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Abstract

We present some original automatic partitioning techniques

for irregular sparse matrices arising from Finite-Element dis-
cretizations of PDE. We discuss their efficiency in terms

of parallel computation, especially from the point of view

of adaptive applications, that need rebalancing after small
changes on the grid. Some parallel simulations are pre-

sented, along with practical experiments on a KSR and a
SGI-Challenge.

1 Introduction

Our work concerns the distribution of a task graph among
several processors. This problem is crucial for the paral-
lelization of iterative solvers of partial differential equations,
but is also used in direct methods, and has a large number

of other applications in computer science, such as VLSI for
inst ante.

More precisely, let G = (V, E) be an undirected graph.
We try to find a set (G, = (U, E;))I<,~P of subgraphs of G
verifying the following properties:

C coverage V = U{V/1 < i < p} and E = U{E, /I <
i<p}

B balancing For all i, for all j, Work(G, ) N Work(GJ )

C low communication For all i, ~ n U{~/I s j s

p and j # i} is as small as possible

A adaptivity Given significant but small changes on G,
recompute cheaply a new partitioning (GI, . . . . GP) fit-
ting the previous criteria

The notion of work has to be defined properly. As a

first approximation, the reader can assume that Work(G =
(~ E)) = IVI, but more sophisticated work functions will be
proposed.

Ideally, the three first criteria aim at spreading the graph

onto p processors, each of them being assigned a G,, 1 < i <
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p. Coverage is a consistency property that insures that
each node is owned by one and only one processor. Then,

balancing aims at insuring that each processor is assigned
an almost equivalent amount of work. The low commu-

nication criterium tends to reduce the volume of the com-

munications between the processors. Finaly, adaptivity
introduces the idea that the same graph may be slightly

modified and reused several times during the computation,
and the algorithm has to provide quickly an adapted par-

titioning (i.e. that fulfill the three first properties). Since
this criterium will be satisfied by updating and reusing some
kind of information on the graph, we also call it reusability.

In this paper, various algorithms will be presented and
studied that verify this CBCA criteria. Some people are also
concerned with other criteria, such as numerical iteration

speedup. We mention this approach later and justify our
framework.

This work was more particularly motivated by the last
criterium, adaptivity. This problem arises from the resolu-
tion of partial differential equations by the Finite-Element
method. Three different graphs have to be distinguished in

that case:

●

●

●

As a

Gn is the graph that emphases the discretization of

the physical space. Nodes of Ga are points in the 2D
or 3D space, and edges are sides of triangles (or any
other element). An example is shown in figure 1. Gn

can be well characterized because of the underlying
physics. For inst ante, Gn is typically a triangulation

for 2D problems (i.e. it is planar as a graph), or some

more “volumic” structure (3 D-triangulation) for 3D

problems.

GA is the adjacency graph of the matrix A with which
we solve the problem

A.X=B

Nodes of GA are entries of the matrix A, and edges are
representing non-zero coefficients between entries of A.

The structure of GA is very simply derived from that
of Ga. For simplicity, it is assumed in the following

that GA = Go.

GC is the task-graph of the computation made on A.
GC is derived from GA, in a way that may be either
simple or complicated.

consequence, while GC remesents exactlv the amount
of work inside a computation, only Ga can be well charac-
terized by its properties derived from physics. Hence, the
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Figure 1: A planar triangulation (Courtesy of EDF)

Uniformly refined grid (56 elemems) Adapted grid (8 I elements)

Figure 2: Uniform versus adaptive refinement of a mesh

Work function, applied on G~, emphasizes the difference

that exists between these two graphs, and allows us to use
the interesting physical properties. Depending on the nature

of the relationship between the two graphs, this function is

more or less easy to evaluate.
To improve the numerical solution of a PDE problem,

one may rebuild completely the grid and increase uniformly
the new elements (for instance, by dividing every triangle

into four in 2D and into eight in 3D). Another approach,
called adaptation, consists in modifying the grid iocailg, con-
centrating the elements only where the solution needs to be
improved, as shown in figure 2. The drawback of such a
solution is that the initial partitioning is no longer valid; in
particular the load-balancing criterium needs to be revisited.

Partitioning problems have yet been investigated along
many various directions, so in section 2 we present the po-

sition of our work with respect to previous works, and the
major assumptions of our framework.

In section 3, three algorithms are described and analyzed
with respect to the four CBCA conditions above (Cover-
age/Balancing/ Low Communication /Adaptivit y). The first
of those ones is a well-known partitioning scheme that has
already been investigated in detail (see [17]), while the sec-
ond one is, as far as we know, a completely new algorithm,

and the third one is a modification of a recursive technique
which allows to reduce substantially the amount of opera-
tions.

In section 4, those algorithms are tested on a simulator,

on a KSR1, and a SGI-Challenge. A distributed-memory
programming model was used, and a special numerical treat-

ment of sub domains’ boundaries was introduced. Finally,

the numerical impact of this strategy on the final solution
is investigated.

2 State of the art

2.1 Overview of the field

The problem of partitioning finite-element grids has been

studied in many ways and a large number of algorithms
and methods have been proposed and investigated. Besides

the four criteria listed in the introduction, an additional

criterium is the impact of a partitioning on the numerical

quality of an iterative solver.
The problem is that the partitioning affects the order

in which operations will be performed on the matrix, and

thereby has a consequence on the quality of the numerical

result obtained. Modelizing this phenomenon leads to take
into consideration not only the iteration speedup but the

global speedup of a scheme - see [20, 10] (where the timings
measure the delay to reduce the approximate solution to
the real one within some fixed error tolerance). However
this last criterium is strongly dependent upon the nature of

the equations solved, making the problem very difficult to
solve in a general setting. Fortunately, in practice, it appears

that the impact of a partitioning on the numerical properties
is relatively small. Therefore, we will take this criterium

into account a posteriori and not a priori. Moreover, some

modifications of the numerical method at the subdomain
level may be used to decrease the impact of the numerical
crit erium.

2.2 Related work & adaptivity

A very interesting challenge is to find an adaptive version of

each efficient partitioning algorithm. We mention here some
popular methods for which adaptivity raises a particularly

hard question in our opinion.
Historically, theoretical results that guarantee some min-

imization of the separator size (cf criterium on low commu-
nication) have appeared quite early. For inst ante, planar

graphs with n vertices may be separated in two domains A
and B, each of them having less than ~n vertices, with a

separator C having at most }6 vertices [3]. (Some simi-
lar work has been recently explored in 3D : [21, 16, 7]). The
original proof of Lipton and Tarjan [14] gave also an O(TZ)
algorithm to compute such a separator. But this work, when

applied to adaptive grids, suffers from three main draw-
backs:

b

●

●

it lacks precision: we would like to partition the orig-

inal graph into two subgraphs A and B such that IAI
and IB I are as close as possible to ~ (cf criterium on
balancing). In fact, the author propose a method to

achieve such a property, and the resultant algorithm

has still a complexity of C. fin), but C is a large con-
st ant. This last characteristic makes the algorithm

unattractive for practical problems.

Although its complexity is still O(n), the constant is

also quite large, so its computation is costful neverthe-
less.

It is unable to take into account modifications of the

original grid: if the grid is slightly changed, it is nec-
essary to recompute entirely the separator.

Some rrartitionin~ methods have been designed
dling mo~e general ~inds of graphs than pl&ar.

for han-

But in
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general the computational complexity is prohibitive. For
instance, spectral methods are based on the analysis of a

particular matrix, called Laplacian, built from the graph

to be partitioned [15, 18, 4]. The idea is that the second

eigenvector of the laplacian matrix contains some informa-
tion on the connectivity of the graph. Although significant

improvements have been realized in this field [6], such an in-

formation isstill hard to compute. According tothe testsin

[9], it turns out that the spectral bisection algorithm tends
to provide high quality separators at expensive CPU price.

This is exactly what we would like to avoid. Nevertheless,
integrating adaptivity capabilities in this class of algorithms
is an important problem to investigate.

2.3 Criteria of quality

● Balancing, Since our work aims at parallelizing some

numerical computation on a grid, it is expectable to
have some kind ofwork-efficient final algorithm. Each

processor will receive a workload proportional to its
own speed, therefore we need almost perfectly bal-

anced workloads for the processors on the different

subdomains.

Of course, this Work function depends on the partic-
ular numerical application being performed, but some
basic functions (that is, amounts of vertices, elements
or edges per subdomain) provide a sufficient approxi-
mation in many cases. Indeed, these amounts are pro-

portional in practice, and any of them gives a well-
fitted work function for the examples we will consider.

However. some methods reauire a more sophisticated

measure ‘of the work of a domain. For inst a~ce, hybrid
techniques use a partial LU factorization to precon-

dition the iterations. In that case, the work depends

on the particular ordering of the vertices the LU fac-
torization has used. Then, it would be interesting to

take into consideration some parameters such aa the
diameter of the domain, the minimum fill-in number

(A NP-hard parameter ! [22]) and the depth of the
domain. We have no knowledge of an application that
makes such a precise measure of the work, and it is

cert airily an interesting field to investigate e.

● Separator size / communication In general, the

amount of communication between two processors is

proportional to the size of the separator that they
share. It is clear that a perfectly balanced partition

having an enormous separator will lead to some un-
bearable parallel speedup because of the communica-
tion bottleneck. It would be possible to include this
cost into our subdomain’s work function. But this cri-

terium is hard to take into consideration directly into a
non-iterative partitioned, since the partition itself is an

output. However, an algorithm that manages to guar-
antee some bounds on the size of the partition will be

introduced later.

At this Doint we have to mention that the architec-

ture pattern of the communications between the pro-

cessors may influence the performance of a partition-
ing on the numerical computation. For inst ante, real
shared-memory machines are supposed to be indepen-
dent of data location in memory, and therefore would
not need good separators and “low communication”.

But in practice, nearly all parallel machines make use
of cache memories, so that a bad data locality affects
dramatically the final performance.

Non-conform Conform

Figure 3: The conformity problem

● Reusability and computational time. As we men-
tioned earlier, our goal is to find methods especially

fitted to adaptive grids. In particular, the partition
should be easily changed if some part of the grid is
suddenly refined. Therefore, we expect either the to-
tal computational time to be short, or the reusability

of the initial partitioning calculation to be great. To

explore this criterium, we introduce the “shock-wave”
concentration model: a local zone is filled with much

more refined elements, while the remaining parts of
the grid remain unchanged. We imagined two means

to characterize the phenomenon:

– Weight changes on the elements: each of the ele-
ments of the domain is assigned a weight w, such
that w > 1 and the total sum of the weights is
less than h’.n, where K is a threshold. It is clear
that the incremental algorithm introduced in that

case performs at least a little blt worse than an
algorithm that works with the entire information

on the grid.

The signification of weights is as follows: an el-

ement of weight w is likely to be replaced by w

small elements, in such a way that we are able to
rebuild locally the separator, provided that it is

balanced according to the weight.

Since only linear, or almost linear algorithms are
considered, an important modification of the grid
(for instance, adding more that n elements) jus-
tifies the complete rebuilding of the partitioning. ~
Hence the threshold K, that is fixed according to

the particular performance of the application.

We modelize this phenomenon because it is very

common nowadays to use this model to realize
adaptive grids. We explain in the following lines

the basics of the construction. The reader does
not have to understand completely the model,
and may admit that changing weights represent
properly a step of a major class of adaptive nu-
merical computations.

An original grid is fixed, and each element re-
ceives the level O. The idea is that one “element”

is something fixed that will be represented by a
variable number of “triangles”. When an element

has to be refined, the level of the element is in-
creased. If an element has the level L, it will be

represented by 4L triangles.

An interface problem occurs when two elements of

a different level share an edge. When the consis-
tency problem of nodes existing on one element
and not on the other is forgotten, the triangu-
lation is said to be non-con~onn (See figure 3).
Many finite-element users do not want to handle
this case because it implies many other difficulties
at various levels, including in the mathematical
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Figure 4: How level (and weights) are used to do adaptation

Figure 5: Examples of partitioning : part 1

underlying model. To avoid this, the conformity

of the triangulation has to be insured by rules, for
inst ante

* An element of level L does not share an edge
with an element of level greater than L + 1.

* An element of level L shares an edge with at

most one element of level L + 1.

Then an element of level L is represented by 4L

triangles if it does not share an edge with an ele-
ment of level L + 1, and 4L + 2L otherwise. Each

edge of a L + l/L + 1 or L/L + 1 interface will

have two endpoints plus 2L+1 – 1 internal vertices.

Figure 4 shows how the new triangulation is built
from the old one. Some more sophisticated ver-

sions of this idea generate trees for each element,
where the root is the original element and the

leaves are real triangles, allowing to have trian-
gles of different levels even in the same original

element.

– Addition of some more elements into the grid A

more challenging goal would consist in being able
to integrate directly some more elements - say

~(n) - into the data structure produced by the
partitioned. This can be achieved by deleting a

local zone of the mesh and rebuilding it locally
(Such an approach is taken in [19]). Handling
correctly this case implies that the data struc-
ture associated with the partitioned is precisely

updated according to the new elements, whereas
in the previous case, only an approximation was

necessary. For the same reasons as before, a K
threshold is fixed such that c$(n) < K.n.

During the calculation, tasks are localized as far as
possible inside the subdomains. Then we can expect

that requests for grid modifications will frequently con-
cern only the internal part of a subdomain. We will
wonder how the described algorithm will take advan-
tage of this property.

3 Adaptive partitioning algorithms

The algorithms described here are illustrated on a dummy
“fish” example in figures 5 and 6. This shape was chosen
for its simplicity and the clarity of the partitions on it.

3.1 Geometrical sort

* INITIALIZATION. cost = O(n log(n)). For this algo-

rit hm, each element is assigned a coordinate, generally
the x- or the y-coordinate of its center of gravity. It

*

*

*

*

3.2

*

can be also a linear combination of them, or even a
completely different function. Then, a sort is applied
to it in order to build the partitions.

In this paper, we studied especially the sort along one
coordinate. We could also try to partition along sev-

eral coordinates, which would cert airily reduce the size
of the separator. But it would also damage the flexibil-

ity of the algorithm, and then would not be adequate
to our adaptive goals. To maintain the reader aware

of that restriction (and its cost), heuristics that take
advantage of the 2D-shape of the domain were intro-

duced in the experiments.

WEIGHT MODIFICATION / BALANCING.

cost = min(O(p6(n)), 0(6(n) +n)). In case of a weight
modification, we either scan linearly the list or move
progressively the boundaries of the partition (depend-
ing on pf(n) < ti(n) + n or not).

ADDITION OF ELEMENTS. COSt = O(&(n) log(n+8(n)));

on a local subdomain of size s, cost = O(6(n) log(s +
~(n)). Adding an element to a sorted list of order n

may be realized in O(log(n)) steps if the correct data

structure is used (The idea consists in performing a

dichotomic choice on a balanced binary tree; see [1, 2]
and the leftist binary tree in [13]). Once the sorted

list of elements is updated, one needs often to rescale
the partitioning (This is exactly equal to the balancing
step and costs rnin(O(p6(n)), 0(6(n) + n)) operations;
we distinguish nevertheless the two following actions:

(1) modify the graph structure while preserving the

data associated with it in order to balance the load,
and (2) compute effectively the balanced partitioning).

EXTENSXON TO OTHER STRUCTURES OF GRAPH. The
method is extensible as far as some coordinates may

be associated with one node or element. In particular,
3D problems may be handled by this method.

WARRANTIES. The method guarantees the amount of

elements per subdomain, not the size of the separator.

Deepness analysis

INITIALIZATION. cost = O(n), The method consists in
computing a skeleton (called spine) of a triangulation.
The reader will get more information on the way to
build this structure in [11]. The spine length is less
than n and in practice around fi.

Similarly to the geometrical sort, it is possible to im-

plement deepness analysis so that it benefits from the
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Deepness analysis Discretized K-means

Figure 6: Examples of partitioning : part 2

two-dimensional structure of the grid in order to re-
duce the size of the separator. But this would also

influence badly the flexibility of the algorithm towards
adaptive grids.

* WEIGHT MODIFICATION / BALANCING.

cost = rnzn(O(p6(n)), 0(6(n) + n)), The spine defines
a kind of multilineal description of the domain, in the

sense that, instead of being described along a list, the
elements are ordered along a tree. Thereby, once a
separator is chosen along the tree, a separator on the
domain is implicitly defined. As a consequence, taking

new weights into consideration can be performed in a
similar way to the geometrical sort.

* ADDITION OF ELEMENTS. cost = O(n + ti(n)); on a

local subdomain of work s, cost = 0(s + ~(n)), Since
the algorithm gather local and global information, it is

necessary to recompute the associated data structure

if some elements are randomly int reduced. However,
since the separators are “depth-optimal” fronts, it is

possible to localize this recalculation on only one sub-
domain.

* EXTENSION TO OTHER STRUCTURES OF GRAPH. The

methods works specifically with triangulated planar
graphs, and does not need the geometrical coordinates

of the nodes. Its extension to 3D is studied, but not
established until now.

* WARRANTIES. The balancing performed in practice is
often perfect, but is only guaranteed to be no more

than ~ of the minimum possible. It is also warranted
that the total size of the straightforward separator into

p subdomains will be at most O(p@) for a uniformly
regular triangulation, where nT is the amount of t ri-
angles. A proof is given in the extended version of this
abstract,

3,3 Heuristic techniques

There are various iterative techniques that provide good sep-
arators in practice, On the one hand, their reusability is

great, since they simply start from the previous partition
to construct the new one. On the other hand, their granu-

larity is small in general, because they often need at least
a linear-time computation on the complete grid. However,
we believe that this type of methods will provide interest-
ing adaptiw partitioners in the future if sufficient care is
taken on granularity aspects. We also find it useful to in-
troduce some high quality separators to measure the cost of

adaptivity.

Step 1 Chose arbitrarily p nodes VI, ..., up
for z:=l to p do Center[i] := vi;

Label[Center[i]] := i;

Step 2 for i:=l top do Mark(Center[i]);

Push(Center[i]);
Step 3 While pile not empty do

Pop(v);
for each neighbor w of v

if not TestMark(w)
Label[w] := Label[v];

Mark(w);
Push(kj;

Step 4 Center[i] := Closest node to the center of

gravity of all nodes labeled with i
Step 5 Unmark all nodes; goto 2 until convergence

Figure 7: Discretized K-means technique using a FIFO pile

We note that for the same iteration scheme a wide vari-

ety of algorithms may appear depending on the strategy of

optimization being adopted (Taboo, Depth-First). Among
the good iterative schemes, we have to mention the greedy
algorithm (introduced by Charbel Farhat [8]) and the K-

means technique, successfully developed by Eric Saltel at
INRIA-Rocquencourt. We will use here a modification of
this last method. It can be intuitively described as follows

(for p subdomains:).

1

2

3

4

This

Choose arbitrarily p nodes called “centers” on the do-

main, numbered from 1 to p.

Assign to the subdomain i the nodes for which the

center i is the closest center.

Replace the center z by the center of gravity of all the
elements in the subdomain i.

Goto 2 until convergence.

method is based on notions of distance f “is closer to”)\
and of center of gravity.

,

We present the details of our modified algorithm in figure

7. The original method is based on a weighted physical dis-

tance that tends to make any triangle equilateral, whereas
we introduce an algebraic distance, using the graph topol-

ogy. Since the grid generator is supposed to build elements
as close as possible to the equilateral model, the global strat-

egy remains unchanged. But this method has the advantage
of (1) producing connected subdomains and (2) having an
iteration step of O(n) operations (while the previous one

needs O(np) operations, where p is the amount of subdo-

mains).

* INITIALIZATION. cost = O(n) per iteration. The con-
vergence is guaranteed statistically. We encountered

some (rare) non-stable cases.

* WEIGHT MODIFICATION/BALANCING.

cost = O(n) per iteration. It was possible in the orig-
inal algorithm to influence the work of a domain - say
i - by using a distance ~, (d(w, v,)) from a node w to
the center v, instead of d(w, v, ). In our method, we
managed to handle balancing by introducing penalty
steps for large domains, without modifying the iter-

ation complexity (we penalized too large domains by
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J?igure 8: Simulated speedups with communication constant
c=3 vs number of processors

introducing later their center into the FIFO pile). The

improvement strategy was a depth-first one; we kept
the same centers of domains until we managed, by ma-

nipulations on the “distance” to have a better balanc-

ing. Then we “fixed” the solution by computing new

centers as centers of gravity of each subdomain.

For adaptive applications, this strategy is rather crude.
It would probably be interesting to propagate some
weight modifications on a local subdomain to the neigh-
boring subdomains only (or a little bit further). But
then, the real complexity of the computation becomes

hard to evaluate...

* ADDITION OF ELEMENTS cost = O(n) per iteration. It
is arguable to consider that the cost is 0(c5(n) ), since

the algorithm doesn’t need to update any structure

associated with the graph apart from the partition it-
self. Then the operation would consists in assigning

a subdomain to each element, a thing that may be
performed in constant time by some heuristic.

* EXTENSION TO OTHER STRUCTURES OF GRAPH. The
method is easily adaptable to 3D graphs and any other
graph that admits a notion of distance and center of

gravity.

* WARRANTIES. No warranty on the result is known.

All these results are summarizedin table 1,

4 Experimental results

4,1 A simulation based on maximum cost

We imagined a simulation program that took a partition
and gave the parallel time of an iteration that used it, This
simulated time was the maximum local work among all the

subdomains, and the local work of a subdomain was given
by

local work = #(internal triangles) + c.#(shared nodes)

where c was some constant, usually greater than 1, intro-

ducing the communication latency. Then the speerfup of one
partition was defined by

#(triangles)
speedup =

largest local work

‘[ ’]–EI<j<ve.ftces, j#t
X[i] :=

A[i][j] X X[j]

A[;][j]

Figure 9: A Gauss-Seidel iteration step

and the goal was to reach as linear as possible speedups.

In figure 8, we present the speedups obtained for the
various algorithms described before. For completeness, we

also added the popular greedy algorithm [8], but the com-

parison was not reported in the simulation; since no obvious

adaptive version of this algorithm is known. The studied
grid (which will be reused on the following experiments) has

5399 nodes (or vertices) and 10219 elements (or triangles),
and the constant c equals 3. For the x- and y-geometrical
sort and for the discretized K-means technique, we used a
triangle-numbering cost function. We tried the “deepness

analysis” algorithm with a slightly modified cost, where the
spine intersections were taken into consideration, but this

hardly improved the results. In order to get results as per-
fect as possible, K-means had 500 iterations to improve its

solution, but a smaller number of iterations gave also good

results. The computational time of this method was, how-

ever, much longer.

The results show clearlv that the more “adaDtive” an.
algorithm is, the worse it performs. We note that deep-
ness can give good results, but is quite irregular. Therefore,
we plan to add some regularizing features in the code to

avoid deceiving speedups. It also appears that the choice
of one direction has an important impact on the geometri-
cal sort. Finally, the contrasted performances between the

two extreme cases justify an additional effort to improve the
granularity of heuristic methods.

4.2 Practical implementation and related problems

Since the operation matrix-vector product is too simple to be
realistic in terms of communication, we tried to experience

our techniques wit h some more sophistical ed computation.
The physical problem was a heat-conduction equation, as-

sembled using the control-volume finite-element method [5],
to obtain a global equation A.X = l?. Then we chose a

Gauss-Seidel iteration process, not for its own performance,

but because of the inherent sequentiality of the model, the

convergence rate would be affected by the parallelization
(Recall that non overlapping domains are used). Moreover,
the complexity of the data structure of the Gauss- Seidel

method reflects well the one of the SOR method, without
raising the difficult problem of finding the adequate w to
the particular PDE being solved [23]. We discuss later the

results we obtained likewise.
The Gauss-Seidel iteration step for dense matrices is pre-

sented in figure 9. Normally, our practical matrices for A are
sparse, so that, for each vertex i, a small number of entries
of both A and X are accessed. W bile doing the parallel com-

putation, each vertex is assigned to one or more subdomains

(or, equivalently, processors). A vertex is called internal if
it is affected to a unique domain and shared otherwise.

It is clear that a problem occurs when two different pro-
cessors want to update the same node at the same time.
For instance, by updating randomly the value affected to a
shared node, a processor may remove the result of a previous
computation, hence the lost of a (local) iteration step. We
could also observe on the SGI-Challenge that if no semaphore
(i.e. a mutex lock for example) was used to insure consis-
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cost Geometrical sort Deepness analysis Discretized K-means
Initialization O(nlog(n) () O(n) per iteration
Weight modification / min(O(p6(n)), 0(6(n) + n)) min(O(p6(n~)~O( &(n) + n)) O(n) per iteration

Balancing
Addition of elements 0(6(n) log(n + 6(n))) O(n + ~(n)) O(n) per iteration

Table 1: Summary of the comparative study

yeedup v. number of processor.
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Figure 11: Speedups on the KSRI

tency, some completely meaningless values may be generated

by conflicting writes on the same memory location by two
processors. We distinguish two means to insure consistency:

[local] A mutex lock is used whenever a processor updates
a shared variable

[global] At each iteration step, some piece of information
is spread, so that each processor will take into account

others’ computations.

On the Challenge, a “local” strategy lead to dramatical
results because of the high latency introduced by the lock
routine. In figure 12, we show the details of the particular
global strategy that was used. This computation presents
many similarities wit h the block-Jacobi method, but should
not be identified to it: in fact it allows many more “crossed”
references, and we believe that it improved significantly the

quality of each parallel iteration step.

Assembly
Diag = O[n]
for each p do

Ap =“ O[n ~n]

for each element e in subdomain p do
Ap := Ap + -/le

fo; each p do
for each node i in subdomain p do

Diag[i] := Diag[i] + Ap[i][i]

s~mp = O[nI

Xp = O[nl (or eventually equals
some fixed values on the boundary)

Iterate

for each v do for each node i in subdomain P do
Sump[i] := ~Jnode in

2+’

Ap[i] [j] x X-$’ [j]

B[t]–swnp[i]– P~eoiOu. Su772k[,]
xP[i] := ksubdomain, k+P

D:adal

for each p do for each node i in subd~rnain p do
lPreviousSumP [i]= Sump [i]

Figure 12: Sequential description of the parallel algorithm

For some reasons, we tried our algorithms on a KSR1,
and a SGI-Challenge, that are shared memory machines.
But, as a result, we systematically avoid concurrent writing
on the same memory locations, so that we used a completely

distributed-memory programming model. We also stress the
KSR1 is physically distributed.

Finally, the practical speedups obtained by this method
are shown in figures 11 and 10 respectively for the KSR1

and the Challenge. These results were obtained by compil-
ing our C code with the -02 flag, and used averages on 10

tests using 1000 iterations each with double floating-point

precision on non dedicated machines. A sequential iteration

cost respectively 143 ms and 9 ms on the KSR1 and the
Challenge (150 MHz, 16 proc., R4400). The measures of

the error generated after 1000 iteration compared to the se-
quential case are given in figure 13, representing logarithmic

(loglO) errors versus number of processors, for each parti-
tioning method.

We note that, apart from many unpredictable results on

the KSR1, the curves correspond to the simulation tests.
Another fact is that, in our particular example, the smaller

a separator is, the less numerical error we get. This confirms
that the idea of minimizing the size of the separator remains

valid. Since a small separator tends to improve the numeri-

cal efficiency of an iteration, the numerical speeddown may
by simulated by increasing the c communication cost con-
stant. We have to note, however, some (slight) differences
between the two diagrams (figures 8 and 13), and more par-
ticularly concerning the greedy algorithm performance.

The results also confirm that the sizes of the separators

have an impact on the performance even on distributed-
memory machines. However, on the examples we gave, the
worse speedups can represent as few as 80~0 of the best ones.
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Since the computational time of a numerical iteration is in

general linear with the number of nodes of the domain, it

means that even a small number of iterations will justify the

complete recalculation of the separators. It also motivates us
to find partitioning algorithms with under-linear-time adap-
tion schemes that perform relatively well with respect to
some realistic examples.

5 Conclusion and further work

Adaptive grids present a new, challenging area in computer

science, especially while partitioning them. We presented

some answers to this problem, and also showed their de-

faults. It would be also interesting to parallelize the parti-

tioned itself. At this point, we precise that some algorithms
previously mentioned and avoided have parallel implemen-

tations [12]. Of course, we are also interested in continuing
this work from the point of view of adaptivity in 3D, and

testing how these algorithms perform when the grid really
adapts.

Another question concerns the grid generator. Is it pos-
sible to associate an automatic domain partitioned with it?

Some more subtle work may be done in recognizing a smaller
(than planar) class of graphs to build fast partitioners still
adequate to represent PDE’s domains.
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