
Faster output-sensitive parallel convex hulls for d <3:—

Abstract

optimal sublogarithmic algorithms for small outputs

Neelima Gupta and Sandeep Sen

Department of Computer Science and Engineering,

Indian Institute of Technology,

New Delhi 110016, India.

{neelima,ssen}@cse.iitcl.ernet.in

In this paper we focus on the problem of designing

very fast parallel algorithms for the convex hull prob-

lem in two and three dimensions in the arbitrary CRCW

model whose running times are output-size sensitive.

We present a fast randomized algorithm for planar hulls

that runs in expected time O(log H . log log n) and does

optimal O(rz log H) work where n and ET are the input

and output sizes respectively. For log II = Q(log log n),

we can achieve the optimal running time of O(log II)

for planar hulls while simultaneously keeping the work

optimal. In three dimensions, our algorithm runs in ex-

pected time O(log log2 n logH) with optimal O(rz log H)

work for all I/. Hence, for O(logO(l) n) size outputs,

our algorithms in two and three dimensions achieve

poly(log log n) running time and optimal O(n log log n)

work. The previously known output-sensitive work-

optimal algorithms for convex hulls have running times

Q (log n) (expected) and Q(log3 n) in two and three di-

mensions respectively. Our algorithms assume no input

distribution and the running times hold with high prob-

ability.

We also describe a very simple O (log n log H) time

optimal deterministic algorithm for planar hulls which

is an improvement for small outputs. For larger

output-sizes, a running time of O(log n log log n)) can

be achieved.

Permission to make digitahmd copies of ail or part of thk material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commemial advantage, the copy-
right notice, the title of the publication and ita date appear, and notice is
given that copyright is by permission of the ACM, Jnc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission andlor fee.

Computational Geometry’96, Philadelphw PA, USA
@1996 ACM 0-89791-804-5/96/05. .$3.50

1 Introduction

Given a set S = {PI, P2, ..., pn } of n points , the convex

hull of S is the smallest convex polygon containing all

the points of S. The convex hull problem is to determine

the ordered list CH(S) of the points of S defining the

boundary of the convex hull of S.

The problem of constructing convex hull has attracted

a great deal of attention from the inception of compu-

tational geometry. Several sequential algorithms have

been proposed for planar hull so far, with worst case

time bound O(n log n), [22, 30, 31]. As the problem

of sorting can be reduced to the convex hull problem,

this is worst case optimal [38]. This is true if the out-

put size, i.e. the number of vertices on the hull, is ig-

nored. More specifically, the time-bound of 19(rt log n) is

tight when the ordered output size is Q(n). However for

cases, when the output size is much smaller, say con-

stant, it is easy to design an O(n) algorithm like Jarvis’

lvlamh. This algorithm actually solves the problem in

0(n17) time, where H is the output size. Kirkpatrick

and Seidel [28] gave an algorithm with worst case time

complexity O (n log II). They also showed that this is

asymptotical y worst case optimal, even if the complex-

ity is measured in terms of both the input and the out-

put size (also see [27]). The algorithm works on mod-

ified Divide-and-Conquer technique called “Marriage-

before-Conquest”. For three dimensions, Preparata and

Hong [30], described the first O(n log n) time algorithm

for convex hulls. Clarkson and Shor [15] presented the

first randomized O(n log H) time output-sensitive al-

gorithm which was subsequently derandomized optim-

ally by Chazelle and Matousek [13]. Very recently Chan

[10] presented a very elegant approach for output sensit-

ive construction of convex hulls using ray-shooting that

achieve optimal @(n log It) running times for dimensions

two and three. In higher dimensions, the quest is still

on to design optimal output-sensitive algorithms.

176

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237218.237351&domain=pdf&date_stamp=1996-05-01

1.1 Parallel algorithms

The primary objective of designing parallel algorithms

is to obtain very fast solutions to problems keeping the

total work (the processor-time product) close to the best

sequential algorithms. For example if S’(n) is the best

known sequential time complexity for input size n, then

we aim for a parallel algorithm with P(n) processors

and T(n) running time so as to minimize T(n) subject

to keeping the product P(n) . T(n) close to O(S(n)). A

parallel algorithm that actually does total work O(S(n))

is called a work optimal algorithm. Simultaneously, if

one can also match the time lower bound, then the al-

gorithm is the best possible (theoretically).

The fastest possible time-bound clearly depends on

the parallel machine model. For example, in the case

of CREW model, the convex hull cannot be construc-

ted faster than O(log n) time, irrespective of the output-

size because of an fl(log n) bound for computing max-

imum (minimum). For CRC W, Sen [36] has obtained

exact trade-off between number of processors and pos-

sible speed-up for a wide range of problems in compu-

tational geometry. For convex hulls, it is shown that

Lemma 1.1 ([36]) Any randomized algortthm tn the

parallel dectsion tree model for constructing convex hull

ofn potnts and output-size H, has a parallel time-bound

of Q(log H/ log k) using k processors, k z 1 an the

worst case.

In other words, for super-linear number of processors, a

proportional speed-up is not achievable and hence these

parallel algorithms cannot be considered efficient. The

best or the ultimate that one can hope for under the

circumstances is an algorithm that achieves O(log H)

time using n processors.

The result of this paper makes significant progress

towards achieving this end. It must also be noted that

because of the power of the CRCW model, the parallel

complexity of a problem is perhaps best understood in

this framework where communication is not a serious

bottleneck.

1.2 Previous results for two and three

dimensional hulls

For planar hulls (2-D hulls), in the context of PRAM

(Parallel Random Access Machine) model, there exist a

number of algorithms with O (log n) running time and

O(n log n) operations [1, 4, 5, 34]. These are known to

be worst case optimal in the CREW model. Akl ([3]) de-

scribed an output-sensitive algorithm for this problem

which is optimal for number of processors bounded by

O(n=), O < z < 1. Deng ([16]) described an algorithm

that runs in O(log n) parallel time using n/ log n pro-

cessors when H is constant. The fastest O(n log H)

work-optimal parallel algorithms can achieve running

times of Cl(logz n) and @(log n) in deterministic and “

randomized CRC W models respectively (G house and

Goodrich [19]).

For convex hulls in three-dimensions (3-D hulls)

Chow([9]) described an O (log3 n) time algorithm us-

ing n CREW processors. An 0(log2 n log* n) time al-

gorithm using n processors was obtained by Dadoun and

Kirkpatrick ([17]) and an O (logz n) time algorithm was

designed by Amato and Preparata([6]). Reif and Sen

[33] presented an O(log n) time and O(n log n) work ran-

domized algorithm for 3-D convex hulls which was the

first known worst-case optimal algorithm for three di-

mensional hulls in the CREW model. This algorithm

was recently derandomized by Goodrich [20] who ob-

tained an 0(log2 n) time O(n log n) work method for

the EREW PRAM. Goodrich and Ghouse [19] described

an 0(log2 n) expected time, O(rnin{n log2 H, n log n})

work method, which is output-sensitive but not work-

optimal. More recently, Amato et. al ([2]) gave a determ-

inistic 0(log3 n) time, O (n log H) work algorithm for

convex hulls in R3 on the EREW PRAM.

1.3 Our results and methods

We present algorithms whose running times are output-

sensitive in a faster time-range (sublogarithmic) while

keeping the work optimal. It must be emphasized that

designing optimal output-sensitive parallel algorithms

that have to execute in such time-bounds is a challen-

ging task, even more than their sequential counterparts.

Not only is the output-size an unknown parameter, we

also have to rapidly eliminate input points that do not

contribute to the final output without incurring a high

cost. The two most successful approaches used in the se-

quential context, namely gift-wrapping (or ray-shooting

approach of Chan) and divide-and-conquer do not trans-

late into fast parallel algorithms. By ‘fast’ we imply

O(log H) or something very close. The gift-wrapping

(or ray-shooting) is inherently sequential, taking about

O(H) sequential phases. Even the divide-and-conquer

method is not particularly effective as it cannot divide

the output evenly - in fact this aspect is crux of the dif-

ficulty of designing fast output-sensitive algorithms that

run in o(log n) time.

Our randomized algorithms are based on an approach

of Clarkson and Shor [15] - this gives us a wcrk-optimal

algorithm aa a starting point. However, its efficient ad-

aptation into the parallel context necessitates a num-

ber of sophisticated techniques like bootstrapping and

super-linear processors parallel algorithms for convex

hulls ([36]) and very fine-tuned analysis. The basic

method of [15] prunes away the redundant points effi-

ciently to a stage where number of points is small enough

177

to run the worst-case algorithms. This is not true

for a parallel algorithm where one cannot obtain com-

mensurate speed-up with processor advantage (Lemma

1.1). This is one of the first non-trivial applications of

super-linear processor algorithms in computational geo-

metry to obtain speed-up for a situation where initially

there is no processor advantage. Our work establishes

a close connection between fast output-sensitive par-

allel algorithms and super-linear processor algorithms.

Consequently, our algorithms become increasingly faster

than the previous algorithms as the output size de-

creases.

We first present fast randomized algorithms for con-

vex hulls in two and three dimensions. The expected

running times hold with high probability 1. The fast-

est algorithm for 2-D hulls runs in O(log H) time us-

ing n processors for H > log n. For smaller output

sizes, we present an algorithm that has an expected

running time of O(log II . log log n) keeping the num-

ber of operations optimal. For 3-D hulls, our algorithm

achieves O(log logz n . log H) time and does optimal

O(n log H) work. Therefore, for small output-sizes, our

results achieve significant improvement over the previ-

ously known algorithms both in two and three dimen-

sions. We are not aware of any previous work where the

parallel algorithms speed-up optimally with output size

in the sublogarithmic time domain.

Next we describe a very simple deterministic

O(log n log II) time CRCW algorithm that does optimal

work. Although this is based on the optimal sequen-

tial algorithm of Kirkpatrick and Seidel, a straightfor-

ward parallelization yields an fl(log npoly(log log n) al-

gorithm, which will be slower than our algorithm for

very small output-sizes, namely, for log H E o(log log n).

2 Randomized algorithms

We present a randomized algorithm which solves the

dual equivalent of the convex hull problem namely in-

tersection of half-planes. The convex hull problem

is well known to be equivalent to problem of finding the

intersection of half-planes (for details see, [18, 32, 34]).

Let us denote the input set of half-planes by S and

their intersection by P(S). The idea is to construct the

intersection of a random sample R of r half-planes and

filter out the redundant half-planes i.e. the half-planes

which do not participate in P(S). Without loss of gen-

erality, we can assume that the origin lies inside the in-

tersection. Let hl, hz . . . h. be the vertices of the inter-

section in a cyclic order. Consider the triangles of the

1In this paper, the term high probability implies probability
exceeding 1 — 1/nc for any predetermined constant c where n is
the input-size. The notation that will be used is O instead of O

to denote that the bound holds with high probability.

form Ohl h2 (O being the origin), which we call regions.

These will be intersected by a number of half-planes that

were not chosen in the sample.

For 3-dimensional halfspaces, the regions are defined

as follows: Take an arbitrary (fixed) plane T, and par-

tition each face of P (R) into trapezoids using the trans-

lates of T that pass through the vertices of the face. A re-

gion consists of the convex closure of O with a trapezoid

from the cutting of the faces.

We delete half-planes that do not intersect with any

region containing at least one output point. Consider a

region that doesn’t contain an output point. Clearly

only one half-plane is useful in this region, which is

either the boundary half-plane of the region, which we re-

tain, or some half-plane that intersects the region intern-

ally (and hides all other half-planes). Such a half-plane

must intersect at least one of the regions containing an

output point and is therefore retained.

The above procedure is repeated on the reduced prob-

lem.

To prove any interesting result we must determine

how quickly the problem size decreases. Let H(R) de-

note the set of regions induced by a sample R and let

H*(R) denote the set of regions that contains at least

one output point. We will denote the set of half-spaces

intersecting a region A G H(R) by L(A) and its cardin-

ality IL(A) I by 1(A). L(A) will also be referred to as

the conjlict last of A and 1(A), its conflict size. We will

use the following results related to bounding the the size

of the reduced problem.

Lemma 2.1 ([15, 34]) For some suitable constant k

and large n,

where probability is taken over all possible choices of

random sample R.

The above Lemma gives a bound on the union of the

conflict lists, The following gives a bound on the max-

imum conflict size.

Lemma 2.2 ([15, 25]) For some suitable constant kl

and large n,

Pr[Arnm~) 1(A) > kin/r. log r] < 1/4

where probabdtty is taken over all possible chozces of

random sample R such that {R] = r.

A sample is “good” if it satisfies the properties of

Lemma 2.1 and Lemma 2.2 simultaneously. From

Lemma 2.1 and Lemma 2.2 a sample is good with

probability at least 1/2. We can actually do better as

the following lemma shows.

178

Lemma 2.3 We can find a sample R that satxsjies both

Lemma 2.1 and Lemma 2..2 simultaneously wzth htgh

probabdtty. Moreover thts can be done an O(log r) ttme

and O(n log r) work with htgh probabtltty.

Proof This is done using Resampling and Polling. For

details see Appendix A.

Since H* (R) ~ H, a good sample clearly satisfies the

following property also

Lemma 2.4 ([15]) For a good sample R,

~ Z(A)= O((nHlogr/r)

AEH*(R)

where IR[= r and H* (R) is the set of all regions that

contain at least one output point.

This will be used repeatedly in the analysis to es-

timate the non-redundant half-planes whenever H <

r/ log r.

2.1 Algorithm

Our algorithm works iteratively. Let n, (respectively ri)

denote the size of the problem (respectively sample size)

at the ith iteration with 7x1 = n. Repeat the following

procedure until ri > n’ (this condition guarantees that

the sample size is never ‘too big) or ni < n’ for some

fixed c between O and 1. If ni < n’ then find out the

intersection of ni half-planes directly using Lemma 2.5

else do one more iteration and find out the intersection

of ni+l half-planes directly using Lemma 2.5.

We first describe our algorithm for two-dimensional

hulls and in section 2.3, we will provide the modifica-

tions necessary for three dimensions. The following is a

typical iteration for the two-dimensional case

Hull (i)

1. Use the procedure of Lemma 2.3 to choose a” good”

sample R of size ri = constant for i = 1 and r~_ ~

for i >1.

2. Find out the intersection of half-planes of R

3. Filter out the redundant half-planes as follows. We

say that a half-plane intersects a region if its bound-

ing line intersects the region.

(a) i

ii

For every half-plane find out the regions

that it intersects.

If the sum, taken over all the half-planes,

of the number of regions intersecting a

half-plane is O(n) then continue else go

to 1.

(b) Denote the set of regions containing an output

point by H* (R). We find out this set as follovvs

For every region F do the following:

i.

ii.

(c) For

Find out the half-planes intersecting F

and assign as many processors to it(See

Lemma 2.1 and step 3.a.ii above).

Consider the points of intersection of the

bounding lines of half-planes with the ra-

dial edges of the region. If the points

closest to the origin belong to the same

line then F @ H*(R) else F 6 H*(R).

every region F E H* (R) , Let FIR de-

note the set of half-planes that interiect with

F. Delete a half-plane if it does not belong to

UFEH”(R)FIR.

The set of half-planes for the next iteration

UFEHO(R)FIR

Size of the reduced problem for the next iteration

n;+l = I UFEH. (R) FIR I

2.2 Analysis

is

is

Lemma 2.5 ([36]) With p = nk(k > 1), the convex

hull ofn points in a three dimensions can be constructed

m O(log n/ log k) steps.

Remarks: 1. The result in Sen [36] was proved for

k ~ log3 n - this can be extended to all k z 1 using an

observation of [2].

2. By duality, the above Lemma holds for the problem

of finding the intersection of half-planes.

Lemma 2.6 ([34]) The maxzmum (minimum) of n

elements can be determined m constant time wtth high

probabdity using n CRCW PRAM processors.

The following three problems arise in the context of

processor reallocation and compaction in our parallel

algorithm.

Definition For all n, m G N and A ~ 1, the m-color

semisorting problem of size n and with slack A is the fol-

lowing: Given n integers xl, z~ in the range O, . . . m,

compute n nonnegative integers yl, yn (the place-

ment of r~) such that

(1) All the xi of the same colour are placed in contiguous

locations (not necessarily consecutive).

(2) max{yj :1< j ~ n} = O(h).

Definition For all n E N interval allocation prob-

lem is the following: Given n non-negative integers

xl,. ... Zn, compute n nonnegative integers yI, yn

179

(the starting addresses of intervals of size Zi) such that

(1) For all i, j, the block of size xi starting at y; does

not overlap with the block of size z~ starting at yj.

(2) max{yj :1 S j S n}= O(xi %,).

Definition Given n elements, of which only d are

active, the problem of approximate compaction is to find

the placement for the active elements in an array of size

O(d).

Lemma 2.7 ([7]) There is a constant c >0 such that

for all given n, k E N, n-color semisorting problems

of size n and with slack O(log(k) n) can be solved on

a CRCW PRAM using O(k) time, O(nlog(k) n) pro-

cessors and O(n log(k) n) space with probability at least
1 – 2-ne. Alternatively, zt can be done zn O(t) steps,

t ~ log” n using n/t processors.

The problems of interval allocation and approxim-

ate compaction can also be solved in the same bounds.

Let’s analyze Hull (i) first in the context of two-

dimensional hulls. Subsequently, we will extend it to

the three dimensional hulls.

Our analysis relies heavily on the result of Lemma

2.4. The idea is to reduce the size of the problem to

n’, for some e, O < e < 1. Lemma 2.4 tells us that if

r = G?(Ifz), the problem size can be reduced quickly.

Notice that a large sample size reduces the problem size

faster but increases the time for each iteration. Hence

we must achieve a balance between the number of it-

erations and the time spent in each iteration. For the

purpose of analysis, we divide our algorithm in three

phases:

Initial phase : Initially we start with a sample of con-

stant size and keep squaring it until it is Q(lfz). Until

now we can’t guarantee any reduction in the problem

size. However, since the sample sizes are small we do

not spend too much time in this phase (O (log H) time).

Mam phase : We keep squaring the sample size in sub-

sequent iterations thereby achieving a good reduction in

the problem size until the problem size has reduced to

nC.

Terminating phase : Solve the problem directly.

Since our sample size is never too big its intersection

can be computed in constant time using Lemma 2.5 in

each iteration.

The regions that a half-plane intersects can be ob-

tained in O(log r/ log k) time using k processors. In the

initial phase when no significant reduction in problem

size is achieved there is no processor aclvantage, hence

each iteration takes O(log r) time and hence a total of

O(log H) time - a geometric series with O(log H) lead-

ing term. In the main phase, because of significant pro-

cessor advantage this step takes constant time in each

iteration.

Processor allocation and approximate compaction

(last steps) can be done in O(log” n) time in each it-

eration. (Lemma 2.7).

As r, = r?’, the initial phase requires O(log log H)

iterations and the main phase requires O(log log n) iter-

ations.

The terminating phase can be shown to take O(log H)

time.

After this overview, we will now proceed to the de-

tailed analysis. Let 1 be the iteration in which the sample

size of Q(172) is achieved for the first time. We’ll break-

up the analysis in three parts:

I.i<l * n, = O(n).

2. 1< is l+logloglogn.

3. i > 1 +logloglogn * ni < n/ log n (by

Lemma 2.4). Since rl = Q(Lf2) therefore ri =

Q(H’Og’Og’) + n, = 0(”~~”) = O(n./logn).

By Lemma 2.5 second step and by Lemma 2.6 step

3.b.ii can be done in constant time. The remaining

steps except 3 .a.i can be done in O(log* n) time for

ni > n/ log n and in constant time for ni < n/ log n.

These are implemented using procedures for Interval

allocation and semi sorting. The problem of deleting

the half-planes is reduced to the problem of compac-

tion which can be approximated within a constant factor

using approximate compaction. From Lemma 2.7, Steps

3.a.ii, 3.b.i and 3.c can be done in ~(t) steps (t z log* n)

using n/t processors or in constant time using n log n

processors. Below, we describe procedures to check for

the condition in step 3 .a.ii and do step 3.b.i.

In step 3.a.i each half-plane finds the regions it inter-

sects. This gives us pairs (pi, Sj) (half-plane pi inter-

sects region sj) whose number is bounded by O(n) from

Lemma 2.1. We call Sf the color of p;. Notice that

the regions that a half-plane intersects are contiguous

and therefore we only need to store the left-end region

and right-end region (say in clockwise order) with every

half-plane, say in an array C. Clearly, we can also store

the number of regions that a half-plane intersects. Now

think of C’[i] as a request for memory cells. Solve the

problem of interval allocation for C’. If any processor

tries to use an index beyond km, for appropriate con-

stant k then the condition in step 3.a. ii is violated, dis-

continue interval allocation and repeat the procedure.

After assigning c’[i] processors to the ith half-plane and

180

completing interval allocation, we can put (pi, sj) pairs

in an array (call it A) of size O(n).

Apply r-color (for sample size r) semisorting al-

gorithm on A. It will put all the half-planes intersecting

a given region together, with possible blanks, in another

array, say B, of O(n) size, From Lemma 2.7 steps 3.a. ii

and 3.b.i can be done in O(t)steps, t > log* n, using n/t

processors or in constant time using n log n processors.

Assume we have an array P of half-planes, of size

O(n). With each region we’ve a number of processors

associated (assigned in step 3. b.i), one for each intersect-

ing half-plane. Each of these processors knows whether

its region contains an output point or not. If a pro-

cessor is associated with a region containing an output

point and with the half-plane pi then it writes 1 in the

ith cell of P. Now problem of deleting the half-planes is

reduced to the problem of compaction which can be ap-

proximated within a constant factor using approximate

compaction. This takes O(t)steps (t> log* n) using n/t

processors or constant time using n log log n processors

(Lemma 2.7).

Therefore all steps except 3.a.i (finding intersections)

take time:

O(log* n) for i ~ 1. (1)

O(log” n) for 1< i ~ 1 + logloglogn. (2)

and O(l) for i >1 + logloglogn. (3)

As ri = r122z, 1 < loglog H and as r,, < n’ for O <

(< 1, the maximum number of iterations is O(log log n).

Thus the total time over all iterations for all steps except

step 3.a. i is

O(log’ n(log log H + log log log n) + log log n))

= O(log* n log log H + log log n).

The regions that a half-plane intersects can be found out

using a locus based searching scheme in O (log r/ log k)

time using k processors by Lemma 4.1 of [36]. Thus

step 3.a.i can be done in O(log ri) time for i <1 and in

O(logri/ log ~) time for i >1. By Lemma 2.4,

72j<C ‘Hfi~f’-l for some constant c

> l-i–s

for i > 1+5 and H >2. The last inequality follows from

r~_2 ~ CH log Ti– 1 for the previous values of i and H.

As ri = (ri_2)4, logri/ log ~ is constant for i >1 + 5.

Thus step 3.a.i can be done in constant time for i >1 +5

2. Hence total time for step 3 .a. i is

2 Setting z > 1 + 5 is done to simplify calculations - it is not

critical for the bounds

~ O(log?’,) + ~ o(1) (4)

i<l+5 i>l+5

The first term is a geometric series with O(log H) as

the leading term is O(log H) and second term is clearly

O(log log n).

Let the terminating condition be satisfied in the I!th

iteration. If nt < n’, then computing the intersection of

nt half-planes takes constant time. Otherwise, if nc <

rt < nt or nt < nt < rt then we’ve the following:

Let c be < 1/2 Since rt_l < n’, rt < nz’ so we can

afford to do one more iteration within the same bounds.

Now nt+l = O(ntll logrt/rt) = O(nt.H(clogn)/n’). If

H < n~ for J < 1 then nt+l is less than nl–’+d. 13y

choosing cf < c, computing the intersection of nt+l ha,lf-

planes will take constant time. Otherwise, if H > nJ,

then nothing can be said about nt or nt+l except that

nt+l = O(n). Hence computing the intersection of nt+l

half-planes takes O(log n) time which is O (log H) (sin ce

H > n~).

Hence we’ve the following

Lemma 2.8 The convex hull ojn potnts in two dimen-

sions can be constructed m

O(max{log H, log log n}) ttme with high probability us-

ing a linear number of CRCW processors.

Remark For log H = Q(log log n), this attains the ideal

O(log H) running time with n processors.

Next, we will use the standard slow-down method to

make the algorithm more efficient. That is, we use

p = n/p processors where p = log log n instead of n

processors. Use approximate compaction to distribute

processors evenly, in step 3C of the algorithm.

In the analysis, log* n is replaced by p in (1). Pro-

cessor allocation (respectively step 3 .b. ii) in (2) is no

longer log* n (respectively constant). By using slc)w-

down, log* n in (2) is replaced with p/H2”~ + log* n

for O < j ~ log log log n (j = i–i). The processor alloc-

ation and 3 .b.ii (in 3) remain constant as n, < n/ log n

implies p > n~ log n/ log log n > n%log log n >

nl log log n~.

Hence, total time for all the steps except 3 .a.i is

z log log n +
x

[p/H”-’ + log* n]

i~l i=l+j:O<j <10g10g10gr2

~ o(1)

Z>l+log log log n

– O(log log n log log H)—

For step 3 .a.i, first term of (4) gets multiplied by p.

For i >1, we split up the analysis in two parts,

181

ni~p : O(1) time

Therefore, the total time, for step 3 .a.i is

x log log n log r~ + x
u log r,

i<l+5 i>l+5)n,>p ‘)

+ ~ o(1)
i>l+5, nt5p

– O(loglog n log H)—

as the first and second terms are geometric series with

O(log log n log H) as the leading term. Remaining terms

get multiplied by at most p.

Hence, we’ve the following

Theorem 2.1 The convex hull of n points m two di-

mensions can be constructed in O(log H log log n) ex-

pected time and O(n log H) operations with high probab-

ility in a CRCW PRAM model where H is the number

of points on the hull.

2.3 Three dimensional hulls

We make the following modifications to the algorithm of

section 2.1 for the 3-D hulls.

In Step 1, the samples are chosen according to ri+l =

rnax{rj, h!}, where h; = O and h: for i > 0 is defined in

the next paragraph. Note that according to this scheme

for i >1, r~+l = r~.

In Step 3 .b.ii, we also have to identify those regions

F’ @ H* (R), which may contain edges of the final hull

but no vertices. This can be detected by constructing

the contours and subsequent sorting of the vertices of

contours. Contours are convex polygonal chains on each

face of F that are induced by the planes intersecting F.

See [33] for details of detecting such regions. Let h;

denote the maximum size of any contour over all regions

during iteration i.

For analyzing three-dimensional case, we will require

the results of the previous section in Step 3.b. (ii) of the

algorithm. To detect H* (R), we construct the contours

which are two-dimensional hulls of the projected planes

on the faces of a region. Recall that hj is the size of

the largest contour in iteration i. Clearly H ~ h$, so

we choose ri+l (the size of random sample in iteration

i + 1) as max(r~, h;). Using Theorem 2.1 the contours

can be constructed in O(log log n . log h;) time with op-

timal work. The time for this step over the entire al-

gorithm can be expressed as

where T’2(ni, H) denotes the parallel time for construct-

ing two dimensional hulls with output-size H. By our

choice of ri+l, hj ~ r;+l and also r,+l ~ r?. Hence

the first term of the summation can be bounded by

O(log log n ~,<1 log ri) which is ~(loglog nlog H). The

second term can be bounded by O(log log2 n log H) as

the summand can be bounded by O(log log n log H).

The work for this step over the entire algorithm is

~ O(nlog hi) + ~O(ni logH)

h,<H i>l

where hi z h~_l and, ni = 0(n/H2z-’). Thus the

total work for this step is 6(TZ log H). Hence, by

using n/ log log2 n processors, and evenly distributing

work using the scheme discussed in the case of two-

dimensional hulls, we obtain the following result.

Theorem 2.z The convex hull of n points in. three di-

mensions can be constructed in O(log logz n . log H) ex-

pected tame and O(n log H) operations with htgh probab-

ility in a CRCW PRAM model where H is the number

of points on the hull.

3 Deterministic algorithm for

planar hulls

Our algorithm uses the basic approach of of [28];

however, we would like to minimize the recursion depth

for a fast parallel algorithm. Recursion is carried out

until the total size of the problem reduces sufficiently

after which the problem is solved directly.

We assume for simplicity that no two vertices collide

on x- or y- coordinate. We construct the CH(S) in two

parts, the upper hull UH(S) and the lower hull LH(S).

We’ll describe the procedure for upper hull only; the pro-

cedure for lower hull is identical and merging is trivial.

3.1 Algorithm

●

●

●

●

182

1. Find p and g with smallest and largest Z-

coordinate respectively. if p = g then print p and

stop.

2. CONNECT(p, g, S)

where CONNECT(pk, pm, S) is

begin(CONNECT)

if the total size of the problem(&. number of

subproblems, where d

~ n/ log n then EXIT.

else

is- the dep’thz ‘of recursion)

(a) Find an approximate median a of x-coordinate

of points.

Let SI = {pi : Z(pi) < a}

S? = {pi : z(p~) > a}

(b) Find the “bridge” over the vertical line L: x =

a, i.e.

(Pi, Pj) = BRIDGE(S’, a)

Bridge or UPPER COMMON TANGENT(UCT)

between UH(S1) and UH (S2) is the common tan-

gent such that UH (S1) and UH (Sz) are below it.

(c) Compute S~ef, = {p,} U {p e S, I z(p)< z(p~)}

Srtght = {Pj } u {P ● 5’2 ! Z(P) > ~(1’.])}

Here we delete all the points lying below the bridge,

before calling the recursion - “nlarriage-before-

conquest”.

(d) If (i = k) then (this subproblem has only one

output point)

print (pi)

else CONNECT(pk, pi, Steft).

(e) If (j = m) then (this subproblem has only one

output point)

print (pj)

else CONNECT(PJ, pm, s~ight).

end(CONNECT)

Solve each subproblem directly using any of the

(n, log n) algorithm mentioned earlier.

Correctness follows from [28].

3.2 Analysis

Lemma 3.1 Maxzrnum(Minimum) oj n elements can

be jound zn O(log log n) time ustng n/ log log n pro-

cessors.

Lemma 3.2 ([26]) There as a CRCFt’ algorzthm that

jinds an element with rank k such that ~ ~ k ~ ~ wtth

processor-tzme complexity (n/ log log n, log log n).

Lemma 3.3 ([21, 37]) A two dzmenstonal /inear pro-

gramming problem can be solved m tame O(log log3 n)

usang n/ loglog3 n processors on a CRCbV PRAM.

Lemma 3.4 ([26]) Approximate compaction can be

done determtntsttcally m O(loglog n) steps ustng

nl log log n CRCW processors.

Remark: The above implies that processor allocation

and approximate prefix sum can be done in the same

bounds.

Lemma 3.5 The size of the problem reduces to n/ log n

after O(maz{log log n, log H}) levels of recursion.

Proofi In order to keep the notations” simpler,

we assume all the log are taken to base 3/2 in th:~s

proof. Let N denote the number of subproblems

after O(maz{log log n, log H}) levels of recursion. Since

every subproblem has at least one output vertex there-

fore N ~ H.

case 1: H < log n, then total size after 3/2 log log n

levels ‘s (3/2) 270g’08n N 5 ~ H < &

case 2: H > log n, then total size after 2 log H levels

1s (~/&s H .N~$. H< Q-
— log n

‘ote ‘hat (3/2)2T0g ’08 “ “ N g & ‘or large ~ because

N may be large.

Using Lemma 3.1, step 1 and using Lemma 3.2, step

2.a can be done in O(log log n) time using n/ log log n

processors. The number of surviving subproblems ca,n

be found at every step using (approximate) prefix sum.

The problem of finding the bridge can be mapped to

a two dimensional linear programming problem, and

therefore can be solved in O (log log3 n) time using

n/ log n processors. Hence every level of recursion can

be done in O(log log3 n) time.

Remark By using the algorithmof[11], we can avoid ‘2-

D linear programming, thereby taking only O (log log n)

time for each stage.

3.3 Optimal algorithm for all ~

We will now use the Slow-down technique to make this

algorithm optimal (work) for all output sizes. Since

every level of recursion takes O(log log3 n) steps with

n/ log log3 n processors, each level will take no more

than O(log log3 Ni + Ni /P) steps with P processors,

where N? is the total size of subproblems after i stages.

Recall that, from Lemma 3.4, a global processor allclc-

ation takes O (log log n) steps. From Lemma 3.5, N* =

O(n/ log n) after i ~ Cl(log log n + log 1+) levels. Thus

with an additional O(n) (O(n/ log n . log(n/ log n)))

work the algorithm can be completed in n/P time for

P < n/ log n. After O (log log n + log H), steps, the total

work done is

O(log log n+log H)

~ [O(Ni)]forP < n/log~og3n.
i=l

= O(nlog H)

1Q2
lUJ

This follows from the work-bound of Kirkpatrick and

Seidel’s algorithm. The total time-bound is

o(loglog4 n + loglog3 n . log H) + l/P~ O(fvi)

‘i

= o(loglog4 n + loglog3 ?2~log H + O(nlog H/P) (5)

Using P = n/ log n, in equation 5, the time-

complexity is O(log n log H). Thus we can formalize our

result as

Theorem 3.1 The convex hull of n points in o plane

can be constructed in O(log n log H) time using n/ log n

processors in a deterministic CRCW PRAM.

Remark Using P = n log H/(log n log log3 n), the

time complexity can be be improved to O(log n

log log3 n) for large H. By using the approach of

[11], the running time can be further decreased to

O(log n log log n). Since we do not know H in advance,

these bounds will be hard to achieve.

4 Remarks and open problems

We presented a class of output-sensitive parallel al-

gorithms for convex hulls in two and three dimensions

that are work optimal and run in polylog time. For small

output sizes, we presented an algorithm that improves

upon the worst-case optimal algorithms in time bound.

The fastest (randomized) algorithm is work-optimal us-

ing a linear number of processors for a large range of

output size, namely H z log n. Recall that for uniform

distribution, the expected output size is about log n.

For very small output sizes, our algorithms are work-

optimal although the time complexity does not match

the ‘ideal’ bound of O(log II) time using n processors.

Obtaining the ideal time bound of O(log H) even in a

parallel decision tree (with optimal work) is a challen-

ging open problem. The other issue is that of speeding

up the algorithm further using a superlinear number of

processors. From [36], the lower bound in such cases is

Q(log H/ log k) for k . n processors where k >1.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing,

and C. Yap. Parallel computational geometry. Proc. of

25th Annual Symposium on Foundations of Computer
Science, pages 468 – 477, 1985. also appears in full

version in Algorithmic, Vol. 3, No. 3, 1988, pp. 293-
327.

[2] N.M. Amato, M.T, Goodrich and E.A. Ramos, Paral-

lel Algorithms for Higher-Dimensional Convex Hulls.

Proc, of the 35th Annual FOCS, pages 683– 694, 1994.

[3] S. Akl. Optimal algorithms for computing convex hulls

and sorting. Computing, 33:1, 1–1 1, 1984.

[4] M.J. Atallah and M.T. Goodrich. Efficient parallel

solutions to some geometric problems. .Journal of Par-

allel and Distributed Computing, 3(4) :492 – 507, 1986.

[5] M.J. Atallah and M.T. Goodrich. Parallel algorithm

for some functions of two convex polygons. Algorith-

rnica, 3(4):535 – 548, 1988.

[6] N.M. Amato and F.P. Preparata. The Parallel 3D

convex hull problem revisited. Internat. J1. Comput.

Geom. Appl., 2(2):163-173, 1992.

[7] H Bast and T Hagerup. Fast parallel space alloca-

tion,estimation and integer sorting. Technical Report,

MPI-I-93-123, June 1993.

[8] B Chazelle and D Dobkin. Intersection of convex

objects in two and three dimensions. J1. of A CM,
34(1):1–27, 1987.

[9] A.L. Chow. Parallel Algorithms for Geometric Prob-

lems. PhD Thesis, Deptt. of Comp.Sc., Univ. of

Illnois, Urbana, IL, 1980.

[10] T.M. Chan. Output-Sensitive Results on convex hulls,

extreme points and related problems. ACM Symp. on

Comput. Geom., 1995.

[11] Timothy.M.Y. Ghan, Jack Snoeyink, Chee-Keng Yap.

Output-Sensitive Construction of Polytopes in Four

Dimensions and Clipped Voronoi Diagrams in Three.

Proc. 6th A CM-SIAM Sympos. Discrete Algorithms

1995, pp 282-291.

[12] B Chazelle and J Fredman. A deterministic view of

random sampling and its use in geometry. Combinat-

orics, 10(3):229-249, 1990.

[13] B. Chazelle and J. Matousek. Derandomizing an

output-sensitive convex-hull algorithm in three dimen-

sions. Tech. Rept., Princeton University, 1992.

[14] R Cole. An optimal efficient selection algorithm. ln-

.form. Pro.. Lett., 26:295-299, 1987/88.

[15] Kenneth L Clarkson and Peter W Shor. Applications of

random sampling in computational geometry ii. Dis-

crete Comp. Geom., 4:387–421, 1989.

[16] X Deng. An optimal parallel algorithm for linear pro-

gramming in the plane. Inform. Proc. Lett., 35:213–

217, 1990.

[17] N. Dadoun and D.G. Kirkpatrick. Parallel Construc-

tion of subdivision hierarchies. J1. Comput. Syst. Se.,

39:153-165,1989.

[18] H Edelsbrunner Algorithms tn combinatorial geo-

metry. Springer-verlag, New York, 1987.

[19] M. Ghouse and M.T. Goodrich. In-place techniques

for parallel convex-hull algorithm. Proc. 3rd ACM

Sympos. Parallel A/go. Architect., 192-203,1991

[20] M. Goodrich. Geometric partitioning made easier,

even in parallel. Proc. of the 9th ACM Symp. on

Computational Geometry, 73–82, 1993.

[21] M. Goodrich. Fixed-dimensional parallel linear pro-

gramming via relative e-approximations, to appear,
SODA 1996.

[22] R L Graham. An efficient algorithm for determining

the convex hull of a finite planar set. Information

Proc. Lett., 1:132–133, 1972.

[23] T. Hagerup, Fast deterministic processor allocation.

Proc. oj the Jth ACM Symposium on Discrete Al-

gorithms 1993, pp. 1–10.

184

[z-l]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Hagerup and R. Raman. Waste makes haste: Tight

bounds for loose, parallel sorting. Pr-oc. of the 33rrt

Annual FOCS, pages 628-637, 1992.

D. Haussler and E. Welzl. e-Nets and simplex range

queries. Discrete and Cornputattonnl Geometry, 2,

1987, pp. 127–152.

T. Goldberg and U. Zwick. Optimal Deterministic

Approximate Parallel Prefix Sums and Their Applica-

tions. In Proc. Israel Symp. on Theory and Comput-

ing Systems (IS TC’S’95), (1995), pp. 220-228.

S. Kapoor and P. Ramanan. Lower bounds for max-

imal and convex layer problems. ,4 Jgorithmica, pages

447–459, 1989.

D G Kirkpatrick and R Seidel. The ultimate

planar convex hull algorithm. SIAM W. o,f Cornput.,

15(1):287–299, Feb. 1986.

Y. Matias and U. Vishkin. Converting high probab-

ility into nearly constant time - with applications to

parallel hashing. Pi-oc 23rd ACM S~ymp. on Theory of

Computing, 307-316, 1991.

F P Preparata and S J Hong. Convex hulls of finite

sets of points in two and three dimensions. Cornm.

A CM, 20:87-93, 1977.

F P Preparata. An optimal real time algorithm for

planar convex hulls. Comm. A CM, 22:402–405, 1979.

F P Preparata and M I Shames. Computational Geo-

metrg : An Introduction. Springer-verlag, New York,

1985.

J .H. Reif and S. Sen. Optimal Parallel Randomized

Algorithms for three-dimensional convex hulls and re-

lated problems. Siam .J1, o,j Comput., 21(3),466-485,

June 92.

S. Rajasekaran and S. Sen. Random sampling Tech-

niques and parallel a[gorithm design. J.H. Reif editor.

Morgan, Kaufman Publishers, 1993.

J.H. Reif and S. Sen. Randomized algorithms jor 6in-

ary search and Load Balancing on fixed connection

networ-ks with Geometrtc Applications. Siam J1. of

Comput., VO].23, No. 3, pp 633-651, June 1994.

S. Sen. Lower bounds for algebraic clecision trees, com-

plexity of convex hulls and related problems, Proc. oj

the I,jth FST&TCS, Madras, Indta , 1994.

S. Sen. Parallel multidimensional search using ap-

proximation algorithms: with applications to linear-

programming and related problems. unpublished

manuscript, 1995.

M I Shames. Computational geometry. PhD thesis,

Yale Univ., New Haven, 1978.

Appendix A

Select O (log n) samples. We know that one of them

is “good” with high probability. Consider a sample

Q. Check it against a randomly chosen sample of size

n/ log n of the input half-planes for the condition of Lem-

mas 2.1 and 2.2. Checking condition of Lemma 2.1

is as given in [34]. We explain below how to check for

condition of Lemma 2.2.

For every sector A defined by Q do in parallel.

Let A(A) be the number of half-planes of the n/ log n

sampled half-planes intersecting with A and let X(A)

be the total number of half-planes intersecting with

A. Assuming X(A) > c’ log2 n for some constant

c’ (the condition holds for the other case) and us-

ing Chernoff’s bound , L(L) = kl(A(A.) logn) and

U(Q) = k2 (A(2J) log n) are lower and upper bounds

respectively for X(A) with high probability, for some

constants kl and k2. Each sector reports whether to

“accept” or to “reject” a sample as follo ws:

For some constant k.

Reject a sample if L(A) > k(n/r) log ~ (X(A) z

L(A) > k(n/r) logr).

Accept a sample if U(A) s k(n/r) log ~ (X(A) ~~

U(a) s k(n/r) logr=).

If L(A) ~ k(n/r) log r < U(A) then accept a sample,

(X(A)/k(n/r) logr s U(A)/L(A), which is a con-

stant)

If any sector reports “reject” a sample then reject the

sample.

For sample size r, the entire procedure runs in

O(log r) steps using n processors after building a data-

structure of size r-c in O(log r) time, where c is a fixed

constant (see [33] for details of the construction). En-

suring that rc s n, gives us the required bounds. This

completes the proof of Lemma 2.3.

185

