
Information System Behavior Specification
by High-Level Petri Nets

ANDREAS OBERWEIS and PETER SANDER
Universität Karlsruhe

The specification of an information system should include a description of structural system
aspects as well as a description of the system behavior. In this article, we show how this can
be achieved by high-level Petri nets—namely, the so-called NR/T-nets (Nested-Relation/
Transition Nets). In NR/T-nets, the structural part is modeled by nested relations, and the
behavioral part is modeled by a novel Petri net formalism. Each place of a net represents a
nested relation scheme, and the marking of each place is given as a nested relation of the
respective type. Insert and delete operations in a nested relational database (NF2-database)
are expressed by transitions in a net. These operations may operate not only on whole tuples
of a given relation, but also on “subtuples” of existing tuples. The arcs of a net are inscribed
with so-called Filter Tables, which allow (together with an optional logical expression as
transition inscription) conditions to be formulated on the specified (sub-) tuples. The occur-
rence rule for NR/T-net transitions is defined by the operations union, intersection, and
“negative” in lattices of nested relations. The structure of an NR/T-net, together with the
occurrence rule, defines classes of possible information system procedures, i.e., sequences of
(possibly concurrent) operations in an information system.

Categories and Subject Descriptors: H.1.1 [Models and Principles]: Systems and Informa-
tion Theory—general systems theory; H.2.1 [Database Management]: Logical Design—data
models; H.2.3 [Database Management]: Languages—data manipulation languages (DML)

General Terms: Design, Languages, Management

Additional Key Words and Phrases: Behavior specification, complex objects, conceptual design,
nested relations, Petri nets

1. INTRODUCTION

1.1 Specification of Information Systems

The design of information systems must reflect static, object-related system
aspects as well as dynamic, activity-related system aspects. Static system
aspects include the structures of objects, relationships between objects, and

Authors’ address: Institut für Angewandte Informatik und Formale Beschreibungsverfahren,
Universität Karlsruhe, 76128 Karlsruhe, Germany; email: {oberweis; sander}@aifb.uni-
karlsruhe.de.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1046-8188/96/1000–0380 $03.50

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996, Pages 380–420.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237496.237498&domain=pdf&date_stamp=1996-10-01

static semantic integrity constraints. Dynamic system aspects include the
operations on objects (creation, deletion, modification of objects), the syn-
chronization of operations, and dynamic semantic integrity constraints.

1.2 Nested Relational Databases

The relational data model originated by Codd [1970] is one of the most
popular data models and has become the formal basis of many commer-
cially available database systems. Several years ago, database researchers
and practitioners realized that this model has a couple of shortcomings and
disadvantages. The main point of the critique was that for many database
applications (e.g., technical applications, office information systems, and
multimedia systems) the first-normal form is not suitable [Makinouchi
1977], and considerable interest arose to investigate database models that
allow for the modeling of complex structured objects. The major extension
of the relational data model in this direction is to drop the first-normal-
form assumption and to allow for nonatomic attribute values. In particular,
the construction of sets and tuples from atomic values is a central concept
of so-called complex object models or nested relations (also called non-first-
normal-form relations). More precisely, a nested relation is a finite relation
in a mathematical sense, where components of tuples can be either atomic
(i.e., nondecomposable) or a (nested) relation. Thus, a nested relation is a
recursively defined data structure that is suitable for representing complex
objects.
In this article, the structural part of an information system is assumed to

be given by a nested relational database (NF2-database). Aspects of concep-
tual data design, e.g., by semantic data models [Brodie et al. 1984;
Peckham and Maryanski 1988], are beyond the scope of this article.

1.3 Petri Nets

Petri nets are a graphical formalism for modeling (distributed) system
behavior (see Barron [1982], Brauer et al. [1987], Genrich and Lautenbach
[1981], Peterson [1981], Reisig [1985], Richter and Durchholz [1982], and
Zisman [1977]). They can be used to model sequentiality, mutual exclusion,
and concurrency of system activities, and they support concepts for a
stepwise formalization, as well as methods for the stepwise refinement of
system descriptions.
There exist different types of nets. Low-level nets (e.g., condition/event

nets, place/transition nets [Brauer et al. 1987]) allow an easy interpreta-
tion of net components, and they are easy to understand, but rather hard to
handle in case of large systems with complex behavior.
In high-level nets (e.g., predicate/transition nets, colored Petri nets

[Jensen and Rozenberg 1991]), the basic components are more expressive
and allow a more compact description than in low-level nets. They allow for
an integration of static, object-related system aspects when modeling
system behavior aspects. It is generally agreed that, for practical applica-
tions, high-level nets are preferable to low-level nets.

Behavior Specification by High-Level Petri Nets • 381

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

For both types of Petri nets there exists a formal theoretical basis
[Brauer et al. 1987; Peterson 1981; Reisig 1985]. Several Petri net tools,
such as graphical editors, simulators, and analyzers, are already commer-
cially available.

1.4 Goal and Structure of the Article

The major intention of our work is to provide a formal executable model of
information systems, including database behavior. To achieve this, we inte-
grate concepts of nested relational structures and predicate/transition nets
(Pr/T-nets) into one framework, the so-called NR/T-nets. For a concrete appli-
cation, an NR/T-net could be regarded as the result of conceptual database
design (which is not considered in this article) on a precise logical level.
In Section 2, we briefly summarize the major concepts of Petri nets and

motivate the need for modeling structured objects in Petri nets. In the
sequel, these structured objects are formally described and referred to as
nested relations. Section 3 deals with nested relational databases. Two
different partial orders over nested relations—inclusion order and object
order—are introduced. Based on these orders, a formal semantics for insert
and delete operations in nested relational databases is defined. “Filter
Tables” are proposed as a new concept to model such operations. Section 4
describes how to model the behavior of information systems with high-level
Petri nets. A new type of net—the so-called Nested-Relation/Transition
Nets (NR/T-nets)—is introduced. In these nets, each place marking repre-
sents a nested relation, and transitions represent database operations.
Filter Tables are used as arc inscriptions to specify the tuples that are to be
removed from or inserted into an adjacent place when a transition occurs.
As a running example, the behavior of an information system for the
planning and controlling of projects in an enterprise is modeled. Section 5
surveys related approaches and shows differences to our approach. Section
6 concludes the article. Implementation aspects are considered, and an
outlook to future research work is given. The appendix contains a list of
symbols. We do not explain all mathematical preliminaries in full detail.
The reader is assumed to have basic knowledge about lattices and partial
orders [Birkhoff 1973] and about nested relations as in Schek and Scholl
[1986] and Thomas and Fischer [1986].

2. PETRI NETS AND THEIR EXTENSIONS

Petri nets are a graphical formalism for the description of system behavior.
A net is a bipartite graph, consisting of two disjoint sets of nodes: the set of
places and the set of transitions.

Definition 2.1 ((Petri) Net). A (Petri) net [Brauer et al. 1987] is a triple
N 5 (PL, TR, F) where

(1) PL is a finite set of so-called places,
(2) TR is a finite set of so-called transitions, PL ù TR 5 A, and
(3) F # (PL 3 TR) ø (TR 3 PL) is called the flow relation of N.

382 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

In the graphical representation, places are represented as circles and
transitions as boxes. Elements of F are represented as directed arcs
between places and transitions. Places in a net may for example be
interpreted as object storages and transitions as operations on the respec-
tive input/output objects. In general, places model state-related system
aspects while transitions model activity-related system aspects.

Example 2.2 (Net). Figure 1 shows a net N 5 (PL, TR, F) where PL 5
{s1, . . . ,s8}, TR 5 {t1, . . . ,t6}, and F 5 {(s1,t1), (s2,t2), . . . , (t6,s8)}.

A net describes the structure of system behavior only informally. There is
no formal notion of “system state” or “system behavior” in this simple type
of net. However, there exist different approaches to extend the basic net
concept.
In predicate/transition nets [Genrich and Lautenbach 1981], for instance,

places represent relation schemes (predicates). A function assigns to each
place a so-called marking, which is a relation of the respective type. The set
of all place markings at a given time describes a certain global system
state. A transition represents an operation on the relations in its input/
output places. If a transition occurs, tuples are removed from the relations
of its input places and are then inserted into the relations of its output
places. A logical expression which may be assigned to a transition allows to
specify certain conditions for the selection of tuples to be inserted or
removed.

Example 2.3 (Predicate/Transition Net (Pr/T-Net)). The predicate/tran-
sition net in Figure 2 models the hiring process of employees in a firm.
Departments are offering positions, and persons are requesting positions.
Each offered position is represented as a tuple

(DEPARTMENT, POSITION, REQUESTED-PROFESSION, OFFERED-SALARY)

in the predicate OFFERED-POSITION. Each requested position is repre-
sented as a tuple

Fig. 1. Net.

Behavior Specification by High-Level Petri Nets • 383

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(NAME, ADDRESS , AGE, PROFESSION , REQUESTED-SALARY)

in the predicate REQUESTED POSITION . Note that all attributes are
atomic, i.e., there are no set-valued or tuple-valued attributes. A person
may be hired for a certain position if the person’s age is less than 60, if the
requested salary is less than or equal to the offered salary, and if the
requested profession is the same as the person’s profession.
Hence, in Figure 2 the transition Hire is enabled, i.e., it may occur, if

there exists a tuple (N, A, AG, P, RS) in the place REQUESTED POSITION
and a tuple (D, PO, RP, OS) in the place OFFERED-POSITION , where AG ,
60 and RS # OS and RP 5 P. Additionally, the tuple (D, PO, N, A) must not
yet exist in the output place OCCUPIED POSITION . If the transition Hire
occurs, the respective tuples are removed from the input places, and a new
tuple (D, PO, N, A) is inserted into the output place.

The problem with Pr/T nets is that, in their original form [Genrich and
Lautenbach 1981], they only allow for the manipulation of flat tuples with

Fig. 2. Predicate/transition net.

384 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

atomic attribute values. The aim of the next sections is to integrate the
concept of nested relations into the predicate/transition net formalism. The
new net type to be introduced should especially support the manipulation
of set-valued attributes.

3. NESTED RELATIONAL DATABASES

In this section we formally introduce nested relations, a simple, important,
and mathematically well-founded class of complex structured objects. Fur-
thermore, we define partial orders over nested relations. They serve as the
formal basis for the specification of different kinds of insert and delete
operations.

3.1 Nested Relations and Partial Orders

We distinguish between two aspects of a nested relational database state:
the scheme and the instance. The scheme describes the structural and
time-invariant part, which is usually stored in the data dictionary. The
instances consist of (usually large amounts of) formatted data. The format
of the instances has to match the structure of the scheme.
The definition of the structural part of nested relations is quite standard.

We use a notation similar to Thomas and Fischer [1986]. Let U be a
nonempty set of names, the universe. Then, the scheme of a database is
specified by a finite, nonempty set T of scheme equations. Each scheme
equation is of the form R :5 (R1, . . . , Rn), where n $ 1 and where {R, R1,
. . . , Rn} consists of distinct names and is a subset of U. Furthermore, each
name R must not occur on the left-hand side of different scheme equations,
and the scheme equations must not contain cycles. Then, for an equation R
:5 (R1, . . . , Rn), R is called a scheme, and each Ri is called an attribute of
R. An attribute not occurring on the left-hand side of any scheme equation
is called a simple attribute; otherwise, it is a composite attribute. A scheme
not occurring on the right-hand side of any scheme equation is also called a
top-level scheme. Let (R1, . . . , Rk) be the tuple consisting of all top-level
schemes of T. Then, the (meta-) scheme equation D :5 (R1, . . . , Rk)
specifies the database scheme D w.r.t. T.
Let Usimple denote all simple attributes of U, and let I 5 {d1, d2, . . .} be

a nonempty set of finite sets, the domains. Then, dom is a mapping from
the set Usimple of all simple attributes into I. An instance is of the form n:v
where n is called the name and v the value of the instance. Two cases are
possible: if A is a simple attribute, and a [dom(A) then A:a is an instance
of type A. If R is a scheme, and if there exists a scheme equation R :5 (R1,
. . . , Rn) then R:{(t11, . . . , t1n), . . . , (tm1, . . . , tmn)} is an instance of
type R, where m $ 0 and i [{1, . . . , m}, and j [{1, . . . , n}: t ij is an
instance of type Rj. Let Ins(R) denote the set of all instances of type R.
Instances of type of a top-level scheme are called top-level instances; they
are denoted by letters r, r1, r2, . . . , and an instance D:{(r1, . . . , rk)} of
type of a database scheme (i.e., consisting of the tuple of all top-level
instances) is called a database instance.

Behavior Specification by High-Level Petri Nets • 385

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Example 3.1.1. We model “direct railway connections” (DRCs) between
cities by the following scheme equations:

{DRC :5(CITY, CITY2, TIMETABLE), TIMETABLE :5(DEP, ARR)}.

TIMETABLE is a scheme with attributes DEP and ARR. DRC is a top-level
scheme with simple attributes CITY1 and CITY2 and the composite at-
tribute TIMETABLE. The following domains are assigned to the simple
attributes: dom(DEP) 5 dom(ARR) 5 TIME and dom(CITY1) 5 dom(CITY2)
5 Char(15), where TIME denotes all admissible points of time of the form
hh.mm and Char(15) all strings of length # 15. The following expressions
are instances:

(a) DEP: 15.00
(b) TIMETABLE: {(DEP: 12.30, ARR: 13.30), (DEP: 13.00, ARR: 17.00)}
(c) DRC: {(CITY1: Karlsruhe, CITY2: München,

TIMETABLE: {(DEP: 08.00, ARR: 11.00),
(DEP: 09.00, ARR: 12.00),
(DEP: 12.00, ARR: 15.00)}),

(CITY1: München, CITY2: Frankfurt,
TIMETABLE: {(DEP: 06.45, ARR: 10.50),

(DEP: 12.30, ARR: 17.10)})}

In this example only (c) is a top-level instance. In the sequel we shall often
use a graphical representation for top-level instances. For example, the
table corresponding to (c) can be found in Example 3.1.2.
An element (t i1, . . . , t in) of the value of an instance R:{(t11, . . . , t1n),

. . . , (tm1, . . . , tmn)} is also called a tuple of type R. For a tuple t let t.Rk
denote the instance of attribute Rk, i.e., for t 5 (t i1, . . . , t in): t.Rk 5 t ik.
Often we explicitly distinguish between simple and composite attributes
contained in a scheme. Then we write R :5 (A1, . . . , Ak, B1, . . . , Bj),
where the Ai are simple attributes, and the Bi are composite attributes.
In the sequel we shall introduce partial orders over nested relations. This

can be motivated as follows. In order to describe the behavior of a database
system, it must be specified how tuples can be inserted into and deleted
from an instance, respectively. Note that we do not only want to insert
(delete) tuples as a whole, but we also want to insert (delete) “low-level
parts” of tuples into (from) existing tuples. By the definition of partial
orders we shall obtain lattices of nested relations. In lattices there exist
two different kinds of operations: union (ø) and intersection (ù). We
further define a unary operation, the negative of instances (Neg) which is
similar to a complement operation in Boolean lattices. These operations can
be used to formally define insert and delete operations for nested relations:

—the insertion of a tuple t into an instance r can be expressed as r ø R:{t}
—and the deletion of a tuple t from an instance r can be expressed as r ù
Neg(R:{t}).

386 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Example 3.1.2. We consider some “real-world” examples (Figures 3 and
4) to demonstrate the need for different kinds of insert and delete opera-
tions.
(1) Figure 3 shows direct railway connections (DRCs) between German

cities (cf. Example 3.1.1 (c)). For each pair of cities there is a unique
timetable (given as a set of pairs of departure and arrival times).
If a tuple is to be inserted into the instance—for example, the tuple

(CITY1: Karlsruhe, CITY2: München, TIMETABLE:{(DEP: 15.00, ARR:
18.00)})—then we do not simply want to add this tuple to the instance. The
semantics of this operation should be that the tuple is “merged” with the
already existing Karlsruhe/München tuple, i.e., only (DEP: 15.00, ARR:
18.00) is inserted into the first timetable.
The semantics of deletions in this example should be similar. For

instance, the deletion of the tuple (CITY1: Karlsruhe, CITY2: München,
TIMETABLE:{(DEP: 8.00, ARR: 11.00)}) should lead to the deletion of (DEP:
8.00, ARR: 11.00) in the first timetable.
(2) In Figure 4 we model cars together with equipment for each car. In

contrast to the DRC example, each car may be offered with different kinds
of equipment (each of them having their own “identity”).
Now, the semantics of an insertion, e.g., of the tuple (CAR TYPE: Golf

GTD, EQUIPMENT: {(EQU. PART:airbag), (EQU. PART:radio)}) should be
that the whole tuple is added to the CAR instance. It would not make sense
to “merge” this tuple with an already existing tuple.
As we shall see, the definition of different partial orders over nested

relations provides an appropriate formal basis for a whole class of (differ-
ent) insert and delete operations. Two well-known partial orders—the
Inclusion Order and the Object Order—are defined as follows.
Let r1 and r2 be two instances over a scheme R:

(1) Inclusion Order:

r1 # r2 :N ;t [r1:t [r2 , or equivalently:

;t [r1: 't9 [r2: attributes A: t.A 5 t9.A.

Figure 3

Behavior Specification by High-Level Petri Nets • 387

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

It is well known that “#” is a partial order (i.e., a reflexive, transitive, and
antisymmetric relation) over the set Ins(R) of all possible instances.

(2) Object Order:

r1 # r2 :N ;t [r1: 't9 [r2: simple attributes A: t.A 5 t9.A and

composite attributes B: t.B # t9.B.

The Object Order (or a very similar order, respectively) was also investi-
gated by Abiteboul and Bidoit [1986], Bancilhon and Koshafian [1989], and
Beeri and Kornatzky [1990]. The Object Order is defined recursively, and it
is well known that, in general, this relationship between instances is not
antisymmetric, e.g., for the instances r1 5 R:{(A:1,B:{(C:1)}), (A:1,B:
{(C:1), (C:2)})} and r2 5 R:{(A:1, B:{(C:1), (C:2)})} both relationships r1
r2 and r2 # r1 hold. This is due to the fact that the first tuple of r1 is
“contained” in the second tuple. In Bancilhon and Koshafian [1989] anti-
symmetry of the Object Order is enforced by restricting complex objects to
so-called reduced objects, where this kind of redundancy is removed.
In our approach we need a stronger restriction and define “#” only over

PNF instances (PNF 5 Partitioned Normal Form), a class of nested
relations investigated in detail by Roth et al. [1988]. A PNF instance can be
regarded as a normalized member of a class of instances in which each
member represents the same information. An instance is called a PNF
instance if it satisfies the following properties:

(1) it does not contain two distinct tuples that agree on the values of their
simple attributes (i.e., composite attributes are functionally dependent
on the set of all simple attributes) and

(2) for each tuple the values of all composite attributes are also PNF in-
stances.

Figure 4

388 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

The set of all PNF instances over scheme R is denoted as PNF(R). It
turns out that “#” is a partial order over PNF(R) (a proof can be found in
Sander [1992; 1993]), and “#” induces a lattice structure (PNF(R), ø, ù).

Example 3.1.3. Consider the following two PNF instances of type R :5
(A, B, C), B :5 (D), C :5 (E). Assume that dom(A) 5 dom(D) 5 dom(E)
5 {1, 2, 3}.

(1) Then with respect to the Object Order the least upper bound r1 ø r2
(union) and the greatest lower bound r1 ù r2 (intersection) yield the
following results:

(2) The situation is different for the Inclusion Order. The Inclusion Order
also induces a lattice structure (which is simply a Boolean set lattice),
and the least upper bound and the greatest lower bound are as follows
(set-theoretic union and intersection):

r1 ø r2 ~ObjectOrder) r1 ù r2 (ObjectOrder)

r1ør2 (Inclusion Order) r1ùr2 (Inclusion Order)

Behavior Specification by High-Level Petri Nets • 389

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

We can summarize, that by the Inclusion Order, values of composite
attributes are tested on equality, whereas the Object Order requires the
(recursively defined) containment of composite attribute values. This is also
reflected by the operations shown in Example 3.1.3. The operations induced
by the Inclusion Order can be characterized as “flat” operations because
they do not affect the “internal” values of tuples. In contrast to this, the
Object Order induces “deep” operations because tuples may change their
“internal” values.
Next, we shall generalize these partial orders by combining them. Until

now, the Inclusion Order and the Object Order were defined globally for
each top-level scheme. Now we want to decide locally for each composite
attribute whether the attribute values are tested on equality or on contain-
ment.

Example 3.1.4. In this example (Figure 5) we consider an instance of a
hotel database. The instance contains the STYLE, EQUIPMENT, and
CHARGE of rooms, together with the set of all VACANT ROOMS at a given
point of time.
Now, the tuple (STYLE: single bed, EQUIPMENT: {(EQU. PART: shower)},

CHARGE: 75,-, VACANT ROOMS: {(ROOM NO.: 008)}) is to be inserted. The
semantics of this operation is that ROOM NO. 008 has become a vacant
room (e.g., a guest has departed), and the value 008 is to be inserted into
the set of vacant rooms of the first tuple, because both tuples have identical
attribute values for STYLE, EQUIPMENT, and CHARGE.
On the other hand, if we want to insert the tuple (STYLE: single bed,

EQUIPMENT {(EQU. PART: shower), (EQU. PART: TV), (EQU. PART: tele-
phone)}, CHARGE: 90,-, VACANT ROOMS: {(ROOM NO.: 217)}) the seman-
tics is that the hotel management offers a new kind of room to its guests. In
the instance shown above there is no room with the same EQUIPMENT, and
it would be wrong to merge this tuple with one of the existing tuples.
Instead, the whole tuple must be added to the instance.
Obviously the attribute EQUIPMENT is treated differently from the

attribute VACANT ROOMS. EQUIPMENT has the “Inclusion Order seman-
tics,” i.e., values are tested on equality and are inserted and deleted as a
whole. The values of VACANT ROOMS are tested on containment, and these
values are merged with existing values or removed from existing values.

In order to capture both kinds of composite attribute semantics we
introduce the following formalism [Sander 1992]:

Definition 3.1.5 (Order Definition and the Corresponding Ordering). Let
T be a set of scheme equations and R :5 (A1, . . . , Ak, B1, . . . , Bj) a
top-level scheme where the Ai are simple attributes and the Bi composite
attributes.

(1) Then, an order equation w.r.t. R is an equation of the form R :5 (5A1,
. . . , 5Ak, FB1, . . . , FBj) corresponding to a scheme equation
R :5 (A1, . . . , Ak, B1, . . . , Bj). Each symbol FBi

is either the
equality predicate 5Bi

(in this case Bi is called an equality attribute),

390 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

or it is Bi
. Then Bi is called a containment attribute. A set O of order

equations is called an order definition w.r.t. R if it satisfies the
following constraint:

For the top-level scheme R there is a corresponding order equation R
:5 (. . .) in O, and for each containment attribute Bi of R there also
exists an equation Bi

:5 (. . .) in O.
(2) Let R be a top-level scheme; let O be an order definition w.r.t. R; and

let R :5 (5A1
, . . . , 5Ak

, FB1
, . . . , FBj

) in O. Then the ordering
defined by O is recursively defined as follows:

r R S :N ;t [r: 't9 [s: ; simple attributes Ai : t.Ai 5 Ai t9.Ai ,

; composite attributes Bi : t.Bi FBi t9.Bi ,

where each symbol 5Ai
is interpreted as an equality predicate over

dom(Ai). If FBi
is of the form 5Bi

then this symbol is also interpreted
as an equality predicate; otherwise—if FBi

is of the form Bi
—there

exists an order equation in O that specifies the semantics of Bi
.

For each composite attribute the ordering is either specified by an order
equation, or it is identical with equality. In the first case we specify a
subset relationship, whereas in the latter case sets are tested on equality
and are treated as atomic values.

Example 3.1.6. Let R :5 (A1, . . . , Ak, B1, . . . , Bj) be a top-level
scheme. Then, the inclusion order over R can be specified by R :5 (5A1

,
. . . , 5Ak

, 5B1
, . . . , 5Bj

). The object order on R can be specified by the
equation R :5 (5A1

, . . . , 5Ak
, B1

, . . . , Bj
), where each order Bi

is also
specified by an order equation in the same way.

Figure 5

Behavior Specification by High-Level Petri Nets • 391

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Hence, Definition 3.1.5 is a generalization of the definition of the Object
and the Inclusion Order. As for the Object Order this, in general, does not
define a partial order in a mathematical sense because the antisymmetry
condition may be violated. To obtain a partial order we restrict the set of
admissible instances as follows:

Definition 3.1.7 (Generalized PNF Instance). Let R :5 (A1, . . . , Ak,
B1, . . . , Bj) be a top-level scheme and R :5 (5A1

, . . . , 5Ak
, FB1

, . . . ,
FBj

) the corresponding order equation in the order definition O.

(1) An instance r of type R is in Generalized Partitioned Normal Form (or a
GPNF instance) w.r.t. O, if the following holds:
(a) r does not contain any two tuples which agree on the values of their

simple attributes and their equality attributes
(b) for each tuple the value of each containment attribute is a GPNF

instance.
(2) GPNF(R, O) denotes the set of all generalized PNF instances over R

(w.r.t. O).

This is really a generalization, because if the instances of a top-level
scheme R :5 (A1, . . . , Ak, B1, . . . , Bj) are ordered by Inclusion Order,
then GPNF(R, O) 5 Ins(R), and if they are ordered by the Object Order
then GPNF(R, O) 5 PNF(R). Furthermore, if no composite attributes
occur in a scheme (i.e., the first-normal form holds) then all these orderings
are identical, because for a relation scheme R :5 (A1, . . . , Ak) containing
only simple attributes the corresponding order equation has to be R :5
(5A1

, . . . , 5Ak
), and the equation Ins(R) 5 GPNF(R, O) 5 PNF(R)

holds.
For formal investigations it is often necessary to distinguish explicitly

between both kinds of composite attributes—equality attributes and con-
tainment attributes. Thus, we shall often use a scheme equation of the form
R :5 (A1, . . . , Ak, B1, . . . , Bj, C1, . . . , Cp) where the Ai denote simple
attributes; the Bi denote equality attributes; and the Ci denote contain-
ment attributes.
Now, the least upper bound and the greatest lower bound of instances

can be characterized in the following explicit way (a proof can be found in
Sander [1992]):

PROPOSITION 3.1.8. Let R :5 (A1, . . . , Ak, B1, . . . , Bj, C1, . . . , Cp) be
a scheme.

(1) Each relation R over R defined by an order definition O is a partial
order over the set GPNF(R, O), i.e., it is reflexive, antisymmetric, and
transitive. Furthermore, all pairs r1, r2 of instances of GPNF(R, O)
have a least upper bound r1 øR,O r2 and a greatest lower bound r1 ùR,O
r2. Thus, the complete lattice LR,O :5 (GPNF(R,O), øR,O, ùR,O) exists
and has a least element 0R,O and a greatest element 1R,O.

392 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(2) The operations øR,O and ùR,O can be explicitly expressed in the
following recursive way for each pair r1, r2 [GPNF(R,O):

t [r1 ø R,O r2N

t [r1 and ¬~ 't2 [r2: ;i [$1, . . . , k%: t2.Ai 5 t.Ai and

;i [$1, . . . , j%: t2.Bi 5 t.Bi)

or

t [r2 and ¬~ 't1 [r1: ;i [$1, . . . , k%: t1.Ai 5 t.Ai and

;i [$1, . . . , j%: t1.Bi 5 t.Bi)

or

't1 [r1: 't2 [r2: ;i [$1, . . . , k%: t1.Ai 5 t2.Ai 5 t.Ai and

;i [$1, . . . , j%: t1.Bi 5 t2.Bi 5 t.Bi and

;i [$1, . . . , p%: t1.Ci ø Ci,Ot2.Ci 5 t.Ci.

t [r1 ù R,O r2 N

't1 [r1: 't2 [r2: ;i [$1, . . . , k%: t1.Ai 5 t2.Ai 5 t.Ai and

;i [$1, . . . , j%: t1.Bi 5 t2.Bi 5 t.Bi and

;i [$1, . . . , p%: t1.Ci ù Ci,O t2.Ci 5 t.Ci.

Example 3.1.9. We specify the following order equations for the room
administration scheme of Example 3.1.4:

ROOM ADMIN. :5 ~5STYLE, 5EQUIPMENT, 5CHARGE, VACANT ROOMS!,

VACANT ROOMS :5 ~5ROOM NO!,

i.e., the composite attribute EQUIPMENT is an equality attribute whereas
VACANT ROOMS is a containment attribute. Then the room administration
instance r of Example 3.1.4 is a GPNF instance with respect to these order
equations, because there do not exist any two tuples that agree on the
values of their attributes STYLE, EQUIPMENT, and CHARGE. Furthermore,
the insertion of a tuple t into r, as described in Example 3.1.4, can be
specified by røROOM ADMIN.,O ROOM ADMIN.:{t} where øROOM ADMIN.,O is
the union operation of the lattice induced by the partial order ROOM ADMIN..

Behavior Specification by High-Level Petri Nets • 393

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

3.2 The Negative of a Nested Relation

Until now, only the insertion of tuples is formally defined. Next, we define
a unary operation, the negative Neg(r) of a GPNF instance r, in order to be
able to express the deletion of a tuple t as r ù Neg(R:{t}).
Intuitively, the negative of r contains all tuples (w.r.t. the underlying

domains and orderings) not present in r. For the following definitions, let R
be a scheme with a scheme equation R :5 (A1, . . . , Ak, B1, . . . , Bj, C1,
. . . , Cp), and let R be a partial order (specified by an order definition O)
over GPNF(R,O).

Definition 3.2.1 (Negative of an Instance). Let 1R,O denote the greatest
GPNF instance of the scheme R. Then, the negative of a GPNF instance r of
type R, abbreviated as NegR,O(r), is defined as

(1) If R contains no containment attribute Ci (i.e., p 5 0): NegR,O(r) 5
R:{t ut[1R,O, t ¸ r}

(2) Otherwise (i.e., p $ 1): NegR,O(r) 5 R:{t ut satisfies the following
condition (*)}
(*) for all attributes Ai and Bi: t.Ai [dom(Ai) and t.Bi [Ins(Bi),

and if t9 [r such that for all attributes Ai and Bi: t.Ai 5 t9.Ai,
and t.Bi 5 t9.Bi then for each containment attribute Ci: t.Ci 5
NegCi

,O(t9.Ci), else for each containment attribute Ci: t.Ci 5 1Ci
,O.

The next example shows that, in general, the negative of an instance is
not identical to a Boolean complement.

Example 3.2.2. Let R be the scheme R :5 (A, B), B :5 (C), and
dom(A) 5 dom(C) 5 {1, 2}. A is a simple attribute, and B is a
containment attribute (specified by an order definition O).
We regard the top-level instance r1 :5 R: {(A:1, B:{(C:1)})}. Then, the

following instance r2 is the negative of r1:

r2 :5R: $~A:1, B:$~C:2!%!, ~A:2, B:$~C:1!, ~C:2!%!%.

We obtain the following (because of the definition of øR,O and ùR,O):

r1 ø R,O r2 5 R: $~A:1, B:$~C:1!, ~C:2!%!, ~A:2, B:$~C:1!, ~C:2!%!% 5 1R,O and

r1 ù R,O r2 5 R:$~A:1, B:$ %!% ~not the least instance OR,O !

A complement C(r) of r must satisfy the equations r ø C(r) 5 1 and r ù
C(r) 5 0 (where 0 is the least element, and 1 is the greatest element of the
lattice, respectively). This does not hold in this example because the
intersection of r1 and r2 does not yield the least instance 0R,O.
Now, we have provided appropriate means to express the deletion of

tuples in a formal and sound way.

Example 3.2.3. (1) In the DRC scheme of Example 3.1.2 (Figure 3) the
attribute TIMETABLE is interpreted as a containment attribute. Then the

394 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

instance r given in the example is a GPNF instance (since no equality
attributes occur it is also a PNF instance), and the deletion of the tuple

t 5 (CITY1: Karlsruhe, CITY2: München, TIMETABLE:{(DEP: 8.00,
ARR: 11.00)})

can be specified by r ùR,O NegR,O(R:{t}). This leads to the deletion of (DEP:
8.00, ARR: 11.00) in the timetable of the Karlsruhe/München tuple.
(2) In the CAR scheme of Example 3.1.2 (Figure 4) the composite at-

tribute EQUIPMENT must be specified as an equality attribute. Otherwise,
the instance would not be a GPNF instance. If we want to delete the tuple

t 5 ~CAR TYPE: Mercedes 230E, EQUIPMENT: {(EQU. PART: airbag!})

from the instance of Example 3.1.2 (part 2) by the expression
rùR,ONegR,O(R:{t}), then the instance remains unchanged because this
tuple t is not present in the instance. But if we do the same with the tuple

t95(CAR TYPE: Mercedes 230E, EQUIPMENT: {(EQU. PART:
airbag), (EQU. PART: leather seats)})

then the whole first tuple is removed from the instance.
(3) Finally, we consider the ROOM ADMINISTRATION example (Example

3.1.4). As already demonstrated in Example 3.1.9 the attribute EQUIPMENT is
an equality attribute, and VACANT ROOMS is a containment attribute. Then
the semantics of the expression rùR,O NegR,O(R:{t}), where r is the instance of
Example 3.1.4 and t 5 (STYLE: single bed, EQUIPMENT: {(EQU. PART:
shower)}, CHARGE: 75,-, VACANT ROOMS: {(ROOM NO.: 007)}) is that only
the room number 007 is removed from the set of vacant rooms. If we do the
same with the tuple t9 5 (STYLE: single bed, EQUIPMENT: {(EQU. PART:
shower)}, CHARGE: 75,-, VACANT ROOMS: {(ROOM NO.: 007), (ROOM NO.:
101), (ROOM NO.: 105)}) then all rooms are deleted from the first tuple, i.e.,
the tuple remains in the instance, but the set of vacant rooms becomes empty.

3.3 The Insert and Delete Operations Specified by Terms and Filter Tables

In this section we describe how the selection of information and the
insertion and deletion of tuples can be specified in a more general,
parametrized way by so-called top-level terms. This is to express classes of
operations in a uniform way.

Definition 3.3.1 (Term). We assume that a database scheme is given by
a set T of scheme equations. Let U be the names of attributes and schemes
occurring in T, and let Var be a nonempty set of variables (denoted by
strings of uppercase letters, e.g., X, Y, Z, XY, UVW, . . .).

Then, the set of all terms is defined recursively as follows:

(a) If R [U and X [Var then R:X is a term of type R. We say X
represents values of type R.

Behavior Specification by High-Level Petri Nets • 395

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(b) If A [U is a simple attribute, and a [dom(A), then A:a is a term of
type A.

(c) If R [U is a composite attribute specified by the equation R :5 (R1,
. . . , Rn) then R:{(t11, . . . , t1n), . . . , (tm1, . . . , tmn)} is a term of type
R, where m $ 0 and i [{1, . . . , m}, and j [{1, . . . , n}: t ij is a
term of type Rj. Each expression (t i1, . . . , t in) is called a tuple of the
term.

(d) For a term n:v, n is called the name and v the value of the term.

Only expressions which can be constructed by (a)–(c) are terms. A term of
type “top-level scheme” is called a top-level term.
Thus terms are recursively composed according to their type. The set of

all terms containing no variables is identical to the set of all instances. For
example, valid terms are (cf. Example 3.1.2)

(a) DEP: X,
(b) TIMETABLE: {(DEP: 8.00, ARR: Y), (DEP: U, ARR: V)},
(c) DRC: Y,
(d) DRC: {(CITY1: X, CITY2: Frankfurt, TIMETABLE: Z)}.

Only (c) and (d) are top-level terms.
Next, we introduce so-called labeled top-level terms in order to select

information from instances and to specify insert and delete operations.

Definition 3.3.2 (Labeled Top-Level Term). Let R be a top-level scheme
of a set of scheme equations T. Then, a labeled top-level term w.r.t. R (or a
labeled R-term) is a pair (t, O) consisting of a top-level term t of type R
and an order definition O w.r.t. R. LT(R) denotes the set of all labeled
top-level terms w.r.t. R.

Each labeled top-level term has an equivalent graphical representation
called Filter Table which is easier to read. This formalism is adopted from
the graphical query language Query by Example [Zloof 1975] known from
the field of relational databases.
A labeled top-level term is transformed into a Filter Table as follows:

—Each term t 5 R:{(t11, . . . , t1n), . . . , (tm1, . . . , tmn)} is transformed
into a table of the form:

396 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

—The strings termij in the table represent transformed terms: each of the
terms t ij is also transformed into a table if its value consists of a set of
tuples. Otherwise—i.e., if the term is of the form R:X or A:a—it is simply
transformed into “X” or “a” respectively.

—If in the previous transformation steps the attribute of a term is a
(composite) equality attribute, then the transformed term is marked by
an overline, e.g., for the term above:

Such a term of type “equality attribute” is called a closed term; other-
wise (i.e., for a containment attribute) it is called an open term.

Example 3.3.3. The following labeled terms (t, O) are specified with
respect to the hotel database of Example 3.1.4:

(1) t 5 ROOM ADMINISTRATION: {(STYLE: single bed, EQUIPMENT: X,
CHARGE: 75,-, VACANT ROOMS: {(ROOM NO.: 007)})},

O 5 { ROOM ADMIN. :5 (5STYLE, 5EQUIPMENT, 5CHARGE, VACANT ROOMS),
O 5 VACANT ROOMS :5 (5ROOM NO)}

This term is represented graphically by the following Flter Table:

As EQUIPMENT is an equality attribute, all terms of type EQUIPMENT
are closed terms. Thus, the variable X is marked by an overline.

(2) t 5 ROOM ADMINISTRATION: {(STYLE: single bed, EQUIPMENT: {(EQU.
PART: shower)}, CHARGE: X, VACANT ROOMS: Y)},

O5 { ROOM ADMIN. :5 (5STYLE, 5EQUIPMENT, 5CHARGE, 5VACANT ROOMS) }
This term is represented graphically by the following Filter Table:

Behavior Specification by High-Level Petri Nets • 397

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Obviously the mapping from labeled top-level terms to Filter Tables is
one-to-one, and in the sequel we do not distinguish between both kinds of
representations. As already mentioned, labeled top-level terms will be used
to specify insert and delete operations. For example, the terms of Example
3.3.3 can be used to specify the following delete operations:

(1) Select a tuple where STYLE 5 single bed, CHARGE 5 75,-, and where
007 is an element of the set of vacant rooms. Delete room number 007
from the set of vacant rooms of this type, and assign the respective
EQUIPMENT value to the variable X.

(2) Select a tuple where STYLE 5 single bed and where shower is the only
equipment part. Delete the whole tuple, and assign the CHARGE value
to the variable X and the VACANT ROOMS value to the variable Y.

The insert operation is inverse to the delete operation. In order to define
these operations formally, the variables contained in a term must be
instantiated by values of the corresponding domains. Therefore, we define
the notion of instantiation.

Definition 3.3.4 (Instantiation of a Term). Let (t, O) be a labeled
top-level term.

(1) An instantiation Q of t is a mapping from the set of all variables
occurring in t into the set of all instance values represented by the
variables. Let tQ denote a term t where each variable is replaced by its
Q-value. Note, that if a term has no variables, the only possible
instantiation is the empty instantiation.

(2) Assume that the term t of a labeled term (t, O) is of type R, and let
GPNF(R,O) be the set of GPNF instances with respect to the order
definition O. Then, an instantiation Q of t is valid if tQ [GPNF(R,O).

We are only interested in valid instantiations, because we do not want to
leave the class of GPNF instances in our formalism. Now we can specify
deletions and insertions with respect to a valid instantiation in a formal
way. Let (t, O) be a labeled top-level term (a Filter Table), R the partial
order specified by O, and let r [GPNF(R,O):

Deletion. Let Q be a valid instantiation of t. Then the deletion of tQ
from r is formally defined as

r ù R,O NegR,O~tQ!.

Insertion. Let Q be a valid instantiation of t. Then the insertion of tQ
into r is formally defined as

r ø R,O tQ.

As we shall see in Section 4, this formalism of Filter Tables is well suited
for behavior modeling by high-level Petri nets.

398 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Example 3.3.5. Consider again the Filter Tables of Example 3.3.3.

Deletion. If a deletion is to be expressed, there is only one possible
instantiation in both cases (1) and (2) such that tQ R,O r (where r is the
hotel database instance of Example 3.1.4). If in (1) X is instantiated with
{(EQU. PART: shower)}, then the desired operation (described before Defini-
tion 3.3.4) is expressed. In (2) X is mapped to 75,- and Y to {(ROOM NO.:
007), (ROOM NO.: 101), (ROOM NO.: 105)} in order to express the desired
operation (also mentioned above).

Insertion. We explain what kind of insertions can be specified by the Filter
Table (1). Assume that the room number 007 is not present in the instance r
(because this room is occupied at the moment). Then, this room is inserted into
the set of vacant rooms of the first tuple if X is instantiated with {(EQU. PART:
shower)}. On the other hand, if X were instantiated by any other equipment
combination, e.g., {(EQU. PART: shower), (EQU. PART: fridge)}, then the whole
instantiated tuple would be inserted into the instance (because no other room
with this combination of STYLE, EQUIPMENT, and CHARGE exists).

4. MODELING INFORMATION SYSTEM BEHAVIOR BY NESTED-
RELATION/TRANSITION-NETS

Our starting point is the net formalism of Section 2. The aim of this section
is to integrate the concept of nested relations into the formalism. The new
net type to be introduced (so-called Nested-Relation/Transition-nets, abbre-
viated NR/T-nets) should meet the following objectives:

—it should properly extend the Pr/T-net formalism of Section 2,
—it should have a formal semantics, and
—it should be very expressive with respect to the manipulation of nested
relations, i.e.,
(a) it must allow one to express complex selection conditions, such as set

membership, set equality, subset, etc.
(b) it must allow one to delete and insert not only tuples on the top level, but

also subinstances of nested relations (as shown in Section 3).

The first extension to ordinary nets is to interpret places as nested
relation schemes with attribute values that may in turn themselves be
(nested) relations. This extension yields the so-called NR-nets, which
visualize the structural part of NR/T-nets. NR/T-nets are defined later on.

Definition 4.1 (Nested-Relation-Net (NR-Net)). A nested-relation-net is a
tuple NN 5 (w, N), such that

(1) w 5 (U, T, I, dom) is a signature of the net, where U a universe, i.e.,
a set of (attribute and scheme) names, T a set of scheme equations, I 5
{d1, d2, . . .} a set of domains, and dom:Usimple 3 I a function.

(2) N 5 (PL, TR, F) is a net (cf. Definition 2.1) where PL 5 {R1, . . . , Rn}
equals the set of top-level schemes of T.

Behavior Specification by High-Level Petri Nets • 399

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Example 4.2 (Nested-Relation-Net). An information system for planning
and controlling projects in an enterprise is to be designed. The (simplified)
lifecycle of a project is as follows:

—If a project proposal is accepted, then a department with the required
equipment is selected. A project proposal consists of a project number,
the required equipment (given as a set of hardware and software compo-
nent names), and the required personnel (given as a set of needed project
members, each of them with a set of required skills).

—In the next step, employees having the required skills are selected from
the respective department. An employee cannot participate in more than
one project. To simplify the example, we assume that in every selected
department there are enough employees available or that additional
employees can be hired.

—The proposed project is initiated.
—Finally, a running project is either canceled or successfully finished. In
both cases an internal message is sent to the department that was
responsible for the project, and the employees involved in the project
become available for other projects.

The structure of the possible behaviors related to a project can be
modeled by an NR-net Project-Life-Cycle 5 (w, N) as follows:

w 5 (U, T, I, dom), where
U 5 {DEPARTMENT, EMPLOYEE, PROJECT-PROPOSAL, RUNNING-PROJECT,

DEP#, PERSONNEL, EQUIPMENT, . . .}
T 5 {DEPARTMENT :5 (DEP#, PERSONNEL, EQUIPMENT, PROJECTS),

EMPLOYEE :5 (EMP#, SKILLS, STATUS),
PROJECT-PROPOSAL :5(PRO#, EQUIPMENT, PP-MEMBERS),
PROJ-EMP :5 (PRO#, EMPLOYEES),
PROJ-DEP :5 (PRO#, DEP#, DEP-PERS, PP-MEMBERS),
RUNNING-PROJECT :5 (PRO#, DEP#, RP-MEMBERS),
CANCELED-PROJECT :5 (PRO#, DEP#),
PERSONNEL :5 (EMP#),
EMPLOYEES :5 (EMP#),
DEP-PERS :5 (EMP#),
EQUIPMENT :5 (EQ-NAME),
PP-MEMBERS :5 (PPM#, SKILLS),
RP-MEMBERS :5 (EMP#),
PROJECTS :5 (PRO#),
SKILLS :5 (SKILL)
etc. . . . }

DEP#, EMP#, PRO#, STATUS, SKILL, and EQ-NAME are atomic attributes. If
an employee already participates in a project then the value of the
attribute STATUS equals 1; otherwise the value equals 0.

I 5 {{d1, d2, . . .}, {p1, p2, . . .}, . . .}

dom(DEP#) 5 {d1, d2, . . .},
dom(PRO#) 5 {p1, p2, . . .}, etc.

400 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

The net N is shown in Figure 6. Each place R represents the respective
top-level scheme “R :5 . . .” in T. In the graphical representation we omit
the right-hand sides of the scheme equations.
In Figure 6 it is, for example, modeled that a transition Finish-project

requires a running project as input and produces an internal message, a
finished project, and a set of available employees as output. The transition
is not yet specified in more detail.

An NR-net describes the structure of possible system behaviors (proce-
dures), but it does not describe concrete states or state transitions. Each
transition is interpreted as a class of changes applied to the possible
instances in the adjacent places. In the sequel we define NR/T-nets.

Fig. 6. Example NR-net.

Behavior Specification by High-Level Petri Nets • 401

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Informally speaking, an NR/T-net consists of an NR-net plus the following
concepts:

—an initial marking, i.e., a mapping that assigns to each place (i.e., to each
top-level scheme) a nested relation instance.

—two concepts to select and delete tuples from places and to insert tuples
into places:
(a) arc inscriptions: arcs are inscribed with Filter Tables.
(b) transition inscriptions: transitions are inscribed with logical expres

sions.
—occurrence rule: defines in which state a transition is enabled and
specifies which changes are related to a transition occurrence.

Definition 4.3 (Nested-Relation/Transition-Net (NR/T-Net)). A nested-
relation/transition-net is a five-tuple NRT 5 (NN, P, AI, TI, M0), such
that

(1) NN 5 (w, N) is an NR-net; w 5 (U, T, I, dom); N 5 (PL, TR, F) (cf.
Definition 4.1).

(2) P is a set of typed predicate symbols to specify membership, equality,
etc. between instances. Each element p [P has a fixed interpretation
I(p), which is a relation of the respective arity over instance values and
tuples.

(3) Let LT(R) denote the set of all labeled R-terms (Filter Tables). Then,
AI is a function that assigns to each element f in F a labeled term of
LT(R), where R is the adjacent place (scheme).

(4) TI:TR 3 LF assigns to each transition a logical formula that must be
contained in the following set LF:
—true [LF
—If p [P is an n-ary predefined predicate symbol, and v1, . . . , vn are
variables or values of terms or tuples contained in values of terms,
then p(v1, . . . , vn) [LF

—If f1 and f2 [LF then f1 ∧ f2, f1 ∨ f2, ¬f1 [LF.
(5) A marking M is a mapping that assigns to each place Ri [PL an

instance of type Ri. M
0 is a marking, the so-called initial marking.

In the graphical representation of a nested-relation/transition-net the
transition inscription “true” is omitted. For predicates in logical formulas
we use infix instead of prefix notation (e.g., we write “X 5 Y” instead of
“5(X, Y)”). To give the reader an intuition of how Definition 4.3 can be
applied in a “real-life example,” we discuss the running example of this
section in an informal way. Afterward, we regard the contents of Definition
4.3 in more detail.

Example 4.4. Figure 7 shows an initial marking for the places of the
running example in Figure 6.
The marking is given as a set of instances for the schemes DEPARTMENT,

EMPLOYEE, RUNNING-PROJECT, and PROJECT-PROPOSAL, PROJ-EMP,

402 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Fig. 7. Initial marking for DEPARTMENT, RUNNING-PROJECT, EMPLOYEE, and PROJECT-
PROPOSAL.

Behavior Specification by High-Level Petri Nets • 403

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

PROJ-DEP. Note that the markings of PROJ-EMP and PROJ-DEP are empty
in the initial state.
In the initial state (marking), there exists one proposed project, and five

projects are currently running. Four employees are not involved in any
project (i.e., STATUS 5 0).
In Figure 8 a small part of an NR/T-net of the project lifecycle described

in Example 4.2 is given. It shows a single transition and the adjacent
places. The transition has two incoming and two outgoing arcs. Each arc is
inscribed with a labeled top-level term, which is equivalently written as a
Filter Table. The transition Find-department-with-required-equipment is
inscribed with the logical formula “true,” which is omitted in the graphical
representation.

An occurrence of a transition, which means a data flow from the input
places to the output places, can be explained as follows. First of all, each
variable must be instantiated with a value of the corresponding attribute
domain. Equal values must be assigned to equal variables in the environ-
ment of a transition. As described in the previous section, for each Filter
Table an ordering is specified by the open and closed terms occurring in the
Filter Table. This determines two things: (a) how tuples are deleted from
(or inserted into, respectively) the instances of the adjacent places (cf.
Section 3.3) and (b) the conditions for which a transition is enabled (i.e.,
can occur). A transition is enabled with respect to a marking and a valid
instantiation if

—The instantiated terms at the incoming arcs are contained (w.r.t. the
underlying ordering) in the marking (instances) of their respective adja-
cent places. This implies instantiated closed terms must be contained as

Fig. 8. A transition of an NR/T-net.

404 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

a whole in the marking of a place, and open terms must be a “substruc-
ture” of these markings.

—The instantiated terms at the outgoing arcs are not contained (w.r.t. the
underlying ordering) in the markings of their respective adjacent places.

—The logical formula inscribed to the transition evaluates to “true.”

Then, the tuples specified by the Filter Tables of the incoming arcs are
deleted from the corresponding markings, and the tuples contained in the
Filter Tables of the outgoing arcs are inserted into the markings of the
output places.

Example 4.4 (Continued). For the transition Find-department-with-
required-equipment of Figure 8 we obtain the following:

—The Filter Tables which are assigned to the incoming arcs select a
PROJECT-PROPOSAL tuple and a DEPARTMENT tuple, respectively. The
PROJECT-PROPOSAL tuple consists of a PRO#, the EQUIPMENT, and the
PP-MEMBERS. If the transition occurs the whole tuple is deleted from
the PROJECT-PROPOSAL instance (because in the Filter Table all “rela-
tion-valued” variables are closed terms, i.e., marked with an overline).
The department is a tuple consisting of a DEP#, the PERSONNEL, the
EQUIPMENT, and the running PROJECTS of the department. If the
transition occurs the specified tuple is not deleted as a whole, because
the variable E is an open term. The DEP#, the PERSONNEL, and the
PROJECTS remain unchanged in the instance. Only the specified EQUIP-
MENT set is removed from the instance.

Note that the variable E occurs in both Filter Tables of the incoming arcs.
One occurrence is marked with an overline; the other one is not. This is
equivalent to a subset relationship. The equipment of the selected depart-
ment must be a subset of the equipment required for the project proposal.
Tuples are inserted into the instances of the output places (in an inverse

way) if the transition occurs. A new project P and the equipment E (which
was removed by the deletion) are inserted into the DEPARTMENT instance.
By the other Filter Table PRO#, DEP#, PERSONNEL, and the required
PP-MEMBERS are inserted into the PROJ-DEP instance (which was as-
signed the empty instance by the initial marking).

Note that a set of “independently enabled” transitions may occur concur-
rently in one step. Informally, a set of transitions is independently enabled
if each element is enabled, and additionally no two transitions in this set
access the same (sub-) tuple.
The occurrence of transitions in a given initial marking leads to so-called

follower markings. The exact meaning of an enabled transition and a
transition occurrence will be formally defined later on. In the following
example we consider the arc inscriptions and transition inscriptions (cf.
Definition 4.3 parts (3) and (4)) in more detail.

Behavior Specification by High-Level Petri Nets • 405

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Example 4.5. We regard the PROJECT-PROPOSAL instance of the run-
ning example in order to show how information can be selected from this
instance by different kinds of Filter Tables and transition inscriptions.

(1)

By this transition inscription and the given Filter Table a whole tuple is
deleted from the instance PROJECT-PROPOSAL (when the transition oc-
curs) if the EQUIPMENT value contains the part e2.

(2)

This transition is very similar to the first one. The selected tuple must
satisfy the same constraint as in (1), i.e., the EQUIPMENT value must
contain the value e2. In contrast to (1) the tuple is not deleted as a whole,
only the selected part e2 is removed from the EQUIPMENT value.

(3)

This transition is again similar to (1) and (2). In this case a whole tuple is
deleted, and the EQUIPMENT value must contain the part e2 and no further
part.

(4)

406 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

By this transition inscription and the given Filter Table a whole tuple is
selected, and the PP-MEMBERS value must contain a tuple which has the
skill s3 in its set of skills.

By the following steps we slightly restrict the set of possible NR/T-nets to
so-called valid NR/T-nets. This can be motivated and summarized as
follows:

—First, the insert operation for tuples into the instance of a place is
determined by the ordering of a Filter Table that is assigned to an
incoming arc. If there is more than one incoming arc, then all respective
Filter Tables must specify the same ordering. Otherwise, ambiguities
concerning the insertion of tuples may occur. Thus, it makes sense to
assign this unique ordering to the adjacent place and to talk about the
ordering of the place.

—Second, the initial marking must satisfy the restriction imposed by these
orderings. In particular, if a place R has an ordering O, then the initial
marking must satisfy M0(R) [GPNF(R,O). A marking that satisfies
this condition is called a valid marking.

—Third, all Filter Tables at the outgoing arcs of a place must specify
orderings that are compatible with the ordering of the place. This has
technical reasons that, if violated, would also cause ambiguities concern-
ing the deletion of tuples. More precisely, the ordering of an “outgoing
Filter Table” must be less or equally restrictive than the ordering of the
place, in the sense that each instance of a place is also a GPNF instance
w.r.t. the ordering of the Filter Table.

The last point is formalized as follows:

Definition 4.6 (Comparison of Orderings). Let R be a top-level scheme
defined by the scheme equation R :5 (A1, . . . , Ak, B1, . . . , Bj). The Ai
denote simple attributes, and the Bi denote composite attributes. Let O
and O9 be order definitions w.r.t. R (cf. Definition 3.1.5), which specify
orderings R,O and R,O9, respectively.
The ordering R,O is more or equally restrictive than R,O9 (denoted as

R,O v R,O9) if the following holds for each composite attribute Bi:

Bi is containment attribute w.r.t. R,O9
f Bi is containment attribute w.r.t. R,O and Bi

,O v Bi
,O9.

In this case we also say R,O9 is less or equally restrictive than R,O.

Equivalently, an ordering R,O is more or equally restrictive than an-
other ordering R,O9 if each equality attribute w.r.t. R,O is also an equality
attribute w.r.t. R,O9. It can be shown that v is a partial order on orderings.
We easily obtain the following result:

PROPOSITION 4.7. Let R be a top-level scheme with the scheme equation R
:5 (A1, . . . , Ak, B1, . . . , Bj). Let O and O9 be order definitions w.r.t. R

Behavior Specification by High-Level Petri Nets • 407

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

which specify orderings R,O and R,O9, respectively. Then, it follows that

R,O v R,O9 f GPNF~R,O! # GPNF~R,O9!.

The proof is omitted. It is a trivial consequence of the definitions.
Now, all notions are available to define valid NR/T-nets:

Definition 4.8 (Valid NR/T-Net). Let NRT 5 (NN, P, AI, TI, M0) be a
nested-relation/transition-net such that NN 5 (w, N) is an NR-net, w 5
(U, T, I, dom), and N 5 (PL, TR, F).
NRT is called a valid NR/T-net if the following three conditions hold:

(1) For each place R and for all pairs of incoming arcs (tr1, R), (tr2, R) [
F, AI(tr1, R) 5 (t1, O1) and AI(tr2, R) 5 (t2, O2) f O1 5 O2. In this
case we have the following definition: if R has at least one incoming arc
then let O be the unique ordering of the term AI(tr, R) 5 (t, O)
assigned to any incoming arc (tr, R). In this case we say O is the
ordering of R, abbreviated as o(R). Otherwise, if R has no incoming arc,
we define o(R) as the most restrictive ordering such that M0(R) [
GPNF(R,o(R)) (this ordering is unique!).

(2) Assume that (1) holds, i.e., each place R is assigned a unique ordering
o(R). Then, we require that M0 is a valid marking, i.e., for each place
R: M0(R) [GPNF(R,o(R)).

(3) Assume that (1) holds. Then, we require for each place R and for each
labeled term (t,O) assigned to an outgoing arc (R, tr) [F (i.e., AI(R,
tr) 5 (t, O)):

R,o~R! v R,O .

The first two restrictions are very natural. One may ask whether the
third restriction, which obviously restricts the flexibility of the design of
NR/T-nets, is a severe one. This is discussed in the next example.

Example 4.9. (1) We regard the transition depicted in Figure 8. Obvi-
ously, condition (1) is satisfied because each place has at most one incoming
arc. Now consider the places PROJECT-PROPOSAL, DEPARTMENT, and
PROJ-DEP.
The place PROJECT-PROPOSAL has no incoming arc, and we assume the

most restrictive ordering for this place, such that the PROJECT-PROPOSAL
instance of Figure 7 is in GPNF. This holds for the object order. Thus, each
composite attribute must be a containment attribute. DEPARTMENT has
one incoming arc. The ordering of DEPARTMENT is also the object order,
because in the respective Filter Table of the incoming arc all attributes are
specified as containment attributes. The same argument holds for PROJ-
DEP. It is easy to see that the instances of Figure 7 are PNF instances.
Thus they are GPNF instances with respect to these orderings. As the
object order is the most restrictive ordering, all places satisfy condition (3).

408 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(2) We give another example to motivate condition (3) in Definition 4.8.
We regard the CAR example shown in Example 3.1.2 (Figure 9(a)), and we
assume that tuples are inserted into this instance by the Filter Table
(Figure 9(b)).
In this case EQUIPMENT is an equality attribute because of Definition 4.8

(1). Now it is not allowed to specify the selection of tuples by an outgoing
arc in the following way:

This Filter Table violates condition (3) in Definition 4.8 because the
ordering of the incoming arc in Figure 9(b) is less restrictive than the
ordering of the outgoing arc. This may cause ambiguities. If, for example, C
is instantiated by the value “Mercedes 230E” there are two possible choices
to delete the specified tuple.
Hence, we must postulate that a whole tuple must be specified and

deleted, i.e., the corresponding EQUIPMENT term must be a closed term. A
unique selection can be achieved in the following way, where a whole tuple
is deleted:

Fig. 9. (a) A CAR instance; (b) incoming arc.

Behavior Specification by High-Level Petri Nets • 409

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

This kind of ordering is enforced by Definition 4.8 (3), which thus can be
summarized as follows for places with at least one incoming arc:

—If a term in the Filter Table of the incoming arc is a closed term, then the
corresponding term in the Filter Table of each outgoing arc must also be a
closed term!

In the subsequent definitions, the semantics of NR/T-nets is formally
specified. At first we define the truth value of logical formulas that are
inscribed to transitions. This is almost standard.

Definition 4.10 (Evaluation of Logical Formulae). The truth value
TVQ(f) of a logical formula f with respect to an instantiation Q is
recursively defined as follows:

TVQLF 3 {true, false} where
TVQ(true) 5 true,
TVQ(p(v1, . . . , vn)) 5 true iff (Q(v1), . . . ,Q(vn)) [I(p),
TVQ(f1 ∧ f2) 5 true iff TVQ(f1) 5 true and TVQ(f2) 5 true,
TVQ(f1 ∨ f2) 5 true iff TVQ(f1) 5 true or TVQ(f2) 5 true,
TVQ(¬f1) 5 true iff TVQ(f1) 5 false.

We now give the formal definition for a transition to be enabled. We use
the following notation: the set {s [PL u(s, tr) [F} of input places of a
transition tr is denoted as ztr; the set {s [PL u(tr, s) [F} of output places
of a transition tr is denoted as tr z.

Definition 4.11 (Enabled Transition). Let NRT 5 (NN, P, AI, TI, M0)
be an NR/T-net such that NN 5 (w, N) is an NR-net, w 5 (U, T, I, dom),
and N 5 (PL, TR, F). Let tr be a transition and Q an instantiation of all
variables in the environment of tr and M a valid marking. Q is assumed to
be valid for all labeled terms in the environment of tr with respect to their
orderings.
The transition tr is enabled w.r.t. Q and the marking M if the following

conditions hold:

(1) R [ztr: If AI(R,tr) 5 (t, O) then tQR,O M(R).
(2) R [tr z: If AI(tr, R) 5 (t, O) then tQ ùR,O M(R) Þ tQ.
(3) TVQ(TI(tr)Q) 5 true.

The first condition says that the instantiated term tQ of an incoming arc
must be completely contained in the instance M(R) of the adjacent place R.
Due to the second condition, it is required that the term tQ of an outgoing

410 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

arc not be contained in the instance M(R) of the adjacent place, and the
last condition says that the transition inscription evaluates to true.
If a transition is enabled it can occur. The effects of a transition

occurrence are described in the next definition.

Definition 4.12 (Transition Occurrence). Let NRT 5 (NN, P, AI, TI,
M0) be an NR/T-net such that NN 5 (w, N) is an NR-net, w 5 (U, T, I,
dom), and N 5 (PL, TR, F). Let tr be a transition and Q a valid
instantiation of all variables in the environment of tr and M a valid
marking. Let tr be enabled w.r.t. Q and M.
Then, the occurrence of tr is defined by (1)–(3). It implies that the

marking M is changed in one indivisible step to a new marking M9 as
follows:

(1) R [PL\(tr zø ztr): M9(R) 5 M(R),
(2) R [ztr: If AI(R,tr) 5 (t, O) then M9(R) 5 M(R) ùR,O NegR,O(tQ),
(3) R [tr z: If AI(tr,R) 5 (t, O) then M9(R) 5 M(R) øR,O tQ.

Note that the lattice operations described in Section 3 are essential in
this definition. In (1), all instances being not adjacent to the transition
remain unchanged. In (2) and (3), all Filter Tables of the incoming arcs
cause a delete operation in the respective instances, and, vice versa, the
Filter Tables of the outgoing arcs cause an insertion into the instances
being adjacent to these arcs.
Furthermore, if the marking M is valid, i.e., each instance assigned to a

place R is a GPNF instance with respect to o(R), then the same holds for
the new marking M9. This is due to Proposition 4.7, Definition 4.8 (c), and
to the definition of the lattice operations ùR,O and øR,O.
Now we are going to complete the running example. The next example

shows a valid NR/T-net corresponding to the main part of the NR-net in
Figure 5.

Example 4.13 (The Running Example). Starting with a certain marking,
the occurrences of transitions may generate marking sequences. We now
explain one possible marking sequence for the NR/T-net given in Figure 10.
For the initial marking M0 given in Figure 7 (the markings of PROJ-DEP
and PROJ-EMP are empty instances), the transition Find-department-with-
required-equipment is enabled for the project-proposal p12 and department
d1. Variable P is instantiated with p12, and D with d1. Both occurrences of
variable E are instantiated with the set {e2, e5} to express that the
required equipment is a subset of the available equipment in the depart-
ment d1.
The Filter Table assigned to the arc leading from the place PROJECT-

PROPOSAL to the transition Find-department-with-required-equipment only
contains closed terms. Hence, the whole tuple is removed from the instance
in place PROJECT-PROPOSAL when the transition occurs. The variables in
the Filter Table of the other incoming arc are instantiated with the values
d1, {1, 3, 5, 11}, {e2, e5}, {p11, p33}, respectively. Only the EQUIPMENT set

Behavior Specification by High-Level Petri Nets • 411

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

{e2, e5} is deleted (because of the ordering specified by the Filter Table).
Due to the outgoing arc two things happen simultaneously when the
transition occurs. The EQUIPMENT set {e2, e5} is reinserted into the
DEPARTMENT instance, and the new PRO# is also inserted into the
DEPARTMENT instance. Furthermore, the tuple shown in Figure 11 is
inserted into the instance of the place PROJ-DEP. Note that all changes
related to the transition Find-department-with-required-equipment are done
in one indivisible step.
The occurrence of transition Find-department-with-required-equipment in

marking M0 leads to a new marking M1. The instance of the place
PROJ-DEP is shown in Figure 11.

Fig. 10. Example NR/T-net (without initial marking).

412 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Now regard the transition Assign-employees-to-project. For the new
marking M1 this transition is enabled for the given tuple in PROJ-DEP and
an employee (tuple of the EMPLOYEE instance) who has (at least) the skills
of one of the required project members. This implies that the employee’s set
of skills must contain either the set {s1, s3, s4} or the set {s1, s2, s3}.
Furthermore, these employees must have the status 0 (i.e., they are not yet
involved in any project). Only employees 1 and 3 satisfy these conditions.
Hence, possible instantiations for variable E are 1 or 3.
Let us assume that Assign-employee-to-project first occurs for employee

1 with respect to the first required project member. This means the
variables are instantiated as follows: Q(P) 5 p12, Q(D) 5 d1, Q(E) 5 1,
Q(PM) 5 1, Q(S) 5 {s1, s3, s4}, Q(SK) 5 {s1, s2, s3, s4, s5}, Q(ST) 5 0,
Q(ST9) 5 1. Then the transition occurs, and (among others) the value 1 and
the tuple (1, {s1, s3, s4}) are deleted from the DEP-PERS value and the
PP-MEMBERS value of the PROJ-DEP instance, respectively. The specified
EMPLOYEE tuple is deleted as a whole from the EMPLOYEE instance. The
tuple (p12, {1}) is inserted into the PROJ-EMP instance, and the EMPLOYEE
tuple is reinserted into the EMPLOYEE instance with the new status ST9 5 1.
Assign-employee-to-project then occurs in a very similar way for em-

ployee 3 with respect to the second required project member. The resulting
marking M2 of the instances PROJ-DEP and PROJ-EMP is shown in Figure
12.
For the marking M2, the transition Initiate-project is enabled if the

variables are instantiated as follows: Q(P) 5 p12, Q(D) 5 d1, Q(DP) 5 {5,
11}, and Q(PE) 5 {1, 3}. According to the Filter Table assigned to the arc
between PROJ-DEP and Initiate-Project, the value of PP-MEMBERS of the
selected tuple in PROJ-DEP must be the empty set, which is actually true
for M2. This means that each required project member in the former project
proposal has been “matched” with an employee in the selected department
d1.
When Initiate-Project occurs, the selected tuples are removed from PROJ-

DEP and PROJ-EMP, and the new tuple (p12, d1, {1, 3}) is inserted into
RUNNING-PROJECT. This yields the marking M3 of place RUNNING-
PROJECT shown in Figure 13.
To conclude this chapter we discuss the major properties of our approach.

—NR/T-nets are a proper extension of Pr/T-nets, because for first-normal
form relations each NR/T-net can be represented by an equivalent

Fig. 11. Marking M1 of place PROJ-DEP.

Behavior Specification by High-Level Petri Nets • 413

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Pr/T-net. For 1NF relations, only whole tuples are deleted and inserted
from/into an instance, and each transition is only inscribed with formulae
not containing set operators and set terms. NR/T-nets have a formal
semantics. The most subtle point is the formal definition of insert and
delete operations by means of different lattices and partial orders. This is
also an extension of Pr/T-nets, because for Pr/T-nets the corresponding
operations can be expressed by union, intersection, and complement
operations of a Boolean set lattice.

— NR/T-nets are easy to understand. This is our personal opinion and
must be viewed relative to the complexity of nested relational structures.
For example, algebraic query languages for nested relations are more
complicated (and less expressive) than our Filter Table notation.

—NR/T-nets are very expressive because of the following three reasons.
(This article is not intended to characterize the expressive power in
detail, but the reader may have got an impression by the last example.)
(1) In the net formalism it is possible to specify sequential, alternative,

and concurrent state transitions.
(2) NR/T-nets allow one to specify arbitrary (sub-) structures of nested

instances. It is possible to delete and to insert these structures
from/into instances, respectively.

Fig. 12. Marking M2 of places PROJ-DEP and PROJ-EMP.

Fig. 13. Marking M3 of place RUNNING-PROJECT.

414 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(3) They allow one to specify complex selection conditions as set member-
ship, set equality, subset, etc. These conditions can be expressed by
the Filter Table formalism and, on the other hand, by transition
inscriptions.

5. RELATED APPROACHES

We have presented a novel approach to describe structural as well as
behavioral aspects of information systems within one approach, the so-
called NR/T-nets. The major contribution is the formal definition of insert
and delete operations for nested relations and of valid NR/T-nets and their
transition occurrences.
In the original definition of predicate/transition nets [Genrich and Laut-

enbach 1981], places represent normalized relation schemes (i.e., schemes
with simple attributes only). Some approaches also allow set-, list-, or
tuple-valued attributes in the marking of places [Heuser and Richter 1992;
Horndasch et al. 1985; Oberweis 1988; Richter and Durchholz 1982]. In
these approaches, it is only possible to access whole tuples in the environ-
ment of a transition, i.e., to delete whole tuples and to insert whole tuples.
Direct access to substructures is not supported. Our direct access to
substructures could be simulated, e.g., by first removing a tuple from a
place, then manipulating the respective substructure, and finally inserting
the whole tuple back into its original place. Note that in this case concur-
rency is unnecessarily restricted, since no two transitions can access the
same tuple at the “same time,” whereas in our novel approach it is possible
for different transitions to access different (disjoint) subtuples of the same
tuple in one step.
In the literature, several inscription languages were introduced for

places, arcs, and transitions in high-level Petri nets. Some of these lan-
guages are

—database language oriented [Horndasch et al. 1985; Richter and Durch-
holz 1992; Sibertin-Blanc 1986],

—logic oriented [Genrich and Lautenbach 1981],
—algebraic [Battiston et al. 1988; Billington 1989; Krämer 1987; Reisig
1991],

—programming language oriented [Albert et al. 1989; Baldassari and
Bruno 1988].

For many of these languages a formal semantics has not been provided,
and—in contrast to our Filter Table formalism—none of them matches all
of the properties discussed at the end of Section 4.
Our concept of Filter Tables has been influenced by Zloof [1982] and Luo

and Yao [1981] where similar concepts are used to model office procedures.
Office-By-Example [Zloof 1982] is an extension of Query-By-Example [Zloof
1975] to describe simple structured office procedures consisting of opera-
tions on normalized relations only. Form-Operation-By-Example (FOBE)
[Luo and Yao 1981] also allows one to compose programs from single

Behavior Specification by High-Level Petri Nets • 415

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

database queries, which are specified in a Query-By-Example-like manner.
FOBE additionally supports nested relations, which are typical for office
documents. In contrast to our approach, FOBE is not based on different
partial orders. The last point makes it less expressive than our Filter
Tables. In the graphical formalism, FOBE only provides existentially
quantified access to nested sets, and it is impossible to specify set equality
or a subset relationship.
In both approaches the provided control structures are too restrictive to

model complex procedures adequately.

6. CONCLUSIONS AND FUTURE RESEARCH

Our major intention of this research project was to provide a formal
executable database model that includes database behavior. This is the
basis for, e.g., verification of system specification, code generation, reach-
ability analysis, and parallel execution of database operations.
Another important feature is the simulation of processes in a database

environment. Simulation with an NR/T-net can be done by repeating the
following two steps. For a given marking the simulator computes all
enabled transitions. Then a subset of the enabled transitions is selected to
occur in one step. The selection of transitions to occur may be done
automatically (according to a certain occurrence policy, e.g., always fire a
maximal subset of enabled transitions) or manually. Currently an existing
simulator for predicate/transition nets [Mochel et al. 1993; Oberweis 1988]
is adapted to NR/T-Nets.
Furthermore, the concept of NR/T-nets is being integrated into an

existing methodology for information system design based on Petri nets
and semantic data modeling. This methodology is supported by an existing
development tool, INCOME [Lausen et al. 1989; Oberweis et al. 1994]
which provides graphical editors, dictionary support, generators, and pro-
totyping facilities. Based on INCOME, the NR/T-net concept is to be
validated in practical case studies.
There are also some open questions:

—Questions related to available analysis techniques for NR/T-nets have
not been addressed in this article. For several kinds of high-level Petri
nets, methods for computing invariants [Jensen and Rozenberg 1991]
have been proposed as the basis for formal analysis, e.g., deadlock
analysis and reachability analysis. These results can be transferred to
NR/T-nets by defining a homomorphism between both types of net.

—The expressive power of Filter Tables should be investigated in detail. In
Sander [1992; 1993] it was shown that most algebraic operations for
nested relations (known from the literature) can be expressed easily in a
similar (rule-based) formalism. These results also apply to NR/T-nets.

—NR/T-nets can be extended by assigning a nonempty set of Filter Tables
to each arc and not only a single one. This makes it possible to access the
instance of a place by different Filter Tables (possibly with different

416 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

orderings) in one step. The problem is that these Filter Tables may be
conflicting in the sense that they can access overlapping (sub-) tuples of
an instance. It is an interesting task to look for an appropriate notion of
serializability in order to exclude these conflicts.

—For practical applications additional high-level constructs for, e.g., start-
ing, stopping, and interrupting activities and processes can be included
into the language. Furthermore, an application-oriented role concept can
be integrated into NR/T-nets. These extensions already exist in other
Petri net-based languages and should be part of the development tool’s
user interface.

APPENDIX

List of Symbols

AI function that assigns a Filter Table to each arcs of an
NR/T-net

dom mapping from Usimple into I
d1, d2, . . . domains

I set of domains
D database scheme
w signature of a nested-relation-net
F flow relation of a net, F # (PL 3 TR) ø (TR 3 PL)

GPNF(R,O) set of all GPNF instances over scheme R w.r.t. O
Q instantiation

Ins(R) set of all instances over scheme R
LF set of possible logical formulas over a set of predicate

symbols P
LT(R) set of labeled terms (Filter Tables) of type R
LR,O lattice of GPNF instances over scheme R

M marking (of an NR/T-net)
M0 initial marking
N net

NN nested-relation-net
NRT nested-relation/transition-net (NR/T-net)

NegR,O(r) negative of an instance r
O order definition

o(R) ordering of a place R in an NR/T-net
PL finite set of places of a net

PNF(R) set of PNF instances over scheme R
r, r1, r2, . . . top-level instances

R, R1, R2, . . . scheme and composite attribute names, places in an
NR/T-net

ztr input places of a transition tr
tr z output places of a transition tr
T set of scheme equations

Behavior Specification by High-Level Petri Nets • 417

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

TI function that assigns a logical formula to each
transition of a NR/T-net

TR finite set of transitions
t term

TVQ function that assigns a truth value to each logical
formula

U universe
Usimple set of simple attributes of U

Var nonempty set of variables
inclusion order
object order

R ordering for instances of type R in an order definition
O

øR,O union (least upper bound) in the set GPNF(R,O)
ùR,O intersection (greatest lower bound) in the set

GPNF(R,O)
v relation between orderings to compare their

restrictiveness
0R,O least GPNF instance w.r.t. the scheme R and order

definition O
1R,O greatest GPNF instance w.r.t. the scheme R and order

definition O

ACKNOWLEDGMENT

We wish to thank Wolffried Stucky, Wolfgang Weitz, and the anonymous
referees for many useful suggestions helping us to improve the quality of
the article.

REFERENCES

ABITEBOUL, S. AND BIDOIT, N. 1986. Non first normal form relations: An algebra allowing
data restructuring. J. Comput. Syst. Sci. 33, 361–393.

ALBERT, K., JENSEN, K., AND SHAPIRO, R. 1989. DESIGN/CPN. A tool package supporting the
use of colored Petri nets. GI Petri Net Newslett. 32, 22–26.

BALDASSARI, M. AND BRUNO, G. 1988. An environment for object-oriented conceptual pro-
gramming based on PROT nets. In Advances in Petri Nets 1988, G. Rozenberg, Ed. Lecture
Notes in Computer Science, vol. 340, Springer-Verlag, Berlin, 1–19.

BANCILHON, F. AND KOSHAFIAN, S. 1989. A calculus for complex objects. J. Comput. Syst. Sci.
38, 326–340.

BARRON, J. 1982. Dialogue and process design for interactive information systems using Taxis.
In Proceedings of the SIGOA Conference on Office Information Systems. ACM, New York, 12–20.

BATTISTON, E., DE CINDIO, F., AND MAURI, G. 1988. OJBSA Nets: A class of high level nets
having objects as domains. In Advances in Petri Nets 1988, G. Rozenberg, Ed. Lecture Notes
in Computer Science, vol. 340. Springer-Verlag, Berlin, 20–43.

BEERI, C. AND KORNATZKY, Y. 1990. The many faces of query monotonicity. In the Interna-
tional Conference on Extending Database Technology. Lecture Notes in Computer Science,
vol. 416. Springer-Verlag, Berlin, 120–135.

BILLINGTON, J. 1989. Mony-sorted high level nets. In Proceedings of the 3rd Workshop on
Petri Nets and Performance Models. IEEE, New York, 166–179.

418 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

BIRKHOFF, G. 1973. Lattice Theory. 3rd ed. AMS Colloquium Publication, vol. 25. AMS,
Providence, R.I.

BRODIE, M. L., MYLOPOULOS, J., AND SCHMIDT, J. W., Eds. 1984. On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases and Programming Languages. Springer-
Verlag, Berlin.

BRAUER, W., REISIG, W., AND ROZENBERG, G., Eds. 1987. Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986. Part I. Lecture Notes in Computer Science,
vol. 254. Springer-Verlag, Berlin.

CODD, E. F. 1970. A relational model for large shared data banks. Commun. ACM 13, 6,
377–387.

GENRICH, H. J. AND LAUTENBACH, K. 1981. System modelling with high level Petri Nets.
Theor. Comput. Sci. 13, 109–136.

HEUSER, C. A. AND RICHTER, G. 1992. Constructs for modeling information systems with
Petri Nets. In Application and Theory of Petri Nets 1992, K. Jensen, Ed. Lecture Notes in
Computer Science, vol. 616. Springer-Verlag, Berlin, 224–243.

HORNDASCH, A., STUDER, R., AND YASDI, R. 1985. An approach to (office) information systems
design based on general net theory. In Proceedings of the IFIP TC8.1 TFAIS85 Conference.
North-Holland, Amsterdam.

JENSEN, K. 1991. Coloured Petri Nets: A high level language for system design and
analysis. In Advances in Petri Nets 1990, G. Rozenberg, Ed. Lecture Notes in Computer
Science, vol. 483. Springer-Verlag, Berlin, 342–416.

JENSEN, K. AND ROZENBERG, G., Eds. 1991. High Level Petri Nets. Springer-Verlag, Berlin.
KRÄMER, B. 1989. Concepts, syntax, and semantics of SEGRAS. A specification language for
distributed systems. GMD-Bericht. Nr. 179, R. Oldenbourg Verlag, München, Wien.

LAUSEN, G., NEMETH, T., OBERWEIS, A., SCHÖNTHALER, F., AND STUCKY, W. 1989. The IN-
COME approach for conceptual modelling and prototyping of information systems. In
Proceedings of CASE ’89. The 1st Nordic Conference on Advanced Systems Engineering.

LUO, D. AND YAO, S. B. 1981. Form operation by example—A language for office information
processing. In Proceedings of the International Conference on Management of Data (ACM-
SIGMOD), Y. E. Lien, Ed. ACM, New York, 212–223.

MAKINOUCHI, A. 1977. A consideration on normal form of not-necessarily-normalized-rela-
tion in the relational data model. In Proceedings of the International Conference on Very
Large Databases. VLDB Endowment Press, Saratoga, Calif., 447–453.

MOCHEL, T., OBERWEIS, A., AND SÄNGER, B. 1993. INCOME/STAR: The Petri Net simulation
concepts: Systems analysis—modelling—simulation. J. Model. Simul. Syst. Anal. 13, 21–36.

OBERWEIS, A. 1988. Checking database integrity constraints while simulating information
system behaviour. In Proceedings of the 9th European Workshop on Application and Theory
of Petri Nets. 299–308.

OBERWEIS, A., SCHERRER, G., AND STUCKY, W. 1994. INCOME/STAR: Methodology and tools
for the development of distributed information systems. Inf. Syst. 19, 8, 643–660.

PECKHAM, J. AND MARYANSKI, F. 1988. Semantic data models. ACM Comput. Surv. 20, 3
(Sept.), 153–189.

PETERSON, J. L. 1981. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engle-
wood Cliffs, N.J.

REISIG, W. 1985. Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4.
Springer-Verlag, Berlin.

REISIG, W. 1991. Petri nets and algebraic specifications. Theor. Comput. Sci. 80, 1–34.
RICHTER, G. AND DURCHHOLZ, R. 1982. IML inscribed high level Petri Nets. In Information
Systems Design Methodologies: A Comparative Review, T. W. Olle, H. G. Sol, and A. A.
Verrijin-Stuart, Eds. North-Holland, Amsterdam, 335–368.

ROTH, M., KORTH, H., AND SILBERSCHATZ, A. 1988. Extended algebra and calculus for nested
relational databases. ACM Trans. Database Syst. 13, 4, 389–417.

SANDER, P. 1992. Boolean lattices of nested relations as a foundation for rule-based data-
base languages. Data Knowl. Eng. 8, 2, 93–130.

SANDER, P. 1993. An order-based rule language for nested relations. Ph.D. dissertation,
Univ. Karlsruhe, Karlsruhe, Germany. In German.

Behavior Specification by High-Level Petri Nets • 419

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

SCHEK, H.-J. AND SCHOLL, M. H. 1986. The relational model with relation-valued attributes.
Inf. Syst. 11, 2, 137–147.

SIBERTIN-BLANC, C. 1986. High level Petri Nets with data structure. In Proceedings of the
6th Workshop on Petri Nets.

THOMAS, S. AND FISCHER, P. C. 1986. Nested relational structures. In Advances in Computing
Research III, The Theory of Databases, P. Kanellakis, Ed. JAI Press, Greenwich, Conn., 269–307.

ZISMAN, M. D. 1977. Representation, specification and automation of office procedures.
Ph.D. dissertation, Univ. of Pennsylvania, Wharton School of Business, Philadelphia, Pa.

ZLOOF, M. M. 1975. Query-By-Example: The invocation and definition of table and forms. In
Proceedings of the International Conference on Very Large Data Bases, D. S. Kerr, Ed. VLDB
Endowment Press, Saratoga, Calif., 1–24.

ZLOOF, M. M. 1982. Office-By-Example: A business language that unifies data and word
processing and electronic mail. IBM Syst. J. 21, 3, 272–304.

Received December 1992; revised August 1994; accepted July 1995

420 • Andreas Oberweis and Peter Sander

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

