
the

Abstract

An interactive environment for
teaching of Computer Architecture

P. S. Coe, L. M. Williams and R. N. Ibbett
Computer Systems Group

Department of Computer Science
University of Edinburgh

Edinburgh, EH93JZ, UK

{psc, Imw, rni}@dcs.ed.ac.uk

The operation of a computer can be conceptualised as a. large,

discrete and constantly changing set of state information.

However even for the simplest uni-processor the data set of such a
model is very large and is subject to rapid change. We show how

HASE provides an interactive animated display of a given

computer system’s components allowing visualization of the data

set (and consequently the mechanisms employed by computer
architects when designing a computer system). Simulation models
of both the DLX and DASH architectures are discussed,
demonstrating HASE’S suitability as a teaching tool for computer
architecture students.

1 The problem
In trying to understand the detailed operation of a computer, the

computer science student must consider the constantly changing
state of its individual components. One natural way to represent

this state information is by means of a set of diagrams. However

even for the simplest uni-processor the set of data to be conveyed

by such means is very large (memory contents, cache contents
and registers for example) and is subject to rapid change.

This presents the scientist with a problem - how to represent a
large, ever changing set of state information with a sufficiently
fine time resolution to be useful. Given these requirements it is

natural to look for some form of tool to help with this data

management job.

2 HASE
At the University of Edinburgh Computer Science Department a

high level GUI based tool suitable for the management of such

information exists in the form of HASE [1] (Hierarchical

Architecture design and Simulation Environment).

HASE allows for the rapid development and exploration of
computer architectures at multiple levels of abstraction,
encompassing both hardware and software. The user interacts
with HASE via an X-Windows/Motif graphical interface, and one

Permission to make digitab’hard mpy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the capyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To @py otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

Integrating Tech. into C.S.E. 6/96 Barcelona, Spain
@ >996 ACM 0-69791 -%44-4/96/0009 ...S3.50

of the main forms of output is an animation of the design window.

As the components of a computer can be treated very naturally

as objects, HASE itself is based on the object oriented simulation
language Sire++ [2] and an object oriented database management

system, ObjectStore [3].

The environment includes a design editor and object libraries

appropriate to each level of abstraction in the hierarchy, plus
instrumentation facilities to assist in the validation of the model.

The overall structure of the HASE environment is shown in
Figure 1. The system can thus be set up to return event traces and
statistics which provide information about, for example,
synchronisation, communication, memory latencies and cache
hit/miss ratios.

Although originally aimed at the computer architect’s requirement

for a high level design and simulation environment, many of

HASES features lend themselves well to the teaching of computer

HASE
[I 1 I

Entity Program
Library Description

t Architecture
● Source of

Description Test
Program

la m

architecture principles (for example pipelining, cache coherency,

microprocessor operation etc.). In order to extend HASES

suitability as a teaching/demonstration aid extensions to the
HASE environment have been made. The main extensions are

1. Support for the real-time annotation of an animation.

33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1013718.237518&domain=pdf&date_stamp=1996-01-01

2. A set of restrictive mouse-bindings which prevent the end-

user of a demonstration system from accessing HASES low-

level design functions.

3. A method by which the end-user can easily change the initial
contents of memories and registers.

3 Typical simulations
At present various simulations are available which demonstrate

many important architectural principles/techniques. Two such

simulations are discussed below.

3.1 The DLX simulation
The DLX architecture is a generic RISC architecture described by

Hennessy and Patterson [4]. The reasons why this architecture
was chosen to be simulated are

1 It is a simple architecture with a small instruction set.

2 It is free of the individual features of commercially available
architectures which are included to improve performance, leaving
the student to concentrate on some of the principles of computer

architecture.

The DLX simulation model (as described in [5]) attempts to

highlight several fundamental concepts of computer architecture

along with a couple of more complex ones. The concepts

concentrated on were pipelined execution of instructions
(including a technique called scm-eboarding), parallel arithmetic

units and the effects of different branching policies.

Before viewing the simulation the student has to select one of the
three available branching policies and the type of description they
require (Figure 2 shows this dialog).

Figure 2 Typical HASE Dialog Whdow

The different types of description annotate the animation from

different perspectives, for example one gives a general description

of what is happening within the architecture at each stage and
another attempts to describe the operations of the pipeline in more
detail. During the simulation the student is able to display the
contents of the memory, the register banks and the instructions

queued in any of the pipeline stages, allowing the state of the
architecture to be seen at any stage of the simulation.

A small piece of code (which comes in three forms, one for each
of the branching policies) is supplied, which includes all relevant
dependencies between instructions and sequences of instructions

to illustrate the necessary principles. A set of textual annotations

is also supplied with this code.

3.2 The Stanford DASH simulation
The DASH architecture [6] was built in the Computer Systems
Laboratory at Stanford University. The main motivation
underlying its inception was a desire to prove the feasibility of
building a scaleable high performance machine with multiple
coherent caches and a single address space.

The DASH hardware is organised hierarchically as follows. At

the bottom of the architectural hierarchy is a set of processing

nodes, grouped together in clusters of four and connected together

via a common bus (the lower level interconnection mechanism).

These buses are in turn connected together by a (dual)

interconnection network (the higher level interconnection
mechanism).

The rationale behind presenting this architecture as a
demonstration model was as follows:

1 The problems outlined above for describing the operation of

a uni-processor are further exacerbated in the case of a multi-

processor and thus a visual description of such a system is
invaluable when explaining its operation.

2 The Stanford DASH system offers a good platform with

which to highlight the problems associated with the well known

multi-processor multi-cache coherency problem.

The DASH simulation [7] takes advantage of HASES abstraction
facilities by structuring the simulation model at three distinct
hierarchical levels.

At the lowest level of abstraction individual memory requests can

be seen traveling between the low level simulation entities such

as processors, buses, caches and memory units (these requests are

presented as a series of animated icons traveling along links

connecting simulation entities). At this low level it is possible to

display the cache memory contents and examine the setting of,

say, valid or shared bits.

The medium level of abstraction shows some of the low level
entities being grouped into composite entities representing higher
level architectural constructs. For example the processor and its
associated caches are grouped together into the processing node
entity. This technique is useful in providing a mechanism for
‘filtering’ the amount of on-screen data presented to a user. At this
medium level the filtering proves useful in allowing the user to

examine the cluster’s bus arbitration policy (only messages
between a processing node and the bus are seen rather than all the

related cache hitimiss information present at the lower level).

Finally the highest level of abstraction deals with the

interconnection of DASH clusters. At this level each cluster is
represented by a single icon. This provides a convenient method
for examining inter-cluster transactions.

One of HASE’S most powerful features is to allow the different
levels of abstraction to be combined. This proves useful in

examining how, say, the intra-cluster cache-coherency protocol
(visible at the lowest level of simulation) interacts with the inter-
cluster coherency mechanisms (visible at the higher level).

34

@ Library Design ~arameters Build ~esults Statistics
..— ,“!!9

Database: ldisk)home/alamolimw/mydbs/dash
Experiment: dash

.—.——..-—. ——.—
‘-7-F?T ‘-

—,. _.,-,—.—,+..._—-..,,,,.—.
r

t
.4

.

!Eo=iE2E......................

lEF4a=iL,......__..-.........-.i........J]g

Figure 3 Screenshot of DASH Simulation

A typical screenshot from the DASH simulation showing the

simultaneous use of (four) clusters at various levels of abstraction
is shown in Figure 3.

4 Conclusions
We have shown that HASE provides an effective environment for
the simulation and exploration of various types of computer
architecture.

The animation facilities found in HASE prove useful for allowing
the computer science student to visualise the mechanisms
employed by computer architects when designing a computer

system. This visual insight is complemented by the ability to filter

out extraneous on-screen data by presenting architectures at

multiple levels of abstraction. Furthermore animations can be

textually annotated to draw the attention of the student to salient
features of the architecture.

By combining these attributes of the HASE display with the
ability to parameterise the animation taking place on-screen, the
student may interactively experiment with the architectural
model. For example this allows performance trade-offs to be

examined.

References

1

2

3

4

5

6

7

R. Ibbett, P. Heywood and F. Howell. HASE: A Flexible

Toolset for Computer Architects. (to appear) The Computer

Journal, 1996.

Jade Simulations Inc., Sire++ Reference Manual.

ObjectStore Release 3.0, User Guide, Object Design Inc.,

Burlington

J. Hennessy and D. Patterson. Computer Architecture, A

Quantitative Approach., Morgan Kaufmann Publishers, Inc.,

1990.

Paul Coe, Simulation of the DLX Architecture, University of

Edinburgh 4th Year Project Report, June, 1995.

Daniel E. Lenoski, The Design and Analysis of DASH: A

Scaleable Directory-Based Multi-processor, TR:CSL-7’R-92-

507 Computer Systems Laboratory, Stanford University,

1992.

L. Williams and R. N. Ibbett, Simulating the DASH

Architecture in HASE, (to appear) in Proc. 29th Annual

Simulation Symposium, April 1996.

Acknowledgements

The HASE project is supported by the UK EPSRC.

35

