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Abstract resulted in an unmanageable welter of client-server relation-

) , ) ships, with each of a dozen or more processes needing to
We describe COTE,RI_E' a.toqlklt that, prowdes language- ¢reate and maintain explicit connections to each other and to
level support for building distributed virtual environments. ,o44je inevitable crashes.

COTERIE is based on the distributed data-object paradigm o ) ) )

for distributed shared memory. Any data object in COTE- We spent a sufficiently large portion of our time reengineer-
RIE can be declared to be a Shared Object that is replicatetfd client-server code that it became clear to us that our
fully in any process that is interested in it. These Sharedmplementation of the client-server model was unsuitable
Objects support asynchronous data propagation with atomidor exploratory programming of distributed research proto-
serializable updates, and asynchronous notification oftypes. The heart of the problem, as we saw it, was a lack of
updates. COTERIE is built in Modula-3 and uses existing Support for data sharing that was both efficient and easy for
Modula-3 packages that support an integrated interpretedrogrammers to use in the face of frequent and unantici-
language, multithreading, and 3D animation. Unlike other pated changes. Our solution was to build a toolkit based on a
VE toolkits, COTERIE is based on a set of general-purposeSet of general-purpose language extensions. These exten-
parallel and distributed language concepts designed with th&ions provide high-level mechanisms for distributed VE pro-
needs of virtual environments in mind. We summarize thegramming, coupled with an assortment of building blocks
requirements that we identified for COTERIE, describe its COmMmon to typical VE systems.

implementation, compare it with other toolkits, and provide The infrastructure that we developed, COTERIE (Columbia

examples that show COTERIE’s advantages. Object-oriented Testbed for Exploratory Research in Inter-

active Environments), is the topic of this paper. In Section 2,

Keywords: distributed virtual environments, distributed we present our design requirements for COTERIE. Then,

shared memory, shared-data object model, virtual reality. we survey related work in Section 3 and describe how well
it addresses these requirements. In Section 4, we introduce

1 Introduction COTERIE’s design and implementation, showing how it

) as influenced by and builds on the Modula-3 environment

Over the past several years, our group has built a number q\ﬁ which it is implemented. The key component of the sys-
single-user, distributed, virtual environment (VE) proto- yom the Shared Object package, is discussed in Section 5. In

types [e.g,, 12, 13, 15]. These were constructed using &ection 6, we provide examples of high-level support for

multi-process client-server architecture, allowing us to eas+,gq that we are developing in COTERIE. This is followed
ily incorporate several monolithic applications that we had by a discussion of our conclusions and future work in
developed previously. However, the next steps in extendingsgtion 7.

most of these projects proved to be much more difficult.

We wanted to support multiple users interacting in shared2 Design Requirements

environments using many different kinds of devices, includ- . .
c]rhe requirements we set for COTERIE reflect our desire to

ing displays that are head-worn, hand-held, desk-top, an . R . .
wall-mounted. Attempting to extend our single-user proto- experiment with distributed, multi-user VEs that combine a
' variety of paradigms, including immersive, “fishtank” [32],

types in these originally unforeseen ways was becoming h h handhel | | !
increasingly infeasible with each modification. Adding new see-through, and handheld WOI’dS'. qu example, Figure 1
processes often involved the need to share previously?OWS @ prototype COTERIE application that uses a see-

unshared data, effectively turning clients into servers. Thist'rough display to overlay a combination of 2D and 3D

information on a telephone “crossbox.”

Permission to make digital/hard copies of all or part of this material for : e : : :
personal or classroom use is granted without fee provided that the copies We identified a set of core requirements to make it pOSS|bIe

are not made or distributed for profit or commercial advantage, the copyfO Create robust prototypes quickly and easily to allow us to
right notice, the title of the publication and its date appear, and notice iexplore different design alternatives. Our requirements fall
given that copyright is by permission of the ACM, Inc. To copy otherwise, into three main categories related to distributed systems
to republish, to post on servers or to redistribute to lists, requires specific_ . . " L !
permission and/or fee. fapid prototyping, and practical application needs.
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Figure 1: A prototype augmented-reality application created using COTERIE. Images are photographed through an optical
see-through, head-worn display. (a) The bottom of a phone company “crossbox” that connects customer phone lines to
company wiring. (b) The top of the crossbox with a graphical overlay designed to be presented to the field serviceperson on
the head-worn display. The overlay highlights major blocks of the crossbox and a number of user-defined groups of connec-
tion posts. It also contains 2D information windows connected to the post groups by stretchable leader lines that allow
selected windows to be pulled into and out of view. (c) The view when the user looks down and to the left from (b).

2.1 Distributed Systems Requirements development. At the very least, we wanted to be able to eas-
The key to building a flexible toolkit for prototyping VE :L)r/econstruct applications that can recover from a single fail-

applications is efficient and easy-to-use support for data
sharing. Therefore, it was central to our design that ourData replication. Many of the objects in a VE system must
infrastructure exhibit satisfactory distributed system charac-be replicated, rather than merely shared, because the pro-
teristics [11], especially network data transparency, scalabil-grams using them cannot afford to pay the price of remote
ity, openness and fault tolerance. Furthermore, while client-access. A good example is the description of a graphical
server data sharing is common, VE systems require that ceiscene. The programs that update the displays must redraw
tain key pieces of data be replicated. The replicated datdheir scenes as often as possible. Programs that do collision
should be updated asynchronously for efficiency, and asynédetection must likewise access their scenes on a continual
chronous notification of these updates should be providedasis and are often themselves distributed over multiple
for ease of programming. machines. However, for maximum flexibility, we wanted to
be able to replicatany user-defined data, not just typical

Network data transparency. To build a distributed system, c\éE data such as tracker reports or scene objects.

some data-sharing mechanism is needed. Our experien
has demonstrated that creating a distributed system that prd-ast, asynchronous data propagation. ~ Remote procedure
vides facilities for distributing only “virtual environment or method calls are unsatisfactory for propagating rapidly
data,” such as tracker readings or graphical objects, is far toehanging information because they are synchronous, and are
restrictive. By treating some kinds of data differently than therefore too slow when used with a large number of clients.
others, we have occasionally found ourselves in the situatioWe wanted a method of asynchronous data propagation that
where one piece of data we needed, such as a tracker recondpuld scale well as the number of distributed processes
could be easily distributed to a new piece of the system, butncreased.

another piece of data, such as the layout of a user’s informa,

. Id Theref e that d Asynchronous update notification. ~ When many threads
tion space, could not. Therefore, we require that data typegjisyripyted over many processes share data, it is unaccept-
seen by programmers have a high degremebfork trans-

- th hould dtob h able for them to have to poll the data to check for changes.
parency the programmer should need to be aware that 3nstead, there must be some facility for interested threads to
data value is not local to their machine only when absolutelyy |, iified of changes to relevant data items. For example,

ng_cessa_lry, ar;1d shoug behable to use rﬁ:note and local dafﬁe thread that renders a graphical scene should be automat-
objects interchangeably whenever possible. ically notified of changes to the data structure.

Other distributed system characteristics. ~ While an initial ) ) )
implementation need not be optimized for high perfor- 2.2 Rapid Prototyping Requirements

mance, many measures of a distributed system are a funggjyen a well-designed distributed substrate, two major com-
tion of design rather than implementation. It is vital, honents are needed to enable fast prototyping of distributed
therefore, that our system should scale well as more users WUpplications: an interpreted language, and a programming

processors per user are added. It should also be open so thahgel that encourages building easily distributable applica-
it can be extended in new and interesting directions. Basigjong.

fault tolerance is an absolute requirement: as the number of _ )
machines and processes per machine increases, so does ff@bedded interpreted language.  To support rapid proto-
likelihood that one of them will crash, especially during YPing well, a system should have an embedded general-pur-



pose interpreted language, enabling entire applications to b8 Related Work

developed without writing compiled code, as exemplified by . .
several existing toolkits [5, 25, 29]. The interpreted and A large number of VE toolkits have been developed. We dis-

compiled components of the system should be tightly inte-Cuss only those th_at are intt_anded to support distributed envi-
grated so that interpreted code can be easily rewritten in thoNMents. In addition, we discuss some of the work that has
compiled language when efficiency is required. This implies °€€n done using shared data for distributed groupware.

that the programming model in both languages should b .
similar, and all data structures should be equally accessibl -1 Distributed VE Systems

from both languages. We also believe that both language#R implements a simple shared virtual memory model
should be strongly typed, either statically or dynamically, to [28]. Raw memory locations can be marked as shared and
assist the programmers as much as possible in creating rellecal changes explicitly “flushed” to the other copies, which
able and robust programs. must then explicitly receive the changes. MR has no facili-
ties for handling heterogeneous architectures and provides a
single, fully replicated VE, in which each process has a
complete copy of the same world. DIVE [8] is built on top
of the ISIS [3] fault-tolerant distributed system, and is simi-

Object-oriented, multithreaded environment. Conceptu-
ally, VE systems are composed of many independent enti
ties that perform tasks such as monitoring trackers,

rendering to displays, and controlling the objects that popu- : . .
late the environment. This maps well to a programmingIar to MR in supporting only fully replicated VEs. VEOS [5]

model that has many threads of control communicating viaiS an ex.tensible environment for prototyping dis'tributed .VE
shared objects. When combined with transparently distribut-appl'cat'c.ms'. MR, .VEOS’ and DIVE .aII use point-to-point
able objects, this model is equally suited for programmingCommun'cfmon’ with all processes directly conr_lected to all
within one process or between many, as an individual thread)the.rs' This prevents these_ systems from scaling beyond a
does not need to be aware of the location of any Othelrelanvely small number of distributed processes.

thread. However, using heavy-weight processes for allSIMNET [6] is perhaps the best known large-scale distrib-
threads of control is unacceptably inefficient. Furthermore,uted VE system. It uses a well-defined communication pro-
creating processes that are inherently multithreaded withoutocol that is also used by NPSNet [34] and VERN [5].
programming language or operating system thread supporSIMNET was designed to support a single, large-scale,
is error prone and requires considerable work to ensure alshared, military VE. Broadcasting is used to send messages
conceptual threads are serviced fairly. Therefore, we believdbetween nodes. While this cuts down on network traffic, all
that thread support should be integrated into the interpreteghrocesses must handle all messages, preventing SIMNET
and compiled programming languages so threads may bé&om scaling beyond a few hundred users. NPSNet has
used cleanly and uniformly on all operating systems andrecently been extended to accommodate a significantly

architectures. larger number of simultaneous users (thousands instead of
hundreds) by spatially partitioning its world to reduce mes-
2.3 Practical Application Requirements sage traffic [23].

We wanted to develop our applications in as platform-inde-VR-DECK [10] allows multiple users on a set of homoge-
pendent a fashion as possible, while simultaneously supneous workstations to share a single simulation and cannot
porting many users and devices across a heterogeneous 98¢ easily extended to support heterogeneous workstations.
of machines, ranging from UNIX workstations to portable Message traffic is reduced by sending events only to
computers running Microsoft Windows 95. machines known to be interested in them.

High-level, platform-independent, extensible, 3D graph- WAVES [20] uses message managers to mediate communi-
ics and GUI packages. We wanted to support a wide vari- cation between processes. Each message manager controls a
ety of hardware and operating systems without having to usgroup of clients. All messages are distributed by the mes-
a different graphics or GUI package on each. Furthermoresage managers to interested clients. WAVES supports the
we wanted to be able to cleanly integrate new kinds ofability to filter messages to a given client, reducing the type
graphical objects, such as the workstation windows of [12]. and frequency of updates sent. However, it supports only
Support for multiple users, displays, and devices. In coarse parallglism, With. each process performihg one well-
defined function. The single shared VE comprises a set of

addition to supporting multiple simultaneous users, we ">’ ) "
wanted to make it possible for any individual user to use.objects that encapsulate the behavior and state of the entities

multiple displays and interaction devices in a variety of IN the world. Each object is owned and updated by only one
combinations: opaque and see-through head-mounted digli€nt: but can move freely between clients.
plays; palmtop, tablet, desktop, and wall-mounted displays;RING [16] and BrickNet [29] both use a communication
speech input and output; spatialized sound; 2D and 3Dmechanism similar to that of WAVES, with centralized serv-
mice, styli, and other hand-held controllers. Therefore, iters each controlling a set of clients, and communication
would have to be easy to add new devices and coordinateouted through the servers. All message traffic goes through
their interactions. the servers, with no provision made for direct client-client
propagation for time-critical data. RING is geared toward
realistic simulations and uses physical visibility to limit



message traffic. Its VE is a set of shared entities, each with any site that has a copy arfiy of the object parameters, with
geometric description and a behavior. Each entity is ownedall additional parameters automatically copied to that site.
by one client, and only that client may update it. RING can Object World does not provide any consistency guarantees,
support a large number of simultaneous users. BrickNet isout accomplishes consistency detection by requiring that all
geared toward creating multi-user distributed VEs in which broadcast methods operate on the same version of their
each client has its own world composed of a combination ofobject parameters at all sites. Correction of inconsistencies
local and shared objects. Like WAVES, its objects haveis performed at an application level, possibly with the assis-
behaviors as well as state and can move between clients. tance of the user.

dVS [17] is a commercial distributed VE system for single- DistView [26] allows window and application objects to be
user applications. Its components and message formats areplicated. When an object is replicated, it is wrapped in a
fixed and not extensible, making it unsuitable for non- proxy that implements the replication semantics, such as
immersive VEs. sending method invocation messages to remote copies for
Spline [1] is a recent system that seems similar in intent ggexecution. There IS no d|st_|nct|on between read .a.nd write
ethods, and consistency is guaranteed by requiring locks

our system, and shares many features, but is more focus L red for all obiect While DistView h
toward efficient creation of exclusively immersive VEs. It 0 be acquired for all object accesses. lie Distview has a
fairly intelligent scheme to minimize the cost of acquiring

supports a single virtual world and achieves scalability b
Pb 9 y yglobal locks, the system would not scale well and would not

spatially partitioning this world to reduce message traffic, . . .
starting with a scheme similar to [23] and extending it by perform well in the face of continuous access from multiple
sites.

partitioning the object space based on this spatial partition.
The techniques for object sharing implemented in the newer
groupware toolkits share some of our goals, particularly
automatic replication of data to ease construction of distrib-
uted applications. However, none have integrated the distri-
bution of data into the object model of their respective
programming languages as tightly as we desire. As a result,
Igey do not provide sufficiently strong consistency guaran-
ees. In groupware applications, inconsistencies tend to arise
rom multiple users attempting to perform conflicting
actions: the results are usually obvious to the users and can
be corrected using social protocols. This is not an acceptable
r§o|ution for VE applications. Finally, none of these object
systems provide any support for asynchronous update notifi-
cation, nor are they designed to support the kind of large
scale distribution we have in mind.

None of the VE systems come sufficiently close to support-
ing enough of the features we need to justify attempting to
extend them to support the rest. With the exception of
DIVE, none provide true preemptive threads, but use only
heavyweight UNIX processes. With the exception of Brick-

Net, none support more than a single shared VE. In addition
these systems are geared toward VEs in which each user h
only a single (stereo) display, and interacts with an entirely]c
virtual world composed of 3D objects. In contrast, consider
our hybrid user-interface window manager [14], a prototype
of the kind of application that we would like to support. It
combines a flat-panel display with a see-through head-wor
display to create a workspace within which one display’s
image is embedded in the other’s. This would be difficult to
implement with a conventional VE system.

3.2 Distributed Groupware 4 The Modula-3 Environment

A number of groupware systems have been built usingCOTERIE is written in the Modula-3 programming lan-
shared object techniques. Colab [30] uses a fully replicatedyuage [18]. We decided to use Modula-3 because of the lan-
database in which changes are broadcast to all sites withoguage itself and the availability of a set of packages that
synchronization. Colab relies on social and application solu-provide a solid foundation for our infrastructure. The key to
tions to avoid, or recover from, inconsistencies. For exam-COTERIE is the Shared Object package that we built and
ple, if inconsistencies arise when multiple people arewhich we discuss in Section 5. It provides language-level
working on the same area of a document, they will quickly support for data replication and fast update propagation.

become obvious because of the nature of these applicationgyoqya-3 is a descendent of Pascal that corrects many of its
The users can then decide how best to deal with them.  eficiencies. In particular, Modula-3 retains strong type

GroupKit [27] applications run the same program at all sitessafety, while adding facilities for exception handling, con-

and communicate by usimgulticast remote procedure calls currency, object-oriented programming, and automatic gar-
to execute procedures at all sites. Data is shared via shardehge collectioh One of its most important features for our

data directories calleehvironmentsWhile supporting noti- ~ work is that it gives us uniform access to these facilities
fication of the addition, deletion or modification of items in
an environment, there is no support for concurrency control
As with Colab, social solutions are relied upon to solve this1. The Modula-3 compiler is written and distributed by DEC’s Sys-

problem. tems Research Center. A commercially supported version of the

. . . . SRC compiler is available from Critical Mass, Inc. as part of the
Object World [31] implements shared objects in LISP, and  Reactor programming environment. The SRC compiler, and thus

defines shared operations by allowing programmers to our system, runs on all the operating systems we use: Solaris,
define broadcast methods. These methods are executed at IRIX, HP-UX, Linux, and Windows NT and 95.




across all architectures. We depend on three key packagemessage-passing protocols between machines to implement
Network Objects, Oblig, and Oblig-3D. some model of shared memory access that is used by the
erProgrammer. The Shared Data-Object Model of DSM is par-
dticuIarIy well suited to our needs since it is a high-level
proach that can be implemented efficiently at the applica-

The Network Object package [4] supports a client-serv
model of distributed data sharing through remote metho

i p
calls that are virtually transparent to the programmer. Thes%a.i | In thi del. shared data i lated |
include distributed garbage collection, exception propaga- lon fayer. 1n thiS mocel, shared dala Is encapsulated in user-

tion back to the calling site, and automatic marshalling anddgfm?d, Ob{ﬁCtds alrlld 'If:r?n Dosnl\lj/ 33 accessed .throut%h thde
unmarshalling of method arguments and return values ofPPI€CtS method calls. The address space Is partiione

virtually any data type. We enhanced this package to pro-ImpIiCitIy by the application programmer, with an object

vide automatic data conversion between heterogeneouQeing the smallest unit of sharing. The shared data is repli-

machines. Obliq [7] is a lexically-scoped untyped Ianguagec"j‘ted in each [I)Irocess t?ﬁtés ifntere%t_ed tiq tr;]e Obje.Ct' tEaC.T
for distributed object-oriented computation that is tightly process can call any method ot an object 1t shares, just as |

integrated with Modula-3. Like Modula-3, it supports multi- can with a non-shared object. The model follows two princi-

ple threads within a single process. Oblig’s distributed com—ples‘

putation mechanism is based on Network Objects, allowingl. All operations on an instance of an objectaicand
transparent support for multiple processes on heterogeneous serializable All operations are performed in the same
machines. Objects are local to a site, while computation can order on all copies of the object. If two methods are
roam over the network. invoked simultaneously, the order of invocation is non-

Oblig-3D [24] is a high-level 3D animation system that con-  d€terministic.

sists of two parts: a Modula-3 library that provides a set of2. Property 1 applies to operations on single objects. Mak-
graphical objects and animation primitives, and the same ing sequences of operations atomic is up to the program-
primitives embedded in Oblig. Oblig-3D programs can be  Mer.

written in any combination of Modula-3 and Oblig, because The advantages of this model over techniques that expose
all data structures are simultaneously available from bothhe shared memory at a lower layer are discussed in [21].

Ianggages. Oblig-3D’s structure and interface also make itegr our purposes, the programming aspects are especially
relatively easy to extend. important:

Together, the language and packages provide us with closely The model directly supports Modula-3 type safety, mak-
matched compiled and interpreted languages that support ing accidental incorrect usage of shared memory

object-oriented, multi-threaded programming. They also  ypjikely. This is helpful because debugging parallel pro-
provide a clean basis for reliable distributed programming  grams s difficult.

via transparent remote method calls, and a high-level, exten;
sible 3D graphics system with animation support. What we easy 10 understand and broaram because no exolicit
needed to do was add support for replicated objects with | ky ired Prog P
asynchronous update propagation and notification, build a oc _S are reqwre_ ' )
library of objects to support the various VE devices we use,* A high-level, object-oriented approach to DSM means
and build an application framework that would allow us to  the programmer does not need to know the details of the
create prototype applications with the distributed system implementation in order to use the objects efficiently.
characteristics we desired. i

5.2 Callback Objects

5 The Shared Object Package Callback Objects allow the programmer to receive notifica-

. , . . tion of changes to a Shared Object in an object-oriented
To provide COTERIE's replicated object support, we devel- fashion. Forgany Shared Objectf an associat]ed Callback

oped a Shared Object package that, when combined with th'é)bject exists with a similar set of methods. An insta®Ce
Network Object package, provides a distributed language

infrastructure geared toward the needs of VEs. The remainp]c a Callback Object is associated with an inst fa
der of COTERIE is implemented using this package. Shared Object by passir§O to the constructor oCO.

When a method 08Ois invoked and changes the state of
The Shared Object Package consists of about 15,000 lines &8O, the corresponding method 6fO is called. Since the
Modula-3 code and supports general purpose, asynchrointernal representation of a Shared Object is hidden, the
nously updated, replicated objects. It is based on two condetails of the change are indicated@® by passing the
cepts: Distributed Shared Memory via the Shared Data-arguments of the original method call 8@ to the corre-

The implicit atomicity of method calls makes the model

Object Model, and Callback Objects. sponding method o€0. A programmer simply overrides
o the methods corresponding to the changes for which notifi-
5.1 Distributed Shared Memory cation is desired with methods that react appropriately to

Distributed Shared Memory (DSM)[22] allows a network of those changes. Callk)“ack Obj_ects”remove the need for object
computers to be programmed much like a multiprocessorP0lling and enable a “data-driven” flow of control.

since the programmer is presented with the familiar para-

digm of a common shared memory. DSM mechanisms use



A Callback Object contains two callback methods for eachNetwork Object package, partial replication can be mim-
update method in the corresponding Shared Object. Thesiked, with a slight loss of data transparency, using a combi-
callback methods can be overridden to receive notificationnation of the two types of objects: a Network Object can be
before or after an update to the Shared Object. An additionatwrapped around” a Shared Object and used to access the
pair of “catch-all” callback methods can be overridden to Shared Object remotely without replicating it in the local
receive notification before or after an update of any changeprocess. When a Shared Object is embedded in the Oblig
not handled by overriding the specific update callback meth4anguage, this dual behavior comes for free since all Obliq

ods. objects (aside from basic types such as integers or booleans)
_ are automatically treated as Network Objects. Thus, the
5.3 Implementation added complexity of partially replicated objects gives us

To create a Shared Object typ8J, the programmer creates Ve'Y little benefit.

a Modula-3 object with no publicly accessible data fields To maintain replication consistency we chose an update
that inherits from theSharedObjtype. Modula-3 source scheme (where updates are applied to all copies) instead of
code implementing the shared data-object semantics is geran object invalidation scheme (where changes to one copy
erated automatically, and includes: of an object invalidate all other copies, requiring a new copy
be obtained). This choice was primarily motivated by our
needs for timely asynchronous data propagation and asyn-
chronous update notification. First, invalidation requires a
extra refresh step, which would increase the lag for distribu-
tion of time-sensitive data such as tracker changes. Second,
the update messages used to implement the update scheme
Semantically, Shared Objects are fully replicated in all pro-contain exactly the information needed to provide asynchro-
cesses that are interested in them. This contrasts with ModAous update notification. The final factor in choosing an
ula-3 Network Objects, in which one copy of an object is update scheme is that, in our applications, large objects such
maintained in the process in which the object was createdas graphical models will be updated frequently, but the
and a proxy that performs remote method calls is main-updates will affect only a small part of the object, so refetch-
tained in all other interested processes. All the informationing the object will be wasteful. It is not surprising that we
used to perform remote method calls is encapsulated in th&now of no existing distributed VE systems that uses an
Network Object’s proxy object. invalidation-based replication scheme.

* a subtype ofOBJthat overrides the methods @BJ to
implement the shared object semantics, and

¢ a Callback Object foDBJ.

5.3.1 Relationship to Network Objects

Network_ _and Shar_ed Objects share_a number of propertieg 3 3 communication architecture

that facilitate distributed programming. As with the sub-

types used to implement the Shared Object semantics, théo provide the Shared-Data Object property of serializable
Network Object proxies are subtypes of the original objects,updates, all updates to a given object result in an event being
allowing them to be used exactly like the original objects. sent to one distinguished (heavy-weight) process called the
Automatically-generated code takes care of marshalling andequencerEach process is statically associated with a par-
unmarshalling arbitrarily complex method arguments andticular sequencer at run-time and all objects created in that
return values, such as large recursive data structuregprocess have their updates sequenced by that sequencer. A
between heterogeneous machines across the network. Boet of processes associated with the same sequencer is called
runtime systems automatically establish and monitor con-a cluster The sequencer for an object simply assigns a
nections for liveness (to a reasonable degree), maintairsequence number to each update event it receives and for-
threads to service incoming remote method calls and perwards them to all processes with a copy of the Shared
forms such tasks as distributed garbage collection. The en@bject. Updates are applied only after they are received
result is that, from the programmer’s point of view, they are from the sequencer. Any process with the Shared Object
virtually indistinguishable from local objects. Shared runtime system compiled into it may serve as a sequencer, in
Objects are passed between processes using Networaddition to its other tasks.

Objects. Our implementation ensures that there is one an

sure ¢h i ]
only one copy of any Shared Object in any process. e sequencer currently sends direct updates only to pro

cesses in its cluster. If a process in another cluster has a copy
of this Shared Object, the update is sent to its sequencer,
which will then forward the update to the processes in its
We based our implementation of the Shared-Data Objectluster that have a copy of the object. Thus, all update mes-
Model on the fully replicated approach used in Orca [2]. A sages between clusters are currently sent through the
full replication scheme, where a single object is either fully sequencers.

replicated in a process or not, is significantly simpler than 8¢, njger what happens when a thread initiates an update by
partial replication scheme, in which an object may or may .5 jing a4 method that changes the object state. The thread is
not be replicated in a process that accesses it, and satisfigg,ieq until the update event is received back from the

our primary rationale for rephcauon:_fast r.ead—.acce_ss tosequencer, at which time it applies the update to the object
shared data. Furthermore, when used in conjunction with theand returns. Figure 2 shows the control and data flow of a

5.3.2 Replication Approach



Figure 2: Control and data flow for a typical Shared
Object update method call. Process p; calls an update
method at time ;. It blocks after a message is sent to the
sequencer s. The message arrives at time &, and is sent
to all interested clients (p;, p> and p3). p; receives the
message back at time 3, is unblocked, executes the orig-
inal method call and continues.

Figure 3: The partitioning of clients (C) among sequenc-
ers (S) and object managers (OM). The partitioning of
sequencers can be based on efficiency considerations,
whereas the partitioning of object managers can be
based on the semantic grouping of processes, which are
generally not the same.

typical update method call. A similar connection topology is
used by many VR systems (WAVES, BrickNet, Ring) to

tions) and those that daddate operations). Read opera-
tions access the local copy directly. Update operations are
handled as described above. Access to an object is con-
trolled by locks, so that all update operations are executed
atomically and multiple reads may be performed simulta-
neously.

We modified the Orca semantics in minor ways to suit our
needs and the Modula-3 environment. For example, we
added the ability to globally lock an object, so multiple
methods could be accessed atomically.

5.3.4 Restrictions

As with Network Objects, there are restrictions on what
Modula-3 types are valid for use as arguments to method
calls. For Shared Objects, the restrictions arise from the
need to package arguments to update methods into the
update events. Therefore, no data value can be used that is
specifically associated with one process (e.g., a thread or a
condition variable) or that has state that cannot be accessed
repeatedly with consistent results (e.g., a file reader or
writer).

6 COTERIE Examples

We are using COTERIE to develop a library of standard
objects that form a framework for building VE applications,
along with a number of prototype applications. Although we
do not discuss the specifics of our actual library here, the
simple examples in this section are designed to emphasize
the ease of creating such a framework.

6.1 Shared Tracker Object

Figure 4 shows the code farackerPosition a simplified
position tracker. It is based on the first Shared Object we
developed, which was a general-purpose shared tracker
object. Here, we have simplified the type definitionData

and have reduced the number of methods for clarityifibe
method is used to initialize a new object, #e method
changes the value of the shared tracker object (a 3D posi-

reduce network traffic, but none have isolated it in this faSh'tion), and theget method returns the current value. Since

ion. For example, in BrickNet and Ring, the low-level func- \1qqula-
tionality of the sequencer is combined with other high-level
functions such as object lookup and management.

3 supports garbage collection, thet returns to
each caller a newly allocated copy of the data, which can be

Infreely modified without worrying about affecting other

WAVES, these are assigned to separate modules, but thesg o3ds.

modules exist in a one-to-one relationship with each other. . . . _
. . . _ .. In Modula-3, when a type in an interface is used, it must be
It is undesirable to overlap high- and low-level functionality qualified by the interface name. Thus, the typeta in

like this. For example, all these systems have a one-t0-0ng;q e 4(a) is used elsewhereTaackerPosition.DataThe
relationship between the number of sequencers and objeqiation T <: S’ is read as “T is a subtype of S.” The pro-
management servers. In contrast, we can partition Objecbrammer REVEALs the details oS :< Public in

management based on conceptual process groupings, by re 4(h). The Shared Object semantics are implemented
partition sequencer duties based on physical network chary, “ihe generated code (not shown) by REVEALing the
acteristics. These two partitions are not always identical, a?mplementation of tha <: S relationship in an analogous

shown in Figure 3. We are experimenting with different ¢,qhion By convention, the primary type for an interface is
approachgs to ot_)ject management, and discuss one possmhe so when programmers udeackerPosition.Tthey will
approach in Section 6.4. use the Shared Object type.

To aIIo_w for efficient read access, we distinguish between,;igure 5 shows part of the generated code associated with
operations that do not change the object d@@d(opera- e tracker object: the interface to the Callback Object. As



INTERFACE TrackerPosition;
IMPORT SharedObj, Thread, Point3;

TYPE
Data = REF Point3.T;
T<S;
S <: Public;
Public = SharedObj.T OBJECT METHODS
set (READONLY val: Data);
get (): Data;
<* SHARED UPDATE METHODS set *>
END;
END TrackerPosition.

(a) The TrackerPosition interface

MODULE TrackerPosition;
REVEAL
S = Public OBJECT
data: Data := NIL;
OVERRIDES
init:= Init,  (* Defined below *)
set == Set; (* Defined below *)
get := Get; (* Defined below *)
END;

PROCEDURE Init(self: S) : SharedObj.T =
BEGIN
self := SharedObj.T.init(self);
self.data := NEW(Data);
RETURN self;
END Init;

PROCEDURE Set(self: S; READONLY val: Data) =
BEGIN
self.data™ := val’;
END Set;

PROCEDURE Get(self: S): Data =
VAR ret := NEW(Data);
BEGIN

ret" .= self.data™,
RETURN ret;
END Get;

BEGIN
END TrackerPosition.

(b) The TrackerPosition implementation

Figure 4: Modula-3 code for a TrackerPosition Shared
Object. There are two parts to the module: (a) the exter-
nal interface and (b) the internal implementation. Much of
Modula-3’s syntax is borrowed from Pascal. For exam-
ple, pointers are defined using the REF keyword and
dereferenced with "

INTERFACE TrackerPositionCB;
IMPORT TrackerPosition, SharedOb;;
FROM TrackerPosition IMPORT Data;

TYPE
T <: Public;
Public = SharedObj.Callback OBJECT METHODS
init(obj: TrackerPosition.T): T;
pre_set (READONLY obj: TrackerPosition.T;
READONLY val: Data): BOOLEAN;
pre_anyChange(READONLY obj:
TrackerPosition.T);
post_set (READONLY obj: TrackerPosition.T;
READONLY val: Data): BOOLEAN;
post_anyChange(READONLY obj:
TrackerPosition.T);
END;

END TrackerPositionCB.

Figure 5: The generated tracker Callback Object
interface

TYPE LowPassTracker = TrackerPositionCB.T OBJECT
IpObj: TrackerPosition.T;
distance: REAL;
oldval: Point3.T;
OVERRIDES
post_set := LPSet;(* Defined below *)
END;

PROCEDURE LPSet(self: T;
READONLY obj: TrackerPosition.T;
READONLY val: Data): BOOLEAN =
BEGIN
IF Point3.Distance(self.oldVal, val") >=
self.distance THEN
self.IpObj.set(val);
self.oldval ;= val,
END;
RETURN TRUE;
END LPSet;

(* assume tobj is the normal tracker object *)
Ip := NEW(TrackerPosition.T).init();
IpCB =
NEW( LowPassTracker,
IpObj := Ip, distance := 2.0,
oldVal := Ip.get()").init(tobyj);

Figure 6: A simple use of Callback Objects to create a
variation of a tracker that is updated only when the
tracker has been moved more than a specified distance
since the last report.

described in Section 5.pye_setandpost_setare the call-
back methods for set and pre_anyChange and
post_anyChangare the catch-all callback methods. Next,
we show how this Callback Object can be used.

6.2 Filtered Tracker Object

More advanced tracker objects can be implemented using
the object in Figure 4. For example, suppose a client wants
to receive a tracker report only when the tracker has moved
more than a specified distance since the last report. A sec-
ond tracker objectp (for “lowpass”), can be created in the
process handing the tracker. Thpeobject is updated by
using a simple Callback ObjedtpwPassTrackerwhose
post_setmethod is overridden by PSet as shown in
Figure 6. Notice that this approach allows great flexibility.
For example, the process in whilghis created determines
where the filtering is done.

6.3 Prototype Application

Figure 1 shows a prototype of one kind of application we

built COTERIE to support. It is an augmented reality system

that adds both 2D and 3D information to the user’s view of

the world. It consists of about 500 lines of commented Obliq

code, and is an experiment in how 2D windows can be

attached to 3D positions. Therefore, these 500 lines include
the code used to attach 2D windows to 3D points.

The program makes use of an enhancement to Oblig-3D that
we added, calle®rojection Callback ObjectdBy attaching

a projection callback node to the Oblig-3D scene graph,
each time the node is traversed in the graphical scene, the
invoke method of the supplied Callback Object is called
with the 3D point corresponding to the origin of the current
nested coordinate system and its current 2D projection. To



attach a window to a 3D point, we simply place an instance Process A Process B
of a projection callback at that point. The object will contain :
a handle to its 2D window, and itssvokemethod moves the /a oD Server \ 3 OD Client
window to the projected 2D point. b

B[ T T——1 ¢

COTERIE makes it easy to distribute this application. —T > S5
Instead of having thanvokemethod move the window, we C I

associate a sharddackerPositiorobject with each window -« |— — - f
and have thewvokemethod update this shared object with a W

2D tracker report corresponding to the window’s projected \ / \ /

position. A straightforward TrackerPosition Callback

Object (Figure 5) could be used to move the windows. How-
ever, this callback could do more interesting things, such as Figure 7: A single Object Directory (OD). The server on
sending the information to the process that created the win the left consists of (a) a local object wrapper, (b) a Shared
dow to have it move or reshape itself. Note that this will OPiect implementing the notifier directory and (c) a Net-

work even if the windows are controlled by other processes. WOrk Object implementing the storage directory. The cli-
ent on the right has (d) its own copy of the object wrapper,

(e) a shared copy of the notifier directory, and (f) a proxy
handle for the storage directory.

6.4 Hierarchical Object Directories

COTERIE makes it easy to experiment with different kinds

of infrastructure. In this section, we outline a nontrivial The OD itself is implemented using a regularapper
object, a hierarchicaibject directory(HOD), similar to the  object (Figure 7a and d). This object has data fields and
hierarchical environments in dVS [17], that illustrates how methods to implement the OD functionality. For example,
the three different kinds of objects in our system (Network there would be methods to add elements to, or delete ele-
Objects, Shared Objects and regular objects) can workments from, the OD. In addition to any other incidental data,
together. the OD contains references to two important objects in its
Design. The purpose of a HOD is to handle object lookup data field;, a;torage directoryand anotifier directory The

and management. We will design the HOD analogously to a>t°rage directoryis a Network Object that implements a
file-system, with a single object directory (OD) containing a c€Nntralized object store using key-value pairs (Figure 7c). It
set of key-value pairs that associate objects with textualVould contain the actual data objects stored in the OD. The
names. An OD can contain references to other ODs, allow-nomcler dlrectory_ls a Shf_ifed ObJ.eCt that contains a ;mall,
ing arbitrary hierarchies to be created. References to virtuconstant-size piece of information for each entry in the
ally any kind of object can be stored in an OD. The OD candir€ctory, such as the type of the object, and is also used to
contain the actual objects or references to entries in othefSC€ive notification of changes to the directory (Figure 7b
remote ODs (the equivalent to symbolic links in a file-sys- @"d €)-

tem.) The number of ODs, and their location, is independenBecause the storage directory is implemented with a Net-
of the number of distributed processes and sequencers usegbrk Object, it is not replicated. The single copy is accessed
to implement a VE application. via remote method calls from any process that receives a
In addition to providing a general solution to theming  COPY Of the OD. Conversely, since the notifier directory is
problem(how to meaningfully assign names to services and|mplemented with a Shared Object, it is fully replicated in
resolve those names to computer addresses) [11], the HoB!l processes that receive a copy of the OD.

can serve as the primary structuring metaphor for a familyPutting It All Together. There are three things to understand
of distributed applications. By allowing an OD to contain about why the OD is designed this way: what happens when
references to other, perhaps distantly located, ODs, we caan OD is passed to a remote process, how OD methods are
organize the HODs into a single global name space thatmplemented, and how are Callback Objects used by the
allows applications to communicate with each other in aOD.

meaningful way. Within this global hierarchy, data can be First, consider what happens when an OD is passed from
organized in well defined subhierarchies so that applicationsbne }arocess to another, as a parameter or return value of a
know where to look for particular kinds of data and SerVices'Network or Shared Obj,ect method call. Since the OD is a

Furthermore, by allowing clients to watch one or more ODs regular object, the run-time system automatically creates a

for changes, such as the addition or deletion of entries, CI"new, independent copy of the object in the second process.

S_nts tcan react to ;:_hang%? f[?] th_e ‘;‘.’OHS W'tfhf[)hUt the rr:eed fo,rAs part of creating that copy, it attempts to copy the data
Irect communication wi € Instigator of those Changes.qa g of the object. The semantics of copying Shared
Such shared data-space techniques are widely used in

blackboard : q g | h bjects from one process to another result in the new pro-
Liﬁga [c;iar Systems and programming languages such ag,qq containing a local replica of the original notifier direc-

tory. The semantics of copying Network Objects result in
Object Structure of the OD. To build a simple OD, each of the new process containing a remote proxy for the original
the three types of objects are used, as shown in Figure &torage directory (Figure 7f). All of this happens automati-



cally when a reference to the OD is passed to the secontbrming some work locally. This technique can be used to

process. lessen the impact of the restrictions on update method argu-

Jnent types (e.g., by having a read method manipulate the
estricted argument locally and use the results as arguments
0 an update method call).

Given the structure shown in Figure 7, how are OD method
implemented? Consider adding an element to an OD with
simpleput method, put(name, objecf) which storebject

in the OD under the keyame The put method of the OD  Because shared object update method calls are performed
would perform the following actions: synchronously on the local copy, but asynchronously on all
other copies, return values and exceptions are ignored in all
copies except the local one, with one exception: a certain
T . ) . class of exceptions is used to signal isolated method failures
store the type of the object in the notifier directory using (¢ g, exhaustion of local resources). Raising one of these
the corresponding notifier directoput method, which  eycentions invalidates the local copy, and any further
has been designated as a shared update method. attempt to access the object raises an exception. The pro-
No matter which process performs thaet operation, the = grammer can decide how to handle this exception as appro-
outcome is the same: priate for the specific situation. For example, a new copy
could be retrieved, or the threads using the object could be
tdistributed to other processes.

¢ store the object in the storage directory using the corre
sponding storage directoput method, and

* aremote procedure call is performed to store the objec
in the central storage directory, and

* the type of the object is stored in the shared notifier
directory in all replicas, causing any Callback Objects
registered for these replicas to have thmit methods
invoked.

When we designed the Shared Object package, we chose a
design that allowed us to ensure consistency of individual
replicated objects in the face of reasonably large-scale dis-
tribution, and to avoid full replication of the database. To
achieve this, we sacrificed ease of dealing with the coordina-
The wrapper object would use the Callback Objects assocition of simultaneous updates to multiple objects. Systems
ated with the notifier directory to monitor an object direc- sych as ISIS [3] can ensucausalor eventotal message

tory for changes on behalf of local clients that have ordering between processes in a distributed systehich

requested notification when the OD changes. has the effect of ensuring that all messages are seen in the
_ same order in all processes (or, in the case of causal order-
7 Conclusions and Future Work ing, all the messages that should matter are seen in the same

We have presented our requirements for, and our design an%'rder.) Unfortunately, providing these more rigid guarantees

implementation of, COTERIE, a toolkit for building and Mcurs overheads that are higher than we are willing to pay.

experimenting with distributed virtual environments. Our In particular, standard message-ordering techniques require
u?din beliefg has been that object-oriented data distr.ibutionthat all updates are sent to all processes, and that threads
9 9 J block when they attempt to read local data, not when they

%r\\/(llmultl—threadmg should be supported at the Ianguageperform updates. The latter restriction is much more serious,

from our point of view, as the primary goal of replication is
Our initial experiences building prototype applications with fast read access. We are investigating possible modifications
COTERIE, such as that of Figure 1, have been very promisto our current object semantics to add stricter guarantees
ing. We have implemented half a dozen prototypes duringwithout seriously affecting efficiency.

the past few months (e.g., an augmented reality system fobne way to update multiple objects as a unit is to require

\l/)vl;:ilg;]n?og?(nlsetsrgcgrlw%?n a;szlz;ar;(:: rg%gg/ ;El?o:/r:/:tr:agl ;egi')%r;zrﬂf that a designated object be treated as a semaphore and be
ming model in which many threéds do simple tasks andloCked prior to updat|_ng any of the objects. The p(oblem
communicate via Shared Objects, we have found it verythe.n reducc_as to ensuring that all the updates are delivered to
easy to reconfigure applications to ,run on different combina—.a S't.e gtom|cally, S0 that readerg see the changes as one unit,
fions of processes across a wide variety of platforms if this is also.requwed. If speed is not a concern, readers can

’ also be required to lock the semaphore object. However, this
Our observations and plans for future work can be groupedsolution will not scale well. We have found that techniques
under the categories software engineering, efficiency, reli-similar to those used to deal with updating display-list-

ability, and scalability. based graphics terminals can provide insight into how to
) _ design objects and applications to deal with this problem.
7.1 Software Engineering For example, data structures and libraries can provide facili-

It is quite important that shared data is encapsulated in aff€s for “checking out” copies of data and then atomically
object and only accessed via programmer-defined methodPdating the data structure via a single update method.
calls. The programmer has great flexibility in partitioning OPiects that handle groups of data can provide methods to
the work into parts executed once at the calling site andSWap an existing data element with a new one, instead of
parts executed at all sites, because only update methods ap@ly Providing methods to add data elements or remove
broadcast and executed at all sites. The work is partitionedn€m. We are using these techniques to create a distributed

by having a read method call an update method after per-



version of Anim3D that avoids the need for explicit global robustness in the face of simple faults. For example, it
locks when updating the graphical scene. should be possible to restart a crashed process without

Currently, the integration of Shared Objects into Obliq is not restarting the entire system. This IS extremely Important as
as simple as we desire. Programmers must generate Modrograms beqome increasingly distributed and complex,
ula-3 Shared Objects and then make each object available aesspeually during development.

a new data type in Oblig. While relatively straightforward, it At the object level, crashes affect Network and Shared
goes against our goal of enabling programs to use ObligObjects in different ways. With Network Objects, the surro-
until they decide to recode bits of their applications in Mod- gate copies can be reobtained when the process is restarted.
ula-3 for efficiency. Therefore, we will be modifying the If the process with the original object crashes, however, the
Oblig language to directly support Shared and Callbackobject is no longer valid and all clients will be automatically

Objects as native data types. notified via the Network Object runtime system. When the
o process restarts and recreates the lost object, higher-level
7.2 Efficiency protocols, such as the object directories discussed in

The run-time structure of a distributed system created withS€ction 6.4, can be used to notify interested clients.
COTERIE is similar to that used in RING [16], both in For Shared Objects, we only need to differentiate between
terms of the communication topology and the requirementthe sequencer process and any other process with a copy. If a
that all updates to a single object pass through one distinnon-sequencer process with a copy crashes, it can reobtain a
guished process. Their experimental results show that thigopy of the Shared Object when it restarts. As with RING, if
approach is suitable for large-scale distributed VEs. a sequencer crashes, we cannot recover. (We will eventually
Our design includes the ability, currently being imple- fiX this by selecting another process as the sequencer,
mented, to designate that a specific copy of a Shared Obje@/though we have not yet decided the best way to do this.)
requires updates in as timely a fashion as possible and tEault tolerance and crash recovery in VE systems is hin-
designate a copy as the primary updater. The system cagered by the fact that many services cannot be replicated
then arrange for update events to be sent directly from théyecause they are tied to specific hardware. However, the sys-
primary updater to that copy. This bypasses the sequencaem should handle the disappearance of these services in a
and decreases the typical network hops from two to one, byeasonable fashion. For example, if the process controlling a
having the primary updater handle the sequencing for thishead tracker crashes, it should be possible to revert to a sta-
object. (Of course, updates by any process other than theéonary display model for that user. For certain data objects,
primary updater will now take longer, having their network such as trackers, only their current value is meaningful, and
hops increased from two to four because the sequencer musiill have changed between the time the process crashes and
now route update events through the primary updater.) Thigestarts. Furthermore, the state of many other objects in the
facility is only needed when it is critical to minimize lag system is partially based on these volatile objects. It is not
(e.g., when a head tracker is connected to a differentlear how to apply typical crash recovery concepts, such as
machine than the graphics display). In this case, only themessage logging and playback, to these objects.

primary updater will update the object, so the increased

number of network hops for other updaters is not an issue. 7.4 Scalability

Communication between processes is currently imple-Scalability was an important motivating factor for our
mented using TCP. We will be implementing a version thatdesign. The biggest threat to scalability we foresee is the
uses UDP in the near future. The change will be invisible todistribution of Shared Object updates, since Shared Objects
the programmer, aside from anticipated performance gains.are used to encapsulate rapidly changing data. Funkhouser
demonstrates the scalability of a similar update propagation

Another possible efficiency concern is the use of an mter-t_Opology in [16].

preted language. Since the match between the two lan
guages allows code to be migrated easily from Oblig toAnother factor affecting scalability is the mental burden that
Modula-3, the interpreted language has not caused any effieomplex systems place on programmers. We believe that the
ciency problems. The only problem we have encounterechighly modular style of programming encouraged by a mul-
thus far is that if a programmer carelessly allocates, and sultithreaded, object-oriented system significantly reduces this
sequently drops references to, significant amounts of memburden by allowing programmers to create small, self-con-
ory when handling frequently occurring events (e.g., trackertained components. COTERIE encourages this style of pro-
movement), the garbage collector takes a noticeable amourgramming for building distributed systems.

of time. However, this problem can be eliminated by using

techniques such as caching data structures that will beAcknowIedgments
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