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Abstract

In this paper, we analyze the performance of parallel mttlti-

threaded algorithms that use dag-consistent distributed shared mem-

ory. Specifically, we analyze execution time, page faults, and space
requirements for multithreaded algorithms executed by a work-
stealing thread scheduler and the BACKER coherence algorithm for

maintaining dag consistency. We prove that if the accesses to the

backing store are random and independent (the BACKER algorithm
actually uses hashing), then the expected execution time of a “fully
strict” multithreaded computation on P processors, each with an
LRU cache of C pages, is O(T1 (C)/P+ ntC7”), where T1(C) is the

total work of the computation including page faults, L is its critical-
path length excluding page faults, and m is the minimum page trans-
fer time. As a corollary to this theorem, we show that the expected

number of page faults incurred by a computation executed on P pro-

cessors, each with an LRU cache of C pages, is F] (C) + O(CPT~),
where Fl (C) is the number of serial page faults. Finally, we give

simple bounds on the number of page faults and the space require-
ments for “regular” divide-and-conquer algorithms. We use these

bounds to analyze parallel multithreaded algorithms for matrix mul-
tiplication and LU-decomposition.

1 introduction

In recent work [8, 17], we have proposed dag-consistent dis-
tributed shared memory as a virtual-memory model for multi-
threaded parallel-programming systems such as CiLk, a C-based

mtrltithreaded language and rtmtime system [7, 9, 17]. A multi-

threaded program defines a partial execution order on its instntc-
tions, and we view this partial order as a directed acyclic graph or

dug. Informally, in the dag-consistency model, a read instruction
can “see” a write instruction only if there is some serial execution
order of the dag in which the read sees that write. Moreover, dag

consistency allows different reads to return values that are based on
different serial orders, as long as the values returned are consistent
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with the dependencies given by the dag. Our previous work pro-
vides a description of the model, coherence algorithms for main-

taining dag consistency, and empirical evidence for their efficiency,
In this paper, we analyze the execution time, page faults, and space

requirements of multithreaded algorithms written with this consis-

tency model when the execution is scheduled by the randomized
work-stealing scheduler from [7, 10] and dag consistency is main-
tained by the BACKER coherence algorithm from [8].

A multithreaded algorithm is a collection of thread definitions.
Analogous to a procedure definition, a thread definition is a block
of serial code, possibly with conditional and looping constructions.
Unlike a procedure, however, a thread definition may contain vari-
ous types of “spawn” and “synchronization” statements that allow
the algorithm to exhibit concurrency as follows. To specify paral-
lelism, a thread may spawn child threads. A spawn is the parallel

analogue of a procedure call, but in the case of a spawn, the parent

and child may execute concurrently. From the time that a thread is
spawned until the time that the thread returns, we say the thread is
living or alive. In addition a thread may synchronize with some or all

of its spawned children by suspending its execution until the speci-
fied children return. When the last of the specified children returns,
it enables its parent to resume execution. A thread that is suspended
waiting for children to return is said to be stalled, and otherwise, a
thread is said to be ready. In general, a thread may synchronize with
other threads that are not its children, but in our analysis, we shall
focus on the class of filly strict multithreaded algorithms in which

threads synchronize only with their children, as just described. No-

tice that a multithreaded algorithm does not specify at what time or
on what processor any given instruction is executed.

The resource requirements that a multithreaded algorithm em-

ploys to solve a given input problem are modeled, in graph-theoretic

terms, by a multifhreaded computation [7]. A mtdtithreaded com-
putation is composed of two structures: a “spawn tree” of threads

and a dag of instructions. The spawn tree of threads is the paral-
lel analogue of a call tree of procedures. The spawn tree is rooted
at the “main” thread where algorithm execution begins, and in gen-
eral, each spawned thread is a node in the spawn tree with the parent-
child relationships defined by the spawn operations. The dag of in-
structions is the parallel analogue of a serial instruction stream. We
think of the dag of instructions as being “embedded” in the spawn

tree, since each executed instruction is part of a spawned thread.
As illustrated in Figure 1, this embedding has the following prop-
erties. All of the instructions in any given thread are totally ordered

by dag edges that we call continue edges. For each thread, except

the root thread, its first instruction has exactly one incoming edge
that we call a spawn edge, and this edge comes from an instruc-
tion (the spawning instruction) in the parent thread. For each thread,
except the root thread, its last instruction has exactly one outgoing
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Figure 1: A fully strict mrdtithreaded computation. Each node is an instmc-
tion, and each shaded reg]on is a thread. The continue edges are horizontal,
the spawn edges are shaded and downward pointing, and the return edgesare
curved and upward pointing.

edge that we call a rerurn edge, and this edge goes to an instrttc-
tion (the synchronizing instruction) in the parent thread. In the case

of a fully strict multithreaded algorithm, for any input problem, the
resulting ji.dly strict multithreaded computation contains only con-

tinue, spawn, and return edges as just described.
Before discussing how the BACKER coherence algorithm affects

the performance of fully strict mtrkithreaded algorithms that use dag

consistent shared memory, a major focus of this paper, let us first re-
wew some of the theory of multithreaded algorithms that do not use
shared memory. Any multithreaded computation can be measured
m terms of its “work” and “critical-path length” [5, 9, 10, 20]. Con-

sider the multithreaded computation that results when a given multi-
threaded algorithm is used to solve a given input problem. The work
of the computation, denoted T], is the number of instructions in the

dag, which corresponds to the amount of time required by a one-
processor execution. 1 The critical-path length of the computation,

denoted L, is the maximum number of instructions on any directed

path in the dag, which corresponds to the amount of time required

by an infinite-processor execution, With any number P of (homoge-
neous) processors, the time to solve a problem cannot be less than
T] /P or less than ‘L. When we consider the computations that arise
from a mtrkithreaded algorithm whose inputs are parameterized by

an input size n. we shall sometimes prowde the parameter n in our
notations, as in TI (n) and Z,(n).

The randomized work-stealing scheduler achieves performance

close to these lower bounds for the case of fully strict multithreaded
algorithms that do not use shared memory. Specifically, for any

such algorithm and any number F’ of processors, the randomized
work-stealing scheduler executes the algorithm in expected time

O(T1 /P+ T-) [7, 10]. The randomized work-stealing scheduler op-
erates as follows. Each processor maintains a ready deque (doubly -
ended queue) of threads from which work is obtained. When a

thread is spawned, the parent thread is suspended and put on the bot-
tom of the deque and execution commences on the spawned child
thread. When a thread returns, execution of the parent resumes by
removing it from the bottom of the deque. On one processor, this

execution order is the standard, depth-first serial execution order. A
processor that finds its deque empty becomes a “thief” and sends a

steal request to a randomly chosen “victim” processor. If the vic-

tim has a thread in its deque, it sends the topmost thread to the thief
to execute. Otherwise, the victim has no threads and the thief tries
again with a new random victim. Finally, when a thread executing

on a processor enables a thread that was stalled on another proces-
sor, the newly enabled thread is sent to the enabling processor to be
resumed.

All of the threads of a multithreaded algorithm should have ac-
cess to a single, shared virtual address space, and in order to support

such a shared-memory abstraction on a computer with physically

tFornondeterministicalgorithmswhosecomputationdagdependsonthescheduler,
wedefine T, to be the number of ]nstrucuons that actually occur m the computation dag,

and we define other measures similarly

distributed memory, the runtime scheduler must be coupled with a
coherence algorithm. For our BACKER coherence algorithm, we as-
sume that each processor’s memory is divided into two regions. each
containing pages of shared-memory objects. One region is a page

cache of C pages of objects that have been recently accessed by that
processor. The rest of each processors’ memory is maintained as
a backing store of pages that have been allocated in the virtual ad-

dress space. Each allocated page is assigned to the backing store of
a processor chosen by hashing the page’s virtual address. In order
for a processor to operate on an object, the object must be resident
in the processor’s page cache; otherwise, a page fault occurs, and

BACKER must “fetch” the object’s page from backing store into the

page cache, We assume that when a page fault occurs, no progress
can be made on the computation during the time it takes to service

the fault, and the fault time may vary due to congestion of concurrent

accesses to the backing store. We shall further assume that pages
in the cache are maintained using the popular LRU (least-recently-

used) [19] heuristic. In addition to servicing page faults, BACKER

must “reconcile” pages between the processor page caches and the
backing store so that the semantics of the execution obey the as-
sumptions of dag consistency. The BACKER coherence algorithm
and the work-stealing scheduler have been implemented in the Cilk
runtime system with encouraging empirical results [8].

In order to model performance for multithreaded algorithms that
use dag-consistent shared memory, we observe that running times
will vary as a function of the cache size C, so we must irt~roduce

measures that account for this dependence. Consider again the mul-
tithreaded computation that results when a given multithreaded al-
gorithm is used to solve a given input problem. We shall define a

new work measure, the “total work,” that accounts for the cost of
page faults in the serial execution, as follows. Let m be the time to

service a page fault in the serial execution. We now weight the in-

structions of the dag. Each instruction that generates a page fault
in the one-processor execution with the standard, depth-first serial
execution order and with a cache of size C bas weight m + 1, and
all other instructions have weight 1. The total work, denoted T1 (C),

is the total weight of all instructions in the dag, which corresponds
to the serial execution time lf page faults take m units of time to be

serviced. We shall continue to let T] denote the number of instruc-
tions in the dag, but for clarity, we shall refer to TI as the compu-

tational work. (The computational work T1 corresponds to the se-
rial execution time if all page faults take zero time to be serviced.)

To relate these measures, we define the serial page faults, denoted
F] (C), to be the number of page faults taken in the serial execution
(that 1s, the number of instrttctlons with weight m + 1). Thus, we
have T1(C) = 7j +rnFl (C).

The quantity T} (C) is an unusual measure. Unlike 2“1,it depends
on the serial execution order of the computation. The quantity T1(C)
further differs from T] in that TI (C) /P is not a lower bound on the
execution time for P processors. It is possible to construct a compu-

tation containing P subcomputations that run on P separate proces-

sors in which each processor repeatedly accesses C different pages
in sequence. Consequently, with caches of size C, no processor ever
fauhs, except to warm up the cache at the start of the computation.

If we run the same computation serially with a cache of size C (or
any size less than CP), however, the necessary multiplexing among
tasks can cause numerous page faults. Consequently, for this com-
putation, the execution time with P processors is much less than
TI (C)/P. In this paper, we shall forgo the possibility of obtaining
such superlinear speedup on computations. Instead, we shall sim-
ply attempt to obtain linear speedup.

Critical-path length can likewise be split into two notions. We

define the total critical-path length, denoted T~ (C), to be the max-
imum over all directed paths in the computational dag, of the time,
including page faults, to execute along the path by a single proces-
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sor with cache size C. The computational critical-path length T- is

the same, but where faults cost zero time, Both T- and T~(C) are

lower bounds on execution time. Although T_(C) is the stronger

lower bound, it appears difficult to compute and analyze, and our

upper-bound results will be characterized in terms of T-, which we
shall continue to refer to simply as the critical-path length.

In this paper, we analyze the execution time of fully strict multi-

threaded algorithms that use dag consistent shared memory. The al-

gorithm is executed on a parallel computer with P processors, each
with a cache of size C, and a page fault that encounters no con-

gestion is serviced in m units of time. The execution is scheduled
by the work-stealing scheduler and dag consistency is maintained
by the BACKER coherence algorithm. In addition, we assume that
accesses to shared memory are distributed uniformly and indepen-

dently over the backing store-often a plausible assumption, since
BACKER hashes pages to the backing store. Then, for any given in-

put problem, the expected execution time is 0(7’1 (C)/P + mCT_).
In addition, we give a high-probability bound.

This result is not as strong as we would like to prove, because
accesses to the backing store are not necessarily independent. For
example, threads may concurrently access the same pages by algo-

rithm design. We can artificially solve this problem by insisting, as

does the EREW-PRAM model, that the algorithm performs exclu-
sive accesses only. More seriously, however, congestion delay in ac-
cessing the backing store can cause the computation to be scheduled

differently than if there were no congestion, thereby perhaps causing
more congestion to occur. It may be possible to prove our bounds

for a hashed backing store without making this independence as-
sumption, but we do not know how at this time. The problem with
independence does not seem to be serious in practice, and indeed,

given the randomized nature of our scheduler, it is hard to conceive

of how an adversary can actually take advantage of the lack of in-
dependence implied by hashing to slow the execution, Although
our results are imperfect, we are actually analyzing the effects of

congestion, and thus our results are much stronger than if we had
assumed, for example, that accesses to the backing store indepen-

dently suffer Poisson-distributed delays.
In this paper, we also analyze the number of page faults that oc-

cur during algorithm execution. Again, execution is scheduled with
the work-stealing scheduler and dag consistency is maintained by

the BACKER coherence algorithm, and we assume that accesses to

backing store are random and independent. Under this assumption,
we show that for any given input problem, the expected number of

page faults to solve the problem on P processors, each with an LRU
cache of size C, is at most F1 (C)+ O(CPT_). In addition, for “regu-
lar” divide-and-conquer multithreaded algorithms, we derive a good

upper bound on F1(C) in terms of the input size of the problem.
For example, we show that the total number of page faults incurred

by a divide-and-conauer matrix-multiplication al~orithm when mul-

t~plying n x n matflces using P processors is 6(n3/(m312JC) +

CPlg2 n), assuming that the independence assumption for the back-

ing store holds.
Finally, in this paper, we analyze the space requirements of “sim-

ple” multithreaded algorithms that use dag-consistent shared mem-

ory. We assume that the computation is scheduled by a sched-
uler, such as the work-stealing algorithm, that maintains the “busy-
leaves” property [7, 10]. For a given simple multithreaded algo-

rithm, let S1 denote the space required by the standard, depth-first

serial execution of the algorithm to solve a given problem. In pre-
vious work, we have shown that the space used by a P-processor
execution is at most S1P in the worst case [7, 10]. We improve this
characterization of the space requirements, and we provide a much
stronger upper bound on the space requirements of regular divide-
and-conquer multithreaded algorithms. For example, we show that

a divide-and-conquer matrix-multiplication algorithm multiplying

n x n matrices on P processors uses only @(n2P1i3 ) space, which

is tighter than the 0(n2P) result obtained by directly applying the

S1P bound.

The remainder of this paper is organized as follows. Section 2

gives a precise definition of dag consistency and describes the
BACKER coherence algorithm for maintaining dag consistency.

Section 3 analyzes the execution time of fully strict multithreaded

algorithms when the execution is scheduled by the randomized
work-stealing scheduler and dag consistency is maintained by the
BACKER coherence algorithm. Section 4 analyzes the number
of page faults taken by parallel divide-and-conquer algorithms.

Section 5 analyzes the space requirements of parallel divide-and-
conquer algorithms. Section 6 presents some sample analyses of al-

gorithms that use dag-consistent shared memory. Finally, Section 7
offers some comparisons with other consistency models and some

ideas for the future.

2 Dagconsistency and the Backer coherence algorithm

In this section we give a precise definition of dag consistency, and

redescribe the BACKER [8] coherence algorithm for maintaining

dag consistency. Dag consistency is a relaxed consistency model for
distributed shared memory, and the BACKER algorithm can main-
tain dag consistency for multithreaded computations that execute on

a parallel computer with physically distributed memory.

Shared memory consists of a set of objects that instructions can
read and write. When an instruction performs a read of an object,

it receives some value, but the particular value it receives depends

upon the consistency model. Like “location consistency” [14], dag
consistency is defined separately for each object in shared memory.

In order to define dag consistency precisely, we need some termi-
nology. Let G = (V, E) be the dag of a multithreaded computation.
For u, v ~ V, if a path of nonzero length from instruction u to v exists
in G, we say that u (strictly) precedes v, which we write u + v. We

say that two instructions u, v ~ V with u # v are incomparable if we
have u < v and v < u. To track which instruction is responsible for

an object’s value, we imagine that each shared-memory object has a

tag which the write operation sets to the name of the instruction per-

forming the write. We make the technical assumption that an initial
sequence of instructions writes a value to every object. We can now

define dag consistency.

Definition 1 The shared memoty M of a multithreaded computa-

tion G = (V, E) is dag consistent if for every object x in the shared

memory, there exists a function fx : V ~ V such that the following
conditions hold.

1. For all instructions u c V, the instruction fx (u) writes to x,

2. If an instruction u writes to x, then we have fx(u) = u.

3. If an instruction u reads x, it receives a value tagged with

fx(u).

4. For all instructions u G V, we have u # fx(u).

5. For each triple u, v, and w of instructions such that u + v + w,
if fx(v) # u holds, then we have fx(w) # u.

Informally, the function fx (u) represents the viewpoint of instruc-

tion u on the contents of object x, that is, the tag of x from u’s per-
spective. Therefore, if an instruction u writes, the tag of x becomes

u (part 2 of the definition), and when it reads, it reads something
tagged with ~,(u) (part 3). Moreover, part 4 requires that future exe-
cution does not have any influence on the current value of the mem-
ory. The rationale behind part 5 is shown in Figure 2. When there
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Figure 2: Illustration of the definition of dag consistency. When there is a
path from u to w through v, then a write by v to an object “masks” u’s write

to the object, not allowing u’s write to be read by w. Instruction w may see
writes to the object performed by instructionss and f, however.

is a path from u to w through v, then v “masks” u, in the sense that

if the value written by u is no longer current when v executes, then
it cannot be current when w executes. Instruction w can still have a

different viewpoint on x than v. For instance, instruction w may see
a write on x performed by some other instruction (such ass and tin
the figure) that is incomparable with v.

In previous work [8, 17], we presented a weaker definition of dag

consistency from Definition 1. Definition 1 is stronger than the ear-

lier definition in that If the shared memory M is dag consistent in the

sense of Definition 1, it also is dag consistent in the sense of the ear-
lier definition, but the converse is not true. The reason for the new

definition is that Definition 1 “confines” nondeterminism in the fol-
lowing sense. Consider the case of two incomparable instructions

u 1 and U2 writing to a memory object x and having a common suc-
cessor v. Suppose that no instruction other than U1 and U2 writes
to x. In Definition 1, v is forced to have a view of x that sees one
of the two values, and moreover, all of v’s successors then see that

same value. With the old definition, v’s successors could each indi-
vidually see either value of x, which we viewed as nonintuitive and

undesirable. A more detailed justification of Definition 1 and an ex-
planation of its properties are beyond the scope of this paper, but we

are currently exploring the semantics of dag consistency more fully.
We now describe the BACKER coherence algorithm from [8], in

which versions of shared-memory objects can reside simultaneously

in any of the processor caches and the backing store. Each proces-
sor’s cache contains objects recently used by the threads that have

executed on that processor, and the backing store provides default
global storage for each object. In order for a thread executing on

the processor to read or write an object, the object must be in the
processor’s cache. Each object in the cache has a dirty bit to record
whether the object bas been modified since it was brought into the

cache.

13ACKER uses three basic operations to manipulate shared-
memory objects: fetch, reconcile, and flush. A ~etch copies an
object from the backing store to a processor cache and marks the
cached object as clean. A reconcile copies a dirty object from a
processor cache to the backing store and marks the cached object
as ciean. Finally, a j%mh removes a clean object from a processor
cache.

The BACKER coherence algorithm operates as follows. When the
user code performs a read or write operation on an object, the oper-
ation is performed directly on a cached copy of the object. If the

object is not in the cache, it is fetched from the backing store before
the operation is performed. If the operation is a write, the dirty bit of
the object is set. To make space in the cache for a new object, a clean
object can be removed by flushing it from the cache. To remove a

dirty object, it is reconciled and then flushed.
Besides performing these basic operations in response to user

reads and writes, BACKER performs additional reconciles and
flushes to enforce dag consistency. For each edge u ~ v in the com-
putation cfag, If instructions u and v are executed on different proces-
sors, say p and q, then BACKER causes p to reconcile all its cached
objects after executing M but before enabling v, and it causes q to

reconcile and flush its entire cache before executing v. Note that if

q’s cache is flushed for some other reason after p has reconciled its
cache but before q executes v (perhaps because of another interpro-

cessor dag edge), it need not be flushed again before executing v.
The following theorem, whose proof we shall omit, states that

BACKER is correct.

Theorem 2 If the shared memory M of a multithreaded computa-
tion is maintained using BACKER, then M is dug consistent. ■

3 Analysis of execution time

In this section, we bound the execution time of fully strict multi-

threaded computations when the parallel execution is scheduled by
a work-stealing scheduler and dag consistency is maintained by the
BACKER algorithm, under the assumption that accesses to the back-
ing store are random and independent. For a given fully strict muhi-

threaded algorithm, let Tp (C) denote the time taken by the algorithm

to solve a given problem on a parallel computer with P processors,
each with an LRU cache of C pages, when the execution is scheduled

by the work-stealing scheduler in conjunction with the B ACKER co-
herence algorithm. In this section. we show that if accesses to back-

ing store are random and independent, then tbe expected value of

Tp(C) is O(TI (C)/P + mCTW), where m denotes tbe minimum time

to transfer a page and T~ is the critical-path length of the computa-
tion. In addition, we bound the number of page faults. The expo-

sition of the proofs in this section makes heavy use of results and
techniques from [7, 10].

In the following analysis, we consider the fully strict multi-
threaded computation that results when a given fully strict multi-

threaded algorithm is executed to solve a given input problem, We
assume that the computation is executed by a work-stealing sched-
uler in conjunction with the BACKER coherence algorithm on a par-

allel computer with P homogeneous processors. The backing store
is distributed across the processors by hashing, with each proces-
sor managing a proportional share of the objects which are grouped
into fixed-size pages. In addition to backing store, each processor

has a cache of C pages that is maintained using the LRU replace-

ment heuristic. We assume that a mimmum of m time steps are re-
quired to transfer a page. When pages are transfemed between pro-
cessors, congestion may occur at a destination processor, in which

case we assume that the transfers are serviced at the destination in
FIFO (first-m, first-out) order.

The work-stealing scheduler assumed in our analysis is the work-

stealing scheduler from [7, 10], but with a small technical modifica-
tion. Between successful steals, we wish to guarantee that a pro-
cessor performs at least C page transfers (fetches or reconciles) so
that it does not steal too often. Consequently, whenever a processor

runs out of work, if it has not performed C page transfers since its
last successful steal, the modified work-stealing scheduler performs

enough additional “idle” transfers until it has transferred C pages.
At that point, it can steal again. Similarly, we require that each pro-
cessor perform one idle transfer after each unsuccessful steal request
to ensure that steal requests do not happen too often.

Our analysis of execution time is organized as follows. First, we
prove a lemma describing how the BACKER algorithm adds page

faults to a parallel execution. Then, we obtain a bound on the num-
ber of “rounds” that a parallel execution contains. Each round con-
tains a fixed amount of scheduler overhead, so bounding the number

of rounds bounds the total amount of scheduler overhead. To com-
plete the analysis, we use an accounting argument to add up the total
execution time.

Before embarking on the analysis, however, we first define some
helpful terminology. A [ask is the fundamental building block of a
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computation and is either a local instruction (one that does not ac-

cess shared memory) or a shared-memory operation. If a task is a
local instruction or references an object in the local cache, it takes 1

step to execute. Otherwise, the task is referencing an object not in

the local cache, and a page transfer occurs, taking at least m steps
to execute. A synchronization task is a task in the dag that forces

BACKER to perform a cache flush in order to maintain dag consis-

tency. Remember that for each interprocessor edge i + j in the dag,

a cache flush is required by the processor executing j sometime af-

ter i executes but before j executes. A synchronization task is thus
a task j having an incoming interprocessor edge i + j in the dag,
where j executes on a processor that has not flushed its cache since
i was executed. A subcomputation is the computation that one pro-

cessor perfotms from the time it obtains work to the time it goes idle
or enables a synchronization task. We distinguish two kinds of sub-
computations: primary subcomputations start when a processor ob-
tains work from a random steal request, and secondary subcompu-
tations start when a processor starts executing from a synchroniza-
tion task. We distinguish three kinds of page transfers. An intrinsic
transfer is a transfer that would occur during a 1-processor depth-
first execution of the computation. The remaining exn-insic page

transfers are divided into two types. A prima~ transfer is any ex-
trinsic transfer that occurs during a primary strbcomputation. Like-
wise, a secondary transfer is any extrinsic transfer that occurs dur-

ing a secondary subcomputation. We use these terms to refer to page

faults as well.

Lemma 3 Each primary transfer during an execution can be asso-
ciated with a currently running primary subcomputation such that
each prima? subcomputation has at most 3C associated primary
transfers. Similarly, each secondary transfer during an execution
can be associated with a currently running seconda~ subcomputa-

tion such that each secondary subcomputation has at most 3C asso-

ciated secondary transfers.

Proof For this proof, we use a fact shown in [8] that executing

a subcomputation starting with an arbitrary cache can only incur C

more page faults than the same block of code incurred in the serial

execution. This fact follows from the observation that a subcompu-

tation is executed in the same depth-first order as it would have been

executed in the serial execution, and the fact that the cache replace-
ment strategy is LRU.

We associate each primary transfer with a running primary sub-
computation as follows. During a steal, we associate the (at most)
C reconciles done by the victim with the stealing subcomputation.
In addition, the stolen subcomputation has at most C extrinsic page
faults, because the stolen subcomputation is executed in the same or-

der as the subcomputation executes in the serial order. At the end of

the subcomputation, at most C pages need be reconciled, and these
reconciles may be extrinsic transfers. In total, at most 3C primary

transfers are associated with any primary subcomputation.

A similar argument holds for secondary transfers. Each sec-
ondary subcomputation must perform at most C reconciles to flush
the cache at the start of the subcomputation. The subcomputation

then has at most C extrinsic page faults during its execution, because
it executes in the same order as it executes in the serial order. FL
nally, at most C pages need to be reconciled at the end of the sub-

computation. ■

We now bound the amount of scheduler overhead by counting the

number of rounds in an execution,

Lemma 4 If each page transfer (fetch or reconcile) in the execu-
tion is serviced by a processor chosen independently at random, and

each processor queues its transfer requests in FIFO orde~ then, for
any E >0, with probability at least 1 – e, the total number of steal
requests and primary transfers is at most O(CPT~ + CP1g( 1/&) ).

Proof To begin, we shall assume that each access to the backing

store takes one step regardless of the congestion. We shall describe
how to handle congestion at the end of the proof.

First, we wish to bound the overhead of scheduling, that is, the

additional work that the one-processor execution would not need

to perform. We define an event as either the sending of a steal re-

quest or the sending of a primary-page-transfer request. In order to

bound the number of events, we divide the execution into rounds.

Round 1 starts at time step 1 and ends at the first time step at which at

least 27CP events have occurred. Round 2 starts one time step after
round 1 completes and ends when it contains at least 27CP events,

and so on. We shall show that with probability at least 1 – e, an ex-
ecution contains only 0( T- + lg( 1/&) ) rounds.

To bound the number of rounds, we shall use a delay-sequence

argument. We define a modified dag D’ exactly as in [ 10]. (The dag
D’ is for the purposes of analysis only and has no effect on the com-
putation.) The critical-path length of D’ is at most 2T_. We define a
task with no unexecuted predecessors in D’ to be critical, and it is by
construction one of the first two tasks to be stolen from the processor
on which it resides. Given a task that is critical at the beginning of

a round, we wish to show that it is executed by the start of the next

round with constant probability. This fact will enable us to show that
progress is likely to be made on any path of D’ in each round.

We now show that at least 4P steal requests are initiated during

the first 22CP events of a round. If at least 4P of the 22CF’ events

are steal requests, then we are done. If not, then there are at least

18CP primary transfers. By Lemma 3, we know that at most 3CP of
these transfers are associated with subcomputations running at the
start of the round, leaving 15CP for steals that start in this round.
Since at most 3C primary transfers can be associated with any steal,
at least 5P steals must have occurred. At most P of these steals were
requested in previous rounds, so there must be at least 4P steal re-

quests in this round.
We now argue that any task that is critical at the beginning of

a round has a probability of at least 1/2 of being executed by the

end of the round. Since there are at least 4P steal requests during

the first 22CP events, the probability is at least 1/2 that any task

that is critical at the beginning of a round is the target of a steal re-

quest [10, Lemma 10], if it is not executed locally by the processor
on which it resides. Any task takes at most 3mC + 1 < 4mC time to

execute, since we are ignoring the effects of congestion for the mo-
ment. Since the last 4CP events of a round take at least 4mC time to
execute, if a task is stolen in the first part of the round, it is done by
the end of the round.

We want to show that with probability at least 1 –&, the total
number of rounds is O(TW + lg( 1/&)). Consider a possible delay se-

quence. Recall from [10] that a delay sequence of size R is a max-
imal path U in the augmented dag D’ of length at most 2T~, along

with a partition H of R which represents the number of rounds dur-

ing which each task of the path in D’ is critical. We now show that

the probability of a large delay sequence is tiny.
Whenever a task on the path U is critical at the beginning of a

round, it has a probability of at least 1/2 of being executed dur-
ing the round, because it is likely to be the target of one of the 4P

steals in the first part of the round. Furthermore, this probability is
independent of the success of critical tasks in previous rounds, be-
cause victims are chosen independently at random. Thus, the prob-

R ‘2T- that a particular delay sequence withability is at most (1/2) -

size R > 2T~ actually occurs in an execution. There are at most

22T- (R~~~-) delay sequences of size R. Thus, the probability that

any delay sequence of size R occurs is at most

2’T”(RE?G)R”2T”
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which can be made less than & by choosing R = 14T~ + lg( 1/&).

Therefore, there are at most 0( T- + lg( 1/&) ) rounds with probabil-

ity at least 1 – c. In each round, there are at most 28CP events, so
there are at most O(CPT~ + CPlg( 1/&) ) steal requests and primary
transfers in total.

Now, let us consider what happens when congestion occurs at
the backing store. We still have at most 3C transfers per task,

but these transfers may take more than 3rrrC time to complete be-
cause of congestion. We define the following indicator random
variables to keep track of the congestion. Let Xu,l, be the indica-
tor random variable that tells whether task u’s ith transfer request
is delayed by a transfer request from processor p. The probability y

is at most 1/P that one of these indicator variables is 1. Further-

more. we shall argue that they are nonpositively correlated, that is,
– 1 } < l/P, as long asnoneofthe (u’, i’)Pr { x[(i[, z 1 IALtJi,l, XUJill,! —

requests execute at the same time as the (u, r’) request. That they are
nonpositively correlated follows from an examination of the queu-
ing behavior at the backing store. If a request (u’, i’) is delayed by a

request from processor p’ (that is, ~Ulil~l = 1), then once the (u’, i’)

request has been serviced, processor p“s request has also been ser-
viced, because we have FIFO queuing of transfer requests. Con-

sequently. p“s next request, if any, goes to a new, random proces-

sor when the (u, i) request occurs. Thus, a long delay for request

(~~, i’) cannot adversely affect the delay for request (u, i). Finally,
we also have Pr {xU,,, = 1 IA,,J#,j xU,,,I = 1 } < 1/P, because the re-

quests from the other processors besides p are distributed at random.
The execution time X of the transfer requests for a path U in D’

) Rearranging. wecan be written as X < ZUeu(5rnC + m ~ll,xUtlj
have X <1 OrnCT= + rrr~U,J,x,,ll,. because U has length at most 2T~.
This sum is just the sum of 10CF’T_ indicator random variables, each
with expectation at most 1/P. Since the tasks u in U do not execute
concurrently, the ,Yt,l,) are nonposittvely correlated, and thus, them

sum can be bounded using combinatorial techniques. The sum is
greater than z only if some z-size subset of these 10CPT~ variables

are ail 1, which happens with probability:

This probability can be made less than ( I /2): by choosing z ~

20eCT~. Therefore. we have X > (10+ 20e)mCT~ with probabil-

ity at most ( l/2)x–]On’cT-. Since there are at most 2T~ tasks on the

critical path, at most 2T~ + X/mC rounds can be overlapped by the
long execution of page transfers of these critical tasks. Therefore.

the probability of a delay sequence of size R is at most ( 1/2) R–o(~-).
Consequently, we can apply the same argument as for umt-cost
transfers, with slightly different constants, to show that with prob-
ability at least I – e, there are O(TQ + lg( 1/E)) rounds, and hence

O(CPT~ + CPlg( 1/8) ) events, during the execution. ■

We now bound the running time of a computation.

Theorem 5 Consider any fullv strict multithreaded computation

executed on P processors, each with an LRU cache of C pages, us-
ing our work-stealing scheduler in colyunction with the BACKER
coherence algorithm. Let m be the service time for a page fault that

encounters no congestion, and assume that accesses to the backing
store are random and independent. Suppose the computation has TI

computational work, F1(C) serial page faults, TI (C) = T] + mFl (C)
total work, and T- critical-path length. Then for anv c >0, the

execution time is O(T1 (C)/P+ mCT~ + m lgP + mClg( 1/E)) with
probabili~ at least i – E Moreover the expected execution time is
O(Tl(C)/Pi-mCT_).

Proof As m [10], we shall use an accounting argument to bound
the running time. During the execution, at each time step, each pro-

cessor puts a dollar into one of 5 buckets according to its activity at
that time step. Specifically, a processor puts a dollar in the bucket
labeled:

● WORK, if the processor executes a task;

● STEAL, If the processor sends a steal request;

● STEALWAIT, If the processor waits for a response to a steal

request;

e XFER, if the processor sends a page-transfer request; and

● XFERWAIT, if the processor waits for a page transfer to com-
plete.

When the execution completes, we add up the dollars in each bucket

and divide by P to get the running time.
We now bound the amount of money in each of the buckets at the

end of the computation by using the fact, from Lemma 4, that with

probability at least 1 – E’, there are O(CPT~ + CPlg( 1/E’)) events:

WORK. The WORK bucket contains exactly T, dollars. because

there are exactly Tl tasks in the computation.
STEAL. We know that there are O(CPT_ + C’F’lg( 1/E’) ) steal re-

quests, so there are O(CPT_ + CPlg( 1/E’) ) dollars in the S’t’EAL

bucket.
STEALWAIT. We use the analys~s of the recycling game ([10,

Lemma 5]) to bound the number of dollars in the STEALWAIT
bucket. The recycling game says that if N requests are distributed
randomly to P processors for service, with at most P requests out-

standing simultaneously, the total time waiting for the requests to

complete is O(N+ Plg P+ F’lg( l/E’)) with probability at least 1 –

e’. Since steal requests obey the assumptions of the recycling game,
if there are O(CPT~ + CPlg( 1/8’) ) steals, then the total time waiting

for steal requests is O(CPT_ + PlgP + CP lg( 1/e’)) with probabil-

ity at least 1 – E’. We must add to this total an extra O(mCPT- +
mCPlg( 1/&’)) dollars because the processors initiating a success-
ful steal must also wait for the cache of the victim to be recon-

ciled, and we know that there are O(CPT~ + CPlg( 1/E)),) such rec-
onciles. Finally, we must add O(mCPT_ + mCPlg( 1/& ’l) dollars be-
cause each steal request might also have up to m idle steps associ-
ated with it. Thus, with probability at least 1 – 8’, we have a totai

of O(rnCPT~ + Plg P + mCPlg( l/E’)) dollars in the STEALWAIT
bucket.

XFER. We know that there are O(F} (C) + CPT_ + CPlg( 1/&’))

transfers during the executton: a fetch and a reconcile for each
Intrinsic fault, O(CPTm + CPlg( 1/s’)) primary transfers from
Lemma 4, and 0(C17~ + CPlg( 1/&’) ) secondary transfers. We
have this bound on secondary transfers, because each secondary
subcomputation can be paired with a unique primary subcomputa-
tion. We construct this pairing as follows. For each synchroniza-
tion task j, we examine each interprocessor edge entering j. Each
of these edges corresponds to some child of j’s thread in the spawn
tree, because the computation is fully strict. At least one of these
children (call it k) is not finished executing at the time of the last
cache flush by j’s processor, since j is a synchromzat~on task. We

302



now show that there must be a random steal of j’s thread just after

k is spawned. If not, then k is completed before J’S thread contin-

ues executing after the spawn. There must be a random steal some-
where between when k is spawned and when j is executed, how-

ever, because j and k execute on different processors. On the last

such random steal, the processor executing j must flush its cache,
but this cannot happen because k is still executing when the last flush

of the cache occurs, Thus, there must be a random steal just after k is

spawned. We pair the secondary subcomputation that starts at task

j with the primary subcomputation that starts with the random steal
after k is spawned. By construction, each primary subcomputation
has at most one secondary subcomputation pained with it, and since

tXdCh primary subcomputation does at least C extrinsic transfers and
each secondary subcomputation does at most 3C extrinsic transfers,

there are at most O(CPT~ + CP lg( 1,/E’ ) ) secondary transfers. Since
each transfer takes m time, the number of dollars in the XFER bucket

is O(nrFl(C) +mCPTm+ mCPlg( l/d)).

XFERWAIT. To bound the dollars in the XFERWAIT bucket,

we use the recycling game as we did for the STEALWAIT bucket.
The recycling game shows that there are O(mFl (C)+ mCPTW +
nrPlgP + mCPlg( 1/&’)) dollars in the XFERWAIT bucket with

probability at least 1 – e’.

With probability at least 1– 3&’, the sum of all the dollars in all the

buckets N TI +O(mF1 (C) +mCPT_+mP1gP+mCP lg( 1/8’)). Dl-
vidingby P, we obtain a running time of TPs O((TI +mF~ (C))/P+

mCT_ + m lgP + mClg( 1/:’)) with probability at least 1 – 3&~. Us-

ing the identity Tl (C) = T1 + mFl (C) and substituting&= 3&’ yields
the deswed high-probability bound. The expected bound follows
similarly. ■

We now bound the number of page faults,

Corollary 6 Consider any fully strict nudtithreaded computation

executed on P processors, each with an LRU cache of C pages, us-
ing our work-stealing scheduler in conjunction with the BACKER
coherence algorithm. Assume tht accesses to the backing store are

random and independent. Suppose the computation has FI (C) se-
rial page faults and Tw crttica[-path length. Then for any e >0, the
number of page faults is at most Fl (C)+ O(CPT- + CP Ig( I /S ) ) with

probability at least 1 – E. Moreove~ the expected number of page

faults is ur mosf FI (C) + O(CPTW).

Proo~ In the parallel execution, we have one fault for each in-

trinsic fault, plus an extra O(CPT_ + CPlg( 1/&) ) primary and sec-

ondary faults. The expected bound follows similarly. ■

4 Analysis of page faults

This section provides upper bounds on the number of page faults for
“regular” diwde-and-conquer multithreaded algorithms when the
parallel execution is scheduled by our randomized work-stealing
scheduler and dag consistency is maintained by the BACKER algo-

rithm, In a regular divide-and-conquer multithreaded algorithm,
each thread, when spawned to solve a problem of size n, operates as
follows. If n is larger than some given constant, the thread divides
the problem into a subproblems, each of size n/b for some constants
a ~ I and b > 1. and then it recursively spawns child threads to solve

each subproblem. When all a of the children have completed, the
thread merges their results, and then returns. In the base case, when

n is smaller than the specified constant, the thread directly solves the
problem, and then returns.

Corollary 6 bounds the number of page fnults that a fully strict

multithreaded algorithm incurs when run on P processors using a

randomized work-stealing scheduler and the BACKER coherence al-

gorithm. Specifically, for a given fully strict mtrhithreaded algo-
rithm, let FI (C, n) denote the number of page faults that occur when

the algorithm is used to solve a problem of size n with the standard,

depth-first serial execution order on a single processor with an LRU

cache of C pages. In addition, for any number P z 2 of processors,

let FP(C, n) denote the number of page faults that occur when the al-
gorithm is used to solve a problem of size n with the work-stealing
scheduler and BACKER on P processors, each with an LRU cache
of C pages. Corollary 6 then says that the expectahon of FP[C, n)

IS at most F1(C, n) + O(CPT~(n ) ). where TM(n) is the crihcal path
of the computation on a problem of size n. The O(CPT~(n ) ) term

represents faults due to “warming up”’ the processors’ caches.

Generally, one must implement and run an algordhm to get a good
estimate of F1(C, n ) betore one can predict whether It will run well m
parallel. For regular divide-and-conquer muhithreaded algorithms,

however, analysis can provide good asymptotic bounds on FI (C, n),

and hence on FP(C, n).

Theorem 7 Consider an-v regular divide-and-conquer multi-
threaded algorithm executed on I processor with an LRU cache

of C pages, using the standard, depth-j%-st serial execution order
Let nc be t}te largest problem size that can be solved wholly within
the cache. Suppose that each thread. when spawned to solve a
problem of size n larger than or equal to nc, divides the problem
into a subproblems each of si:e n/b for some constants a ~ 1 and

b > 1. Additionally suppose each thread solving a problem of
size n makes p(n) page faults in the worst case. Then, the number
FI (C, n ) of page faults taken by the aigorithm when solving a

problem of size n can be determmed as follows:z

1.

2.

3.

ffp(n) = O(n]Ogf)u-&) for some constant & >0, /hen FI (C, n) =

O(C(n/nC)lOg{, ” ), lfp(n) further satisfies the regularity condi-

rion that p(n) s ayp(n/b) for some constant y < 1.

,ffp(n) = @(n] 0~~,”), then

FI (C, n) = O(C(n/nc)lOglU lg(n/nc)).

Ifp(n) = !Q(niOgr”+E) for some constant & >0, then F, (C,n) =

O(C(n/ncjlO~/” + p(n) ), ifp(,n) further sattsjies the regtdaruy
condition that p(n) z ayp( n/b) for some constanr y > 1.

Prooj If a problem of size n does not tit in the cache, then the
number Fl (C, n) of faults taken by the algorithm in solving the prob-

lem is at most the number F1(C, n/b) of faults for each of the a sub-

problems of size n/b plus an additional p(n) faults for the top thread
itself. If the problem can be solved in the cache, the data for it need

only be paged into memory at most once. Consequently, we obtain
the recurrence

{

aFl (C, n/b) +p(n) if n > nc t
F, (C,n) < c (1)

ifrr<rrc.

We can solve this recurrence using standard techniques [ 12, Sec-
tion 4.4]. We iterate the recurrence, stopping as soon as we reach

the first value of the iteration count k such that n/bk < nc holds, or
equivalently when k = ~logb(n/nc)] holds. Thus, we have

k– 1

Fl(C, n) ~ aLFl (C, n/bk) + ~ a’p(n/b’)
i=0

-(
IOg,,(n/n~) \

— 0 C(nJnc)’Ogl” + ~ a’p(njb’)
,=0 )

‘Other cases exist bewdes the three glveo here.
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If p(n) satisfies the conditions of Case 1, the sum is geometrically

increasing and is dominated by its last term. For p(n) satisfying
Case 2, each term in the sum is the same. Finally, for p(n) satisfy-
ing Case 3, the first term of the sum dominates. Using the inequality

P(nc) < C, we obtain the stated results. ■

5 Analysis of space utilization

This section provides upper bounds on the memory requirements of

regular divide-and-conquer multithreaded algorithms when the par-

allel execution is scheduled by a “busy-leaves” scheduler, such as
the work-stealing scheduler used by Cilk. A busy-leaves scheduler

is a scheduler with the property that at all times during the execu-
tion, if a thread has no living children, then that thread has a pro-

cessor working on it. The work-stealing scheduler is a busy-leaves
scheduler [7, 10]. We shall proceed through a series of lemmas that
provide an exact characterization of the space used by “simple” mul-

tithreaded algorithms when executed by a busy-leaves scheduler. A
simple mt.dtithreaded cdgorihrt is a fully strict multithreaded algo-
rithm in which each thread’s control consists of allocating memory,

spawning children, waiting for the children to complete, deallocat-
ing memory, and returning, in that order. We shall then specialize
this characterization to provide space bounds for regular divide-and-

conquer algorithms.
Previous work [7, 10] has shown that a busy-leaves scheduler can

efficiently execute a fully strict multithreaded algorithm on P pro-
cessors using no more space than P times the space required to ex-
ecute the algorithm on a single processor. Specifically, for a given
fully strict multithreaded algorithm, if .S1denotes the space used by
the algorithm to solve a given problem with the standard, depth-first,
serial execution order, then for any number P of processors, a busy

leaves scheduler uses at most PSI space. The basic idea in the proof

of this bound is that a busy-leaves scheduler never allows more than
P leaves in the spawn tree of the resulting computation to be living

at one time. If we look at any path in the spawn tree from the root

to a leaf and add up all the space allocated on that path, the largest
such value we can obtain is S1. The bound then follows, because

each of the at most P leaves living at any time is responsible for at
most S1 space, for a total of PSI space. For many algorithms, how-
ever. the bound PSI is an overestimate of the true space, because
space near the root of the spawn tree maybe counted multiple times.
In this section, we tighten this bound for the case of reWlar divide-
and-conquer algorithms. We start try considering the more general
case of simple multithreaded algorithms.

We first introduce some terminology. Consider any simple mul-

tithreaded algorithm and input problem, and let T be the spawn tree
of the simple multithreaded computation that results when the given
algorithm is executed to solve the given problem. Let A be any

nonempty set of the leaves of 7’. A node (thread) u c T is covered

by A if u lies on the path from some leaf in A to the root of T. The
cover of A, denoted C(A), is the set of nodes covered by A. Since
all nodes on the path from any node in C(A) to the root are covered,

it follows that C(A) is connected and forms a subtree of T. If each
node u allocates f(u) memory, then the space used by A is defined
as

The following lemma shows how the notion of a cover can be

used to characterize the space required by a simple multithreaded
algorithm when executed by a busy leaves scheduler.

Lemma 8 Let T be the spawn tree of a simple multithreaded com-
putation, and let f(u) denote the memory allocated by node u c T.

1

0

Figure 3: An illustration of the definition of a dominator set. For the tree
shown, let fbe given by the labels at the left of the nodes, and let A = {F. H}.
Then, the serial space S is given by the labels at the right of the nodes,
C(A) = {A, B, C.D,F,H} (the shaded nodes), and D(A. G) = {CD}. The
space required by A is .5(A) = 12.

For any number P of processors, if the computation is executed us-
ing a busy-leaves schedule~ then the total amount of allocated mem-

ory at any time during the execution is at most ,s”, which we dejine

by the identity

.5’ = ,n@A) ,

with the maximum taken over all sets A of leaves of T of size at

most P.

Proof Consider any given time during the execution, and let A de-

note the set of leaves living at that time, which by the busy-leaves
property has cardinality at most P. The total amount of allocated
memory is the sum of the memory allocated by the leaves in A plus
the memory allocated by all their ancestors. Since both leaves and
ancestors belong to C(A) and IA I < P holds, the lemma follows. ■

The next few defimhons will help us characterize the structure of

C(A) when A maximizes the space used. Let T be the spawn tree of
a simple multithreaded computation, and let f (u) denote the mem-
ory allocated by node u c T, where we shall henceforth make the

technical assumption that f(u) = O holds if u is a leaf and f (u) >0

holds if u is an internal node. When necessary, we can extend the
spawn tree with a new level of leaves in order to meet this techni-

cal assumption. Define the serial-space function S(u) inductively

on the nodes of T as follows:

{

O if u is a leafi
S(u) = f(u)+ max{S(v) : visa child of u}

if u is an internal node of T.

The serial-space function assumes a strictly increasing sequence of
values on the path from any leaf to the root. Moreover$ for each node
u ● ?’, there exists a leaf such that if x is the unique simple path from

u to that leaf, then we have S(u) = ~Ven f (v). We shall denote that
leaf (or an arbitrary such leaf, if more than one exists) by ~(u). The

u-induced dominator of a set A of leaves of T is defined by

!D(A, u) = {v c T: 3W E C(A) such that w is a child

of v and S(w) < S(u) < S(v)} .

The next lemma shows that every induced dominator of A is in-
deed a “dominator” of A.

Lemma 9 Let T be the spawn tree of a simple multithreaded

computation encompassing more than one node, and let A be a
nonernpty set of leaves of T. Then, for any internal node u E T, re-
moval of D (A, u) from T disconnects each leaf in A from the roo~

of T.

304



Prooj Let r be the root of T, and consider the path z from any
leaf 1 c A to r. We shall show that some node on the path belongs

to !D(A, u). Since M is not a leaf and S is strictly increasing on the
nodes of the path rz, we must have O = S(l) < S(u) < S(r). Let w

be the node lying on rt that maximizes S(w) such that S(W) < S(u)
holds, and let v be its parent, We have S(w) < S(u) < S(v) and w c

C(A), because all nodes lying on n belong to C(A), which implies
that v e ‘D(A, u) holds. ■

The next lemma shows that whenever we have a set A of leaves

that maximizes space, every internal node u not covered by A in-

duces a dominator that is at least as large as A.

Lemma 10 Let T be the spawn tree of a simple multithreaded com-

putation encompassing more than one node, and for any integer
P ~ 1, let A be a set of leaves such that .$ (A) = 5“ holds. Then,

for all internal nodes u @ C(A), we have [!D(A, u) I z [Al.

Proof Suppose, for the purpose of contradiction, that I!D (A, u) I <

\Al holds. Lemma 9 implies that each leaf in A is a descendant

of some node in D (A, u), Consequently, by the pigeonhole princi-
ple, there must exist a node v G D (A, u) that is ancestor of at least

two leaves in A. By the definition of induced dominator, a child

w E C(A) of v must exist such that S(w) < S(u) holds.
We shall now show that a new set A’ of leaves can be constructed

such that we have ._f(A’ ) > S(A), thus contradicting the assumption

that 3 achieves its maximum value on A. Since w is covered by A,

the subtree rooted at w must contain a leaf 1 E A. Define A’ = A –
{l}U {k(u)}. Adding k(u) to A causes the vahre of S(A) to increase
by at least S(u), and the removal of 1 causes the path from 1 to some
descendant of w (possibly w itself) to be removed, thus decreasing
the value ofs (A) by at most S(w). Therefore. we have ~ (A’) a

5(A) – S(w)+ S(u) > S(A), since S(w) < S(u) holds. ■

We now restrict our attention to regular divide-and-conquer mul-

tithreaded algorithms, as introduced in Section 4. In a regular

divide-and-conquer multithreaded algorithm, each thread, when
spawned to solve a problem of size n, allocates an amount of space

s(n) for some functions of n. The following lemma characterizes

the structure of the worst-case space usage for this class of algo-

rithms.

Lemma 11 Let T be the spawn tree of a regular divide-and-

conquer multithreaded algorithm encompassing more than one
node, and for any integer P ~ 1, [et A be a set of leaves such that
S(A) = S* holds. Then, C(A) contains every node at every level of
the tree with P or fewer nodes.

Proo$ If T has fewer than P leaves, then A consists of all the

leaves of T and the lemma follows trivially. Thus, we assume that

T has at least P leaves, and we have [Al = P.

Suppose now, for the sake of contradiction, that there is a node u

at a level of the tree with P or fewer nodes such that u @C(A) holds.

Since all nodes at the same level of the spawn tree allocate the same

amount of space, the set 27 (A, u) consists of all covered nodes at
the same level as u, all of which have the same serial space S(u).
Lemma 10 then says that there are at least P nodes at the same level
as u that are covered by A. This fact contradicts our assumption that
the tree has P or fewer nodes at the same level as u. ■

Finally, we state and prove a theorem that bounds the worst-case

space used by a regular divide-and-conquer mukithreaded algorithm
when it is scheduled using a busy-leaves scheduler.

Theorem 12 Consider any regular divide-and-conquer multi-
threaded algorithm executed on P processors using a busy-leaves

schedulet Suppose that each thread, when spawned to solve a prob-
lem of size n, allocates s(n) space, and if n is larger than some con-

staru, then the thread divides the problem into a subproblems each of

size n/b for some constants a ~ I and b > 1. Then, the total amount
Sp(n) of space taken by the algorithm in the worst case when solving

a problem of size n can be determined as fOLIO WS: 3

1.

2.

3.

4.

If s(n) = t3(lgk n) for sotne constant k ~ O, then Sp(n) =

@(Plgk+i (n/F’)).

Ifs(n) = O(nlO~l)U–e) for some constant e >0, then Sp(n) =

@(Ps(n/P11 ‘O~lJa) ), 1X in addition, s(n) satisjies the regular-
ity condition yl s(n/b) ~ s(n) s ay2s(n/b) for some constants

yl > landy2< 1.

Ifs(n) = ~(n~”gl,u), then Sp(n) = @(s(n) lgP).

[fs(n ) = Q(nlOg/,”+e) for some constanr E >0, then SP( n) =

@S(ri) ), 1$ in additio;, s(n) satisfies the regularity condition

that s(n) ~ ays(n/b) for some constant y > 1.

Proof Consider the spawn tree T of the multithreaded computa-

tion that results when the algorithm is used to solve a given input
problem of size n. The spawn tree T is a perfectly balanced a-ary

tree. A node u at level k in the tree allocates space f(u) = s(n/bk).

From Lemma 8 we know that the maximum space usage is bounded

by S*, which we defined as the maximum value of the space func-
tion S (A) over all sets A of leaves of the spawn tree having size at

most P.
In order to bound the maximum value of.$ (A), we shall appeal

to Lemma 11 which characterizes the set A at which this maximum

occurs. Lemma 11 states that for this set A, the set C(A) contains
every node in the first lloga Pj levels of the spawn tree. Thus, we
have

[log,, P] -I

Sp(n) ~ ~ a’s(t~/b’)+@(PS1 (n/P’ j’Oga)) (2)
,=0

To determine which term in Equation (2) dominates, we must

evaluate S1(n), which satisfies the recurrence

S] (n) = SI (n/b) +s(n) ,

because with serial execution the depth-first discipline allows each

of the a subproblems to reuse the same space. The solution to this
recurrence [12, Section 4.4] is

● S1(n) = O(lgk+i n), ifs(n) = @(lgkn) forsomeconstant k >0,
and

● Sl (n) = @(s(n)), if s(n) = !Q(n&) for some constant & > 0

and in addition satisfies the regularity condition that s(n) ~

ys(n/b) for some constant y >1.

The theorem follows by evaluating Equation (2) for each of the

cases. We only sketch the essential ideas in the algebraic manipula-
tions. For Cases 1 and 2, the serial space dominates, and we simply
substitute appropriate values for the serial space. In Cases 3 and 4.
the space at the top of the spawn tree dominates. In Case 3. the to-
tal space at each level of the spawn tree is the same. In Case 4, the
space at each level of the spawn tree decreases geometrically. and
thus, the space allocated by the root dominates the entire tree. 9

30ther cases exist besides those given here,
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6 Example analyses of multithreaded algorithms

In this section we show how to apply the analysis techniques of this

paper to specific multithreaded algorithms. We focus first on analyz-

ing matrix multiplication, and then we examine LU-decomposition.

We show that both of these matrix problems can be solved efficiently
with respect to the measures of time, page faults, and space us-

ing recursive divide-and-conquer algorithms. In our analyses, we

shall assume that the cache memory of each of the P processors

contains C pages and that each page holds m matrix elements. We
shall also assume that the accesses to backing store behave as if

they were random and independent, so that the expected bounds

TP(c) = O(Tl (C)/F’+ mCT~) and FP(C) = FI (C)+ O(CPT-) are
good models for the performance of multithreaded algorithms.

Multiplying two n x n matrices (using the ordinary algorithm,
and not a variant of Strassen’s algorithm [28]) can be performed us-
ing @(rr3) work and can be done in El(lgrt) time [24]. Thus, for

a problem of size n, we have computational work T1(n) = @(rr3)
and critical-path length T-(n) = @(lgrr). If there were no page

faults, therefore, the running time on P processors would be Tp(n) =

o(rz3/P+lgn).

We must also account for page faults, however. Let us consider

first the number of page faults incurred by the naive “blocked” serial
algorithm for computing R = AB in which the three matrices A, B,
and R are partitioned into fi x A submatrix blocks. We perform

the familiar triply nested loop on the blocked matrix-indexing i
through the row blocks of R, j through the column blocks of R, and
k through the row blocks of A and column blocks of B—updating
R[i, j] +- R[i, j] + A[i, k]. B[k, j] on the matrix blocks. If the matrix

B does not fit into the cache, that is, mC < n2, then every access to a

block of B causes a page fault. Consequently, the number of serial

page faults is FI (C, n) = (n/@i)3 = n3 /m3i2, even if we assume

that A and R never fault.
The divide-and-conquer matrixmul algorithm from [8] uses the

processor cache much more effectively. To multiply then x n ma-

trix A by similar matrix B, matrixmul divides each matrix into four
n/2 x n/2 submatrices and uses the identity

[~:~ ~:1”[:::a
[A111311 A11B12 1[At2B*l A1*B2*——

A21B]1 A21B1* + A22B21 1
A2*B2* “

The idea of matrixmul is to recursively compute the 8 products of

the submatrices of A and B in parallel, and then add the subproducts

together in pairs to form the result using recursive matrix addition.
We can apply Theorem 7 to analyze the page faults of matrix-

mul using a = 8, b = 2, nc = m, and p(n) = @(n*/m).
Case 1 of the theorem applies with E = 1, which yields F1 (C, n) =

0( C(n/@)3) = 0(n3/m312@), a factor of ~Cfewer faults than
the naive algorithm.

To analyze the space for matrixmul, we use Theorem 12. For
this algorithm, we obtain a recurrence with a = 8, b = 2, and

s(n) = @(n*). Case 2 applies, yielding a worst-case space bound

of.Sp(n) = El(P(n/P1/3)2) = @(n2P1/3).4
The work and critical-path length for matrixmul can also be

computed using recurrences. The computational work 7’1(n) to

multiply n x n matrices satisfies T1(n) = 8T1 (n/2) + @(n*), since

41n recent work, BleUoch, Gibbons, and Matins [6] have shown that “senes-pamllel”

dag computations can be scheduled to achieve suhstmrtially better space bounds than

we report here, For example, they give a bound of SP(n) = 0(n2 + Plg2n) for matrix

multlplicabon. ‘rfrelr Improved space bounds come at the cost of substantially mom

communication and overhead than is used by our scheduler, however.

adding two matrices in parallel can be done using O(n2) computa-

tional work, and thus, T1(n) = 6$(n3). Consequently, the total work

is TI (C, n) = T1(n) +mFl (C, n) = @(n3). To derive a recurrence for

the critical-path length T-(n), we observe that with an infinite num-
ber of processors, only one of the 8 submultiplications is the bottle-
neck, because the 8 multiplications can execute in parallel. Conse-

quently, the critical-path length T-(n) satisfies I’L(n) = 7“(n/2) +

El(lgn), because the parallel addition can be accomplished recur-
sively with a critical path of length f3(lg n). The solution to this re-

currence is T@(n) = @(lg2 n).

Using our performance model, the total expected time for

matrixmul on P processors is therefore TP(C, n) = O(T1 (C, n)/P+

mCT~ (n)) = 0(n3 /P + mC lg2 n). Consequently, if we have P =

0(n3/(mClg2 n)), the algorithm runs in 0(n3/P) time, obtaining
linear speedup. A parallel version of the naive algorithm has a

slightly shorter critical path, and therefore it can achieve 0(n3/P)
time even with slightly more processors. But matrixmul commits
fewer page faults, which in practice may mean better actual perfor-

mance. Moreover, the code is more portable, because it requires no

knowledge of the page size m. What is important, however, is that
the performance models for dag consistency allow us to analyze the

behavior of algorithms.
Whh a simple change, matrixmul can be modified to use no aux-

iliary space, but at the cost of a longer critical path. The idea is to

spawn 4 of the 8 subproducts which place their results in the out-
put matrix, wait for them to complete, and then spawn the other 4
to add their results into the output matrix. Since we must wait for
the first 4 to complete, the critical-path length for this computation
is T~(n) = 2T~(n/2) + @(1), which has solution T~(sz) = @(n).
If the number P of processors is not too large, this algorithm mav

be preferable to matrixmul. because it uses only the @rt2) spac~

needed for the output.
Let us now examine the more complicated problem of performing

an LU-decomposition of an n x n matrix A without pivoting. The or-
dinary parallel algorithm for this problem pivots on the first diagonal

element. Next, in parallel it updates the first column of A to be the
first column of L and the first row of A to be the first row of U. Then,
it forms a Schur complement to update the remainder of A, which it

recursively (or iteratively) factors. This standard algorithm requires
E)(n3) computational work and it has a critical path of length El(n).
Unfortunately, even when implemented in a blocked fashion, the al-
gorithm does not display good locality for a hierarchical memory

system. Each step causes updates to the entire matrix, resulting in

FI (C, n) = @(n3 /m3/2) serial page faults, similar to blocked matrix

multiplication.
A divide-and-conquer algorithm for the problem uses fewer page

faults, at the cost of a slightly longer critical path. Divide the matrix

A and its factors L and U into four parts so that A = L. U is written

The parallel algorithm computes L and U as follows. It recursively
factors Am into ~. UW. Then, it uses back substitution to solve
for UO1 in the formula AO1 = LWUOI, while simultaneously using
forward substitution to solve for Llo in A 10 = LIOUN. Finally, it

recursively factors the Schur complement AI I – LIOUO1 into LI j
U1l.

To understand the LU-decomposition algorithm completely, we
must first understand how the back- and forward-substitution al-
gorithms work. To solve these problems on an n x n matrix, we
can also use a parallel divide-and-conquer strategy. For back sub-
stitution (forward substitution is symmetric), we wish to solve the
matrix equation A = LX for the unknown matrix X, where L is a

lower triangular matrix. Subdividing the three matrices as we did

306



for LU-decomposition, we solve the equation as follows. First,

solve Am = ~Xw for Xm recursively, and in parallel solve Aol =

LWXOI for Xol. Then, compute A~o = A lo – LIOXW and A\l =

AI I – LIOXO1 using a matrix-multiplication subroutine. Finally,
solve A{. = LI, X,. for XIO recursively, and in parallel solve A{, =

L.llXI1 for X1l.

To analyze back substitution, let us assume that we are im-

plementing an in-place algorithm, so that we can use the mtrl-

tiplication algorithm that requires no auxiliary space, but which
has a critical path of length El(n). The computational work for

back substitution satisfies T] (n) = 4TI (n/2) + @(rr3), since matrix

multiplication has computational work @(n3 ), which has solution

T1(n) = @(rr3 ). To bound the number of page faults, observe that
page faults in the one step of the algorithm are dominated by the

G(rr3 /m3i2 v?) page faults in the matrix multiplication, and hence

we obtain the recurrence FI (C, n) = 4FI (rs/2) + @(n3/m3/2~C).

Therefore, we can apply Case 3 of Theorem 7 with a = 4, b =

2, nc = ~, and p(n) = 0(n3/m3f2fl) to obtain the solution

F] (C, n) = 0(n3 /m3i2@). The critical-path length for back sub-

stitution is ‘L(n) = 2Tq(n/2) + O(n), since the first two recursive

subproblems together have a critical path of T= (rr/2), as do the sec-
ond two subproblems, which must wait until the first two are done.
The solution to this recurrence is T-(n) = @(n lgn). The results for

forward substitution are identical.

We can now analyze the LU-decomposition algorithm. First, ob-
serve that if the variant of matrixmul that uses no auxiliary stor-
age is used to form the Schur complement and in back and for-
ward substitution, the entire algorithm can be performed in place
with no extra storage. For the computational work of the algo-
rithm, we obtain the recurrence TI (n) = 2TI (n/2) + @(n3), since

we have two recursive calls to the algorithm and El(n3 ) computa-

tional work is required for the back substitution, the forward sub-
stitution, and the matrix multiplication to compute the Schur com-
plement. This recurrence gives us a solution of 7’1(n) = f3(n3) for
the computational work. The number of serial page faults satisfies

F] (C, n) = 2F1 (C, rr/2) + f3(rs3/m3i2@, due to the matrix mul-
tiplications and back substitution costs, which by Case 3 of Theo-

rem 7 with a = 2, b = 2, nc = KC, and p(n) = 0(n3/m3/2<C) has

solution FI (C, n) = @(rr3/m3i2@). The critical-path length has re-

ctmrence Z’-(n) = 2T,(n/2) + @(n Ign), since the back and forward

substitutions have @(n Ign) critical-path length. The solution to this

recurrence is T-(n) = @(n Igz n), which is slightly worse than the

standard algorithm.

Using our performance model, the total expected
time for LU-decomposition on P processors is therefore

Tp(C, n) = O(TI(C,n)/P + mCTW(n)) = 0(n3/P + mCnlg2n).

If we have P = 0(n3 /mCn lg2 n), the algorithm runs in 0(n3/P)

time, obtaining linear speedup. As with matrixmul, many fewer

page faults occur for the divide-and-conquer algorithm for LU-

decomposition than for the corresponding standard algorithm. The

penalty we pay is a slightly longer critical path—~(n Igz n) versus
@(n)—which decreases the available parallelism. The critical path

can be shortened to @(n lg n) by using the more space-intensive
matrixmul algorithm during back and forward substitution,
however.

We leave it as an open question whether fully strict multithreaded
algorithms with optimal critical paths can be obtained for matrix
multiplication and LU-decomposition without compromising the

other performance parameters.

7 Conclusion

We briefly relate dag consistency to other distributed shared mem-

ories, and then we offer some ideas for the future.

Like Cilk’s dag consistency, most distributed shared memories
(DSM’S) employ a relaxed consistency model in order to realize per-

formance gains, but unlike dag consistency, most distributed shared

memories take a low-level view of parallel programs and cannot

give analytical performance bounds, Relaxed shared-memory con-

sistency models are motivated by the fact that sequential consistency
[22] and various forms of processor consistency[16] are too expen-

sive to implement in a distributed setting. (Even modem “symmet-
ric multiprocessors” do not typically implement sequential consis-

tency.) Relaxed models, such as location consistency [14] and vari-
ous forms of release consistency [1, 13, 15], ensure consistency (to
varying degrees) only when explicit synchronization operations oc-

cur, such as the acquisition or release of a lock. Causal memory

[2] ensures consistency only to the extent that if a process A reads a
value written by another process B, then all subsequent operations

by A must appear to occur after the write by B. Most DSM’S im-
plement one of these relaxed consistency models [11, 18, 21, 27],
though some implement a fixed collection of consistency models
[4]. while others merely implement a collection of mechanisms on

top of which users write their own DSM consistency policies [23.
26]. AH of these consistency models and the DSM’S that implement

these models take a low-level view of a parallel program as a col-
lection of cooperating processes.

In contrast, dag consistency takes the high-level view of a parallel
program as a dag, and this dag exactly defines the memory consis-

tency required by the program. Like some of these other DSM’S,
dag consistency allows synchromzation to affect only the synchro-
nizing processors and does not require a global broadcast to update

or invalidate data. Unlike these other DSM’S, however, dag con-

sistency requires no extra bookkeeping overhead to keep track of
which processors might be involved in a synchronization operation,
because this information is encoded explicitly in the dag. By lever-

aging this high-level knowledge, the BACKER algorithm in con-
junction with the work-stealing scheduler is able to execute multi-
threaded algorithms with the performance bounds shown here. The
BLAZE parallel language [25] and the Myrias parallel computer [3]

define a high-level relaxed consistency model much like dag consis-

tency, but we do not know of any efficient implementation of either

of these systems. After an extensive literature search, we are aware
of no other distributed shared memory with analytical performance

bounds for any nontrivial algorithms.
We are currently working on various extensions of dag consis-

tency and improvements to our implementation of dag consistency
in Cilk. We are considering possible extensions to dag-consistent
shared memory, since some operations are impossible to express
with dag-consistent reads and writes alone. For example, con-

current threads cannot increment a shared counter with only dag-
consistent reads and writes. We are considering the possibility of

dag-consistent “atomic updates” in order to support such operations.
In addition, the idea of dag consistency can be extended to the do-
main of file 1/0. We anticipate that it should be possible to memory-
map files and use our existing dag-consistency mechanisms to pro-
vide a parallel, asynchronous 1/0 capability for Cilk. We are also

currently working on supporting dag-consi stent shared memory in
our Cilk-NOW runtime system [7] which executes Cilk programs
in an adaptively parallel and fault-tolerant manner on networks of

workstations. We expect that the “well-structured” nature of Cilk

computations will allow the runhme system to maintain dag consis-
tency efficiently, even in the presence of processor faults.

Finally, we observe that our work to date leaves open several an-
alytical questions regarding the performance of multithreaded NgO-
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rithms that use dag consistent shared memory. We would like to im-
prove the analysis of execution time to directly account for the cost

of page faults when pages are hashed to backing store instead of as-

suming that accesses to backing store “appear” to be independent
and random as assumed here. We conjecture that the bound of Theo-
rem 5 holds when pages are hashed to backing store provided the al-

gorithm is EREW in the sense that concurrent threads never read or
write to the same page. We would also like to obtain tight bounds on

the number of page faults and the memory requirements for classes

of multithreaded algorithms that are different from, or more general
than, the class of regular divide-and-conquer algorithms analyzed

here,
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