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Linear Complexity Hexahedral Mesh Generation

David Eppstein∗

Abstract

We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be parti-
tioned intoO(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra
satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version
of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.

1 Introduction

There has recently been a great deal of theoretical work on unstructured mesh generation for finite element methods,
largely concentrating on triangulations and higher dimensional simplicial complexes; see [4] for a survey of these
results. However in the numerical community, where these meshes have been actually used, meshes of quadrilaterals
or hexahedra (cuboids) are often preferred due to their numerical properties [2]. For this reason many mesh generation
researchers are working on systems for construction of hexahedral meshes. There has also been some theoretical work
on quadrilateral and hexahedral meshes [1, 5, 9, 10, 12] but much more remains to be done.

There is a straightforward method for generating hexahedral meshes, if one allows the mesh to include additional
Steiner pointsas vertices. Simply find a Steiner tetrahedralization of thedomain [6], then subdivide each tetrahedron
into four hexahedra as shown in Figure 1. But as Mitchell [9] notes, this type of boundary subdivision can make it
difficult to mesh several adjoining domains simultanously (such internal domain boundaries can arise either because
the problem is defined in terms of multiple domains, or as partof a parallel mesh generation process). Further, splitting
tetrahedra produces hexahedra with some very sharp angles and some very obtuse angles, which are hard to improve
in a later mesh smoothing stage, especially when they occur on the domain boundary.

We consider here a common variant of the hexahedral mesh generation problem, in which we avoid some of
these problems by restricting the location of new Steiner points to theinterior of the domain. The boundary (which
is assumed to be a planar quadrilateral mesh) must remain unsubdivided. Although various authors have studied
heuristics for this version of hexahedral mesh generation,its theoretical properties are not well understood and pose
many interesting problems. In particular the computatational complexity of determining whether a polyhedron admits
a mesh of convex hexahedra respecting the polyhedron’s boundary is unknown. Even some very simple cases, such
as the eight-sided polyhedron shown in Figure 2, remain open[13]; the hexahedral meshes known for this octahedron
are very complicated and involve nonconvex or degenerate cuboids.

For the planar case, the corresponding problem is easy: a polygon can be subdivided into convex quadrilaterals,
meeting edge to edge, without extra subdivision points on the boundary, if and only if the polygon has an even number
of sides. One can efficiently find a set ofO(n) Steiner points that suffice for this problem [12], and there has been
some progress on finding the minimum possible number of Steiner points for a given polygon [11].

Thurston [15] and Mitchell [9] independently showed a similar characterization for the existence of hexahedral
meshes, with some caveats. First, the polyhedron to be meshed has to be a topological ball (although the method gen-
eralizes to certain polyhedra with holes). And second, the mesh istopological: the elements have curved boundaries
and are not necessarily convex. However they must still be combinatorially equivalent to cubes, and must still meet
face to face (i.e. any internal boundary between elements must be a face of both elements; we formalize this require-
ment in the next section by requiring the elements to form a cell complex). Thurston and Mitchell both showed that
any polyhedron forming a topological ball has a topologicalhexahedral mesh, without further boundary subdivision,
if and only if there are an even number of boundary faces all ofwhich are quadrilaterals. (Indeed, even parity of
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Figure 1. Tetrahedron partitioned into four hexahedra.

Figure 2. Can this octahedron be meshed with convex hexahedra?
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Figure 3. Topological quadrilateral mesh, showing individual faces, edges, and vertices.

the number of faces is a necessary condition for the existance of cubical meshes in any dimension, regardless of the
connectivity of the input, since each individual cube has evenly many faces which either contribute to the boundary
or are paired up in the interior.) However Thurston and Mitchell’s method may produce meshes with high complexity
(nonlinear in the number of features of the original polyhedral domain).

In this paper we discuss an alternate method for hexahedral grid generation. Our method combines refinement of a
tetrahedral mesh with some local manipulation near the boundary based on planar graph theory. It is similar in spirit to
mesh generation heuristics of Schneiders [14] and others, in which one first fills the interior of the domain with cubes
before attempting to patch the remaining regions between these cubes and the boundary. A similar idea of “buffering”
the boundary of the input from subdivisions occurring in theinterior was also used in a tetrahedralization algorithm of
Bern [3].

Our new hexahedral meshing technique has three advantages over that of Mitchell and Thurston. First, we prove
anO(n) bound on the number of cells needed for a topological hexahedral mesh. Second, because our method avoids
duality, it seems easier to extend it to the more practicallyrelevant geometric version of the mesh generation problem,
in which the elements must be convex cuboids: we exhibit a finite collection of polyhedra (formed by subdividing
the boundary of a cuboid) such that if these polyhedra can allbe geometrically meshed, any polyhedron forming a
topological ball with an even number of quadrilateral sidescan also be geometrically meshed, withO(n2) cells. Third,
the method generalizes to a different class of non-simply connected polyhedra than those handled by Mitchell and
Thurston’s method.

These results are not practical in themselves: the number ofelements is too high and we have not satisfactorily
completed the solution to the geometric case. Practical hexahedral mesh generation methods are still largely heuristic
and will often fail or require the input boundary to be modified. There is a possibility here of a two way interaction
between theory and practice: as heuristic mesh generators improve they may soon be good enough to solve the finite
number of cases remaining in our geometric mesh generation method, and thereby prove that all even-quadrilateral
polyhedra can be meshed. In the other direction, even an impractical proof of the existence of meshes can be helpful,
by guaranteeing that an incremental heuristic method such as the whisker-weaving idea of Benzley et al. [1] will not
get stuck in a bad configuration.

2 Statement of the problem

Let us define more formally the topological mesh generation problem solved here. We assume we are given adomain
topologically equivalent to the closed ball in three dimensions (later we will consider other more complicated domain
topologies). The boundary of the domain is assumed to be covered by a finitecell complex; that is, a collection of
finitely manycells: sets equivalent to closed balls of various dimensions, with disjoint relative interiors, such that the
boundary of any cell is covered by lower dimensional cells, and any nontrivial intersection of two cells is itself a cell.
Our task is to extend this partition to a finite cell complex covering the overall domain.

We assume the boundary cell complex is aquadrilateralization; in particular, everyedge(one-dimensional cell)
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Figure 4. Quadrilateral mesh and dual curves.

Figure 5. Hexahedron and dual surfaces.

has twovertices(zero-dimensional cells) as its endpoints, and everyface(two-dimensional cell) has a cycle of four
distinct edges as its boundary. (Figure 3.)

We wish the cell complex produced by our algorithm to be ahexahedral mesh: the same conditions as above apply
to every edge and face of the complex, but in addition every three-dimensional cell must be ahexahedron: it should
have six quadrilateral faces on its boundary, meeting in edges and vertices with the same combinatorial structure as
the faces, edges, and vertices of a cube.

Any simply-connected polyhedron with quadrilateral facessatisfies the input conditions. Any partition of that
polyhedron into convex cuboids meeting face-to-face satisfies our output conditions. However our definition also
allows partitions into non-convex and non-polyhedral cells.

3 Thurston and Mitchell

Before describing our own methods, we briefly discuss those of Thurston [15] and Mitchell [9].
The method of both these authors is to treat a hexahedral meshas being the dual to an arrangement of surfaces [1],

and a quadrilateral mesh such as the one on the boundary of thepolyhedron as being the dual to an arrangement of
curves. Given a mesh of quadrilaterals, one can find this curve arrangement simply by connecting the midpoints of
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Figure 6. Bad examples for Thurston and Mitchell:Ω(n3/2) (left) andΩ(n2) (right).

opposite sides of each quadrilateral by curves (Figure 4). Similarly, given a mesh of hexahedra, one can find these
dual curves on each boundary facet of each hexahedron, and connect them by quadrilaterals to form surfaces, meeting
in triple points at the center of each hexahedron (Figure 5).

The problem then becomes one of performing the opposite transformation: extending the given surface curve
arrangement to an interior surface arrangement, and then finding a collection of topological hexahedra dual to this
surface arrangement.

Thurston and Mitchell solve the first part of this problem (extending the boundary curve arrangement to an interior
surface arrangement) by extending curves with an even number of self-intersections to surfaces independently of each
other; they pair up curves with an odd number of self-intersections and form a surface for each pair.

For the second part (transforming these surfaces to dual hexahedra), note that, for surfaces in general position,
the structure of the surface arrangement can be representedas a collection of vertices (for each triple intersection
of surfaces) and edges (segments of pairwise intersectionsof surfaces). Each vertex should correspond to a dual
hexahedron and each edge should correspond to a pair of hexahedra sharing a common face. However not every set
of surfaces determines a dual cell complex in this way, because some of the vertices may be connected by multiple
edges, resulting in hexahedra that do not intersect in a single face and violating our requirement that the intersectionof
two cells be another cell. Thurston and Mitchell solve this problem by surrounding problematic regions of the surface
arrangement with spheres in a way that causes these multipleadjacencies to be removed. The result is a collection of
surfaces with a dual hexahedral mesh solving our mesh generation problem.

Theorem 1 (Mitchell, Thurston). Any simply connected three-dimensional domain with an evennumber of quadrilat-
eral boundary faces can be partitioned into a hexahedral mesh respecting the boundary.

However this method does not provide much of a guarantee on the complexityof the resulting mesh, that is, of
the number of hexahedral cells in it. This complexity is veryimportant, as it directly affects the time spent by any
numerical method using the mesh; even small constant factors can be critical.

It is not hard to provide examples in which this dual surface method constructs meshes with more than linearly
many elements (measured in terms of the complexity of the polyhedron boundary). We provide two (Figure 6):

• A cube in which each square is subdivided into anO(
√

n) by O(
√

n) grid. The boundary curve arrangement dual
to these grids consists ofΩ(

√
n) Jordan curves without self-intersections. The method of Thurston and Mitchell

extends each of these curves to a plane; theseΩ(
√

n) planes will haveΩ(n3/2) triple intersection points, so this
method will produce a mesh of total complexityΩ(n3/2).

• A cube in which four of the boundary squares are subdivided into Ω(n) rectangles, formingΩ(n) disjoint and
non-self-intersecting Jordan curves, and in which the remaining two squares haveΩ(n) quadrilaterals arranged
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Figure 7. Separation of boundary from interior by buffer layer.

in a pattern to formΩ(n) disjoint curves with one self-intersection each. The Jordan curves will be extended to
planes; if one incautiously matches the one-intersection curves into pairs, with each pair consisting of one curve
from each side of the cube, the surfaces formed by extending these pairs will each cross allΩ(n) of the planes
coming from the Jordan curves, and form a mesh with overall complexityΩ(n2).

4 Linear-complexity mesh generation

As we saw above, the mesh generation method of Thurston and Mitchell can produce meshes withΩ(n3/2) or Ω(n2)
hexahedra. We now describe our new topological mesh generation method, which will always give meshes withO(n)
complexity.

Our method has the following main steps:

1. We separate the boundaryB of the polyhedron from its interior by a “buffer layer” of cubes. We do this by finding
a surfaceS inside the polyhedron, isomorphic to the polyhedron’s boundary, and sitting in the same orientation.
We then connect corresponding pairs of vertices on the two surfaces with edges, corresponding pairs of edges on
the two surfaces with quadrilateral faces spanning pairs ofconnecting edges, and corresponding pairs of faces
on the two surfaces with hexahedra (Figure 7).

2. We triangulate the inner surface of the buffer layer, and tetrahedralize the region inside this triangulated surface.
A (topological) tetrahedralization withO(n) complexity can be found by connecting each triangle onS to a
common interior vertex.

3. We split each interior tetrahedron into four hexahedra asin Figure 1. This subdivision should be done in such
a way that any two tetrahedra that meet in a facet or edge are subdivided consistently with each other. As a
result, each edge and face inSbecomes subdivided, and each quadrilateral connectingB to Sgains an additional
subdivision point and so becomes combinatorially equivalent to a pentagon (Figure 8).

4. BecauseB is by assumption a planar graph with all faces even, it is bipartite. (The well-known fact that even
faces implies bipartiteness is the planar dual to the fact that even vertex degree implies the existence of an Euler
tour, but it can easily be proved directly.) LetU andV be the two vertex sets of a bipartition ofB (without
loss of generality,|U| < |V|). Each vertex ofB corresponds to an edge in the buffer layer connectingB to S.
We subdivide the subset of those edges corresponding to vertices inU. Each of the quadrilaterals connecting
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Figure 8. Hexahedralization of interior.

Figure 9. Partition of hexagons into two and three quadrilaterals.
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Figure 10. Quadrilateral mesh (left) and its dual (right). The bottom vertex of the dual corresponds to the outer face of the mesh;
other dual vertices are arranged roughly in the same positions as the mesh faces. The highlighted edges form a minimum-weight
matching in the dual, and a corresponding set of edges in the mesh meeting each quadrilateral an odd number of times.

B to Shas one such edge, so (together with the subdivided edge inS itself) these subdivisions cause each such
quadrilateral to become combinatorially a hexagon.

5. After these subdivision steps, each of the cells in the buffer layer is now combinatorially a polyhedron with seven
quadrilateral facets and four hexagon facets. We subdividethe hexagons into either two or three quadrilaterals
each, as shown in Figure 9. We explain below how to do this in such a way that each cell of the buffer layer has
an odd number of hexagons subdivided into each type; either one hexagon is subdivided into two quadrilaterals
and three hexagons are subdivided into three quadrilaterals each, or three hexagons are subdivided into two
quadrilaterals and one hexagon is subdivided into three quadrilaterals.

6. At this point, all the buffer cells are combinatorially polyhedra with either 16 or 18 quadrilateral boundary facets.
We partition each cell into a mesh ofO(1) hexahedra. (The existence of such a mesh is guaranteed by Mitchell
and Thurston’s results. Alternately, if the triangulationof S is chosen carefully using the same bipartition used
above, there will only be two combinatorial types of cell; itis an amusing exercise to fill out these cases by
hand.)

The remaining step that has not been described is how we choose whether to subdivide each of the faces connecting
B to S into two or three quadrilaterals, so that each buffer cell has an odd number of subdivided faces of each type.

Lemma 1. Given any planar graph G with evenly many quadrilateral faces, we can in polynomial time find a set S
of edges of G such that each face of G is bounded by an odd numberof edges in S.

Proof: We use a technique familiar from the solution to the Chinese postman problem. Construct the dual graphG′,
and form a metric on the vertices ofG′ with distances equal to the lengths of shortest paths inG′. By assumption
G′ has an even number of faces, soG′ has evenly many vertices and there are perfect matchings in this metric; take
the minimum weight perfect matching. This corresponds to a collection of paths inG′; any two paths must be edge-
disjoint since otherwise one could perform a swap and find a shorter matching. The union of these paths is a subgraph
S′ of G′ (actually a forest) in which every vertex has odd degree. (Each vertex has odd degree in the path in which it
is an endpoint, and even degree in all other paths, so the total is odd.) Taking the corresponding edges inG gives a set
Sof edges having an odd number of incidences with each face, aswas required in the statement of the lemma.✷

In fact, it is not hard to see that this procedure finds the setSof smallest cardinality. This process is depicted in
Figure 10, which depicts for the skeleton of the polyhedron in Figure 2 the minimum weight matching on the shortest-
path metric of the dual graph, and the resulting set of edges on the original graph. In this example, the paths inG′

coming from the matching consist of a single edge each.
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Figure 11. Geometric hexahedralization: boundary faces are covered by flat “bevelled” hexahedra, with two more hexahedra
covering each edge.

We apply this lemma to choose how to subdivide the hexagonal faces of the buffer layer betweenB andS. Recall
thatB is a planar graph with evenly many quadrilateral faces. Further, each face ofB corresponds to a cell of the buffer
layer, and edge ofB corresponds to one of the hexagons that we wish to subdivide.We use the method of the lemma
to find a setSof edges ofB incident an odd number of times to each face ofG; equivalently this corresponds to a set
of hexagonal faces incident an odd number of times to each cell in the buffer layer. We subdivide that set of faces into
three quadrilaterals each, and the remaining faces into twoquadrilaterals, as shown in Figure 9.

We summarize the results of this section.

Theorem 2. Given any polyhedron P forming a topological ball with an even number n of faces, all quadrilaterals,
it is possible to partition P into O(n) topological cubes meeting face-to-face, such that each face of P is a face of some
cube.

Proof: The correctness of this method is sketched above. IfP hasn faces, there are 2n tetrahedra in the interior ofS,
subdivided into 8n hexahedra. In addition then cubes connectingB with Sare subdivided intoO(1) hexahedra each,
so the total complexity isO(n). ✷

5 Geometric mesh generation

We would like to extend the topological mesh generation method described above to the more practically relevant prob-
lem of geometric mesh generation (partition into convex polyhedra combinatorially equivalent to cubes). Although
our extension seems unlikely to be practical itself, because of its high complexity and the poor shape of the hexahedra
it produces, it would be of great interest to complete a proofthat all polyhedra (with evenly many quadrilateral faces)
can be meshed. Also, it might make sense to include a powerfulbut impractical theoretical method as part of a more
heuristic mesher, to deal with the difficult cases that mightsometimes arise.

In any case, we have made some progress towards a geometricalmesh generation algorithm, but have not solved
the entire problem. We have been able to solve the seemingly harder unbounded parts of the problem, leaving only
a bounded amount of case analysis to be done. It seems likely that heuristic mesh generation methods may soon be
capable of performing this case analysis and finishing the proof.

We go through the steps of our topological mesh generation algorithm, and describe for each step what changes
need to be made to perform the analogous step in a geometric setting. However since our results here are incomplete,
we do not fill in the method in too much detail.

1. Our topological method separates the boundaryB of the polyhedron from its interior by a single buffer layer
of cuboids connectingB to an isomorphic surfaceS inside the polyhedron. Unfortunately there exist polyhedra
for which no isomorphic interior surface can be connected tothe boundary by flat faces and straight edges;
Figure 12 shows an example of a vertex surrounded by six quadrilaterals in such a way that, no matter where
the corresponding interior vertex is placed, some faces areinvisible to it and hence can not be connected by
geometric hexahedra. This example is easily completed to a polyhedron with the same property. Instead we
form a more complicated buffer layer in the following way.

We first cover each facef of B by a convex hexahedron, with the opposite hexahedron face parallel to f , very
close tof , and somewhat smaller thanf , so that the other four sides off are “beveled” to be nearly parallel tof .
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Figure 12. Geometric hexahedralization: vertex figure is a polygon bounded by kite-shaped quadrilaterals (left); adding more kites
triangulates the polygon (center); we form hexahedra from each triangular cell (right).

As shown in Figure 11, this causes the face to be replaced by a set of five quadrilaterals, slightly indented into
the polyhedron.

For any two facesf andf ′ sharing an edge ofB, we then add to our buffer layer two more cuboids, both also
sharing the same edge, connecting the sides of the two cuboids attached tof andf ′ (Figure 11). The faces of
these cuboids attached to edges can be classified into three types: two are adjacent to other such cuboids or to
the cuboids onf andf ′. Two more are incident to the endpoints of the shared edge andare again beveled to be
nearly parallel to that edge. The final two point towards the interior of the polygon. These two faces are very
close to parallel to each other, so that the two faces incident to the endpoints of the shared edge have a “kite”-like
shape resembling a slightly dented triangle.

Finally, we must cover the region near each vertex ofB. As seen from the vertex, the faces of the cuboids we
have already added form a vertex figure that can be represented as an even polygon on the surface of a small
sphere centered at the vertex (Figure 12). Each of the sides of this polygon corresponds to one of the kite-
shaped faces incident to the vertex. We triangulate this even polygon, and add for each interior diagonal of the
triangulation another kite-shaped face, so that the vertexneighborhood is partitioned into regions bounded by
three such faces. These regions correspond one-for-one with the triangles in the triangulation. We then add to
our buffer layer a small cuboid in each such region. Three faces and seven vertices of the cuboid are already
determined; the eighth vertex is then fixed geometrically bythe positions of the other seven. Since the three
faces incident to the vertex ofB are all kite-shaped, the three opposite faces are close to parallel to each other.
By making all these cuboids attached toB small enough, and by making their faces close enough to parallel, this
can all be done in such a way that no two cuboids interfere witheach other.

2. The second step of our topological method was to triangulate the inner surface of the buffer layer, and tetra-
hedralize the region inside this triangulated surface. A tetrahedralization withO(n2) complexity can be found
using a method of Bern [3]. (The bound claimed in that paper isO(n+ r2) wherer is the number of reflex edges,
however our first step createsΘ(n) reflex edges. Perhaps it is possible to use the information that many of these
edges are very close to flat, to reduce the complexity to depend only on the reflex edges ofB.)

3. The third step of our topological method was to split each interior tetrahedron into four hexahedra. In order
to do this geometrically in a way consistent across adjacentpairs of tetrahedra, we subdivide each tetrahedron
using planes through each edge and opposite midpoint (Figure 1). It is not hard to show that these four planes
meet in a common point (e.g. by affine transformation from theregular tetrahedron). The subdivision on each
tetrahedron face is therefore along lines through each vertex and opposite midpoint.

4. The next step of our topological method was to find a bipartition of B, and subdivide the interior edges incident
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to one of the two vertex classes of the bipartition. This stepremains unchanged except that each vertex in the
given class may be incident to many interior edges; all are subdivided.

5. At this point, the cells of the buffer layer fall into several classes. The cells coming from faces ofB are like
those of our topological construction, polyhedra with seven quadrilateral facets and four hexagon facets. The
cells coming from edges ofB have four quadrilaterals, three hexagons, and an octagon. The cells coming from
vertices ofB on one side of the bipartition have 18 quadrilaterals and three hexagons. The cells coming from
the other side of the bipartition have 18 quadrilaterals andthree octagons. In any case, the hexagon and octagon
sides need to be subdivided, in such a way that all cells end upwith an even number of sides. We can use the
same idea of matching here; in fact the cells at each vertex can be matched independently, leaving one larger
matching connecting the cells on faces and edges.

6. Finally, each buffer cell needs to be meshed. This can be done independently for each cell, but it would require
a case analysis (which we have not done) to show that each possible type cell can be meshed.

Thus of the steps in our topological mesh generation procedure, it is only the final finite case analysis which we
have been unable to extend to the geometric problem.

6 Generalizations

The only important property we used of topological balls (with quadrilateral faces) is that their boundaries form bipar-
tite graphs; but the same extends to simply connected domains with cubically meshed surfaces in any dimension, as can
easily be seen via homology theory. (Hetyai [8] has an alternate proof of bipartiteness for shellable complexes.) Thus
there seems no conceptual obstacle to extending this technique to higher dimensional meshing problems, although it
again requires a case analysis or other technique such as that of Thurston and Mitchell to prove that the resulting buffer
cells are meshable.

An alternate direction for generalization is to more topologically complicated polyhedra in three dimensions.
Mitchell [9] describes a generalization of his method whichapplies whenever the input polyhedron forms a handlebody
that can be cut along evenly-many-sided disks to reduce its complexity. (Clearly, such a simplification can be used
independently of the mesh generation method to be used.) Ourmethod can handle an alternate class of polyhedra,
such as knot complements or bodies with disconnected boundaries, for which no simplifying disk cut exists. The
only step where we used the connectivity of the input boundary was in the result that a planar graph with even faces is
bipartite; instead we can simply require that the input polyhedron be bipartite with evenly many sides in each boundary
component. We can topologically mesh any such polyhedron; alternately, if we could solve the same finite set of cases
as before we can geometrically mesh any such polyhedron. (The geometric case needs an extension of Bern’s surface-
preserving tetrahedralization to non-simply-connected polyhedra, due to Chazelle and Shouraboura [7].)

7 Conclusions

We have shown that each simple polyhedron with evenly many quadrilateral faces has a topological hexahedralization,
and made some progress towards finding geometric hexahedralizations. Many questions remain open.

• Can we find geometric hexahedralizations for all the cases arising in our geometric hexahedralization technique?

• If so, the result would be a method which generatesO(n2) hexahedra. Can this be reduced toO(n+ r2) as has
been done for tetrahedralization [3, 6, 7]?

• Which non-simple polyhedra admit topological hexahedralizations?

• What is the worst case complexity of the Thurston-Mitchell topological hexahedralization algorithm?

• Is there any polyhedron which can be hexahedralized topologically but not geometrically?

• Can we make quality guarantees for hexahedral meshes similar to those in our recent work on quadrilateral
meshes [5]?
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