
Verification of FLASH Cache Coherence Protocol

By Aggregation of Distributed Transactions *

Seungjoon Park David L. Dill
Computer Systems Laboratory

Stanford University

park@ turnip. stanf ord. edu dill@cs. stanford. edu

Abstract

To verify cache coherence protocols for distributed multi-
processor architectures, we compare a state graph of the

implementation with a specification which is a state graph
representing the simplified behavior. The steps in the spec-

ification correspond to atomic transactions, which are not
atomic in the implementation. The method relies on an

abstraction function which aggregates the implementation
steps of each transaction into a single atomic transaction in
the specification. The key idea in defining the abstraction

function is that it must complete transactions which have

committed but are not finished.
This approach is applied to verification of the cache co-

herence protocol in the FLASH multiprocessor system. We
illustrate how to determine an abstraction function which re-

duces the protocol to an atomic specification. The protocol
consisting of more than a hundred implementation steps has

been reduced into sixkinds ofatomic transactions. Basedon
the reduced behavior, it is very easy to prove crucial prop-

erties of the protocol including data consistency of cached
copies at the user level. Moreover, the reduced model allows

us to write a simple executable memory model of the pro-

tocol. The aggregation method is also used to prove that

the reduced protocol satisfies a desired memory consistency
model.

1 Introduction

In shared-memory multiprocessor architectures, cache co-

herence protocols maintain consistency of multiple copies

of cached data. The protocols control a number of readable

and writ able copies of each memory line for multiprocessors.

Modification of one copy of a datum may require updating

of other copies to maintain consistency among them. Sev-

eral coherence protocols have been proposed for distributed

multiprocessor architectures but few are formally verified [1,

15, 2, lo].

* Thm research was supported by the Advanced Research Projects
A&ency through NASA grant NAG-2-891.

Permission to make dlgitai/bard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
a,re not made or distributed for profit or commercial advantsge, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of fie ACM, Inc. To copy otherwise,
to republish, to peat on servers or to rxA#ribute to lists, requires specific

permission and/or fee.

SPAA’96, Padua, Italy
01996 ACM 0-89791-809-6/96/06 ..$3.50

Formrd verification is desirable because there could be
subtle bugs as the complexity of protocols increases. Al-

though finite-state methods (e.g. [3, 5]) can solve many ver-
ification problems with little effort, the y are basically limited
to finite-state urotocols. The finite-state techniques we have.
applied do not scale especially well for the implementation-
detailed cache coherence protocols. For example, Murp ver-

ifier can barely handle the protocols with 3 processors and
2 memory lines, using 100 megabytes of memory in the pro-

cess.
Symbolic state models proposed by Pong and Dubois [14]

use symbolic stat es which abstract away from exact num-
ber of configurations of replicated identical components by

recording only whether there are zero, one, or more than
zero replicated components. However, there still remains a

specification problem of the protocol as in model checking:
It is not easy to find a set of properties, say in temporal logic

or in their notation, which completely describes the correct
behavior of the protocols. Moreover, their method requires

the user to write an abstract description of the protocol to be
verified. which raises another verification uroblem that the

abstract description and the act ual protocol are equivalent.
Finite-state methods have been applied to non-finite-

state systems in various ways, but these techniques typi-
cally require substantial pencil-and-paper reasoning to jus-
tify. Theorem-provers make sure that such manual reason-
ing is indeed correct, in addition to making available the full

power of formal mathematics for proof, so they can routinely
deal with problems that cannot yet be solved by any finite-

state methods. However, the major problem with theorem
proving is that considerable labor is required. Consequently,

previous theorem proving approaches have not been able to
verify a problem of the scale of a full multiprocessor cache

coherence protocol.
We have recently developed a method for simplifying

automatic proofs of cache coherence protocols and similar
distributed algorithms using “aggregation” [13]. Using this

method, we have formally verified the cache coherence pro-

tocol of the FLASH multiprocessor at the level of its formal

description [8, 7]. The protocol consisting of more than a

hundred different implementation steps has been reduced

to a model with only six kinds of atomic transactions. It

is much easier to prove important properties of the reduced

model, such as the consistency of data at the user level, than

the original protocol description, This paper overviews the

general method and its application to the FLASH protocol.

Protocols for distributed systems often simulate atomic

transactions in environments where atomic implementations

are impossible. We believe that this observation can be

288

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237502.237573&domain=pdf&date_stamp=1996-06-24

exploited to make formal verification of protocols and dis-

tributed algorithms using a theorem-prover much easier than

it would otherwise be.

The method proves that an implementation state graph
is consistent with an specification state graph that captures
the ideal abstract behavior of the protocol, in which each

transaction appears to be atomic. The method involves

constructirw an abstraction function which mam the dis-

tributed steps of each transaction to the atomic transaction

in the specification. We call this aggregation, because the ab-

straction function reassembles the distributed transactions

into atomic transactions.’

This method addresses the primary difficulty with using
theorem proving for verification of real systems, which is

the amount of human effort required to complete a proof, by
making it easier to create appropriate abstraction functions.

Although our work is based on using the PVS theorem-

prover from SRI International [11], the method is equally

appropriate for other theorem-pro~ing sYstems.
For our method to be applicable, the description must

have an identifiable set of trarwactzons. Each transaction
must have a unique commit step, at which a state change
first becomes visible to the specification. Usually, a commit
steD corresponds to the transition which first modifies one. .
of the distributed copies, resulting in a temporarily incon-
sistent state. Once a part of distributed data is modified,
the nodes that are concerned with the change should wait
for the steps which restores the data consistency. The pro-

tocol consists of a set of rules which cooperate to maintain
consistency of data in distributed nodes.

The most important idea in the method is that the ab-

straction function can be defined by completing transactions
that have committed but not yet completed. In our expe-

rience, this guideline greatly simplifies the definition of an
appropriate e abstraction function.

The same idea of aggregating transactions can be ap-
plied to reverse-engineer a specification where none exists,
because the specification with atomic transactions is usually
consistent with the intuition of the system designer. We con-

struct a reduced model which performs transactions atomi-
cally at their commit stem in the imdement ation, and does

“ .

nothing at other steps. The reduced model may aggregate

distributed steps for each transaction so that it can provide

an illusion that the transaction takes effect instantaneously

at the commit step in the implementation.

If the reduced model is not considered as a complete

specification, or is not obviously correct, it can instead be

regarded as a model of the protocol with an enormously re-

duced number of states. The amount of reduction is much

more than other reduction methods used in model checking,

such as partial order reduction, mainly because the reduced

system is based on the only state variables relevant to the

specification, wit bout variables such as local states and com-

munications buffers.

This method has been successfully applied to verifica-
tion of the FLASH protocol. In this paper, we illustrate
how the protocol is reduced to an atomic model by an ab-
straction function. Based on the reduced atomic behavior,
it is very easy to reason about the protocol: checking safety

properties and data consistency of cached copies. Moreover,
the reduced model allows us to write a simrde executable

memory model supported by the protocol. ~he executable
description is automatically able to generate all the possible
outcomes of test programs for each mode that the FLASH
protocol supports. The aggregation method can also be used

to verify that the reduced protocol satisfies a desired mem-

ory consistency model. The detailed proofs are confirmed
by a theorem prover and some techniques to simplify the

proof are present ed.
This paper is organized as follows. Section 2 overviews

the verification procedure. Section 3 presents an informal
description of the FLASH protocol. Section 4 illustrates how

we construct a reduced model and determine an abstraction
function for the rxoof. Section 5 moves that a sDecific mode.
of the protocol implements a sequential consistency mem-

ory model. Section 6 shows an executable description of
the memory models based on the reduced behavior of the
protocol.

2 The Verification Method

The verification method begins with a logical description in

higher-order logic of the state graph of the implementation

of a distributed computation, and a logical description of
the state graph of the specification. The implementation

description contains a set of state variabtes, which are parti-
tioned into specification variables and ~rnplementatton vari-
ables. The set of states of the implementation, Q, is the set
of assismments of values to state variables. The description

of the implementation also includes a logical formnla defin-
ing the relation bet ween a state and its possible successors.
The relation is represented by a set of functions 7, each of
which maps a given implementation state to its next state.

The implementation is nondeterministic if this set has more
than one function.

The description of the specification state graph is sim-

ilar, The specification states are assignments of values to
the specification varzables of the implementation (implemen-

tation variables do not appear in the specification). Also,

every state in the specification has a transition to itself. We

call these idle transitions. The idle transitions are neces-

sary for following implementation steps that do not change
specification variables. We adopt the convention that com-

ponents of the specification are primed, so the set of states
of the specification is Q’, the set of functions is F’, etc.

The verification method is based on the usual notion
of an abstraction function, which we call abs, which maps

implementation states to specification states and which sat-
isfies a commutativity property

Vq~Q VNEF 3N’ E&:

abs(N(g)) = N’(abs(g)). (1)

The most interesting part of the method is how this abstrac-
tion function is defined.

The method relies on the notion that there is a set of

transactions which the computation is supposed to imple-
ment, which are atomic at the specification level (meaning

that a transaction occurs during a single state transition

in the specification), but non-atomic at the implementation
level. Indeed, the transactions in the implementation may
involve many steps that are executed in several different

components of the implementation. Formally, the trans-

actions in the specification are the specification transition
functions.

The method requires that each transaction in the im-

plementation have an identifiable commit step. Intuitively,
when tracing through the steps of a transaction, the commit
step is the implementation step that first causes a change
in the specification variables. Implementation states that

occur before the transaction or during the transaction but
before the commit step are called pre-commit states for that

289

transaction. The transaction is cornyiete when the last spec-
ification variable change occurs as part of the transaction.

The states after the commit step but before the comple-
tion of the transaction are called post-commit states for the

transaction. A state where every committed transaction has

completed is called a clean state.

Formally, all of the above concepts can be derived once

the post-commit states areknown for each transaction. The

pre-commit states for the transaction arethe states that are

not post-commit; the commit step for a transaction is the

transition from a pre-commit state to a post-commit state

for that transaction; and the completion step is the tran-

sition from a post-commit state to a pre-commit state. A

state isclean ifit isapre-commit state for every transaction.

An abstraction function consists oftwo parts: acompie-

tion~uraction which changes thestate as though thetransac-

tion had completed, andaprojection which hides theimple-

mentation variables, leaving only the specification variables.

Once a purported abstraction function has been defined,

the user must prove that it meets the commutativity require-

ment (l). Substituting universally quantified variables with

symbolic constants and then case-splitting on the transition

functions generates a finite set ofsubgoals in the form,

(2)

where each NJ is a transition functioning F, andpis atuple

of parameters (perhaps ranging over an unknown number

of components). Given j and P, the user is responsible for

finding a proper transition function N;, c fi’ and F’.

In most cases, the required specification step N;, (~’) is

the idle transition; indeed, the only non-idle transition is
that which corresponds to the commit step in the imple-
mentation. We have no global strategy for proving these
theorems, although most are very simple.

The above discussion omits an important point, which is
that not all states are worthy of consideration. Theorem (1)
will generally not hold for some absurd states that cannot
actually occur during a computation. Hence, it is usually

necessary to provide an invariant predicate, which charac-
terizes a superset of all the reachable states. If the invariant

is lnv, Theorem (1) can then be weakened to

VqEQ VNEF 3N’E F’:

lnv(q) ~ (abs(N(q)) = N’(abs(q))) (3)

(* stands for logical implication.) In other words, abs only
needs to commute when q satisfies the lnv.

Use of an invariant incurs some additional proof obliga-
tions. First, we must prove that the initial states of the
protocol satisfy lnv, and second, that the implementation

transition functions all preserve Jnv.

3 FLASH Cache Coherence Protocol

This section informally describes the cache coherence pro-
tocol used in the Stanford FLASH multiprocessor [8, 7].

The cache coherence protocol is directory-based so that it
can support a large number of distributed processing nodes.
Each cache line-sized block in memory is associated with
directory header which keeps information about the line.

For a memory line, the node on which that piece of mem-

ory is physicaUy located is called home: the other nodes
are called remote. The home maintains all the information
about memory lines in its main memory in the correspond-
ing directory headers.

The system consists of a set of nodes, each of which con-
tains a processor, caches, and a portion of global memory of

the system. The distributed nodes communicate using asyn-
chronous messages through a point-to-point network. The

state of a cached copy is in either invalid, shared (readable),
or exclusive (readable and writ able).

If a read miss occurs in a processor, the corresponding
node sends out a GET request to the home (this step is not

necessary if the requesting processor is in the home). Re-
ceiving the GET request, the home consults the direct ory

corresponding to the memory line to decide what action the
home should take. If the line is pending, meaning that sn-
other request is already being processed, the home sends a

NAK (negative acknowledgement) to the requesting node, If

the directory indicates there is a dirty copy in a remote,
then the home forwards the GET to that node. Otherwise,

the home grants the request by sending a PUT to the re-

questing node and updates the directory properly. When

the requesting node receives a PUT reply, which returns the

requested memory line, the processor sets its cache state to

shared and proceeds to read,

For a write miss, the corresponding node sends out a

GETX request to the home. Receiving the GETX request,

the home consults the directory. If the line is pending, the

home sends a NAK to the requesting node. If the directory
indicates there is a dirty copy in a third node, then the
home forwards the GETX to that node. If the directory in-

dicates there are shared copies of the memory line in other
nodes, the home sends invalidations (WV) to those nodes.
At this point, the protocol depends on which of two modes
the multiprocessor is running in: EAGER or DELAYED. If

it is in EAGER, the home grants the request by sending a
PUTX to the requesting node; if it is in DELAYED, this grant
is deferred until all the invalidation acknowledgements are
received by the home. If there are no shared copies, the

home sends a PUTX to the requesting node and updates the
directory properly. When the requesting node receives a

PUTX reply which returns an exclusive copy of the requested
memory line, the processor sets its cache state to ezclusive

and proceeds to write.
Durirw the read miss transaction. an oDeration called.

sharing write-back is necessary in the following “three hop”
case. This occurs when a remote processor in node RI needs

a shared copy of a memory line of which an exclusive copy is
in another remote node R2. When the GET request from RI

arrives at the home H, the home consults the directory to
find that the line is dirty in R2. Then H forwards the GET to
Rz with the source of the message faked as RI instead of H.

When Rz receives the forwarded GET, the processor sets its

copy to shared st at e and issues a PUT to R1. Unfortunately,
the directory in H does not have RI on its sharer list yet

and the main memory does not have an updated copy when
the cached line is in the shared state. The solution is for
Rz to issue a SWB (sharing write-back) conveying the dirty

data to H with the source faked as RI. When H receives
this message, it writes the data back to main memory and
puts RI on the sharer list.

When a remote receives an WV, it invalidates its copy
and then sends an acknowledgement to the home. There
is a subtle case with an invalidation. A processor which is
waiting for a PUT reply may get an mv before it gets the

shared copy of the memory line, which is to be invalidated if
the PUT reply is delayed. In such a case, the requested line

is marked as invalidated, and the PUT reply is ignored when
it arrives.

A valid cache line may be replaced to accommodate other

290

memory lines. A shared copy is replaced by issuing a re-
placement hint to the home. An exclusive copy is written

back to main memory by a WB (write-back) request to the

home. Receiving the WB, the home updates the line in main

memory and the directory properly.

The above description of the protocol traces through in-

dividual transactions. However, the formal description of
the protocol is written for each component, not each trans-

action, to make sure that the description is complete. Ap-
pendix A presents an English version of the formal descrip-
tion of the FLASH protocol in EAGER mode.

4 Verification of the FLASH Protocol

Verification requires two descriptions of same behavior: an
implement ation and a specification. Sometimes, there is an

a priori specification as in the memory model verification

in the next section. However, in most practical inst antes,
there is only an implementation. In such cases, we extract

a reduced model of the implementation using aggregation,

which serves as a specification.

To apply the verification method, we first decide which
state variables should be considered specification variables.

In cache coherence protocols, the consistency of multiple
copies of a memory line is a function of the values and states

of cached copies, and the corresponding value in main mem-
ory. Therefore, the specification variables should be the

state variables representing the data and states of cached
copies and the data in main memory.

4.1 Extracting reduced model of the protocol

We construct a reduced model of the protocol, which we
use for a specification. The reduced model is a much sim-

pler version of the protocol which reads and writes only the
specification variables. The specification steps update the

values and states of cached copies in multiple nodes atomi-
cally.

Constructing a reduced model can be done by tracing
through a transaction: 1) concatenating the implementation
steps, 2) simplifying by substituting values forward through
intermediate assignments, 3) eliminating statements that

only change implement ation variables.
The reduced model of the protocol obtained by the above

procedure is shown in Table 1. Atom- WB invalidates an ex-
clusive copy and writes back the data to main memory atom-

ically. Atom-Invalidate simply invalidates a shared copy.
There are two kinds of transactions for a read miss: Atom-

Get-l corresponds to the transaction that the home grants
a shared copy to the requester when there is no dirty copy

of the memory line; Atom-Get-2 corresponds to the trans-
action that a node with an exclusive copy grants a shared

copy. For the transaction for a write miss, Atom-GetX-l
sends an exclusive copy of a memory line from the home if
there is no other copies in remotes; Atom-GetX-2 transfers
an exclusive ownership from a dirty node to the requester.

4.2 Abstraction function

4.2.1 Commit steps

To define the abstraction function abs, we should first iden-

tify commit steps of each transaction in the protocol. The
transaction for a read miss begins with sending a GET re-
quest to the home. Depending on the directory state of
the memory line, the request may be forwarded to a remote
which contains a dirty copy of the line, These steps do not

modify the specification variables, so they are pre-commit
steps of the transactions. The transaction for a write miss

is similar.

The commit step occurs when the home, or a remote
with an exclusive copy, sends a PUT or PUTX reply, grant-

ing the request. In each case, the state of the cache line or

main memory in the granting node is modified. Any future

request for the memory line is processed as if the committed
reply has been processed by the requesting node, even if that
has not actually happened. For instance, if a GETX request

arrives from RI right after a grant of an exclusive owner-
ship to RZ, the home forwards the GETX to RZ regardless of
whet her the PUTX sent to RZ has arrived there or not. If
a request is NAKed, then there is no change in specification
variables by the transaction, so, in effect, no action occnrs.

The write-back transaction begins with invalidating an
exclusive copy and sending a WB request to the home. This
is the commit step of the transaction because a part of the

specification variables are already updated at this moment
and the write-back request can not be denied by the home.

The invalidation transaction is similar to this case.

4.2.2 Per-node abstraction function

Once a transaction is committed, the abstraction function

abs simulates the post-commit steps of the transaction to
complete it. The post-commit steps in the protocol are the
steps that process a PUT and SWB for the transaction for a
read miss, and that process a PUTX for the transaction for a

write miss, and that process a WB for the write-back transac-

tion. Therefore, to complete all the committed transactions,
the abs should process all the messages of types PUT, PUTX,
WB, and SWB.

The key question is how to complete all committed trans-
actions in the current state, especially since the number
of distributed nodes, and hence the number of committed
transactions, is unknown. The general strategy, which has

worked for other examples as well, is to define a per--node
completion fnnction for a node indexed by an unbounded
variable i; the per-node function is then generalized to de-
fine a completion function for all of the nodes in the system.

It is quite simple to complete a committed transaction
for a particular node. If a PUT message destined for node i
exists, the transaction for a read miss in node i must be com-

pleted by simulating the effect of node z processing the PUT
message it receives at the end of the transaction: putting
the data in the message into its cache and setting the state

to shared. The transaction for a write miss is similarly com-
pleted by processing a PUTX to node i. If node z is the home,
there are two more kinds of messages possibly generated at

commit steps: SWB and WB. Note that there exists at most
one message of the four types destined to a particular node
at any time.

This processing changes values and states of cached copies,
and values in main memory. Changes to implementation
variables, such as removing messages from the network, and

reseting the waiting flag in the processor can be omitted

from the completion function, as they do not affect the cor-
responding specification state. All of this computation is
done solely in node i, without the involvement or interfer-

ence of other nodes.

4.2.3 Global abstraction function

It is easy to generalize the per-node completion function
to a completion function for all of the nodes because the

291

Condition Atomic Transaction

* is an additional constraint for DELAYED mode,

Table 1: Reduced model of the FLASH protocol obtained by aggregation of distributed transactions

completions do not interact. The completion functions are

simply performed in parallel.
Formally, the global implementation state is an array

of node state records, indexed by the node indices. Let
CC(q[z]) be a completion function for node z, which modifies

the state variables for z (in the record q[i]), and returns a
new record of the state variables as modified by the com-

pletion of the transactions. If cc(q[i]) completes committed
transactions on node Z, the completion function for all nodes

is ~q. ~i. cc(q[i]). When this function is supplied a state q, it
returns Ji. cc(q[i]),] which is an array of the completed node

states, i.e., the desired clean global state. The abstraction
function is simply the completion function, followed by a

projection which eliminates all implement ation variables.

4.2.4 Specification steps

The corresponding specification steps are simply idle tran-

sitions for pre-commit steps and post-commit steps. The
only non-idle transitions are those which correspond to the
commit steps of transactions.

Complete assignments of atomic transactions of the re-

duced model to the implementation steps of the protocol are
shown in Table 3 in Appendix B. Each of the assignment
corresponds to a subgoal (2) in section 2. The condition of
an atomic transaction should be true at the corresponding

commit step in the implementation, which is included in the
invariant of the system.

4.3 Invariant

The subgoals corresponding to pre-commit steps are simple
to prove because the specification variables are not modified
at all. PVS can handle them automatically. However, some
of the other subgoals need an invariant about the system, as

discussed in section 2, to satisfy the requirement (2). If an
invariant is inadequate, the proof of the requirement will fail.
Analysis of the failed proof generally provides insight about
additional conditions that should be added to the invariant.

1The notation may be a bit confusing, Ai, cc(q[i]) is a function,
which when applied to a particular value of i, say i., returns Cc(q[io]),
which is the completed state for node i.. This IS effectively the same
as indexing into an array of completed node states

To check those assertions, we write an invariant which

is the logical ‘(and)’ of the assertions, and prove that it is
preserved by every step of the protocol. If the invariant is

not strong enough to be preserved by all the implementation
steps, we need to strengthen it. Although not intellectually

difficult, this was the most time-consuming part of the proof.

The invariant we eventually derived includes the follow-
ing assertions that for each memory line:

●

●

●

●

4.4

Part

there is at most one exclusive copy.

there is at most one message to each node of type PUT,

PUTX, WB, or SWB.

a node is waiting for a PUT reply if there is a GET

request from the node, a PUT reply to the node, or an
invalidation marked.

a node is waiting for a PUTX reply if there is a GETX
request from the node, or a PUTX reply to the node.

Tricks for using theorem prover

of the reason that the proof is not more difficult than
it was is that we have chosen to represent the network in
a non-obvious way. We observe that there is at most one
request/reply message for a memory line pertaining to any

particular node at any time. So the network can be repre-
sented with one variable per node per memory line (some-
times associated with the source, sometimes with the des-
tination) for relevant kinds of messages, Hence, instead of

proving that there is only one message of a certain type
in the network for node z at any time, we register an error
whenever a message in a variable is about to be overwritten,
and verify that no error occurs. The description can read

a message by accessing the variable instead of removing it
from a set, which is a bit more difficult to deal with in PVS.
It is possible to use similar tricks in the other examples we
have done.

5 Delayed Mode Implements Sequential Consistency

As mentioned before, the FLASH protocol supports two

memory model modes: EAGER and DELAYED. The differ-
ence between the two modes lies in when the reply is sent

292

for a GETX request of a processor trying to write. In EAGER

mode the reply can be sent before all the invalidation ac-

knowledgements have been collected, while DELAYED mode

only sends the reply after invalidation acknowledgements

have been collected. Therefore, EAGER mode supports a
more aggressive memory model which grants exclusive own-

ership when there are still old copies valid for reads. This
difference is visible to users and may affect the correctness
of synchronization code.

In this section, we show that the DELAYED mode imple-
ments the sequential consistency memory model [9], if the

processors execute instructions in a sequential order one at.
a time, stalling at each cache miss [6]. For the proof, we use
the aggregation method again. This time, the reduced be-

havior of DELAYED mode shown in Table 1 is considered the
imdementation instead of the specification as in the moof of

se&ion 4, and the specification “is a state graph that-models
a collection of processors doing atomic loads and stores. The

composition of two abstraction functions is an abstraction
function, so this also implies the existence of an abstraction
function from the full protocol to a sequential consistency
memory model.

The sequential consistency memory model is specified
in the rightmost column of Table 2. The model consists
of two transactions Load.SC and Store.SC which read and
writ e data between the registers and main memory, atom-

ically. The specification variables model the main memory
and registers. The caches are now implement at ion variables,

which are not visible to the memory model specification.

In order to model registers in the implementation, we

add a couple of steps to the reduced model which load and

store a cached copy respectively. The step Load-Delayed in

Table 2 simulates a processor loading a memory location by
reading a cached datum into a designated register if the copy
is in a shared or an exclusive state. The step Store-Delayed

simulates a processor storing a memory location by writing
a datum into a cache line if it has an exclusive ownership of

the memory line.
The commit step of the load transaction in the proto-

col is Load-Delayed and that of the store transaction is
Store-Delayed. The abstraction function should simulate de-

layed update of main memory by immediately writing back
an exclusive copy, if it exists. Table 2 shows assignments

of specification steps for each step of the reduced model for
DELAYED mode. All the rest six steps correspond to idle
transitions.

The proof involves proofs of property (2) for eight imple-
mentation transition functions with the following invariant
of the system: if a cached line is in shared state, then main
memory has a same data as in the cache and there is no ex-
clusive copy; and there exists at most one exclusive copy. It

is easy to see that the invariant is true in the system which
consists of the eight transitions of the reduced model for

DELAYED mode.

6 Executable Memory Model

We have proved that the DELAYED mode implements the

sequential consistency memory model. However, there does
not exist a well-defined memory model for EAGER mode,
though we know that the EAGER mode supports a weaker
memory model than sequential consistency. Moreover, the

different behavior between the memory models is important
to the users, especially to programmers, because the outputs
of programs could be different depending on the modes the
multiprocessor is running in.

We have previously developed executable descriptions of
memory models [4, 12], derived from axiomatic specifica-

tions of memory models. We can apply the same technique

for this protocol using the reduced behavior of the FLASH

protocol in Table 1. The executable description automat-
ically generates all the possible outcomes of test programs

so that we can analyze the programs running on the two

different modes of the protocol.
We write the executable model using a high-level de-

scription language for finite-state concurrent systems called

Murp. The description consists of a set of rules, each of
which has an enabled condition and atomic transaction state-

ments. Execution of a Murp program begins with one of a
set of initial states specified by the user. Then the following

loop is executed forever: some rule whose condition is satis-
fied by the current state is chosen and its action evaluated,

yielding a new current state, If there are no rules whose

conditions are true, the execution halts. When several rule

conditions are true at the same time, a choice is made arbi-
trarily, resulting in several possible executions. The Mur@

verifier tries them exhaustively by depth-first or breadth-
first search. It can prints out the value of system variables at
user-specified points while exploring all the reachable states
of the system.

We present a simple test program which shows different
behavior between the two modes of the protocol.

hoc [o] : st #l, A; Id B, %rl;

Proc [1] : st #1, B; Id A, %r2;

The following is excerpted from the Murp description for

the above test program.

Rule -- Proc [0] does < st #l , A >
-- condition to store

pc[O] = O & cache [O] [A] state = exclusive
==> begin store (O, 1, A) ; end;

-- stores the value into memory

Rule -- Proc[O] does C ld B, W >
-- condition to load

pc [0] = 1 & cache [0] [B] state != invalid
==> &gin load(O, B, rl) ; end;

-- loads the data in memory to the register

-- Other rules are omitted.

Rule
<condition that pc [O] , pc [l] are in final state)
==> begin ‘print out memory and registers ~; end;

The list of all possible outcomes of the test program gen-
erated by the description is shown below. As expected, the
output of DELAYED mode is equivalent to that of the se-

quential consistency memory model. The output of EAGER

mode is a superset of the that of DELAYED mode; the first

output of EAGER mode is not possible in DELAYED mode.

This confirms that the EAGER mode sumorts a weaker mem-. .
ory model than sequential consistency. The results of other
test programs demonstrates that the memory model with

FLASH protocol in EAGER mode is as weak as the PSO

SPARC memory model.

EAGER:: A:l B:l rl:O r2:0
EAGER:: A:l B:l rl:O r2:l DELAY:: A:l B:l rl:O r2:l
EAGER:: A:l B:l rl:l r2:0 DELAY!: A:l B:l rl:l r2:0
EAGER:: A:l B:l rl:l r2:l DELAY:: A:l B:l rl!l r2!l

293

7

Condition Action SC Model

Load-Delayed cache][a].state = shared v register~][r] := cache~][a data Load.SC

cache~] [a] .st ate = exclusive

Store.Delayed

register~][r] := memory [a]

cache 1[1a state = exclusive cache a data := register r Store.SC

Atomic Transactions

memory [a] := register~][r]

DELAYED mode See Table 1 See Table I E

in Table 1

Table 2: DELAYED mode conforms Sequential Consistency memory model

Concluding Remarks

For several years, we had firmly believed that proving the
correctness of algorithms of the complexity of the FLASH

cache coherence protocol was well beyond the capability of
a general-purpose theorem prover. The aggregation method

has broken through this barrier.
We have not considered the important problem of prov-

ing liveness properties here. However, showing the liveness

using the strong fairness assumption is not difficult, because
the implementation steps for each transaction in the proto-

col are successively enabled in sequence.

From this and many other efforts, it has become clear
that finding invariants is the most time consuming part of
many verification problems. More computer assistance is
needed, especially for large problems.

Acknowledgements

We would like to thank Sam Owre and Natarajan Shankar

at SRI International for their help with PVS system.

References

[1]

[2]

[3]

[4]

[5]

[6]

J. Archibald and J. Baer. An economic solution to the
cache coherence problem. In Proc. 1 lth Interrwttonal
Symposium on Computer Architecture, pages 355-362,

June 1984.

L. Censier and P. Feautrier. A new solution to coher-

ence problems in multicache systems. IEEE Transac-
tzorzs on Computers, 27[12):1112–1118, December 1978.

D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol
verification as a hardware design aid. In International
Conference on Computer Design: VLSI in Computers.

IEEE Computer Society, 1992.

David Dill, Seungjoon Park, and Andreas Nowatzyk.
Formal specification of abstract memory models. In Re-

search on Integrated Systems: Proceedings of the 1993’
Symposium, pages 38-52. MIT Press, March 1993.

~sgeir EirAsson and Ken McMillan. Using formal veri-
fication/analysis methods on the critical path in system
design: A case study. In Computer Aided Verificationj
7th International Conference, CA V’95, pages 367-380,

July 1995.

P. Gibbons, M. Merritt, and K. Gharachorloo. Prov-

ing sequential consistency of high-performance shared
memories. In Proc. .?rd ACM Symposium on Parallel
Algorithms and Architectures, pages 292-303, 1991.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Mark Heinrich. The FLASH Protocol. Internal docu-
ment, Stanford University FLASH Group, 1993.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K, Gharachorloo, J. Chapin, D. Nakahira, J, Baxter,

M. Horowitz, A. Gupta, M. Rosenblum, and J. Hen-
nessy. The Stanford FLASH multiprocessor. In Proc.

21st Inter-national Symposium on Computer Architec-
ture, pages 302-313, April 1994.

Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocessor pro-
grams. IEEE Tr-an.actions on Computer-s, 28(9) :690–
691, September 1979.

D. Lenosky, J. Laudon, K. Gharachorloo, A. Gupt a,
and J. Hennessy. The directory-based cache coher-

ence protocol for the DASH multiprocessor. In Proc.
17th International Symposwm on Computer Archttec -
tur-e, pages 148–159, May 1990.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-

mal verification for fault-tolerant architect ures: Prole-

gomena to the design of PVS. IEEE Transactions on

Software Engzneervrzg, 21(2):107-125, February 1995.

Seungjoon Park and David Dill. An executable specifi-
cation, analyzer and verifier for RMO (Relaxed Mem-
ory Order). In Proc. 7th ACM Symposaum on Parallel

Algorithms and Architectures, pages 34-41, July 1995.

Seungjoon Park and David Dill. Protocol verifica-
tion by aggregation of distributed actions. In Com-
puter Aided Verification, 8th International Conference,

CAV’96, July 1996.

Fong Pong and Michel Dubois. The verification of cache
coherence protocols. In Proc. 5th ACM Symposium
on Parallel Algorithms and Architectures, pages 11-20,

1993.

W. C. Yen and W. L. Yen. Data coherence problem in a

multicache system. IEEE Transactions on Computers,

34(l), January 1985.

A Detailed Description of the FLASH Protocol (EAGER
Mode)

The following is a brief description extracted from the FLASH
protocol documents [7].

Each cache line-sized block in main memory is associated
with directory header which keeps information about the

line. The directory header consists of several boolean flags:
Local, Dirty, Pending, Head-Valid, List; pointers to other
nodes: Head-Pointer, Sharer-List; and a number of sharers

294

in Real-Pointers. The Local bit is used to indicate if the

local processor contains a cached copy of the line in either

shared or exclusive state. The Dirty bit is set if the home
thinks that there is a dirty copy of the line in the system.

The Pending bit is set if the current request for the memory
line is being processed by a third node. The Head-Valid bit

indicates whether the Head..Pointer contains a valid pointer
to a node. The Head.Pointer entry is simply a cache pointer

that is packed into the directory header as an optimization.
It keeps a pointer to a remote cache with a dirty copy if

exists, or one of the nodes with a shared copy. The List bit

indicates whether Sharer-List contains one or more pointers.

Sharer_List is represented abstractly as a set2 of pointers
to the nodes that have a shared copy of the memory line.

Real-Pointers contains the count of the number of sharers
on the list. This count excludes the Head.Pointer and is

mainly used to count invalidation acknowledgements.
The FLASH protocol consists of a set of rules which are

called handlers. Each handler is prefixed with NI (Network
Interface) or PI (Processor Interface) to indicate where the
requests are generated from. PI handlers are initiated by
a requesting processor and NI handlers are initiated by a

message from the network. The additional not ation ‘Local’
or ‘Remote’ indicates whether the processing node is the

home oft he requested memory address.

● PI. Local .Get: this handler describes actions of the
home when the local processor needs a shared copy

of a memory line. If Pending3, the local processor is
NAKed. Otherwise, if Dirty, the home sends a GET re-
quest to Head-.Pointer and Pending is set. Otherwise,
the data in main memory is copied into the local cache

(in shared state) and Local is set.

● PI. Local. GetX: this handler describes actions of the

home when the local processor needs an exclusive copy.
If Pending, the processor is NAKed. Otherwise, if Dirty,
the home sends a GETX request4 to Head.Pointer and
Pending is set. Otherwise, the data in main memory

is copied into the local cache (in exciusive state) and
Local and Dirty is set. In the last case, if Head-Valid,
which indicates there are shared copies in remote nodes,

the home sends INVS to Head-Pointer and the nodes
in Sharer-List, Pending is set, Head-Valid is reset, and
the number of invalidations is written in Real_Pointers.

s PI, Remote. Get (X): this handler describes actions

of a remote node when the processor needs a shared
(or an exclusive) copy. The remote sends a GET (or

GETX) request to the home.

● PI. Local. PutX: this handler writes back a cached

exclusive copy in the home. Dirty is reset (and Local, if

not Pending) and the cached copy to the main memory
is written back.

● PI, Remote. PutX: this handler writes back a cached
exclusive copy in a remote. The remote sends a WB

request to the home.

2The FLASH protocol uses a linked list for sharers (inside a local
node) by dynamic pointer allocation.

31,e,, the pending blt IS set m the dlrectm’y.
4The ~rlg,nal ~rotocol uses a different request upgrade for an eX-

clusive copy, rather than using getx, when the cache has a shared
copy The reason is to enhance performance by av.mdmg unnecessary
data transfer. However, the two requests are processed in the same
manner except whether the reply contains the cached data or not.
We did not model the upgrade request m the verified description

● PI. Local. Replacement: this handler replaces a shared

copy in the home. Local is reset.

● PI. Rernote.Replacement: this handler replaces a

shared copy in a remote. The remote sends a RPL

request to the home.

● NI.NAK: this handler describes actions of a node re-

ceiving a NAK reply. The processor clears its waiting
flag and invalidation mark.

● NI.NAKC: this handler describes actions of the home

receiving a NAKC. Pending is reset.

s NI.Local.Get: this handler describes actions of the

home receiving a GET request from a remote. If Pend-
ing, the home sends a NAK to the source. Other-

wise, if Dirty and not Local, Pending is set and the
home forwards the GET to Head.Pointer with source
Jaked as the original requester. Otherwise, if Dirty
and Local, then writes back the exclusive copy in the

locaf cache to main memory, sends a PUT reply to
the source, and Dirty is reset, Head-Valid is set, and

Head..Pointer is set to the source. Otherwise, the home
sends a PUT reply to the source; If Head-Valid, List is

set, Real_Pointers is incremented, the source is added
to Sharer-List. If not Head.Valid, Head-Valid is set,

Head-Pointer is set to the source.

● NI.Local.GetX: this handler describes actions of the

home receiving a GETX request from a remote. If Pend-

ing, the home sends a NAK to the source. Otherwise,
if Dirty and not Local, then Pending is set and the
home forwards the GETX to Head-Pointer with source
jaked as the original requester. Otherwise, if Dirty and
Local, the home sends a PUTX reply to the source with
the exclusive data from the local cache, and Local is
reset, Head -.Valid is set, and Head-Pointer is set to

the source. Otherwise, the home sends a PUTX to the
source with the data in main memory.

In the last case, if not Dirty and Head_Valid, Dirty is

set, List is reset, and if Head-Pointer is not equal to
the source, Pending is set, and the home sends an INV

to the Head-Pointer, and Head-Pointer is set to the

source. If Local, invalidates the local copy, and if List,
the home send NVS to all the nodes in Sharer_List and

set Real_Pointers to the number of invalidations. Oth-

erwise, if not Dirty and not Head_Valid, Head.Valid
and Dirty are set, Local is reset, and Head-Pointer is
set to the source.

● NI,Remote.Get: this handler describes actions of a

remote receiving a GET request. If the cached data is

in the ezclusive state, it is changed to shared and the
node sends a PUT reply to the source (and also SWB to
the home if the source is not the home). Otherwise,
the node sends a NAK to the source and a NAKC to the

home.

s N I. Remote. Get X: this handler describes actions of
a remote node receiving a GETX request. If the cached

data is in exclusive state, it is inv~ldated and the node
sends a PUTX reply to the source (and a forward ac-
knowledgement FWAK to the home if the source is not
the home). Otherwise, the node sends a NAK to the
source and a NAKC to the home.

295

NI.Local.Put: this handler processes a PUT reply to
the home. Local is set, Dirty and Pending are reset,
and the shared copy is put into the local cache.

NI.Remote.Put: The shared copy is put into the
cache.

NI.Local.PutX: this handler processes a PUT reply
to the home. Local is set, Head-Valid and Pending

are reset, and the exclusive copy is put into the local
cache.

NI.Remote.PutX: The exclusive copy is put into the
cache.

NI.Inval: Receiving a INV, the remote invalidates the

cached copy and sends an INVAK to the home. If the

node was waiting for a PUT, it marks the line invali-

dated.

NI.InvalAck: this handler describes actions of the
home receiving an INVAK. Real-Pointers is decremented.

If it reaches to zero, Pending is reset (and Local if not
Dirty),

NI.Writeback: this handler describes actions of the

home receiving a WB request. Dirty and Head_Valid
are reset and the data is written back into the main
memory.

NI.ForwardAck: this handler describes actions of
the home receiving a FWAK. Pending is reset. If Dirty,
Head_Pointer is set to the source.

NI.SharingWriteback: this handler describes ac-
tions of the home receiving a SWB. Dirty and Pending

are reset, List is set, Real.Pointers is incremented, the

source is added to Sharer. List, and the data is written
back into main memory.

NI.Replacement: this handler describes actions of
the home receiving a RPL. The source is removed from
Sharer-List if found and Real-Pointers is adjusted.

B Assignments of Implementation/Specification Steps

In the FLASH protocol, some handlers perform commit steps
in some cases and not in others. In order to establish the nec-

essary correspondence between implementation steps and
specification steps in a proof of property (2), we need to
split these handlers into multiple transition functions, each
of which either always commit or never commit. For ex-

ample, the PI. Local. Get handler simply NAKS the local pro-
cessor if the requested line is pending (pre-commit step), or

sends a request to a remote if there is a dirty copy (pre-
commit step), otherwise, it updates the state and data of
the local cache which are specification variables (commit
step). In the first two cases, the reduced model should take
idle transitions, but in the last case, a corresponding atomic
transaction should be taken.

The PI. Local. Get handler is decomposed into two differ-
ent transition functions PI. Local. Get. else and PI. Local. Get. put
with disjoint enabling conditions, where the first includes the
pre-commit steps, and the latter corresponds to the commit
step. In the same manner, other handlers are decomposed if
necessary. In Table 3, the protocol steps named with suffix
‘ex’ (with superscript 1) correspond to the decomposed han-
dlers when the home holds an exclusive copy. The protocol

steps named with suffix ‘inv’ (with superscript 2) correspond

Protocol Step Atomic Transaction

at node p (Reduced model)

PI. Local. Get else &

PI. Local. Get.put Atom-Get-l (home)

PI. L...vuu.v-v
PI. Local. GetX.else E

PI. Local. GetX.putx Atom-GetX-l(home)

PI. Remote.GetX

PI. Local.PutX At~m-WB(horne)

PI. Remote.PutX Atom- WB(p)

PI. LocaLReplace Atom-Invalidate(home)

PI. Remote .Replace Atom-Invalidate(p)

NI.NAK E

NI. NAK. Clear E

NI.Local. Get ~else &

NI.LocaLGet.put Atom- Get-l (GF,T.src)

NI. LocaLGet.put.exl Atom-Get-2 (home, GET.src)

NI. LocaLGet .Dut .invJ Atom- Get-1 (GET. src);

Atom-Invalidate(GET.src)

NI. Local. Get.put.ex.inv Atom-Get-2 (home, GET.src);

Atom-Invalidate(GET.src)\
NI. Remote. Get else

/
E

NI. Remote. Get put Atom-Get-2 (p, GET.src)

NI. FLemote. Get .uut.inv2 Atom- Get-2 (p, GET. SrC);.
Atom-Invdidate(cm’T.src)

NI. Local. GetX.else e

NI. Local. GetX.putx Atom- GetX-l(cmTx. src)

NI.Local. GetX.putx.exl Atom-GetX-2(horne, GETX.src)

NI.Remote. GetX.else E

NI. Remote .GetX.putx Atom-GetX-2(p, GETX.src)

NI. Local. Put E

NI. Remote. Put &

NI.Local. PutXAcksDone E

NI. Remote. PutX &

NI.Inv Atom-Invalidate(p)

NI.InvAck E

NT WR E.-
NI. FAck &

NI.ShWB &

NI. Replace &

Table 3: Correspondence of transition functions in the pro-
tocol with atomic transactions (EAGER mode)

to the decomposed handlers when the requesting node is in-
validation marked. Note that these decompositions do not

change the original protocol implementation.
Table 3 lists all the transition functions of the protocol in

EAGER mode and the corresponding atomic transactions of
the reduced model. The atomic transactions are listed with

properly instantiated parameters. The table for DELAYED
mode would be the same as Table 3 except that owner-
ship transfer (GetX-Atom) corresponds to the protocol step
which processes the last invalid at ion acknowledgement.

296

