in the
process handing the tracker. The lp object is updated by
using a simple Callback Object, LowPassTracker, whose
post_set method is overridden by LPSet, as shown in
Figure 6. Notice that this approach allows great flexibilit
For example, the process in which lp is created determines
where the filtering is done. 

6.3  Prototype Application

Figure 1 shows a prototype of one kind of application w
built COTERIE to support. It is an augmented reality syste
that adds both 2D and 3D information to the user’s view
the world. It consists of about 500 lines of commented Ob
code, and is an experiment in how 2D windows can 
attached to 3D positions. Therefore, these 500 lines incl
the code used to attach 2D windows to 3D points. 

The program makes use of an enhancement to Obliq-3D 
we added, called Projection Callback Objects. By attaching
a projection callback node to the Obliq-3D scene grap
each time the node is traversed in the graphical scene,
invoke method of the supplied Callback Object is calle
with the 3D point corresponding to the origin of the curre
nested coordinate system and its current 2D projection.

INTERFACE TrackerPosition;
IMPORT SharedObj, Thread, Point3;

TYPE
Data = REF Point3.T;
T <: S; 
S <: Public;
Public = SharedObj.T OBJECT METHODS

set (READONLY val: Data);
get (): Data;
<* SHARED UPDATE METHODS set *>

END;
END TrackerPosition.

(a) The TrackerPosition interface

MODULE TrackerPosition;
REVEAL

S = Public OBJECT
data: Data := NIL;

OVERRIDES
init := Init; (* Defined below *)
set := Set; (* Defined below *)
get := Get; (* Defined below *)

END;

PROCEDURE Init(self: S) : SharedObj.T =
BEGIN

self := SharedObj.T.init(self);
self.data := NEW(Data);
RETURN self;

END Init;

PROCEDURE Set(self: S; READONLY val: Data) =
BEGIN

self.data  ̂:= val̂ ;
END Set;

PROCEDURE Get(self: S): Data =
VAR ret := NEW(Data);
BEGIN

ret̂  := self.data ;̂
RETURN ret;

END Get;

BEGIN 
END TrackerPosition.

(b) The TrackerPosition implementation

Figure 4: Modula-3 code for a TrackerPosition Shared
Object. There are two parts to the module: (a) the exter-
nal interface and (b) the internal implementation. Much of
Modula-3’s syntax is borrowed from Pascal. For exam-
ple, pointers are defined using the REF keyword and
dereferenced with ^.

INTERFACE TrackerPositionCB;
IMPORT TrackerPosition, SharedObj;
FROM TrackerPosition IMPORT Data;

TYPE
T <: Public;
Public = SharedObj.Callback OBJECT METHODS

init(obj: TrackerPosition.T): T;
pre_set (READONLY obj: TrackerPosition.T; 

READONLY val: Data): BOOLEAN;
pre_anyChange(READONLY obj:

TrackerPosition.T);
post_set (READONLY obj: TrackerPosition.T; 

READONLY val: Data): BOOLEAN;
post_anyChange(READONLY obj:

TrackerPosition.T);
END;

END TrackerPositionCB.

Figure 5: The generated tracker Callback Object 
interface

TYPE LowPassTracker = TrackerPositionCB.T OBJECT
lpObj: TrackerPosition.T;
distance: REAL;
oldVal: Point3.T;

OVERRIDES
post_set := LPSet;(* Defined below *)

END;

PROCEDURE LPSet(self: T;
READONLY obj: TrackerPosition.T; 
READONLY val: Data): BOOLEAN =

 BEGIN
IF Point3.Distance(self.oldVal, val̂ ) >=

self.distance THEN
self.lpObj.set(val);
self.oldVal := val̂ ;

END;
RETURN TRUE;

END LPSet;
...

(* assume tobj is the normal tracker object *)
lp := NEW(TrackerPosition.T).init();
lpCB := 

NEW( LowPassTracker, 
lpObj := lp, distance := 2.0, 
oldVal := lp.get()^).init(tobj);

...

Figure 6: A simple use of Callback Objects to create a
variation of a tracker that is updated only when the
tracker has been moved more than a specified distance
since the last report.
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attach a window to a 3D point, we simply place an instance
of a projection callback at that point. The object will contain
a handle to its 2D window, and its invoke method moves the
window to the projected 2D point.

COTERIE makes it easy to distribute this application.
Instead of having the invoke method move the window, we
associate a shared TrackerPosition object with each window
and have the invoke method update this shared object with a
2D tracker report corresponding to the window’s projected
position. A straightforward TrackerPosition Callback
Object (Figure 5) could be used to move the windows. How-
ever, this callback could do more interesting things, such as
sending the information to the process that created the win-
dow to have it move or reshape itself. Note that this will
work even if the windows are controlled by other processes. 

6.4  Hierarchical Object Directories

COTERIE makes it easy to experiment with different kinds
of infrastructure. In this section, we outline a nontrivial
object, a hierarchical object directory (HOD), similar to the
hierarchical environments in dVS [17], that illustrates how
the three different kinds of objects in our system (Network
Objects, Shared Objects and regular objects) can work
together. 

Design. The purpose of a HOD is to handle object lookup
and management. We will design the HOD analogously to a
file-system, with a single object directory (OD) containing a
set of key-value pairs that associate objects with textual
names. An OD can contain references to other ODs, allow-
ing arbitrary hierarchies to be created. References to virtu-
ally any kind of object can be stored in an OD. The OD can
contain the actual objects or references to entries in other
remote ODs (the equivalent to symbolic links in a file-sys-
tem.) The number of ODs, and their location, is independent
of the number of distributed processes and sequencers used
to implement a VE application.

In addition to providing a general solution to the naming
problem (how to meaningfully assign names to services and
resolve those names to computer addresses) [11], the HOD
can serve as the primary structuring metaphor for a family
of distributed applications. By allowing an OD to contain
references to other, perhaps distantly located, ODs, we can
organize the HODs into a single global name space that
allows applications to communicate with each other in a
meaningful way. Within this global hierarchy, data can be
organized in well defined subhierarchies so that applications
know where to look for particular kinds of data and services.
Furthermore, by allowing clients to watch one or more ODs
for changes, such as the addition or deletion of entries, cli-
ents can react to changes in the world without the need for
direct communication with the instigator of those changes.
Such shared data-space techniques are widely used in AI
blackboard systems and programming languages such as
Linda [9].

Object Structure of the OD. To build a simple OD, each of
the three types of objects are used, as shown in Figure 7.

The OD itself is implemented using a regular wrapper
object (Figure 7a and d). This object has data fields a
methods to implement the OD functionality. For examp
there would be methods to add elements to, or delete 
ments from, the OD. In addition to any other incidental da
the OD contains references to two important objects in 
data fields, a storage directory and a notifier directory. The
storage directory is a Network Object that implements 
centralized object store using key-value pairs (Figure 7c)
would contain the actual data objects stored in the OD. T
notifier directory is a Shared Object that contains a sma
constant-size piece of information for each entry in t
directory, such as the type of the object, and is also use
receive notification of changes to the directory (Figure 
and e).

Because the storage directory is implemented with a N
work Object, it is not replicated. The single copy is access
via remote method calls from any process that receive
copy of the OD. Conversely, since the notifier directory 
implemented with a Shared Object, it is fully replicated 
all processes that receive a copy of the OD.

Putting It All Together. There are three things to understan
about why the OD is designed this way: what happens w
an OD is passed to a remote process, how OD methods
implemented, and how are Callback Objects used by 
OD.

First, consider what happens when an OD is passed f
one process to another, as a parameter or return value
Network or Shared Object method call. Since the OD is
regular object, the run-time system automatically create
new, independent copy of the object in the second proc
As part of creating that copy, it attempts to copy the d
fields of the object. The semantics of copying Shar
Objects from one process to another result in the new p
cess containing a local replica of the original notifier dire
tory. The semantics of copying Network Objects result 
the new process containing a remote proxy for the origi
storage directory (Figure 7f). All of this happens automa

Figure 7: A single Object Directory (OD). The server on
the left consists of (a) a local object wrapper, (b) a Shared
Object implementing the notifier directory and (c) a Net-
work Object implementing the storage directory. The cli-
ent on the right has (d) its own copy of the object wrapper,
(e) a shared copy of the notifier directory, and (f) a proxy
handle for the storage directory.

c

a d

Process A Process B

OD Server OD Client
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cally when a reference to the OD is passed to the second
process. 

Given the structure shown in Figure 7, how are OD methods
implemented? Consider adding an element to an OD with a
simple put method, “put(name, object),” which stores object
in the OD under the key name. The put method of the OD
would perform the following actions:

• store the object in the storage directory using the corre-
sponding storage directory put method, and

• store the type of the object in the notifier directory using
the corresponding notifier directory put method, which
has been designated as a shared update method.

No matter which process performs the put operation, the
outcome is the same:

• a remote procedure call is performed to store the object
in the central storage directory, and

• the type of the object is stored in the shared notifier
directory in all replicas, causing any Callback Objects
registered for these replicas to have their put methods
invoked.

The wrapper object would use the Callback Objects associ-
ated with the notifier directory to monitor an object direc-
tory for changes on behalf of local clients that have
requested notification when the OD changes.

7  Conclusions and Future Work
We have presented our requirements for, and our design and
implementation of, COTERIE, a toolkit for building and
experimenting with distributed virtual environments. Our
guiding belief has been that object-oriented data distribution
and multi-threading should be supported at the language
level. 

Our initial experiences building prototype applications with
COTERIE, such as that of Figure 1, have been very promis-
ing. We have implemented half a dozen prototypes during
the past few months (e.g., an augmented reality system for
building construction assistance [33]), the initial versions of
which took less than a day each. By following a program-
ming model in which many threads do simple tasks and
communicate via Shared Objects, we have found it very
easy to reconfigure applications to run on different combina-
tions of processes across a wide variety of platforms. 

Our observations and plans for future work can be grouped
under the categories software engineering, efficiency, reli-
ability, and scalability.

7.1  Software Engineering

It is quite important that shared data is encapsulated in an
object and only accessed via programmer-defined method
calls. The programmer has great flexibility in partitioning
the work into parts executed once at the calling site and
parts executed at all sites, because only update methods are
broadcast and executed at all sites. The work is partitioned
by having a read method call an update method after per-

forming some work locally. This technique can be used
lessen the impact of the restrictions on update method a
ment types (e.g., by having a read method manipulate 
restricted argument locally and use the results as argum
to an update method call).

Because shared object update method calls are perfor
synchronously on the local copy, but asynchronously on
other copies, return values and exceptions are ignored in
copies except the local one, with one exception: a cert
class of exceptions is used to signal isolated method failu
(e.g., exhaustion of local resources). Raising one of th
exceptions invalidates the local copy, and any furth
attempt to access the object raises an exception. The 
grammer can decide how to handle this exception as ap
priate for the specific situation. For example, a new co
could be retrieved, or the threads using the object could
distributed to other processes.

When we designed the Shared Object package, we cho
design that allowed us to ensure consistency of individ
replicated objects in the face of reasonably large-scale 
tribution, and to avoid full replication of the database. T
achieve this, we sacrificed ease of dealing with the coordi
tion of simultaneous updates to multiple objects. Syste
such as ISIS [3] can ensure causal or even total message
ordering between processes in a distributed system, which
has the effect of ensuring that all messages are seen in
same order in all processes (or, in the case of causal or
ing, all the messages that should matter are seen in the s
order.) Unfortunately, providing these more rigid guarante
incurs overheads that are higher than we are willing to p
In particular, standard message-ordering techniques req
that all updates are sent to all processes, and that thr
block when they attempt to read local data, not when th
perform updates. The latter restriction is much more serio
from our point of view, as the primary goal of replication 
fast read access. We are investigating possible modificat
to our current object semantics to add stricter guarant
without seriously affecting efficiency. 

One way to update multiple objects as a unit is to requ
that a designated object be treated as a semaphore an
locked prior to updating any of the objects. The proble
then reduces to ensuring that all the updates are delivere
a site atomically, so that readers see the changes as one
if this is also required. If speed is not a concern, readers 
also be required to lock the semaphore object. However, 
solution will not scale well. We have found that techniqu
similar to those used to deal with updating display-lis
based graphics terminals can provide insight into how
design objects and applications to deal with this proble
For example, data structures and libraries can provide fac
ties for “checking out” copies of data and then atomica
updating the data structure via a single update meth
Objects that handle groups of data can provide method
swap an existing data element with a new one, instead
only providing methods to add data elements or remo
them. We are using these techniques to create a distrib
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version of Anim3D that avoids the need for explicit global
locks when updating the graphical scene.

Currently, the integration of Shared Objects into Obliq is not
as simple as we desire. Programmers must generate Mod-
ula-3 Shared Objects and then make each object available as
a new data type in Obliq. While relatively straightforward, it
goes against our goal of enabling programs to use Obliq
until they decide to recode bits of their applications in Mod-
ula-3 for efficiency. Therefore, we will be modifying the
Obliq language to directly support Shared and Callback
Objects as native data types.

7.2  Efficiency

The run-time structure of a distributed system created with
COTERIE is similar to that used in RING [16], both in
terms of the communication topology and the requirement
that all updates to a single object pass through one distin-
guished process. Their experimental results show that this
approach is suitable for large-scale distributed VEs. 

Our design includes the ability, currently being imple-
mented, to designate that a specific copy of a Shared Object
requires updates in as timely a fashion as possible and to
designate a copy as the primary updater. The system can
then arrange for update events to be sent directly from the
primary updater to that copy. This bypasses the sequencer
and decreases the typical network hops from two to one, by
having the primary updater handle the sequencing for this
object. (Of course, updates by any process other than the
primary updater will now take longer, having their network
hops increased from two to four because the sequencer must
now route update events through the primary updater.) This
facility is only needed when it is critical to minimize lag
(e.g., when a head tracker is connected to a different
machine than the graphics display). In this case, only the
primary updater will update the object, so the increased
number of network hops for other updaters is not an issue.

Communication between processes is currently imple-
mented using TCP. We will be implementing a version that
uses UDP in the near future. The change will be invisible to
the programmer, aside from anticipated performance gains.

Another possible efficiency concern is the use of an inter-
preted language. Since the match between the two lan-
guages allows code to be migrated easily from Obliq to
Modula-3, the interpreted language has not caused any effi-
ciency problems. The only problem we have encountered
thus far is that if a programmer carelessly allocates, and sub-
sequently drops references to, significant amounts of mem-
ory when handling frequently occurring events (e.g., tracker
movement), the garbage collector takes a noticeable amount
of time. However, this problem can be eliminated by using
techniques such as caching data structures that will be
reused.

7.3  Reliability

As discussed previously, we do not intend to provide the
level of reliability of systems such as ISIS [3], but do require

robustness in the face of simple faults. For example,
should be possible to restart a crashed process with
restarting the entire system. This is extremely important
programs become increasingly distributed and compl
especially during development. 

At the object level, crashes affect Network and Shar
Objects in different ways. With Network Objects, the surr
gate copies can be reobtained when the process is resta
If the process with the original object crashes, however, 
object is no longer valid and all clients will be automatical
notified via the Network Object runtime system. When t
process restarts and recreates the lost object, higher-l
protocols, such as the object directories discussed
Section 6.4, can be used to notify interested clients.

For Shared Objects, we only need to differentiate betwe
the sequencer process and any other process with a copy
non-sequencer process with a copy crashes, it can reobt
copy of the Shared Object when it restarts. As with RING
a sequencer crashes, we cannot recover. (We will eventu
fix this by selecting another process as the sequen
although we have not yet decided the best way to do this

Fault tolerance and crash recovery in VE systems is h
dered by the fact that many services cannot be replica
because they are tied to specific hardware. However, the 
tem should handle the disappearance of these services
reasonable fashion. For example, if the process controllin
head tracker crashes, it should be possible to revert to a
tionary display model for that user. For certain data objec
such as trackers, only their current value is meaningful, a
will have changed between the time the process crashes
restarts. Furthermore, the state of many other objects in
system is partially based on these volatile objects. It is 
clear how to apply typical crash recovery concepts, such
message logging and playback, to these objects.

7.4  Scalability

Scalability was an important motivating factor for ou
design. The biggest threat to scalability we foresee is 
distribution of Shared Object updates, since Shared Obje
are used to encapsulate rapidly changing data. Funkho
demonstrates the scalability of a similar update propagat
topology in [16]. 

Another factor affecting scalability is the mental burden th
complex systems place on programmers. We believe that
highly modular style of programming encouraged by a m
tithreaded, object-oriented system significantly reduces t
burden by allowing programmers to create small, self-co
tained components. COTERIE encourages this style of p
gramming for building distributed systems.
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