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Linear Complexity Hexahedral Mesh Generation

David Eppsteif

Abstract

We show that any polyhedron forming a topological ball withewen number of quadrilateral sides can be parti-
tioned intoO(n) topological cubes, meeting face to face. The result geimesato non-simply-connected polyhedra
satisfying an additional bipartiteness condition. Theas&achniques can also be used to reduce the geometric version
of the hexahedral mesh generation problem to a finite casgsimamenable to machine solution.

1 Introduction

There has recently been a great deal of theoretical work strustured mesh generation for finite element methods,
largely concentrating on triangulations and higher dinems simplicial complexes; seﬂ [4] for a survey of these
results. However in the numerical community, where thesshme have been actually used, meshes of quadrilaterals
or hexahedra (cuboids) are often preferred due to their riuaitpropertiesﬂZ]. For this reason many mesh generation
researchers are working on systems for construction offtezkal meshes. There has also been some theoretical work
on quadrilateral and hexahedral mesfip$][[], p.]9, 30, 12] bahmore remains to be done.

There is a straightforward method for generating hexahaukahes, if one allows the mesh to include additional
Steiner pointas vertices. Simply find a Steiner tetrahedralization ofdtbeain BS], then subdivide each tetrahedron
into four hexahedra as shown in Figt[lle 1. But as Mitck@all [Sles, this type of boundary subdivision can make it
difficult to mesh several adjoining domains simultanouslych internal domain boundaries can arise either because
the problem is defined in terms of multiple domains, or as@iatparallel mesh generation process). Further, splitting
tetrahedra produces hexahedra with some very sharp anglesoame very obtuse angles, which are hard to improve
in a later mesh smoothing stage, especially when they octtireodomain boundary.

We consider here a common variant of the hexahedral mestrajemeproblem, in which we avoid some of
these problems by restricting the location of new Steinéntpdo theinterior of the domain. The boundary (which
is assumed to be a planar quadrilateral mesh) must remairbdivéded. Although various authors have studied
heuristics for this version of hexahedral mesh generatistheoretical properties are not well understood and pose
many interesting problems. In particular the computateaticomplexity of determining whether a polyhedron admits
a mesh of convex hexahedra respecting the polyhedron’sdaoyis unknown. Even some very simple cases, such
as the eight-sided polyhedron shown in Figﬂre 2, remain {@]mhe hexahedral meshes known for this octahedron
are very complicated and involve nonconvex or degenerdteids.

For the planar case, the corresponding problem is easy:yg@okan be subdivided into convex quadrilaterals,
meeting edge to edge, without extra subdivision points erbthundary, if and only if the polygon has an even number
of sides. One can efficiently find a set ©fn) Steiner points that suffice for this problepn|[12], and thems heen
some progress on finding the minimum possible number of &t@ioints for a given polygon [[L1].

Thurston ] and Mitchell[|9] independently showed a sanitharacterization for the existence of hexahedral
meshes, with some caveats. First, the polyhedron to be méststo be a topological ball (although the method gen-
eralizes to certain polyhedra with holes). And second, thehmistopological the elements have curved boundaries
and are not necessarily convex. However they must still lnebimatorially equivalent to cubes, and must still meet
face to face (i.e. any internal boundary between elemenst beia face of both elements; we formalize this require-
ment in the next section by requiring the elements to formllacoeplex). Thurston and Mitchell both showed that
any polyhedron forming a topological ball has a topologheatahedral mesh, without further boundary subdivision,
if and only if there are an even number of boundary faces alltuth are quadrilaterals. (Indeed, even parity of
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Figure 1. Tetrahedron partitioned into four hexahedra.

Figure 2. Can this octahedron be meshed with convex hexabedr
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Figure 3. Topological quadrilateral mesh, showing indixtifaces, edges, and vertices.

the number of faces is a necessary condition for the existahcubical meshes in any dimension, regardless of the
connectivity of the input, since each individual cube hasndéy many faces which either contribute to the boundary
or are paired up in the interior.) However Thurston and Mattsmethod may produce meshes with high complexity

(nonlinear in the number of features of the original polytaédomain).

In this paper we discuss an alternate method for hexahedidajgneration. Our method combines refinement of a
tetrahedral mesh with some local manipulation near the aryrbased on planar graph theory. Itis similar in spirit to
mesh generation heuristics of Schneid@s [14] and otherghich one first fills the interior of the domain with cubes
before attempting to patch the remaining regions betweesetbubes and the boundary. A similar idea of “buffering”
the b(ﬁmdary of the input from subdivisions occurring inititerior was also used in a tetrahedralization algorithm of
Bern |3].

Our new hexahedral meshing technique has three advantagethat of Mitchell and Thurston. First, we prove
anO(n) bound on the number of cells needed for a topological hexahetesh. Second, because our method avoids
duality, it seems easier to extend it to the more practiaaligvant geometric version of the mesh generation problem,
in which the elements must be convex cuboids: we exhibit &ficillection of polyhedra (formed by subdividing
the boundary of a cuboid) such that if these polyhedra cabheatieometrically meshed, any polyhedron forming a
topological ball with an even number of quadrilateral sides also be geometrically meshed, watn?) cells. Third,
the method generalizes to a different class of non-simphneoted polyhedra than those handled by Mitchell and
Thurston’s method.

These results are not practical in themselves: the numbeleafents is too high and we have not satisfactorily
completed the solution to the geometric case. Practicaltiekral mesh generation methods are still largely hegiristi
and will often fail or require the input boundary to be modifierhere is a possibility here of a two way interaction
between theory and practice: as heuristic mesh generatpreve they may soon be good enough to solve the finite
number of cases remaining in our geometric mesh generatahad, and thereby prove that all even-quadrilateral
polyhedra can be meshed. In the other direction, even araittipal proof of the existence of meshes can be helpful,
by guaranteeing that an incremental heuristic method ssitheawhisker-weaving idea of Benzley et ﬂ [1] will not
get stuck in a bad configuration.

2 Statement of the problem

Let us define more formally the topological mesh generatioblem solved here. We assume we are giveomain
topologically equivalent to the closed ball in three diniens (later we will consider other more complicated domain
topologies). The boundary of the domain is assumed to beredu®y a finitecell complexthat is, a collection of
finitely manycells sets equivalent to closed balls of various dimensiond) diijoint relative interiors, such that the
boundary of any cell is covered by lower dimensional celt&l any nontrivial intersection of two cells is itself a cell.
Our task is to extend this partition to a finite cell complexexing the overall domain.

We assume the boundary cell complex igumdrilateralization in particular, everyedge(one-dimensional cell)



Figure 4. Quadrilateral mesh and dual curves.
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Figure 5. Hexahedron and dual surfaces.
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has twovertices(zero-dimensional cells) as its endpoints, and e¥acg (two-dimensional cell) has a cycle of four
distinct edges as its boundary. (Figﬂ'e 3)

We wish the cell complex produced by our algorithm to erahedral mestthe same conditions as above apply
to every edge and face of the complex, but in addition evamgetidimensional cell must berexahedronit should
have six quadrilateral faces on its boundary, meeting iree@md vertices with the same combinatorial structure as
the faces, edges, and vertices of a cube.

Any simply-connected polyhedron with quadrilateral fasasisfies the input conditions. Any partition of that
polyhedron into convex cuboids meeting face-to-face fsegiour output conditions. However our definition also
allows partitions into non-convex and non-polyhedrals:ell

3 Thurston and Mitchdll

Before describing our own methods, we briefly discuss th63@&orston ] and Mitchell|]]9].

The method of both these authors is to treat a hexahedralasds#ing the dual to an arrangement of surfaﬂes [1],
and a quadrilateral mesh such as the one on the boundary pblyieedron as being the dual to an arrangement of
curves. Given a mesh of quadrilaterals, one can find thisecarsangement simply by connecting the midpoints of
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Figure 6. Bad examples for Thurston and Mitch€ltn®/?) (left) andQ(n?) (right).

opposite sides of each quadrilateral by curves (F@Jre mnil&ly, given a mesh of hexahedra, one can find these
dual curves on each boundary facet of each hexahedron, anécithem by quadrilaterals to form surfaces, meeting
in triple points at the center of each hexahedron (Fiﬁpre 5).

The problem then becomes one of performing the oppositsfsemation: extending the given surface curve
arrangement to an interior surface arrangement, and thdimdira collection of topological hexahedra dual to this
surface arrangement.

Thurston and Mitchell solve the first part of this problemtézding the boundary curve arrangement to an interior
surface arrangement) by extending curves with an even nuofilself-intersections to surfaces independently of each
other; they pair up curves with an odd number of self-intetieas and form a surface for each pair.

For the second part (transforming these surfaces to duaheelka), note that, for surfaces in general position,
the structure of the surface arrangement can be represastadollection of vertices (for each triple intersection
of surfaces) and edges (segments of pairwise interseatibesrfaces). Each vertex should correspond to a dual
hexahedron and each edge should correspond to a pair oféurgasharing a common face. However not every set
of surfaces determines a dual cell complex in this way, beeaoeme of the vertices may be connected by multiple
edges, resulting in hexahedra that do not intersect in desfage and violating our requirement that the interseation
two cells be another cell. Thurston and Mitchell solve thisigbem by surrounding problematic regions of the surface
arrangement with spheres in a way that causes these multijgleencies to be removed. The result is a collection of
surfaces with a dual hexahedral mesh solving our mesh gérepaoblem.

Theorem 1 (Mitchell, Thurston) Any simply connected three-dimensional domain with an euetber of quadrilat-
eral boundary faces can be partitioned into a hexahedralmrespecting the boundary.

However this method does not provide much of a guarantee@oaimplexityof the resulting mesh, that is, of
the number of hexahedral cells in it. This complexity is venportant, as it directly affects the time spent by any
numerical method using the mesh; even small constant facsor be critical.

It is not hard to provide examples in which this dual surfaeghnd constructs meshes with more than linearly
many elements (measured in terms of the complexity of thghgolron boundary). We provide two (Figlﬂe 6):

e A cube in which each square is subdivided intdCr/n) by O(,/n) grid. The boundary curve arrangement dual
to these grids consists 6(/n) Jordan curves without self-intersections. The method ef3ton and Mitchell
extends each of these curves to a plane; thksgn) planes will have(n®/2?) triple intersection points, so this
method will produce a mesh of total complexityn®/?).

e A cube in which four of the boundary squares are subdividenld{n) rectangles, forming(n) disjoint and
non-self-intersecting Jordan curves, and in which the neimg.two squares hav@(n) quadrilaterals arranged



Figure 7. Separation of boundary from interior by bufferday

in a pattern to fornf2(n) disjoint curves with one self-intersection each. The Jomlaves will be extended to
planes; if one incautiously matches the one-intersectioves into pairs, with each pair consisting of one curve
from each side of the cube, the surfaces formed by extente=ptpairs will each cross &l(n) of the planes
coming from the Jordan curves, and form a mesh with overatigtexity Q(n?).

4 Linear-complexity mesh generation

As we saw above, the mesh generation method of Thurston attiéflican produce meshes with(n®/2) or Q(n?)
hexahedra. We now describe our new topological mesh gémeratthod, which will always give meshes witl{n)
complexity.

Our method has the following main steps:

1. We separate the boundd@yf the polyhedron from its interior by a “buffer layer” of ceb. We do this by finding
a surfacesinside the polyhedron, isomorphic to the polyhedron’s latang, and sitting in the same orientation.
We then connect corresponding pairs of vertices on the twfaces with edges, corresponding pairs of edges on
the two surfaces with quadrilateral faces spanning paioofecting edges, and corresponding pairs of faces
on the two surfaces with hexahedra (Figﬂre 7.

2. We triangulate the inner surface of the buffer layer, @ichhedralize the region inside this triangulated sutface
A (topological) tetrahedralization wittD(n) complexity can be found by connecting each triangleSao a
common interior vertex.

3. We split each interior tetrahedron into four hexahedri ﬁgureﬂ.. This subdivision should be done in such
a way that any two tetrahedra that meet in a facet or edge adivided consistently with each other. As a
result, each edge and faceStecomes subdivided, and each quadrilateral conneBtin@ gains an additional
subdivision point and so becomes combinatorially equivaiea pentagon (Figun@e 8).

4. Becausea is by assumption a planar graph with all faces even, it isttilea (The well-known fact that even
faces implies bipartiteness is the planar dual to the fattdtien vertex degree implies the existence of an Euler
tour, but it can easily be proved directly.) LetandV be the two vertex sets of a bipartition Bf (without
loss of generalitylJU| < |V|). Each vertex oB corresponds to an edge in the buffer layer conneding S.

We subdivide the subset of those edges corresponding tice®ihU. Each of the quadrilaterals connecting



Figure 8. Hexahedralization of interior.

Figure 9. Partition of hexagons into two and three quadnitds.



Figure 10. Quadrilateral mesh (left) and its dual (rightheTbottom vertex of the dual corresponds to the outer fackeofrtesh;
other dual vertices are arranged roughly in the same positis the mesh faces. The highlighted edges form a minimughtve
matching in the dual, and a corresponding set of edges in #sh meeting each quadrilateral an odd number of times.

B to Shas one such edge, so (together with the subdivided edgésrlf) these subdivisions cause each such
guadrilateral to become combinatorially a hexagon.

5. After these subdivision steps, each of the cells in thiebldyer is now combinatorially a polyhedron with seven
guadrilateral facets and four hexagon facets. We subdithiedexagons into either two or three quadrilaterals
each, as shownin Figuﬂa 9. We explain below how to do this éh suway that each cell of the buffer layer has
an odd number of hexagons subdivided into each type; eitieehexagon is subdivided into two quadrilaterals
and three hexagons are subdivided into three quadrilateeadh, or three hexagons are subdivided into two
quadrilaterals and one hexagon is subdivided into thredrjjaterals.

6. Atthis point, all the buffer cells are combinatoriallylploedra with either 16 or 18 quadrilateral boundary facets.
We partition each cell into a mesh @{1) hexahedra. (The existence of such a mesh is guaranteed blyellit
and Thurston’s results. Alternately, if the triangulatmfiSis chosen carefully using the same bipartition used
above, there will only be two combinatorial types of celljsitan amusing exercise to fill out these cases by
hand.)

The remaining step that has not been described is how we eldether to subdivide each of the faces connecting
B to Sinto two or three quadrilaterals, so that each buffer cedldmaodd number of subdivided faces of each type.

Lemmal. Given any planar graph G with evenly many quadrilateral faoge can in polynomial time find a set S
of edges of G such that each face of G is bounded by an odd nwhédges in S.

Proof: We use a technique familiar from the solution to the Chinesstrpan problem. Construct the dual gragh

and form a metric on the vertices & with distances equal to the lengths of shortest paths’inBy assumption

G’ has an even number of faces,Gbhas evenly many vertices and there are perfect matchindgsimtetric; take

the minimum weight perfect matching. This corresponds tolkction of paths inG’; any two paths must be edge-
disjoint since otherwise one could perform a swap and findashmatching. The union of these paths is a subgraph
S of G’ (actually a forest) in which every vertex has odd degreecliB@rtex has odd degree in the path in which it
is an endpoint, and even degree in all other paths, so tHédadd.) Taking the corresponding edgegdmives a set
Sof edges having an odd number of incidences with each faseassequired in the statement of the lemnia.

In fact, it is not hard to see that this procedure finds theSsdtsmallest cardinality. This process is depicted in
Figur, which depicts for the skeleton of the polyhedmﬁi'gureﬂz the minimum weight matching on the shortest-
path metric of the dual graph, and the resulting set of edgdab® original graph. In this example, the path€<Gh
coming from the matching consist of a single edge each.



Figure 11. Geometric hexahedralization: boundary facescavered by flat “bevelled” hexahedra, with two more hexahed
covering each edge.

We apply this lemma to choose how to subdivide the hexagawakfof the buffer layer betwe&wandS. Recall
thatBis a planar graph with evenly many quadrilateral faces.Heureach face d corresponds to a cell of the buffer
layer, and edge d8 corresponds to one of the hexagons that we wish to subdiVideuse the method of the lemma
to find a setSof edges oB incident an odd number of times to each fac&pkquivalently this corresponds to a set
of hexagonal faces incident an odd number of times to eatindéle buffer layer. We subdivide that set of faces into
three quadrilaterals each, and the remaining faces int@twdrilaterals, as shown in FigLI]e 9.

We summarize the results of this section.

Theorem 2. Given any polyhedron P forming a topological ball with an eveimber n of faces, all quadrilaterals,
it is possible to partition P into On) topological cubes meeting face-to-face, such that eachdé® is a face of some
cube.

Proof: The correctness of this method is sketched above hiéisn faces, there areretrahedra in the interior &,
subdivided into 8 hexahedra. In addition thecubes connectinB with Sare subdivided int®(1) hexahedra each,
so the total complexity i©(n). O

5 Geometric mesh generation

We would like to extend the topological mesh generation atttescribed above to the more practically relevant prob-
lem of geometric mesh generation (partition into convex/petira combinatorially equivalent to cubes). Although
our extension seems unlikely to be practical itself, beeaidts high complexity and the poor shape of the hexahedra
it produces, it would be of great interest to complete a pthaf all polyhedra (with evenly many quadrilateral faces)
can be meshed. Also, it might make sense to include a powmsfuimpractical theoretical method as part of a more
heuristic mesher, to deal with the difficult cases that mggimetimes arise.

In any case, we have made some progress towards a geometesialgeneration algorithm, but have not solved
the entire problem. We have been able to solve the seemimgtieh unbounded parts of the problem, leaving only
a bounded amount of case analysis to be done. It seems lh@iyheuristic mesh generation methods may soon be
capable of performing this case analysis and finishing tbefpr

We go through the steps of our topological mesh generatgaorigthm, and describe for each step what changes
need to be made to perform the analogous step in a geomatimgséiowever since our results here are incomplete,
we do not fill in the method in too much detail.

1. Our topological method separates the boundiaof the polyhedron from its interior by a single buffer layer
of cuboids connecting to an isomorphic surfacginside the polyhedron. Unfortunately there exist polylaedr
for which no isomorphic interior surface can be connectethéoboundary by flat faces and straight edges;
Figure shows an example of a vertex surrounded by six dattals in such a way that, no matter where
the corresponding interior vertex is placed, some facesnaigible to it and hence can not be connected by
geometric hexahedra. This example is easily completed mhydedron with the same property. Instead we
form a more complicated buffer layer in the following way.

We first cover each fackof B by a convex hexahedron, with the opposite hexahedron faedlglao f, very
close tof, and somewhat smaller thénso that the other four sides bare “beveled” to be nearly parallel fo



Figure 12. Geometric hexahedralization: vertex figure islggnn bounded by kite-shaped quadrilaterals (left); adanore kites
triangulates the polygon (center); we form hexahedra fraohdriangular cell (right).

As shown in Figurﬂl, this causes the face to be replaced bydf five quadrilaterals, slightly indented into
the polyhedron.

For any two face$ andf’ sharing an edge d, we then add to our buffer layer two more cuboids, both also
sharing the same edge, connecting the sides of the two cubtimbhed td andf’ (Figure). The faces of
these cuboids attached to edges can be classified into {jres ttwo are adjacent to other such cuboids or to
the cuboids ori andf’. Two more are incident to the endpoints of the shared edgamnagain beveled to be
nearly parallel to that edge. The final two point towards titerior of the polygon. These two faces are very
close to parallel to each other, so that the two faces inttdehe endpoints of the shared edge have a “kite-like
shape resembling a slightly dented triangle.

Finally, we must cover the region near each verteB.ofAs seen from the vertex, the faces of the cuboids we
have already added form a vertex figure that can be represasatan even polygon on the surface of a small
sphere centered at the vertex (Fig 12). Each of the sid#tssopolygon corresponds to one of the kite-
shaped faces incident to the vertex. We triangulate thie pedygon, and add for each interior diagonal of the
triangulation another kite-shaped face, so that the verédghborhood is partitioned into regions bounded by
three such faces. These regions correspond one-for-ohdheittriangles in the triangulation. We then add to
our buffer layer a small cuboid in each such region. Threedamnd seven vertices of the cuboid are already
determined; the eighth vertex is then fixed geometricallyh®y positions of the other seven. Since the three
faces incident to the vertex & are all kite-shaped, the three opposite faces are closeatigddo each other.
By making all these cuboids attached®emall enough, and by making their faces close enough tolphtéais

can all be done in such a way that no two cuboids interfere gatth other.

2. The second step of our topological method was to triatguke inner surface of the buffer layer, and tetra-
hedralize the region inside this triangulated surface. tfateedralization witfO(n?) complexity can be found
using a method of Berr[|[3]. (The bound claimed in that papéX(is+r2) wherer is the number of reflex edges,
however our first step creat€gn) reflex edges. Perhaps it is possible to use the informatatmtlany of these
edges are very close to flat, to reduce the complexity to depely on the reflex edges &)

3. The third step of our topological method was to split eattkrior tetrahedron into four hexahedra. In order
to do this geometrically in a way consistent across adjageins of tetrahedra, we subdivide each tetrahedron
using planes through each edge and opposite midpoint ((Fﬂ;).Jrlt is not hard to show that these four planes
meet in a common point (e.g. by affine transformation fromrégular tetrahedron). The subdivision on each
tetrahedron face is therefore along lines through eaclexarid opposite midpoint.

4. The next step of our topological method was to find a bipantiof B, and subdivide the interior edges incident
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to one of the two vertex classes of the bipartition. This stpains unchanged except that each vertex in the
given class may be incident to many interior edges; all abelisided.

5. At this point, the cells of the buffer layer fall into segéclasses. The cells coming from facesBoére like
those of our topological construction, polyhedra with segeadrilateral facets and four hexagon facets. The
cells coming from edges @& have four quadrilaterals, three hexagons, and an octagencédlls coming from
vertices ofB on one side of the bipartition have 18 quadrilaterals aneettirexagons. The cells coming from
the other side of the bipartition have 18 quadrilateralstange octagons. In any case, the hexagon and octagon
sides need to be subdivided, in such a way that all cells endlitlppan even number of sides. We can use the
same idea of matching here; in fact the cells at each vertebeanatched independently, leaving one larger
matching connecting the cells on faces and edges.

6. Finally, each buffer cell needs to be meshed. This can he ohwlependently for each cell, but it would require
a case analysis (which we have not done) to show that eaclbetype cell can be meshed.

Thus of the steps in our topological mesh generation praegdhis only the final finite case analysis which we
have been unable to extend to the geometric problem.

6 Generalizations

The only important property we used of topological ballstfvgjuadrilateral faces) is that their boundaries form bipar
tite graphs; but the same extends to simply connected demétim cubically meshed surfaces in any dimension, as can
easily be seen via homology theory. (Het;@ii [8] has an adtierproof of bipartiteness for shellable complexes.) Thus
there seems no conceptual obstacle to extending this tpadtd higher dimensional meshing problems, although it
again requires a case analysis or other technique suchtas ftaurston and Mitchell to prove that the resulting buffer
cells are meshable.

An alternate direction for generalization is to more togidally complicated polyhedra in three dimensions.
Mitchell [E] describes a generalization of his method whagiplies whenever the input polyhedron forms a handlebody
that can be cut along evenly-many-sided disks to reduceitgptexity. (Clearly, such a simplification can be used
independently of the mesh generation method to be used.)n@tlrod can handle an alternate class of polyhedra,
such as knot complements or bodies with disconnected boesd#or which no simplifying disk cut exists. The
only step where we used the connectivity of the input boundais in the result that a planar graph with even faces is
bipartite; instead we can simply require that the input pebjron be bipartite with evenly many sides in each boundary
component. We can topologically mesh any such polyhedttarnately, if we could solve the same finite set of cases
as before we can geometrically mesh any such polyhedroe. &@bmetric case needs an extension of Bern’s surface-
preserving tetrahedralization to non-simply-connectaghpedra, due to Chazelle and Shouraboﬂa [71)

7 Conclusions

We have shown that each simple polyhedron with evenly maagjateral faces has a topological hexahedralization,
and made some progress towards finding geometric hexalzadiais. Many questions remain open.

e Can we find geometric hexahedralizations for all the cassimgiin our geometric hexahedralization technique?

e If S0, the result would be a method which gener&és®) hexahedra. Can this be reducedn + r?) as has
been done for tetrahedralizatidn [3,[b, 712

e Which non-simple polyhedra admit topological hexahededlons?
e What is the worst case complexity of the Thurston-Mitchaidlogical hexahedralization algorithm?
e Is there any polyhedron which can be hexahedralized topeatlg but not geometrically?

e Can we make quality guarantees for hexahedral meshes stmithose in our recent work on quadrilateral
meshes[]5]?
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