
Examination of a memory access classification scheme for pointer-intensive and numeric

programs

(mehrotra@csrd. uiuc. edu)-

CSRD and UI Department of Computer Science

1308 West Main Street

Urbana, IL 61801-2307

Abstract

In recent work, we have described a data prefetch mechanism for
pointer-intensive and numeric computations, and presented detailed

measurements on a suite of benchmarks to quanti~ its performance
potential] [HM94, Meh96]. In this paper we review a simple clas-
sification for memory access patterns on which the prefetch mech-
anism is based, and then take a close look at two codes from our

suite. Focusing on just two programs allows us to display a wide
range of slmulauon data. Results from this study several additional

optimizations for future data prefetch mechanisms,

Keywords: CPU architecture, data cache, memory access pattern
classification, instruction profihng, memory latency tolerance

1 Introduction

The ever-increasing gap between microprocessor and memory speeds
has been well documented [HP96]. Instruction and data caches

have become the principal means of bridging this speed discrep-
ancy. Typically, first-level caches are small (8K to 32K bytes in

size), direct mapped or modestly associative, and integrated on CPU
chips. These design choices are made because the on-chip cache ar-
ray access has to be completed within a single CPU clock cycle; the
TLB lookup usually takes another cycle. Since secondary caches

and main memory have traditionally been implemented separately
from the CPU, and with SRAMS and DRAMs that can be much
slower than the first-level cache, the ratio of first-level cache miss
to hit times is growing. Loads and stores makeup a large proportion

of the instructions executed by typical programs. The interposition
of a cache hierarchy between the CPU and main memory implies
that memory accesses experience variable data latency, depending
upon where in the memory hierarchy the desired data is found.

Additional increases in processor performance could be achieved
if we could predict, a priori, the data reference patterns of loads
involved in complex memory traversals, and then use this informa-
tion to prefetch into the primary data cache, data for those loads
that are responsible for the majority of misses. Data prefetchmg

“Currenrty wuh Sun Microsystems, Inc , Mounum View CA
‘Aspects of tis work are covered by a patent appbcauon filed by rhe LT Vmt

http:llwww.oc.ttmc, eduhtnto for addutonal detak

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided tAat the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
ICS’96, Philadelphia, PA, USA

@ 1996 ACM 0-89791-803-7/96/05. .$3.50

Luddy Harrison

(harrison@csrd. uiuc.edu)

Connected Components Corporation

One Kendall Square, Building 200

Cambridge, MA 02139

n a promising technique for tolerating the cache-miss latency in
high performance processors. Hardware, software, and hybrid
hardware-software schemes have atl been extensively explored,
both in the context of uniprocessors and multiprocessors [TS95,

CB95, DS95, Gor95, CR94, Mow94, PK94, YGHH94, EV93, JT93,
FPJ92, SH92, Se192, KL91, GGV90, Jou90, Smi78].

For some programs, particularly scientific codes operating on

dense arrays or matrices, data reference pattern prediction is easy.
Consequently, severat hardware prefetch mechanisms have been
proposed for such codes, and effective compiler techmques devel-
oped for them [LRW91, Mo w94, BCJ+ 94, CMT94]. Predicting the
memory access patterns in pointer-intensive and sparse numericat
computations is a much harder problem, and has received far less at-
tention in the literature [TJ92, Se192]. This is a significant omission,
since both these types of codes generate memory access patterns

that lead to poor data cache behavior. This is because compiler
transformations to improve CPU memory hierarchy performance
are typically based upon dependence testing of linear array index
expressions in Fortran loop nests.

In this paper we first review a simple classification for memory
access patterns on which the data prefetch mechanism is based, and

then take a close look at two codes from our suite. Focusing on just
two programs allows us to display a wide range of simulation data.
Results from this study suggest additional optimizations for future
data prefetch mechanisms.

The rest of this paper M organized m follows. In section 2
we discuss related work. In section 3 we detail our model for

memory reference patterns generated by individual load instructions
m programs. Section 4 provides a brief overview of the prefetch

mechanism. Section 5 discusses our experimental methodology,
and presents results for programs Link-Gram and spi ce2g 6.
Section 6 offers some conclusions from this research.

2 Related work

Related work is drawn from several topics of research. Closely
related is the work by Abraham and Rau [AR94]. They reported
results from the profiling of load instructions in the Spec89 bench-
marks. They were interested in using the data to construct more ef-
fective instruction scheduling algorithms, and to improve compile-
time cache management. Selvidge had similar goals in the experi-

ments he reported in his thesis [Se192]. Austin et al [APS95] pro-

filed load instructions while developing software support for their

fast address calculation mechanism. They reported aggregate data
from thetr experiments, not individual instruction profiles. Lebeck
and Wood used their CProf cache profiling system to analyze cache
bottlenecks on a subset of the Spec92 codes [LW94]. They used
the results to manually tune the codes using data structure and loop

133

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237578.237595&domain=pdf&date_stamp=1996-01-01

int i, m, a[100];

for (i=O; i<100; i++) { /* A ‘/
m=m+a [i];

}

Figurel: Linear array traversal

int n;
struct b { int x; double z; struct b *y; };

struct b *p, *q;
/* c~n=t~~ct l~~t ~it~ SIZE elts */

q = build_list (SIZE);
/* T~a~~~~~ ik */

for (p=q; p!=NULL; p=p->y) { /* ~ */

n = n + p->x;

}

int i, x;
int c[N], d[N];

/* c is sparse, d is c’s index array */

i= index_of_head_of_li st;

while (i) { /. c ,/

x=x+c[i];
i = d[i]; /* update pointer */

}

Figure3: Sparse linked-list traversal

int i, x;
int c[N], d[N];
I* c is sparse, d is c’s index array */
for (i=O; i < 10; i++) { /* ~ */

x=x+c[d[i]];

}

Figure2: Linked-list traversal
Figure4: Anindirection-vector based sparse representation

transformations for direct mapped caches. As mentioned earlier,
many data prefetching schemes have been proposed in the litera-

ture,usinghardware,softwme, orhybridtechniques. Someofthese

have provided classifications of load instructions, but almost always
focused on scientific codes. None of these studies has proposeda
model toexplain load behavior across abroad range ofprograrns,
as our work does.

3 Classifying load instructions

This section describes our load classification model. We will illus-
trate it using code fragments written in C. First, consider the code
in Figure 1 that performs a reduction on array a. Inloop A, every
element of thearray ais added tom. When executing, loop A will

generatethememory addresses (ignoring the scalars iandm, and
instruction addresses)

a, a+4r a+8, a+12, a+16, a+20, a+24, . . .

and soon. This sequence ofaddresses can bedeseribed by the first

order linear recurrence

ak=Uk-l +4, ke{l,2,3, ...} (1)

We call this a linear address sequence. Loops of this type are
commonintkmse numeric programs.

Next, consider a reduction on elements of a singly-linked lis~

illustrated in Figure 2. Symbolic programs are distinguished by
their extensive use of pointer-linked data structures. This loop,
when executed, will generate the memory addresses (ignoring the
scalar n, and instruction addresses)

*C?. *cl+l.2r *(*q+12)r *(*q+12)+12,
* (*(*q+12)+12) , *(* (*q+12)+12)+12 r .. .

because every x field in the linked list pointed to by q is added to
n. Note that inthe above sequence, * (*q+12) represents asingle
address,given intermsofthe initialvalueof thevariableq, andnot
anexpression evaluation that involves two memory references and
an addition. When reconsider theaddresses inthe above sequence
that correspond to updates of pointer p (every other address starting
with the second one)

*q+12, * (*q+12)+12, *(* (*q+12)+12)+12, . . .

weseethatit toocanbedeseribed byafirstorder recurrence, given
by

p~=Memkk-l] +12, kC{l,2,3,...} (2)

Wecallthis anindirect addre. wsequence. Here, Mem~~–l] refers

to the contents of thememory location pointed to byp, i.e. *p.
The index variable k is used to denote successive values of p.

Consider a reduction once again, this time on a sparse vector, c,
and its associated index array, d. If therepresentation used is one
that simulates linked lists using arrays, the code might resemble the

fragment shown in Figure 3. When executing, loop C will issue the
memory addresses (ignoring the scalars i and x, and instruction
addresses)

c+4i, d+4i, c+4(*(d+4i)), d+4(*(d+4i)), . . .

and so on. This loop is representative of code found in some
sparse numeric programs. Asin the linked-list example, note that
c+4 (* (d+4i)) represents a single address, given in terms of
thestarting address of thearray candarray elements d[i]. The
addresses for accessing elements of d also describe a first order

recurrence

d+4ir d+4 (* (d+4i)) , d+4(*(d+4(*(d+4i)))), . . .

This recurrence can be expressed by the equation

d~=4x Mem[d~_l] +Bss.e(d), kE {2,3,4 ...} (3)

where Base(d) isthebase address inmemoryofindex arrayd. dl
issetbefore loop cisentered. Notice that Equation (3)representsan

indirect address sequence similar to the recurrence for the pointer-
chasing example (Equation (2)), the difference being the component
that varies. Here, the base address of array d is fixed, and we are
accessing elements of d randomly. In the linked-list traversal, the
base address of each object retrieved from memory varies (m we
step through the heap randomly); however, the offset within each
object where the pointer to the next object is to be found is fixed.

Numerous other sparse representations exist [DER86]. Some
use linked structures to index the sparse array, as in Figure 3, while
others use indirection vectors for storing the indices of nonzero
elements. An example of the latter representation is shown in
Figure 4. In this case, accesses to array d describe a linear address

sequence as described by Equation (1).

13/}

Clearly many load instructions in a program image will not obey

Equations (1), (2), and (3). A partial list of such loads includes those
involved in scalar accesses, loads that access non-pointer data fields
of structures, and register reloads at subroutine returns. However,
what makes the classification valuable in spite of this limitation, is
the fact that prefetching cache lines containing well predicted loads
is often sufjcient to mask a signijcant number of cache misses due
to loads that are not predicted by our model. This effect is due to

the spatial locality afforded by the prefetched cache lines.

4 The Indirect reference buffer

The indirecl reference buffer (IRB) is a device that exploits recurrent
patterns of memory access (like those exhibited by loops A through

E of section 3) for prefetching. In this section we briefly describe
the IRB; see [Meh96] for more details. The IRB is organized as

two mutually cooperating sub-units: a recurrence recognition unit
(RRU) and aprefetch unit (PU). The RRU recognizes linear address
sequences and indirect address sequences such as those described
by Equations (l), (2), and (2), and having recognized them, directs
the PU to load data into the primary data cache in anticipation of
addresses the processor will issue. The RRU consists of a table, the

Reference Prediction Table (RPT), a couple of adders and compara-
tors, logic to implement a finite state machine, and a set of buffers

to store intermediate data for load instructions being concurrently
processed by the CPU pipeline. Similarly, the PU consists of a
table, the Active Prefetch Buffer (APB), and a collection of simple

logic circuits, For the purposes of this paper, however, it is suffi-
cient to consider a logical IRB comprised of a reference prediction

table and a state machine.
The entries in the reference prediction table are indexed by

the virtual addresses of load instructions. Each entry consists of

several fields, the first of which is the instruction address. The

second field is the (virtual) operand address last issued by this
load instruction. The third field is the register contents returned

from memory for this load instruction the last time it executed. The

fourth field contains a linear address stride computed by subtracting
the previous addresses issued for this instruction from the current

one. The fifth field contains an indirect address stride computed
by subtracting the previous eontents returned for this load from the
current address. All address stride calculations are performed using

unsigned integer arithmetic. The sixth and final field contains state
information that is used to arm the RRU, as well as the load opcode,

Figure 5 shows the ~ansition diagram for the IRB state machine.
This state machine is designed such that for any particular load it
will generate prefetches using either the indirect address stride or
the linear address stride at any one time, not both. It is basically

a combination of two simpler state machines, one of which checks
the stability of the linear stride, while the other concurrently checks

the stability of the indirect stride. This arrangement allows each
load to be checked simultaneously for a linear or indirect address
pattern.

5 Experimental evaluation

In this section we describe our experimental framework, and present
some simulation results.

5.1 Simulation methodology

Both programs are compiled with standard optimization, and the
resulting execufables instrumented using Qpt [Lar93]. We have
modified (@ so that in addition to generating instruction and data
traces, it also generates the contents of all memory locations that are
read, a unique identifier (an integer) for each load when it executes,
and the load opcode type (byte, half, or word load). Using @t

“’’7-+9
(2)

(5

r

Stsrea
SO=Unsrmed
S1= Armedlinear
S2= Armedindtmct
Po . Power-on

%’
Transitions

(Compute.bothMew andurdirectsfridmmach state)

SM!2-SQ
(1) If newhear stride== previous,and luwarstride!= O,go to S1.
(5) If not goingto S1,and&w indumt stride.= preview, &d load

contents!= O.EO to S2.
(9) If no tmmitionm S1or S2,stayin SO.

Str&N
(2) If newhnearskide== previous,andlmasrstride!= O,staym S1,

Generateprefetch,
(7) If not stayingm S1,andnewindirectstridev previous,andlad

contents!= o, go to S2.
(3)If no transitionto S1or S2,returnto SO.DisablePrefetching.

MsLau
(8) If newlW stride.. previous,andlinaarstride!. O,goto S1.
(4) If not goingto S1,and mw idirect stride== previous,and

loadcontents!= O,stayin S2. Generateprefetch.
(6) If no Wnsiuonto S1or S2,mtumto SO,Disableprefetching.

Figure 5: State transition diagram for the IRB state machine

allows us to trace all user mode program referencm (including
library routines) but no operating system code. All experiments

reported have been performed on MIPS R3000/R3010 based DEC
workstations running Ultrix 4.2A, and using the GNU C compiler

(gee) version 2.5.8.
To gather dynamic load profiles, we maintain a reference pre-

diction table that records data for all possible loads in the program
image. When a load instruction is traced, its (unique) identifier is
used to locate its entry in the table and update the fields. At this
time, a future operand address is also predicted for the load if it is
in the midst of a linear or indirect address sequence, using the state
machine and equations similar to (1), (2), or (2). In addition, sev-
eral statistics gathering fields are associated with each load entry.
We use these fields to record quantities such as the load execution
coun~ the number of cache misses each load causes in a particular
cache configuration, the number of times it was involved in a linear
or indirect memory sequence, a histogram of the load’s (absolute)
lineu address stri&s, and so on.

To calibrate the cache behavior of the program in terms of in-
dividual load instructions, and to determine if this behavior was
sensitive to cache organization, we examined a broad range of re.
alistic first-level data caches. For all experiments, the cache line
size was fixed at 32 bytes, and the replacement policy chosen as
LRU. Thereafter, cache size was varied as 8K or 32K, set associa-

tivity chosen from one, two, four, eigh~ or full (256-way for 8K,
1024-way for 32K), and the cache replacement and memory update
policy varied as write through with no write allocate, or write back
with write allocate. This resulted in sixteen load profiles2.

‘In fact, many more profiles were actually commucted, asstatemacbinas for detect-
ing load reference pauemrswere perfeered, and a variety of ortrer r.radmffs examined.
These expenmenrs are beyond the scope of this paper, and are mponed in the first
author’s dissertation [Meh96].

135

Code and L}nk-Gram spice2g6

Input Set exarnples.batch — 397 English sentences greycode.in — short transient anrdysis

Load classification statistics for all experiments

static II 4467 II 25897
actwated 3413 5296
executed thrice 3294 3998
hnear 1141 795
indirect 58 8
both 406 II 76

Dynamic instruction counts for all experiments

~ # Instructions 3, 62,033,982
Reads (LDs) 122,825,560 774,857,452

62,151,589 151,471,820
i“ c

- .,.-.,---
.,--- 7,059,673 i 3 ii

176,232,802 31,793,355 2 3 10
II 173.877 ~~~ 5,261,481 2 3 9

29,030,273 2 3 8
.,--- 4,459,421 2 3 7

159,473,886 28,618,910 2 3 7
II 1<7001 ~~~ ‘qq4*0n - ~ -

a
Table 1: Aggregate statistics for Link-Gram and spice2g 6 experiments, measured on DECstation 5000s running Ultrix 4.2A. wt
. write through, nwa = no write allocate, wb = write back wa = write allocate. The #LDs causing columns show the number of loads that
are responsible for 25%, 50%, and 75’% of the read misses. These quartile load distributions are with respect to the read misses in the same
row. Configuration 11 (in bold) is used for the detailed load profile data in Tables 2 and 3.

5.2 Results and analysis

5.2.1 Aggregate data

Table 1 lists some aggregate characteristics and miss rates for all
cache configurations of Link-Gram and spice2g6 that we stud-
ied. To give the reader some idea about the cache miss distribution
over loads, quartile distributions for loads are also given.

The data in Table 1 is divided into four sections. The first section
lists the program and input data used. The second section classifies
the load instructions in the program image. The row labeled #
static loads is the total number of loads in the executable detected

during instrumentation. The row labeled # loads activated is the
number of loads instructions that were executed at least once while
processing the given input data set. Loads executed at least three
times are listed in the row labeled # executed thrice. Three is the

minimum number of times a load has to execute for any address
patterns to be detected3. The rows with labels linear, indirect and
both show the number of loads that were involved in linear address
sequences, indirect address sequences, or both. Surprisingly, it is
not uncommon to find loads that participate in both types of memor

1’address sequences at different times during a program’s execution .
Finally, the difference between the # executed thrice and the sum of
the # linear, # indirect, and # both columns is the number of loads

3Note that a load that executes once or twice denotes a trivial tinear sequence,
4A common example ia when adynamic data sttucture is constructed using multiple

calta to ma110 c () Since many memory atlncatom first try to allocate memory from
tiara of blocks of fixed sizes, a tinked data structure can often appear to be linear
becauseits records are a constant &stance apaxtm the progrsm’s addressspace.

that were not involved in either kind of memory traversal. The

third section of Table 1 provides the dynamic reference counts for
instructions, memory reads, and memory writes, that are common
to all our simulations. The fourth section shows the read and write
misses, and the quartile distribution of the contribution of individual
loads to the overall read miss count, for each cache configuration

simulated.
Several interesting facts can be noted from the load character-

istics section of Table 1. Only a small fraction, typically between
one-tenth and one-third, of the total number of static loads in a
program get activated for a typical input set. There is a further

drop when we isolate those that execute at least three times, and
a dramatic forther drop when we look at those that follow any of
the patterns recognized by the IRB. While both codes contain loads

that are linear, the symbolic codes also have a significant number
of indirect loads, as expected. The rather large number of loads
that are not classified in any category for spi ce2 g6 prompted
us to examine the number of read misses they contributed. The
number was negligible, with all 3119 non-classified loads together
contributing less than 1.570 of the total read misses.

5.2.2 Load classification data

For presenting the load profile data, we chose as our reference

configuration, a 32K byte, 2-way associative data cache with LRU

replacement, 32 byte lines and no subblocks, and a write through
with no write allocate write policy. In our opinion, this is a rea-
sonable limiting size for what we expect a practical first level CPU

136

data cache to be in the next few years, and our simulation results
have shown that the use of even modest associativity is sufficient

for dumping prefetched data directly into such a cache. This design
decision allows us to allows us to avoid the complexities introduced

by conflict misses [AR94, LW94],
We now examine the twenty most heavily missed loads in

Link-Gram and spice2g6. This data is presented in Tables 2
and 3 respectively. Each entry in these two tables has eleven fields.

The first field, labeled Load Id #, is the unique identifier assigned
to each load during instrumentation of the executable. The second

field is the name of the routine in which the load occurs. The third,
labeled Op. Type, is a mnemonic representing the type of load.
Since we instrumented programs running on MIPS R3000/R3010
based DEC workstations, the possible load types are LB, LBU,

LH, LHU, LW, LWL, LWR for integer values, and LWC1 for

floating point quantities. On this CPU double precision operands
are loaded using two consecutive LWC 1 instructions. The fourth
field, labeled How Armed, shows the different memory address se-
quences in which this load was involved. The possible mnemonics
for this field are LIN, IND, BOTH, BOTH+LI and NONE. If

this field has the mnemonic L IN, it means the load participated
only in linear address sequences for this input set. Likewise, a

mnemonic of I ND says that the load was only involved in indirect
address sequences. BOTH means that the load participated in both

types of sequences, while BOTH+L I means that it was involved

in sequences that were simultaneously linear and indirect. Finally,
NONE means that the load was not involved in any recognizable
address sequence.

The fifth field in Tables 2 and 3, Execution Count, lists the to-
tal execution count for each load5. The sixth and seventh fields
(Linear Count and Indirect Count, respectively) list the number of
times each load was involved in linear or indirect address sequences
respectively. Byte and half word loads are prohibited from partici-
pating in indirect address sequences, since their contents cannot be
used to compose meaningful pointer addresses. The eighth field,

labeled Zero Stride, counts the number of times successive operand
addresses generated by a load were identical. A high count in this

field (relative to the total load execution count in column five) im-
plies that a scalar variable is being accessed. The ninth field, labeled
Rd Misses Pre, lists the read misses generated by each load for a

particular cache configuration, in this case, configuration (1 1). The
count in the tenth field, labeled Succ. Predictions, is an indicator
of how strongly a load is following one of the recognized mem-

ory access patterns. If the load is involved in a linear or indirect
memory address sequence, the appropriate future operand address
is predicted, and at the next execution of the load, this address is

compared with the actual operand address. If there is a match, the
success count is incremented. The final field, # Read Misses Post,
shows the number of misses generated by the loads after the cache

has been primed with lines containing the addresses predicted by
the IRB state machine. Only one cache line is prefetched for each
prefetch request, and it is marked MRU when placed in the cache.
The + or – sign in parentheses following the read miss count is used
to indicate how the load’s behavior was affected by prefetching. A
+ indicates that the load experienced more misses after prefetching
was enabled, while a — indicates a reduction,

From the # Read Misses Pre columns of Tables 2 and 3, we
find that approximately ten loads account for so~. of the total read
misses for these two codes. Also, from Table 1 it can be observed
that if we exclude the direct mapped 8K cachesc, then less than
twenty loads are responsible for over 50% of the misses, regardless
of the cache configuration chosen. As expected, the number of
read misses experience is lower for the 32K caches, since they

‘The total dynamic count for each code is listed m Table 1.
‘In which many loads are clearly experiencing confhct and capacity nusses,thereby

spreading tbe read misses over a larger number of loads

813:int
814 :dict match (char *s, char *t)
815:{ –
826: while ((*s != ‘\ O’) && (*s == *t)) {

828: s++;
829: t++;

830: }
lb r3,0(r4) <== #827
nop
addiu r5, r5, 1

beq r3, rO, 0x405fe0
nop

lb r2,0(r5) <== #828
nop
beq r3, r2, 0x405fb8
addiu r4, r4, 1
addiu r4 , r4 , -1

831: if ((*s==’*’) II (*t==,*/))
832: return O;
833: return (((*s == ‘.’) ? (’\O’) :

(*S)) ((*t==~./) ? (~\o J) : (*t)));

.
)

Figure 6: MIPS R3000 assembly code for segment containing

the heavily-missed load #828 in routine di ct mat ch () from
Link-Gram

capture more of the cache working set of the program for the given
input data set. Looking down the successful predictions columns
of Tables 2 and 3, we find considerable variability in the prediction
accuracy. This is to be expected; our model does not predict all
loads well in pointer-intensive and sparse numeric codes. It will,
and does, predict all the heavily missed loads very accurately in

dense numeric codes.
The key in the case of symbolic and sparse codes, is that the

well predicted loads are used to cover many of the misses generated

by the poorly predicted loads. Some evidence of this is provided
by the #Read Misses Post columns of Tables 2 and 3. Upon com-
paring this column with the # Read Misses Pre column of Table 2

for Link-Gram on a load-by-load basis, we find that several of
the loads have experienced substantial reductions in their number
of misses, and only one of these loads, #4091, was well predicted.
Although over half of the loads show increases in the their number

of misses, most increases are actually negligible (less than 1’%0).
Repeating this exercise with the corresponding columns of Table 3
for spice 2 g 6, we find that almost all the loads show a reduction
in their number of misses, in spite of the variability in prediction
accuracy. However, unlike Link- Gram, no load shows a dramatic

reduction in miss count for spi ce2 g6. There is additional experi-
mental evidence to show that this miss covering property of the well
predicted loads can be consistently exploited during prefetching, for
several important codes [Meh96].

5.2.3 Analysis of code fragments

To get a good understanding of the nature of the load misses in
Link-Gram and spice2 g6, and to understand why load predic-
tion accuracy is highly vmiable, we will examine source code and

dis-assembled MIPS assembly code for routines containing severaf
of the loads from Tables 2 and 3. While examining these code frag-
ments, it should be remembered that the MIPS R3000 processor
used in our DECstations has a branch delay slot of one cycle, and a
load delay slot of one cycle. The GNU C compiler attempts to fill
both delay slots whenever possible. If it fails, it generates a nop.

137

Load Routine Name op. How Execution Linear Indirect Zero # Rd Misses Succ. # Rd Misses

Id # Type Armed Count Count Count Stride Pre Pred. Post

4091 malloco LW BOTH+LI 1471087 44315 1196763 4386 676565 1121199 92417(-)
4098 free () LBU LIN 1371691 3087 0 19354 365503 658 366824(+)

828 d.m () LB LIN 1657228 597735 0 1 149013 185812 149366(+-)

1466 rind-c () LB LIN 445277 141 0 0 140649 18 141810(+)

1470 m-d.c () LW BOTH+LI 420666 122 592 14 131510 6 132764(+)

1763 Czo LW LIN 218794 61895 0 0 116169 18247 96453(-)

1753 s-o-e () LB LIN 201893 63 0 0 105040 9 105255(+)

1755 so-e () LW BOTH+LI 191160 53 293 0 99753 2 99997(+)

863 r-l () LW BOTH+LI 401998 5644 10536 2 94194 187 81338(-)

1604 C.t () LW BOTH+LI 159163 94 26 0 87034 1 36175 (-)

1119 reverse () LW BOTH+LI 102814 692 1990 2 83278 267 82373 (-I-)

1731 f -c () LW BOTH+LI 195193 ~ — — — “4608 42 80326 1003 ~
1745 f-?zo LB LIN 166066 604 0 5 71791 147 72224(+)

855 r-d-l () LW BOTH+LI 180512 3787 4099 795 69559 0 58324(-)

1749 f_El () LW LIN 159489 72 0 4 69470 0 69881(+)
1606 C.t () LH LIN 159163 111 0 1 55352 0 55661(+)

1770 cad () LW NONE 207774 0 0 0 52860 0 40433(-)

1572 s-d-f () LW BOTH+LI 110190 308 2089 4 47867 151 47936(+)

1278 hash-S() LH LIN 199926 10672 0 33493 39967 531 39927(+)

1280 hash-S() LBU LIN 199926 31571 0 11735 38077 8359 35883(–)

Table 2 Detailed profiles for the twenty most heavily missed loads in Link-Gram for reference cache configuration
— a 32K byte, 2-way associative data cache with LRU replacemen~ 32 byte lines and no subblocks, and a write through
with no write siiocate write policy, cJZ() : Copyaxpo, c-to : clean-tableo, dmo : diet-match (), f.c () :
free-connectors (), f X () : f ree-Exp (), f 11 () : f reeJZlist (), m-d-c () : mark-dead-connectors (), r-l () :
rabridged.lookup () , s-d-f () : set.dist_fields () , s-o-e () : size-of -expression () . See the text of Section 5.3.2
for a description of the columns, and Table 1 for aggregate charactmistics of Link-Gram.

Lnad Routine Name op. How Execution Linear Indirect Zero # Rd Misses sum. # Rd Misses
Id # we Armed Count Count Count stride Pre Pred. Post

3124 dcdcmp () LW BOTH 98101898 456039 13 385184 10586854 10644 10581180(–)
3125 dcdcmp () LW BOTH 98101898 392100 7996 385176 9787664 10644 9777508(–)
3121 dcdcmp () LW ~ — — — — — “88729 13309 397811 8838460 10649 ~
3120 dcdcmp () LW BOTH 39445586 74535 3549 397832 7432427 0 7435033(+)
6951 indxx () LW BOTH+LI 7943578 56175 4273 503 2618788 16927 2618503(–)
6950 indxx () LW B(2TH 7943581 113683 26 493 2576455 53790 2566632(+)
3639 dcsol () LWC1 LIN 2366520 83472 0 0 1686417 11544 1675704(-)
3131 dcdcmp () LWC1 LIN 7013424 130623 0 137517 1443697 10656
3645 dcsol () LW

1438467(–) -
BOTH 2366520 83472 12432 0 1322286 11544 1317009(-)

3679 dcsol () LWC1 LIN 2362080 95016 0 0 1254996 22200 1246222(-)
3675 dcsol () LW BOTH 3259848 15983 4440 0 1113579 2664 1112691(–)
3674 dcsol () LW LIN 3259848 59495 0 0 973659 26640
3646 dcsol () BOTH+LI

967231 (-)
~ 29304 1777 0 946267

:Ycl LIN3129 dcdcmp ()
~

7013424 239695 0 0 873517 10656 866886(-)
3110 dcdcmp () LW BOTH+LI 7013424 239695 15101 0 816792 10656 806212(-)
3134 dcdcmp () LW LIN 7013424 239695 0 0 775383 10656 765533(–)
3102 dcdcmp () LWC1 LIN 2366520 100276 0 0 648061 23974 631400(-)
6949 i.ndxx () LW BOTH+LI 1948098 829496 6 269 581251 618134 507856(–)
2988 dcdcmp () LWC1 LIN 1026437 24195 0 0 567114 1609 565913 (-)
3654 dcsol () LWC1 LIN 905760 91463 0 0 513675 15984 501243(–)

Table 3: Detailed profiles for the twenty most heavily missed loads in spi ce2 g6 for reference cache configuration — a 32K byte,
2-way associative data cache with LRU replacement, 32 byte lines and no subblocks, and a write through with no write silocats write policy.

See the text of Section 5.3.2 for a description of the columns, and Table 1 for aggregate characteristics of spice2g6.

138

204: c””””””””””
205: C LOCATE ELEMENT (I,J)
206: C

207:
208:

209:
210:

211:
212:
213:
214:

215:
216:
217:
218:
219:
220:

221:
222:
223:

135 IF (J.LT.1) GO TO 145

LOCIJ=LOCC
140 LOCIJ=NODPLC (IRPT+LOCIJ)

IF (NODPLC (IROWNO+LOCIJ) .EQ.1)

1 GO TO 155

GO TO 140
145 LOCIJ=LOCR
150 LOCIJ=NODPLC (JCPT+LOCIJ)

IF (NODPLC (JCOLNO+LOCIJ) .EQ.J)
1 GO TO 155

GO TO 150

155 VALUE (LVN+LOCIJ)=VALUE (LVN+LOCIJ) -
1 vALuE(LvN+Locc)*VALUE(LVN+LOCR)

160 LOCC=NODPLC (JCPT+LOCC)
GO TO 130

170 LOCR=NODPLC (IRPT+LOCR)

IF (IPIV.LE.0) GO TO 125
NoDPLc(NuMoFF+I)=NODPLC(NUMOFF+I)-1
GO TO 125

.

Figure 7: Fortran source code for segment containing the heavily
missed loads #3120, #3121, #3124, #3125, #3129, #3131, and
#3134inroutinedcdcmpo from spice2g6

Link-Gram From Table 2 it can be observed that LD #4091

and LD #4098 come from the library routines malloco and
free () respectively, for which we do not have access to the source

code. Examination of their assembly code would add little to this

discussion. We simply note that LD #4091 is well predicted. On

the contrary LD #4098 is poorly predicted for the same reasons
that limit prediction accuracy in the routines we discuss below.
Continuingwithroutine dictmatcho,which containsLD#828
(address 0x405 fcc), the listing in Figure 6 shows that this is a
byte load that is dereferencing a pointer passed in as a parameter
to the routine. Register r5 holds the pointer to string t when
dictnatch iscalled. Depending upon thecallerofthis routine,

r5 can have a value completely unrelated to its previous value,
which makes it hard to predict operand addresses for this load. This
is also the reason this load misses so heavily. -

spice2g6 Consider the routine dcdcmpo, which contains

LD#3120, #3121, #3124, #3125, #3129, #3131, and#3134 from
amongst the top-twenty missed loads. The source code for the

fragment from dcdcmp () that contains these loads is shown in
Figure 7. The tirst four of these loads contribute over half (5 1%) of

the read misses for our reference cache configuration. The function
ofroutinedcdcmpo istoswaprowsandcolumns intheY-matrix
in accordance with the numerical pivoting requirements, and then
to perform an in-place LU factorization of the Y-matrix. As the

comment with the fragment suggests, the illustrated code is used
for locating elements from the Y-matrix. The four heavily missed

loads areusedin thearrayindex calculations forarrayNODPL Con
lines209–210, and 213–214. Aquick studyofthecode shows that
elements of NODPLC are being accessed with no spatial locality,

which explains their poor predictability,

5.3 Implications for data prefetch mechanism design

Based on the data analyzed in this paper, several observations can
be made. First, we showed that for both programs a very small

number of load instructions contributed over haJf of all read misses,
for a wide range of first-level cache configurations. This suggests
that most of the gains from prefetching can be had by focusing
our efforts on these heavily-missed loads. Secon~ we found that
the proposed model classifies only a subset of the eligible loads in

program executable. Therefore it is as important to thrott.leprefetch

generation forpoorly predicted loads, asitisto exploit the well
predicted ones. Third, weobserved thatmany loads inreal-world

programs, such as Link-Gram and spice2g 6, vary dynamically
, following both the linear address sequence and the indimxt address
sequence at different times. This implies that prefetch devices that
can adapt to this variation will be far more effective than those that
are hardwired to follow one or the other.

Finally, we noted that there is considerable variability in the

prediction accuracy of heavily-missed load instructions in pointer-
intensive and numeric programs. This seems perplexing at first, be-
cause computer architects are used to seeing results for branch pre-
dictors and dense numeric code data prefetch mechanisms, where

prediction accuracy is very high (typically over 90%). However,
as discussed earlier, only a small number of loads in symbolic and

sparse programs will be well predicted by our model, because of
the specific recurrences that are being sought. For a prefetch device

based upon this model to be effective, it is sufficient to prefetch
cache lines just for the well predicted loads.

6 Conclusions

In this paper, we took a close look at a classification of memory
access patterns for load instructions. To build insight into our model,

detailed simulation data was presented and analyzed for two non-

trivial symbolic programs. Exemplary code fragments extracted

from the source distribution of the programs were also examined to

illustrate the model. Finally, the implications of this classification

on the design of general purpose data prefetch mechanisms were
briefly discussed.

Acknowledgements

This work made extensive use of the QPT program tracing and
profiling tool developed by James Lans of the University of Wis-
consin at Madison. The authors would like to thank Jim for assisting

them in making the necessary modifications to QPT to support this
research.

References

[APS95]

[AR94]

[BCJ+94]

Todd M. Austin, Dionisios N. Pnevmatikatos, and
Gurindar S. Sohi. Streamlining Data Cache Access
with Fast Address Calculation. In Proceedings of ?he
22nd International Symposium on Computer Architec-
ture, pages 369–380, June 1995.

Santosh G. Abraham and B, Ramakrishna Rau. Pre-
dicting Load Latencies Using Cache Profiling. Tech-

nicaJ Report HPL-94-1 10, Hewlett-Packard Labora-
tories, Palo Alto, CA, November 1994.

David F. Bacon, Jyh-Herng Chow, Dz-thing R. Ju,
Kalyan Muthukumar, and Vivek Sarkar. A Compiler
Framework for Restructuring Data Declarations to En-
hance Cache and TLB Effectiveness. In Proceedings
of CASCON ’94, pages 270-282, Toromo, Canada,
October 1994.

7Compared to the total number prssent m the prosram executable.

139

[CB95]

[CMT94]

[CR94]

[DER86]

[DS95]

[EV93]

[FPJ92]

[GGV90]

[Gor95]

[HM94]

[HP96]

[Jou90]

Tlen-Fu Chen and Jean-Loup Baer. Effec-

tive Hardware-Based Data Prefetching for High-

Performance Processors. IEEE Transactions on Com-
puters. 44(’5):609-623, May 1995.

Steve Carr, Kathryn S. McKinley. and Chau-Wen
Tseng. Compiler Optimizations for Improving Data

Locality. In Proceedings of the Sixlh Interna~ional
Conference on Architectural Support for Programming

Languages and Operating Systems, pages 252–262,
October 1994.

Mark J. Charney and Anthony P. Reeves. Correlation-
Based Hardware Prefetching. Submitted to IEEE

Transactions on Computers, September 1994.

I. S. Duff, A.M. Erisman, and J. K. Reid. Direct Meth-

ods for Sparse Matrices. Oxford UniversiT Press,
New York, NY, 1986. Printed in paperback (with cor-
rections) 1989.

Fredrik Dahlgren and Per Stensuom. Effectiveness of
Hardware-Based Stride and Sequential Prefetching in
Shared Memory Multiprocessors. In Proceedings of

the jirst IEEE Symposium on High-Performance Com-

puter Architecture, pages 68–77, January 1995.

Richard J. Eickemeyer and S. Vassiliadis. A load-

mstruction unit for pipelined processors. IBM Journal

of Research and Development, 37(4):547–564, July
1993.

John W. C. Fu, Janak H. Patel, and Bob L. Janssens.
Stride Directed Prefetching in Scalar Processors. In
Proceedings of the 25th Annual International Sympo-

sium on klicroarchitecture, pages 102–1 10, December
1992.

Edward H. Gornish, Elana D. Granston, and Alexan-
der V. Veidenbaum. Compiler-directed data prefetch-

ing in multiprocessors with memory hieruchies. In
Proceedings of the 1990 ACM International Confer-

ence on Supercomputing, pages 354–3 68, Department
of Computer Science, Urbana, IL 61801, June 1990.

Edward H. Gornish. Adaptive and integrated data

cache prefetching for shared-memory multiproces-

sors. PhD thesis, University of Illinois at Urbana-
Champaign, Department of Computer Science, Ur-

bana, IL 61801, January 1995.

Luddy Harrison and Sharad Mehrotra. A data prefetch
mechanism for accelerating general-purpose compu-
tation. Technical Report 1351, CSRD, University

of Illinois at Urbana-Champaign, UrbanA IL 61801,
8 May 1994. Last revised 9 March 1995. This report
is the basis for Patent Application No. 08/508,290,
Prefetch System Applicable to Complex Memory Ac-

cess Schemes, filed by the University of Ifhnois on
27 July 1995.

John L. Hennessy and David A. Patterson. Computer

Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., Sart Mateo, CA 94403, second
edition, 1996.

Norman P. Jouppi. Improving Direct-mapped Cache
Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers. In Proceed-

ings of the 17th International Symposium on Computer

Architecture, pages 364–373, May 1990,

[JT93]

[KL91]

[Lar93]

[LRW91]

[LW94]

[Meh96]

[Mow94]

[PK94]

[Se192]

[SH92]

[Smi78]

[TJ92]

[TS95]

[YGHH94]

Ivan Jegou and Olivier Temam. Speculative Prefetch-

mg. In Proceedings of the 1993 ACM International

Conference on Supercomputing, pages 57 – 66, July

1993.

Alexander C. Klaiber and Henry L4. Levy. An ar-
chitecture for software-controlled data prefetching. In
Proceedings of the 18th Itiernational Symposium on

Computer Architecture, pages 43–53, May 1991.

James R. Larus. Efficient Program Tracing. IEEE

Computer, 26(5):52-61, May 1993.

Monica S. Lam, Edward E. Rothberg, and Michael E.

Wolf. The Cache Performance and Optimization of
Blocked Algorithms, In Proceedings of the Fourth

International Conference on Architectural Support

for Programing Languages and Operating Systems,

pages 63–74, April 1991.

Alvin R. Lebeck and David A. Wood. Cache Profiling
and the SPEC Benchmarks: A Case Study. IEEE

Computer, 27(10): 15–26, October 1994.

Sharad Mehrotra. Data prefetch mechanisms for ac-

celerating symbolic and numeric computation. PhD
thesis, University of Illinois at Urbana-Champaign,
Department of Computer Science, UrbanA IL 61801,

May 1996.

Todd C. Mowry. ToleratingLatencj Through Software-

Controlled Data Prefetchmg. PhD thesis, Stan-
ford University, Department of Electrical Engineering,
Stanford, CA 94305, March 1994.

Subbarao Palacharla and Richard E. Kessler. Evaluat-

ing Stream Buffers as a Secondary Cache Replacement.
In Proceedings of the 21st International Symposium on

Computer Architecture, pages 24-33, April 1994.

Charles William Selvidge. Compilation-Based

Prefetching for Memory Latency Tolerance. PhD the-
sis, Massachusetts Institute of Technology, Department

of Electrical Engineering and Computer Science, Cam-
bridge, MA 02139, May 1992.

James E. Smith and Wei-Chung Hsu. Prefetching in
Supercomputer Instruction Caches. In Proceedings of

Supercomputing ’92, pages 588-597, November 1992.

Alan Jay Smith. Sequential Program Prefetchmg in

Memory Hierarchies. IEEE Computer, 11(12):7–21,
December 1978.

Olivier Temam and William Jalby. Characterizing the

Behavior of Sparse Algorithms on Caches. In Proceed-

ings of Supercomputing ‘92, pages 578–5 87, Novem-
ber 1992.

John Tse and Alan Jay Smith. Performance Evaluation
of Cache Prefetch Implementation, Technical Report
UCB/CSD–95–877, Computer Science Division, Uni-
versity of California, Berkeley, CA 94720, June 1995.

Yoji. Yamada, John Gyllenhall, Grant Haab, and Wen-
mei W. Hwu. Data Relocation and Prefetching for
Programs with Large Data Sets. In Proceedings of the

27th Annual International Symposium on Microarchi-

tecture, November 1994.

