
Teaching introductory programming
in the multi-media world

Ursula Wolz, Scott Weisgarber, Daniel Doreen and Michael McAuliffe
Department of Computer Science

Trenton State College
Hillwood Lakes, Box 4700

Trenton, NJ 08650

wolz@trenton.edu

Abstract
We address the problems of effectively teaching introductory

programming in the multi-media age. We provide a short

history on user interfaces, contrasting the line o~iented, turn

taking dialogue model with the event driven, desktop model.
We summarize the major conceptual outcomes of this shift: the

event model itself, the object-oriented paradigm, and the more
detailed classification of 1/0 types. We describe how the
current generation of tools rely on programmer convention,
thus encouraging sloppy coding. We constrast three current

approaches to teaching programming with multi-media and

present an approach that exploits the advantages of all three.

1 Introduction
Historically, designers of programming languages have given

short shrift to concerns of input output (1/0). The rational was

that 1/0 was machine dependent and therefore beyond the scope
of establishing language standards. This has always been the
bane of teachers of introductory computer science. One cannot
create meaningful exercises without including instruction in
1/0, yet teaching 1/0 techniques can often degenerate into

discussions of technical minutia that are only marginally
relevant to the larger goals of the class. The dilemma is that

1/0 programming can be profoundly rewarding. It is satisfying

to a novice programmer to produce a glossy visual output no

matter how awful the underlying algorithm might be. Multi-

media and graphical user interfaces (MM/GUI) have not

alleviated this problem. In fact, we claim they have made the
problem worse because it is harder than ever to control 1/0
without mastery of esoteric minutia.

This paper provides an overview of the problems of effectively

teaching introductory programming in the multi-media age.
Our discussion summarizes the changes over the past two

decades[1, 2, 3, 4, 5, 6]. Our perspective is unique however,

both in its historical analysis and its approach tcl solving the
problem. We provide a short history on the evolution of user

interfaces, contrasting the old line oriented, turn taking

dialogue model with the event driven, desktop model currently

available.

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is grantad without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

Integrating Tech. into C.S.E. 6/96 Barcelona, Spain
01996 ACM 0-89791 -844-4/96/0009 ...$3.50

We summarize the major conceptual outcomes of this shift: the

event model itself, a practical use for the object-oriented

paradigm, and the more detailed classification of 1/0 types. We

claim the current generation of tools that support 1/0

programming suffer from a classic problem: they do not
provide clean mechanisms that impose discipline on the
programmer. Instead programming is done by convention
which, when violated, still may produce working code.
Environments that rely on convention unintentionally
encourage sloppy programming.

We intend to show that this is not just a technology problem,

but that it is a pedagogical problem as well. We will describe

current approaches to teaching programming with MM/GUI and

discuss their advantages and disadvantages. We will also show

how the tools themselves encourage a sequence of instruction

that seductively re-enforces bad rather than good programming
habits. Finally we will describe how we are attempting to
attack this problem both pedagogically and technically: by
creating useful cross-platform tools that have a direct mapping

to global concepts and by sequencing instruction to avoid
encouraging bad habits. The remainder of this paper elaborates

on these ideas.

2 The evolution of interfaces
User interface technology can be crudely divided between the

old teletype, line based technology, and graphical user
interfaces. We stress that this is a gross simplification for the

purposes of this paper. In particular we ignore the intermediary

stages of text/graphics overlays of the early personal
computers. The old model was a text-based turn-taking

dialogue between a user and the program[6]. The program
provided a prompt with a restricted set of choices that in its
most elaborate form became a hierarchical menu. The user’s

response would result either in the desired effect, a request for

more information or a complaint that the user’s actions were
not allowed. The new GUI/MM model is event driven[4,5].

The user and the program can initiate events that result in

various kinds of displays or prompts, as well as the execution
of data crunching algorithms. The turn-taking dialogue has

been replaced by a more open-ended interaction in which the
user can change the focus of the interaction. This is the most

significant change from the user’s standpoint. In the turn

taking model, the dialogue was initiated and controlled by the
program, in the event driven model the user initiates the events

that produce graphical responses from the program.

The old model was relatively easy to learn to program.

Typically the programming language of choice had a few

simple function calls that controlled the ‘getting’ and ‘putting’
of streams of text characters. Programming the new model is

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1013718.237528&domain=pdf&date_stamp=1996-01-01

entirely dependent upon the language of choice. Some
environments, most notably Hypertalk[2] exploit a GUI to
allow programmers to define interfaces for their own program.
The disadvantage of these languages is that they tend to be

restrictive, limiting the programmer’s ability to create efficient

code. Environments that support C or Pascal programming
provide greater flexibility for the programmer, but require

mastery of a significant amount of minutia, both in terms of

syntactic form and knowledge of relevant libraries[5].

A major distinction between the old model andthe new is the

shift from a procedural/functional paradigm to an object-based
one. Regardless of whether the environment explicitly

supports true object-oriented programming, all GUI/MMs we
have examined rely implicitly on an object model to support

data encapsulation and polymorphism regardless of whether the

underlying programming language claims to be object
oriented. Borland C for the PC compatibles[l] and XView for

Unix[3] environments are prime examples.

We claim that the reliance on objects without explicit object
mechanisms is part of the reason GUVMM programming is so

hard for beginners. The environment requires that the
programmer construct code using a discipline that is merely a

convention. It is not imposed by the environment. To clarify
this consider the original BASIC environments that only
supported global variables. Good programmers used
conventions for creating local environments within

subroutines. Similarly when programming GUI/MM using
general languages like C and Pascal, one must pay careful
attention to elaborate conventions, such as calling badly
named function as part of an initialization and including
obscure pointer references within calls. More than one manual

we studied simply said in effect ‘do this, but don’t ask why yet.’

The final difference between the old and new models is the

classification of 1/0 types which are used to focus and constrain

the interaction. This is a clear advantage over the old model.
In text-based interfaces the programmer built interactivity
using a suite of simple text stream primitives, typically two for

fetching and displaying a single character and two for fetching

and displaying a line of text. In the GUI/MM model, input in

particular is classified by the type of object that gathers a

particular type of data[4]. For example graphics and text
windows allow users to enter unrestricted data. Dialogue boxes

constrain the user’s input in order to tailor it to a response.

Sliders provide a clean mechanism for specifying a point

within a range. Buttons provide an extremely constrained set
of options. This variety has always been necessary, and in fact
in the text-based environments, user error was often introduced

precisely because the response was not properly constrained.
The problem with the new classifications is that they are

typically defined in terms of the tools themselves (buttons vs.
sliders) rather than in terms of their impact on the dialogue.
The danger is that novices learn what the tools are, but never

come to appreciate their use. For example, a task that could be
better served by a button is done through a dialogue box.

3 The pedagogical problem
The teacher of introductory programming in a multi-media

environment must address three issues within the larger agenda
of teaching programming principles: (1) how to teach the
event model, (2) how to encourage adherence to convention
when it is not imposed, (3) how to instill appreciation for the

different types of GUI/MM tools that are available. Currently

there are three approaches in an already overburdened
curriculum: tackle it head on, begin with a ‘user friendly’
language, or avoid GUI/MM programming altogether.

The advantage of tackling the problem head on is that students

do something meaningful and interesting. They learn real

skills and create visually satisfying programs. The
disadvantage is that learning in environments that rely on

convention (such as C), requires careful attention to detail.

This can be frustrating for beginners who are trying to master

both concepts and style simultaneously. The second

disadvantage is that the course can become focused on the
interface rather than the more general issues of programming.
Although students produce glossy results by specifying a

collection of devices, they may never write a meaningful

algorithm.

A second approach is to avoid 1/0 programming, giving

assignments that include only minimal need for it. This is
most easily accomplished in interpreted languages such as
Scheme. The advantage is that the focus can be on the big

issues such as algorithm design, modularity, expressibility,

and data description. The little 1/0 that is done is accomplished
via standard drivers, for example, simply listing output or

using a standard old fashioned input prompt. One disadvantage
is that a major theme, namely code robustness is often
violated. For example to prevent a program crash, numeric

input should be read as a string and then converted. It is a

delicate problem for the instructor to determine whether the
data conversion problem is relevant in the larger context of the

particular class. The other disadvantage is that the programs
students write are often boring by current standards because the

power of producing interesting visual output is lost.

A third approach is to have students develop code fragments

that are inserted in a ‘wrapper’ provided to them. The

advantage of assigning code fragments is that students see how

their contribution fits into a bigger picture. They can produce
visually appealing results. If they are motivated they can study

the surrounding code and model from it. The disadvantage is

that many students will not study the surrounding code,

missing out on developing an important skill. Furthermore

they may never take off the training wheels and avoid the
inevitable when they must write a complex program from

scratch or near scratch. Finally, this approach has the

potential for providing students with a sense of mastery over
interfaces that they barely control. At some point they must be

explicitly taught interface concepts, including the event model
and the new 1/0 types. They must learn to make real decisions
about what kind of 1/0 techniques to apply in a given situation.

4 Is there a solution?
The issues highlighted above indicate that the solution lies

both in the technology and the teaching. One could hope that

the perfect language will be developed, but history indicates
that the balance between accessibility for novices and
extensibility for advanced programmers may be impossible to
achieve in a single environment. Although introductory
programming may be taught in a ‘friendly’ language,
inevitably computer science majors must tackle the hard and
powerful environments currently exemplified by C/C++.
MM/GUI merely compounds an old problem because the

interface has become less accessible to the programmer. While

58

some glossy results may be easier to achieve (running a video

for example) their pedagogical worth may be questionable.

Our solution is three fold and occurs over two semesters. We

use two programming environments and pay careful attention

to the teaching of concepts over techniques. We also use a set
of in house interface tools as well as simple code wrappers to
reduce the complexity of the students’ initial exposure to

interfaces. We begin by teaching in a ‘safe’ interpreted

environment. Currently we use Mathematical. Explicit graphics

programming is required of our students only when it directly
re-enforces a major programming concept. Fclr example,

students write functions to plot the classic time complexity

functions, n, n2, nlog2n, or to solve a maze using a stack, and

display their solution graphically. We teach basic interface
concepts within the safe environment. We then move into a

C/C++ environment, introducing object concepts first in the
abstract and then as part of our introduction to GUI. The event
model is taught as an obvious application of iteration

constructs.

In-house libraries provide initial isolation from detail. We

currently support programming within Macintosh, Windows

and Xterminal interface paradigms. In all instances we also
provide students with supplemental material that explains how

the libraries work. This material is targeted at the better

students and is not required for the course.

Our approach is not unique, however we carefully and
deliberately address the basic problems outlined here,
diminishing the disadvantages of the approaches described and
increasing their individual advantages by selecting the best of

each. In particular we explicitly talk about convention in our
classes. Students are given examples of proper convention but

are also shown how convention can be violated, and what the

consequences of cutting corners can be.

It is too soon to provide definitive data on how our students

master the basic concepts of programming. Anecdctal evidence

suggests they emerge from our experience with IIess detailed

technical expertise in a particular language, but with a greater
flexibility to approach new languages, paradigms and interface
technologies. Our use of multi-media is intentionally
conservative. Our goal remains to motivate students to
problem solve from a modular perspective. They will have

plenty of time later in the curriculum to develop a multi-media

bag of tricks.

References

1 Borland C Users Guide. Scotts Valley, CA: Borland

International, 1991.

2 Decker, R., Hirshfield S. The Analytical Engine, An
Introduction to Computer Science Using HyperCard 2.1.

Boston, MA: PWS Publishing 1994.

3 Heller D., Xview Programming Manual.” Sebastopol, CA:
O’Reilly & Associates, 1991.

4 Shneiderman, B. Designing the User Interface Strategies

for Effective Human-Computer Interaction. Reading, MA:

Addison Wesley, 1992.

5 Sydow, D. Foundations of Mac Programming. Foster City,
CA: IDG Books, 1995.

6 Wirth, N. Algorithms + Data structures =: Programs.
Englewood Cliffs, NJ: Prentice Hall, 1976.

59

