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Abstract

This paper describes computational results for k-clustering

algorithm using random sampling technique [2] to show its
practical usefulness. By computational experiments, first,
we show that small size of samples are actually enough for

2-clustering problem. Then, we apply this algorithm for k-
clustering problem in a recursive manner and use the output
as the initial solution of the existing local improvement tech-

nique, called k-means. We compare the result with variance-
based algorithm [1, 4] which is commonly used.

1 Randomized 2-clustering algorithm

Clustering is the grouping of similar objects. A k-clustering
of a set is a partition of its elements into k clusters that is
chosen to minimize some dissimilarity cost in each cluster.
It is very fundamental and used in various fields in computer
science such as pattern recognition, learning theory, image
processing, computer graphics, etc.

Variance-based clustering problem for a set S of n points

Xi is to find a k-clustering of S into Sj (j = 1, ..., k) mini-

mizing the clustering cost ~~=1 V(SJ ) where

V(s, ) = ~ Ilz, – fi(sj)ll’,
p,E s>

II -II is they ~m , and Z(Sj ) is the centroid of points
m SJ, I.e., ,s,, xi. For this problem, an optimal k-

P, c .52

clustering is induced by the Voronoi Diagram generated by k
centroids of the clusters. For this problem, we have proposed
the following 2-clustering randomized algorithm in [2]. We
implement this algorithm for the planar case and add a local
improvement step for the inner loop.

1.

2.

3.

Sample a subset T of m points from S at random;
For every linearly separable 2-clustering (Tl, Tz ) of T,

execute the following:
(a) Compute the centroids t,and tz of TI and Tz;

(b) Find a 2-clustering (S~l, S~, ) of S divided by the per-

pendicular bisector of t 1tz;

(c) Compute the centroids SI and 52 of S~l and S~,;
(d) Find a 2-clustering (SI, S2) of S divided by the per-

pendicular bisector of ~
(e) Compute the value of V(S1) + V(SZ);
Output the 2-clustering of S with minimum value.

The main idea of this randomized algorithm is to use all

pairs of centroids of linearly separable 2-clusterings for the

sampled point set T to obtain .%l and St2, then do local
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improvement in (2.c) and (2.d). Even wit’bout (2.c) and

(2.d), we have the following [2]:

Theorem 1 When there is an optimum 2-clustering (S;, S;)
Of S such that lS~l, lSjl 2 -YISI = n for” a constant 7

(O < y < 1/2), this randomized algorithm, sampling m

points, jinds a .%clustering whose clustering cost is within
a factor of 1 + 0(1/m) from the minimum clustering cost
with high probability in O(m2n) time. ❑

Note that it is not the ratio of the size of samples to that
of the original set, but just the absolute value of the sizes of

samples which affects the expected value.

2 Effect of the size of samples

All algorithms are implemented in C language, and run on
Sun SPARCstation 20 using gcc compiler.

First, experiments for 2-clusterings are done to show the
quantitative relationship between the sample size and the
cost of computed clustering. As the set S of points to be

clustered, we consider (S) 210 and (L) 214 points taken from
(U) uniform distribution in the unit square square, (N) stan-
dard normal distribution truncated to the unit square, (C)

uniform distribution in two disks with randomly chosen 2
centers and random radii in the unit square, and (M) 20726
points taken from Tokyo/Kanto district road data rotated

by 45 degree. Examined sizes of sample point set are m = 2i,
i .= 2, . . . . 10, and the error ratio of the clustering cost for
2’ to that for 210 is shown in Table 1. Note that m = 210

provides an optimal clustering for the case S.

Table 1: Error percentage of clustering costs for sampled
points of 2’, i = 2,3,4,5,7,9 to the case of 210 (the rightmost
column shows the percentage of clustering costs between our
algorithm and the variance-based algorithm)

ITI 22 23 24 25 27 2

“m

Su 2.6397 0.119S 0.0457 0.0127 0.0015 0.0011 0.0000 10001
SN 0.9164 0.2375 0.0373 0.0121 0.0033 0.0010 0.0000 99.69
Sc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.00
LU 0.5S09 0.3527 0.1442 0.0019 0.0002 0.0000 0.0000 100.14
LN 0.4721 0.0546 0.0099 0.000S 0.0000 0.0000 0.0000 99.57
LC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.00
M 0.0S62 0.0527 0.00S2 0.0040 0.0000 0.0000 0.0000 97.62

Uniform distribution is one of the most difficult case for
clustering, and even in this case, with the use of steps (2.c),

(2.d), we may expect that error is less than 0.2 percent if we

select 16 sample points for the set T in many cases, inde-

pendent of the size of given data set S. Thk is much better

than the theorem guarantees, probably caused by the local
improvement steps.

3 Recursive method for k-clustering

A k-clusterimz can be obtained bv armlvirw the 2-clustering. . . .
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For the k-clustering problem, the variance-based algo- k-means algorithm, and number of iterations (#iter). Inputs
rithm [1, 4], to be denoted VB, is well-known. It also ob-
tains a k-clustering by recursively applying a 2-clustering
algorithm which searches the best partition among 2n lines

perpendicular to one of the two axes by sweeping.
--- ,--- .. ..-_,“.~-_----~--,,,--

Figure 1: 5-clustering

A typical example to show the difference of these two—
methods is now given. Fig.1 shows a 5-clustering obtained
by our algorithm (left) and variance-based algorithm (right).

Data is a set of 256 points in the square rotated by 45 degree.
The cost V(SI ) + V(S2 ) by our algorithm is about 83.’i’~o

of that by variance-based algorithm. For a 4-clustering, a
nicer balanced 4-partition is obtained, and the cost of ours
is 79.6~o of that of variance-based algorithm. This also in-
dicates the limit of to~-down recursion by 2-clusterings.

We next compare tmr algorithm with variance-based al-
gorithm for data used in the previous section. As for 2-
clustering, the ratio of clustering cost found by our algorithm
using 24 samples to that by the variance-based algorithm is
shown in the rightmost column in Table 1. The ratio is very
close to 1, unlike the above extreme case. For larger k, we

show some comparisons in Table 2 below.

4 Relations with k-means algorithm

The k-means algorithm is an iterative improvement algo-
rithm for the k-clustering problem. It starts with an initial
k-clustering and then iterate to move each representative
point to the centroid of each cluster in the Voronoi partition

generated by the current representative points, until a local

minimum solution is found. See [3] for example. It can be

described by a pseudo-program as follows:

Find an initial k-clustering Sj (j = 1,..., k) for n points xi

(i= 1,..., n) by some method;
repeat

Compute the centroid it(Sj ) of each cluster;
Update the k-clustering to the Voronoi partition by the
Euclidean Voronoi diagram of it(Sj );

until a local minimum is found.

For this kind of algorithm, the initial solution plays an
important role. If we select inappropriate initial points, the
number of iterations becomes large and computed clustering
bad. Hence, the variance based algorithm [4] is commonly

used to obtain an initial solution of k-means problem.
We compare our algorithm to variance-based algorithm

for providing good initial solutions for the k-means. Since
ours uses random sampling, we perform 10 trials and take
the average (av.), minimum (min.), maximum (max.), and
standard deviation (dev. ) of initial cost, that is, output of
our algorithm, local optimum cost (final), that is, output of

are (L) 214 points with (U, C) types and (M) 20726 “points of
road map as in the previous section where in (C) 12 disks are
generated. The size of samples is 16, and we examined k =

12,25,50 and 100. We here show part of the experimental
results. All costs are normalized by the cost obtained by the
variance-based algorithm.

Table 2: Comrmtational results for k-means ahzorithm
‘ VB av. min. max. dev.

k=12 init 252 9s.51% 96.30% 100.70% 1.34%
uniform final 232 99.05% 97.45~o 100.20% 0.s5%

~ :8-’?2 5::” 6+!6 9::;% 961?0% 963;7% 0!:%
cluster final 60.6 99.94~o 99.90~o 99.95’70 0.0170

(LC) #iter. 13 5.5 s 9 0.5
k=12 init 75.7 93.s4% 92,69% 95.59~o O.S6%

map final 74.0 90.93% 59.57% 93.39% 1.46%
(Mj #iter. 7 9.3 s 13 1.41

k = 100 init 29.4 9S.05~o 96.66% 9S.92~o 0.70%
uniform final 27.0 9S.S6% 97.76% 100.0s70 0.67%

k%o %:” :4 ,f;;% 96;2% 993;% :$%
cluster final 1s.0 9s.7s% 97.92~0 99.63% 0.56%

(LC) #iter. 17 15.4 s 2.5 4.47
k = 100 init 7.42 9i’.56~o 95.7776 99.15% 0.96%

map final 6.97 95.62% 97.45% 99.70% 0.72%
(M) #iter. 7 7.s 5 19 3.99
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Evaluation of the experimental results

The small size of samples suffices in the randomized al-
gorithm.

For the 2-clustering, the randomized algorithm performs
better on the average and more robust than variance-
based algorithm when optimum solution is not perpen-
dicular to one of the axes.

On the average, initial k-clusterings produced by our al-
gorithm are better than those by VB, but, after applying

the k-mean algorithm, this superiority becomes less ex-
cept the case of k = 12 and map data.

The randomized algorithm is also observed to be more
powerful for smaller k a little bit, and more powerful modifi-
cation for larger k may be further considered. For example,
an algorithm finding k candidate representative points di-

rectly from random samples, wit bout using the top-down
binary partition technique, would deserve consideration.
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