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Given a geometric graph, i.e., a collection of segments

(edges) between n points in the plane, does it contain a

non-crossing configuration of a certain type? It is widely

conjectured that all such problems are NP–hard. This

has been verified in many special cases, including the ex-

istence of a non-crossing spanning tree or k disjoint seg-

ments. Here we show that these problems become com-

putationally simpler if we are allowed to choose where to

find a non-crossing spanning tree (or k disjoint edges):

in the graph or in its complement. We prove that for any

2-coloring of the ~) segments determined by n points

in the plane, at least one of the color classes cent ains

a non-crossing spanning tree, and it can be found in
O(nloglogn+o(l) t“) line. Under the same assumptions, we

also prove that there exist [~] pairwise disjoint seg-

ments of the same color, and they can be found with the

same efficiency. The non-algorithmic parts of the above

theorems were conjectured by Bialostocki and Dierker,

Improving an earlier result of Larman et al,, we con-

st ruct a family of m segments in the plane, which has

no more than mlOg 41 *“g 27 members that are either pair-

wise disjoint or pairwise crossing. Finally, we discuss

some related problems and generalizations.
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Introduction

Sciences

A geometric graph is a graph drawn in the plane so that

every vertex corresponds to a point, and every edge is

a closed straight-line segment connecting two vertices

but not passing through a third. The ~) segments de-

termined by n points in the plane, no three of which

are collinear, form a complete geometric graph with n

vertices (see [PA95]).

Does a given geometric graph contain a non-crossing

subgraph of a certain type? It is conjectured that all

such problems are NP–hard, regardless of the complex-

it y of their non-geometric versions. This conjecture is

supported by several striking examples. For instance,

finding a largest tree or a maximum matching in a graph

are easily solvable problems in polynomial time. Yet it is

known that it is NP-hard to decide if a geometric graph

has a non-crossing spanning tree, or to find the maxi-

mum number of disjoint edges [J W93] ,[KLN91] ,[KN90].

The aim of this paper is to show that the complex-

ity of these problems may radically decrease if we are

allowed to choose where to find a non-crossing span-

ning tree (or k disjoint edges): in the graph G or in its

complement ~. In fact, in this case classical Ramsey–

theory works to our advantage by ensuring that either G

or ~ contains a large clique and many other large sub-

graphs [B74], [G RS90]. These results can be extended

to geometric graphs to yield the existence of certain non-

crossing subgraphs and subgraphs satisfying some other

geometric conditions.

The combinatorial parts of the first two theorems set-

tle two problems raised by A. Bialostocki and P. Dierker

[BD94] .

Theorem 1.1 If the edges of a jinite complete geo-

metric graph are colored by two colors, there exwts a

non-crossing spanning tree, all of whose edges are of

the same color. Moreover, this tree can be found in

O(n’Og’Ogn+O(lJ) time.
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Theorem 1.2 If the edges of a complete geometric

graph with 3n – 1 vertices are colored by two colors,

there exwt n pairwzse dtsjoint edges of the same color.

Moreover, these edges can be found in O(nlOglOgn+OflJ)

time.

The analogues of Theorems 1.1 and 1.2 for abstract

graphs were noticed by Erd6s-Rado (see [EGP91])

and Gerencs6r–G y&f&s [G G67], respectively. In fact,

Gerencs& and Gy6rf&s proved the stronger result that

for any 2-coloring of the edges of a complete graph with

3n – 1 vertices, there exists a monochromatic path of

length 2n – 1. This statement, as well as Theorem 1.2,

is best possible, as is shown by the following example.

Take the disjoint union of a complete graph of n – 1

vertices and a complete graph of 2n – 1 vertices, all of

whose edges are red and blue, respective y, and color

all edges between the two parts red. For many inter-

esting generalizations of these results, consult [EG95],

[EGP91], [G89], [G83], [HKS87], [R78].

Theorem 1.2 also has an “asymmetric” version.

Theorem 1.3 Let k and 1 be positive integers, n = k +

1 + max{k, 1} – 1. If the edges of a complete geometrac

graph with n vertices are colored by red and blue, one

can fznd either k disjoint red edges or 1 disjoint blue

edges. This result cannot be improved.

Our Theorem 4.1 (see below) gives a non-trivial upper

bound for the smallest positive number R = R(n) such

that every complete geometric graph of R vertices whose

edges are colored by two colors contains a non-crossing

monochromatic path of length n. We have been unable

to determine the exact order of magnitude of R(n).

It appears to be difficult to obtain any exact results

analogous to Theorems 1.2 and 1.3 for pairwise crossing

edges. It follows from [AEG94] that if we color the edges

of a complete geometric graph of 12n2 vertices by two

colors, one can always find n pairwise crossing edges of

the same color, but the assertion is probably true for

much smaller graphs.

In [L MP94], the following question was discussed.

What is the smallest positive number r = r(n) such

that any family of r closed segments in general position

in the plane has n members that are either pairwise dis-

joint or pairwise crossing? Our next theorem improves

the lower bound for r(n), obtained in [LMP94].

Theorem 1.4 For infinitely many n, there exwts a

family of nlOg 271 10g4 segments in general position in the

plane, which has at most n members that are pairwtse

disjoint and at most n members that are pairwise cross-

ing.

2 Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1: Let P = {pl, . . . . pm} denote

the vertex set of a complete geometric graph K. whose

edges are colored with red and blue. Suppose without

loss of generality that no two vertices have the same x-

coordinate and that the vertices are listed in increasing

order of their x-coordinates. The assertion is trivial for

n ~ 2. Thus, we can assume that n > 3 and the theo-

rem has already been proved for all complete geometric

graphs having fewer than n vertices.

We can also assume that all edges along the bound-

ary of the convex hull of P are of the same color (say,

red). Indeed, if two consecutive edges of the convex hull

have different colors, then remove their common end-

point from I<n. By the induction hypothesis, the remain-

ing graph has a monochromatic non-crossing spanning

tree. Depending on its color, this spanning tree can be

completed to a monochromatic non-crossing spanning

tree of Km, by putting back one of the two previously

deleted edges of the convex hull of P.

For every i, 1 < i < n, let K: and K; denote the

subgraphs of Kn induced by the points {pl, . . . . pi } and

{P”,, . . . . pn }, respectively. By the induction hypothesis,

both K: and K; have a monochromatic non-crossing

spanning tree, T; resp. T;. We can assume that these

two trees have different colors, otherwise their union will

meet the requirements of the theorem. We can also as-

sume that T~ is red and T; is blue. Otherwise, T; would

be red, and it could be completed to a non-crossing red

spanning tree of Kn by the addition of any edge of the

convex hull of P incident to pl. Similarly, we can sup-

pose that T~_ ~ is blue and T~_ ~ is red. Hence, there

exists an i, 1 < i < n – 1 such that

(a) T1 is red and T: is blue,

(b) ~~+1 is blue and ~+1 is red.

Connecting T: and T~+l by any edge of the convex

hull of P which intersects a vertical line separating pi

and pi+l, we obtain a non-crossing red spanning tree of

Kn, as required.

The above proof can easily be turned into an algo-

rithm of running time O(nl”g ‘+”(l)). To reduce the

running time we need a slightly modified version. It

will be described recursively.

360



SPANNING-TREE(n)

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

Sort the points by their x-coordinates.

Construct the convex hull of the points. Check the

colors of all the edges along the convex hull. If

all of them are of the same color, say red, then set

i = 1 and go to Step 4.

Choose two consecutive edges of the convex hull,

whose colors are different, and remove their com-

mon endpoint. Call SPANNING-TREE(n– 1) for the

geometric graph spanned by the remaining points

and complete the resulting tree by one of the two

edges. Stop.

For convenience, let us call Z’; and T; red. If 2i ~

n/2, then go to Step 5. Oherwise call SPANNING-

TREE(2i) for K:, and K~_ ~,+1, respectively. If

either T~, or T~_ ~+1 is blue (say T;. is blue), then

go to Step 6. If both trees are red, then set i = i+ 1

and repeat Step 4.

Call SPANNING-TREE(n/2) for KL,2 and for K;,2

to find T~12 and T; I ~, respectively. If they are of

the same color, then take their union and stop. If

they are of different colors, then one of them, say

T~,2, is blue.

There is a 2i-1 < p < min{2i, n/2} so that T; is

red and T~+l is blue. Find this p by a binary search

on this interval.

Call SPANNING-TREE(n – p) for K~+l to obtain

T;+l . If it is blue, we join it to T~+l, if red, we

connect it with T; by an edge of the convex hull,

which has one endpoint in K~+l and one in K;.
stop.

Let f(n) denote the running time of SPANNING-

TREE(n). Then we obtain the following recurrence re-

lation.

f(n) S ,~:;~ { S(f(z) + ~~~+ f(mill{2i, n/2})}+

STEPS 4, 5

(i - l)f (min{22, n/2}) + f(n - 2’-’) } -t-
~~

STEP 6 STEPS 3, 7

O(nlogn)

STEPS 1, 2

It follows that f(n) = O(nlOg]Ogn+Ofl)). ❑

Proof of Theorem 1.2: Let P denote the vertex set

of a complete geometric graph K3W _ 1, whose edges are

colored with red and blue. Suppose for contradiction

that K3n _ 1 does not contain n pairwise disjoint edges

of the same color. Since the theorem is trivial for n = 1,

we can assume that n > 2 and that the statement has

already been proved for every complete geometric graph

with 3k – 1 vertices, where 1 ~ k < n.

An i-element subset of P is called an i-set if it can

be obtained by intersecting P with an open half-plane.

It is easy to see that all i-sets can be generated by the

following procedure [ELS73]: Take an oriented line 1

passing through precisely one point p E P and having

i elements of P on its left side. Rotate L around p in

the clockwise direction until it hits’ another point q E P,

and then continue the rot at ion around q, etc. Whenever

1 passes through only one element of P, the points lying

on its left side form an i-set.

By the induction hypothesis, the subgraph of K3n _ 1

induced by any (3k – 1)-set contains k disjoint edges of

the same color (1 ~ k < n). If these edges are red (blue),

we say that the type of the corresponding (3k – I)-set is

red (blue). Note that a set may have both types. Just

like in the previous proof, we can suppose that all edges

along the boundary of the convex hull of P are of the

same color (say, red). In other words, for k = 1, the

type of every (3k – 1)-set is supposed to be red.

Lemma 2.1 (i) For ang given k < n, all (3k – I)-sets

are of the same type.

(ii) For any k, 1>1 for which k+l = n, the (3k–1)-sets

and the (31 – 1)-setshave opposite types.

(iii) For any k, 1>1 for which k + 1 = n --1, either all

(3k – 1)-sei!s or all (31 – 1)-sets are of blue type.

To establish (i) and (ii), consider an oriented line 1

passing through precisely one point p E P and dividing

P – {p} into a (3k – 1)-set P- (1) and a (31 – I)-set

P+(l), where k + 1 = n. If P-(l) and P+(l) had the

same type, then P would contain k + 1 =Z n edges of

the same color, contradicting our assumption. Now ro-

tate 1 around p in the clockwise direction until it hits

another point q c P, and let -t’ denote a line obtained

by slightly continuing the rotation around q. Notice that

either P–(l) = P– (1’) or P+ (1) = P+(l’). Since P– (1’)

and P+ (1’) have opposite types, we can conclude that

P- (1) and P– (t’) are of the same type. Thus, (i) fol-

lows from the fact that any (3Ic – 1)-set can be reached

from P- (/) by repeating the above step a finite number

of times.
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Fig. 1.

To show (iii), fixavertex poftheconvex hull of P,

and let p’ E P be the next vertex of the convex hull

immediately after pinthe clockwise order. Let pl andp2

denote those elements of P, for which there are exactly

3k– 1 points to the left of the oriented line ppl and

exactly 3i–1 points to therightofpp2, where k+l= n–

1. That is, we have \P-(ppl)l = 3k–1, lPt(pp2)l = 31–

1, and there is just one point p3 E P in the angular region

P1PP2; see Figure 1. Assume now, for contradiction, that

all (3k — 1)-sets and all (3/ — 1)-sets are of red type. In

particular, the type of P– (ppl ) is red, which implies that

the type of p+ (PP2) U {p, P2, P3} must be blue; otherwise

we could find k + (1 + 1) = n disjoint red edges. This,

in turn, yields that P– (ppl) U {pl} – {p’} is a (3k – l)-

element set that cannot contain k disjoint blue edges.

Thus, P- (ppl) U {pl } – {p’} has k disjoint red edges,

P+ (PP2 ) has t disjoint red edges, and by our assumption

that every edge of the convex hull of P is red (including

PP’), we would obtain k + 1+ 1 = n pairwise disjoint red

edges. This contradiction proves the lemma.

Now we are in a position to complete the proof of

Theorem 1.2. We distinguish between two cases.

Case 1: n is even. Consider a line t passing through pre-

cisely one point of P and dividing the remaining points

into two equal classes. Applying Lemma 2.1 (i) with

k = n/2, we obtain that these classes are of the same

type (say, red). Thus, there are n/2 pairwise disjoint

red edges on both sides of 1, contradicting our assump-

tion that there are no n disjoint edges of the same color

in If3n– 1.

Case 2: n is odd. Applying part (iii) of Lemma 2.1 with

ii = (n – 1)/2, we obtain that all 3(n – 1)/2 – l-sets

are of blue type. By part (ii), this implies that the type

of all 3 (n + 1)/2 + l-sets is red. Applying (iii) again,

we find that all 3(n – 3)/2 — l-sets are of blue type.

Proceeding like this, we conclude that the type of every

2-set is blue. In other words, every edge of the convex

hull of P is blue, contradicting our assumption.

The proof of the algorithmic part of Theorem 1.2 is

omitted here. ❑

Proof of Theorem 1.3: Let I?(k, 1) denote smallest

number R with the property that in any complete ge-

ometric graph of R vertices, whose edges are colored

with red and blue, one can find either k disjoint red

edges or 1 disjoint blue edges. It is enough to show that

R(k,l) = 2k + 1 – 1, for every 1,1 < 1 ~ k. This is

trivial for 1 = 1, and, according to Theorem 1.2, it also

holds for 1 = k. To complete the proof, it is sufficient to

verify that R(k, 1) < R(k, 1+ 1),for every 1 < k. Indeed,

adding a new point p to any complete geometric graph

which contains neither k disjoint red edges nor 1 dis-

joint blue edges, and connecting p to every other point

by a blue edge, does not change the maximum number of

disjoint red edges, and the maximum number of disjoint

blue edges can only increase by one. ❑

3 A construction

The aim of this section is to prove Theorem 1.4 by a

construction. A family of segments is in general position

if no three of their endpoints are collinear. Let & denote

the family of 27 segments depicted in Figure 2. Clearly,

S1 is in general position, and it is easy to check that

it has no 5 pairwise crossing and no 5 pairwise disjoint

members.

Let S = {sl, . . . . sm } be a family of segments in gen-

eral position in the plane. We say that S can be jlattened

if for every e > 0 there are two discs of radius e at unit

distance from each other, and there is another family of

‘ } in general position such thatsegments S’ = {s!, . . . . sn

s: and s: are disjoint if and only if si and Sj are disjoint,

and every si connects two points belonging to different

discs.

Lemma 3.1 Any system S of segments in general po-

sttton, whose endpoints form the vertex set of a convex

polygon, can be jlattened.

Proof: Let pl, . . . , pz~ denote the endpoints of the seg-

ments in counterclockwise order. Notice that moving the

endpoints to any convex curve does not effect the cross-

ing pattern of S, provided that the order of the endpoints

remains unchanged. Let p; = (e/4i-l, +/2’ -1) ,1 s

i < 2n. Since all of these points are on the parabola

y = &, connecting the corresponding pairs by seg-

ments, we obtain a family S’, which has the same cross-

ing pattern as S.

It can be shown by easy calculation that if we have two

disjoint segments p~p~, pjpj E S’ for some i < k <1< j,,

then the slope of pjp~ is smaller than the slope of p~pj.

Thus, extending all segments of S’ to the right until

they hit the line z = 1 +s, does not change the crossing

pattern of the family. The lemma follows by applying
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an affine transformation (z, y) -+ (x, dy) for some 6>0,

and moving the points into general position. ❑

Fig. 2: The family ofsegments$l

Consider now the family S1 depicted in Figure 2, and

let c denote the minimum distance between the end-

points. Replace every segment s E S1 by a suitably

flattened copy of S1, consisting of 27 segments whose

endpoints are closer to the endpoints of s than s/2. Re-

placing every member of the resulting family S2 by a

(very) flattened copy of SI, we obtain S3, etc. In this

manner, for every k, we construct a family Sk of 27k

segments in general position, which has at most 4k pair-

wise disjoint members and at most 4~ pairwise crossing

members. This completes the proof of Theorem 1.4.

4 Related Problems and General-

izations

Geometric Ramsey Numbers. Let ~1, . . . . ~~ be not

necessarily different classes of geometric graphs. Let

R (G1, . . . . Gk) denote the smallest positive number R

with the property that any complete geometric graph

of R vertices whose edges are colored with k colors

(1, . . . . k, say) contains, for some i, an i-colored sub-

graph belonging to Gi. If G1 = . . . = Gk = ~, we write

R(~; k) instead of R(~l, .,g~). If k = 2, for the sake

of simplicity, let R (~) stand for R (~; 2).

In Theorems 1.1 and 1.2, we determined R (~) in the

special case when ~ is the class of all non-crossing trees

of n vertices and the class of all geometric graphs having

n disjoint edges, respectively. Theorem 1.3 gives the

exact value of R (G1, Gz), when G1 and ~2 denote the

classes of all geometric graphs consisting of k disjoint

edges and 1 disjoint edges, respectively.

The proof of Theorem 1.2 can be easily generalized

to give an upper bound for R (%), when U is e.g. the

class of all geometric graphs consisting of n pairwise

disjoint triangles. More generally, for any class of geo-

metric graphs ~ and for any positive positive integer n,

let n~ denote the class of all geometric graphs that can

be obtained by taking the union of n pairwise disjoint

members of ~, any two of which can be separated by a

straight line.

Theorem 4.1 Let ~ be any class of geometrw graphs,

and let n be a power of 2. Then

R(n~) ~ (R(g) + l)n – 1.

In particular, if ~ is the class of triangles, we have

R(g) = 6. Moreover, in this case Theorem 4.1 cannot

be improved. We will return to these questions in a

forthcoming paper.

Non-Selfintersecting Paths. The length of a path is

the number of its edges. Let Tn denote the class of all

non-crossing paths of length n.

To give a non-trivial upper bound on R (Pk, Pl), we

recall the following wellknown (and very easy) lemma of

Dilworth [D50].

Lemma 4.2 Any partially ordered set of size kl + 1 ei-

ther has a totally ordered subset of size k + 1 or contains

1 + 1 pairwise incomparable elements.

Theorem 4.3 If the edges of a complete geometric

graph of kl + 1 vertices are colored by red and blue, one

can find either a non-crossing red path of length k or a

non-crossing blue path of length 1.

Proofi Let pi (O ~ i ~ kl) denote the vertices of a

complete geometric graph. Suppose that they are listed

in increasing order of their x-coordinates, which are all

distinct. Define a partial ordering of the vertices, as fol-

10WS. IX pi < pj if i < j and there is an w-monotone

red path connecting pi to pj. By Lemma 4.2, one can

find either k + 1 elements that form a totally ordered

subset Q c P, or 1 + 1 elements that are pairwise in-

comparable. In the first case, there is an z-monotone

red path visiting every vertex of Q. In the second case,

there is an x-monotone blue path of length 1, because

any two incomparable elements are connected by a blue

edge. Since an x-monotone path cannot intersect itself,

the proof is complete. ❑

Using the notation introduced above, Theorem 4.3 im-

plies that R (P.) = 0(n2), but the best lower bound we

are aware of is linear in n.

363



Constructive Vertex and Edge Ramsey Num-

bers. Given a class of geometric graphs ~, let & (~)

denote the smallest number R such that there exists

a (complete) geometric graph of R vertices with the

property that for any 2-coloring of its edges, it has a

monochromatic subgraph belonging to ~. Similarly, let

R. (~) denote the minimum number of edges of a geo-

metric graph with this property. R. (~) and Re (~) are

called the vertex and edge Ramsey number of ~, respec-

tively. Clearly, we have

(For abstract graphs, a similar notion is dicussed in

[EFR78] and [B83].)

It follows from the previous subsection that for ‘Pn, the

class of non-crossing paths of length n, R. (Pm) = O(n2)

and Fte (Pn ) = 0(n4). It is not difficult to improve the

latter bound, as follows.

Proposition 4.4 Re (Pn) = 0(n2).

Proofi Construct a geometric graph G on the vertex set

P = {(i, j)[O s i,j s n} by connecting every (i, j) to

the points (i+ 1,.j), (i, j+ 1), and (i+ l,j+ 1) (provided

that they belong to P). For any coloring of the edges of

G with red and blue, color every triangle of G red (blue)

if at least two of its sides are red (blue). Notice that any

two vertices of a red (blue) triangle can be joined in G by

a red (blue) path of length at most two. Thus, any two

vertices belonging to the same connected component of

the closure of the union of the red (blue) triangles can

be joined by a red (blue) path in G. The result now

follows from the fact that one can always find a pair of

vertices lying on opposite sides of the square {(Z, y) ~

R210 ~ z, y ~ n}, which belong to the same connected

component of the closure of the union of the red triangles

or the closure of the union of the blue triangles. ❑

Covering with Non- Selfintersecting Monochro-

matic Paths. Is it true that for every k there exists an

integer C(k) such that the vertex set of every complete

geometric graph whose edges are colored by k colors can

be covered by C(k) non-crossing monochromatic paths?

We cannot even decide the following weaker question

for k = 2: Does there exist a positive c such that every

complete geometric graph G whose edges are colored by

k colors contains a non-crossing monochromatic path of

length EIV(G)I?

Acknowledgement. We are grateful to G6bor Tardos

for his valuable remarks.
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