
Runtime Coupling of’ Data-parallel Programs *

Abstract

\f e conslcier the problem of efficiently couphrrg multiple cfata-
parakl programs at Irrntime. We propose an approach that
establishes mappings between data structures m different
flat a-parallel programs and implements a user-specified com
wmencv model. Mappings are established at rnntlrne and
can be added and deleted while the programs being cou-
pled are in execution. Mappings, or the icleutity of the pro-
cessors involved, do not ha~,r TObe kno~vn at compile-time
or even link-time. Pro,gramh ran be m adc to interact tvith
different granularities of interaction without requiring any
re-cociing. A-priori knowledge of consistency requirements
allows buffering of data as well as concurrent execution of the
coupled applications. Efficient data movement is achii=w=d
b~- p] e-computing an optimized schedule. ~~e describe our
])lorotype mrpiernent,atiou and evaluate lts performance us-
LMga wt of svnthetrc “benchmarks. \Ve examme the varlat]on
of performance with varlatlon in t he conslstenc} reqrrme-
[nent W+ demonstrate That the cost of’ the tlexibiht}- pro-
~,lded hl our coupling scheme is not prolubltl~,e whel Lron-
pared with a monolithic program that performs the sam~
computatlou.

1 Introduction

]n i he sequential programming world, iutel-application data
trausfe] facilities abound. .kpplications can use simple ab-
st,lactions such as sockets, pipes or shared memory segrnen~,s
to move data between address spaces, There are no restric-
tions ou the programming language used to develop the com-
municating applications. This provides flexibility and recon-
h,qurabilit~: for sequential applications Similar facilities are

* Tills research was supported hy NASA under granr, JN.ASA

#N AG-1-l-H35 (ARPA Project Number 8874). b}- ARPA under grant
#Fl~lb28-(WC-LlL157 and by NSF under grant #ASC931S183 The

D,gltal AlphaServer used for experiments }vas provlrled by NSF CISE

Inst]tutlorial Infrastructure? Award #CD.’l:I4illl5l and a grant fron-

D]K1tal E,qulpmenf COrpOrat]On

Permissionto makedigital/hard copiesof all or part of this material for
personalor classroomuaeia grantedwithout fee provided that the copies
are not madeor distributed for profit or commercialadvantage,the copy-
right notice, the title of the publication and its dateappear,and notice is
given Uratcopyright is by permissionof the ACM, Inc. To copy otherwise,
to republish, to peat on serversor to redistributeto Iista, requiresspecific
permissionand/or fee.
lCS’96, Philadelphia, PA, USA

@1996 ACM O-89791-803-7/96/05. .$3.50

not available for data parallel programs. The obvious tech-
mque of using a sharecl file svstem is not efficienl,

ln this papel. we propose an approach thaT achieves &-

rect apphcatlomto-applacation data transfer. Our approach
M hbrarv- based and 1smdepencient of the programming ian-
,qrra~eused to develop the commumcating app~icatious. F’ro-
grams wlitt en to use this approach are reqmred TOadhere
to a certaili disci~line ~vith resDect to the data structures
revolved in the interaction. but they do not, need to know
either the ideutitv or the number of’ programs thev interact
Wlt h

our approach is built around the notion of mappings be-
tween data structures in different data-parallel programs.
Mappings are established at rrrntirne. Every mapping has
a consistency specification which mandates the logical fre-
quency with which the mapped structures are to be made
mutuall~ consistent,. Mappings. or the identity of the pro-
cessors involved. do not have to be knowu at compile-time
or even link-time. .A-priori knowledge of the consistence re-.
aumemeuts at Lumtrrne allows concurrent execution of inter-
actir~g programs by buffering the data being communicated.
Efficient data movement is achieved by pre-computing an
optlmlzed plan (schedule} for data mo~,ement. Our pro-
totype Implementation uses a generahzed data movement
library called Met a-Chaos [3] and is able to couple data-
parallel programs written in different languages (including
High Performance Fortran (HPF) [2], C and p(;+ + [I]) and
using different commumcat,ion librarles (including ,Multiblock
PARTI [12] and CHAOS [6]).

E@ couphng multlple concurrently executing data par-
allel applications. we gain the added benefit of combining
task and data parallelism. In contrast to other approaches
that require language extensions to achieve this [4, 1I], our
approach can work with off-the-shelf language mlplementa-
tions as long as the illlplel~lel~tatiol~s provide a small num-
ber of querv functions about, the distributions of data struc-
tures [3]

~f~ehave developed a prototype implementation based on
this approach. Our implement ation culrently runs On a clus-
teI of four-processol Digital .Mpha Servel 4/21 0(1 symmet-
ric multiprocessors. Our results indicate that data-parallel
programs can lx= coupled together]n a flexible fashion with
a,cceprab]e o~,erhea,d

229

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237578.237608&domain=pdf&date_stamp=1996-01-01

2 Basic Concepts

Central to our approach is the notion of mappings between

individual data structures belonging to the programs be-
ing coupled. A mapping binds a pair of data structures of
equal size and identical shape, and has an associated consis-
tency specification that specifies the frequency with which
the mapped data structures are to be made mutually con-
sistent Consider the example of a pair of simulations which
work on grids corresponding to neighboring regions in space
and which periodically exchange data at the boundary. In
this case, the array sections in the two programs that cor-
respond to the shared boundary would be mapped to each
other. The consistency specification would depend on the
requirements of the physical process being simulated and
the accuracy desired; the strongest consistency requirement
would be exchange data every time-step and the weakest
never e~change data. For a different kind of interaction.
consider the coupling of a program that simulates a phys-
ical process and a visualization program that displaJ~s its
STate. h~ t,fus case. the mapping would be between the array
contamm, g the state of the simulation and the array used
to hold the data points for visualization. The consistency
would depend on the closeness of monitormg desired - for
instance, display ever-y time-step, or display as many ~rame.s
as possible without slowzng down the .szmulation.

The frequency referred to above is logical. It refers to the
number of times execution in either program crosses spe-
cific user (or compiler) identified synchronization points. In
the example of interacting simulations, the synchronization
points could be the bottom of the respective time-step loops:
in the coupling between a simulation and a visualization pro-
gram, the synchronization points could be the bottom of the
time-step loop in the simulation program and the end of the
frame buffer update in the visualization program.

Mappings are established at runtime. New mappings
may be added between programs while they are in execu-
tton and existing mappings may be deleted. For example,
dynamic mapping addition could be used to attach a visu-
alization program to a long running simulation long after it,
has commenced execution.

Our approach derives its efficiency from buffering and
asynchronous transfer of data, as well as precomputation
of optimized schedules. A schedule consists of a plan for
moving the data from the sending processors to the receiving
processors. Schedules are optimized to minimize the number
of messages transmitted.

While our approach is generaI enough for a variety of
data structures, m this paper we restrict, ourselves to arrays
cLndarray sections, ~~e do this for two reasons. First,, at this
stage m OULresearch, we would like to focus on maxlrnizmg
flexibility and reconfigurability rather than on specification
of complex data structures. Restricting our focus to ar-
rays allows us to use simple existing techniques to describe
the data structures of interest. Second, the primary data,
structures in most data-parallel programs in use today are
arrays. Therefore the restriction does not significantly limit
the practical applicability of our approach.

3 The Programming Model

The programming model provides two primary operations:
exportzn,q individual arrays and establishing a mapping be-
tween a pair of exported arrays. Arrays are exported by

application writers, who use a set of primitives to identify
exported arrays and to specify the points in the application
program at which consistency operations can be safely ap-
plied. Mappings between exported arrays are established by
users who wish to couple the corresponding applications.

3.1 Exporting arrays

Four primitives are provided for exporting arrays :
register () and unregist er () to control the visibility of the
array outside the application and acquire () and release ()
to specify the points in the application code at which con-
sistency operations can be safel~ applied,

The following are the primitives in our model:

●

●

b

●

register (array, mode, name) ; binds array to the
system-wide unique identifier name and makes It “vM-
ible” to other applications. array is a “ distributed
array descriptor”. It describes the distribution of the
distributed array among the processors of the calling
program. There are two possible values for mode, in
and out. Data can only be transferred tnto arrays
that have been marked in. Similarly. data can only be
transferred out of arrays which have been marked out.
register returns a handle that can be used to refer to
the exported array in subsequent code.

unregister (handle) : permanently hides the (previ-
ously exported) array associated with handle.

acquire (numJtandles, set_of_han.dle.s) : All consis-
tency operations involving an array for which the
acquire call has been issued must, be completed before
the acquire call returns. For an array exported in the
in mode, afl transfers into the array that are required
for maintaining the desired consistency must complete
before the acquire returns. For an array exported in
the out mode. all transfers out of the array that are
required for maintaining the desired consistency must
complete before acquire returns.

release (numJzandles, set_o f.handles) : For an ar-
ray that has been exported in the out mode, release
indicates that a new version of the array is now in
place and will remain in place until the next acquire
on it. For an array that has been exported in the zn
mode, release indicates that, it is now safe to change
the data in the array.

The acquire () and release () calls must be placed such
that each of the processes m a data-parallel program sees the
same number of acquires and releases at a given logical
point in the program execution. This implies a loosely syn-
chronous SPMD execution model.

3.2 Establishing mappings between data structures

A mapping consists of two parts - the names of the arrays
(or array sections) being mapped and a specification of the
desired consistency. The general form of a mapping is:

with conszstency_speci fication {asectl = asectz}

where asect~ and asectz are array sections and
consistencyspeci ficatzon is a consistency specification.

230

.illays ale referred to by tbeil extelnal names and call
b~ mllltl-ciilllellsiollal. Ext erual names are bound [o w-
rav> using the register primittve. Arrav sections are spe{
]ftecl usma an HP F-iike syntax [i. e.. arra~[tntt f?u(ll
st r),df 1) For instance. x [1 : 100: 2] >pecdies a sectiou of the
cjlle-dillleltsiollal arrav x ronsistmg of mm’ second point m
tht ral[ge i to IO(I, There can be manv active mappmgs
,-Onl!e(-tlug different a,rra,l,s ill different i~rogranls.

\ ,-(~u>lsienc~-specification mandates tfl”e trequenc~ wltli
tvhici] t lIF array sections being coupled al. r(~ be made m1t-
1llalj~- conslsTenl The frequ;nc, w sjxwhw! Io.qlcall, m
~errm- of a ~elslon Countel Opera tloually, a zero-m~tlahzed
,-(,~,l!t,.l IS a,ssoclated ~vltb ever J export ed arral and i. incre-
nieuted on e~er,v release of the alra~ FOI an array export d
ill tbc o{(fmode, the counter contains th? number of vmsmns
of that array that have been made available t o other appli-
cations For an arrav expolt,ed in the ?rrmode, the countm
Contain> the current number of safe opl)ort unities f’ol data
i o be placed mto the arra~.

\ conslstencv specdication consists of a pair of condl-
I]OUS o]le for each array in the mapping. The mapped ciat a
.1ruct ures must be consistent whenever (and as long as} both
,-olidltion~ hold The gener al form oj a ~onslstellcv ~onditlo l-l
l,,

freq(arroy, tnlf J“!t]ul strldel

The value of tn zt can be a nomne~ative integer m the
s])~cliil symbol current, with O] vnthont a,positrve inte~ra]
offset ~he Svmbol current st a,nds for the value of the v~~-
~iou counter for the given arrav at the time the mapping i~
mt abhshed. ‘The domain of j?n~) is the set of natural nnm-
bels and a special symbol forever (which is denoted in this
I)alwl I>v X). If ?n?t Is specified as current f?n(ll nlaf
tw spw-died M current plus an integer value The value
of \tr rdc can be a natural numbe~ or the wild-cald symbol
* The wild-card svrnbol stands fot c(r~y natura] numlw
i h, ,,xpreswon t;tZt:j-nJIl:.SrrtClt defines a (possibl~ mfiult f I
><CIueuceof nomnegat,rve mt,egers : .-1consistence condition
hojds whenever (and as long asi t be value of the COUUTe]
assoclat ~d wlt h aTT(ZVbelongs to t be sequence deftuecl by
/r)lt:,fir)c{/., stt,zrJc.

t~ e lIsrJ thefollowlng termlnoloqy for the resl of the pa-
!wr ‘Tht tia,ta parallel program where a given exported arra~
u- dehned is called the owner of the array. The owner~ of
the exported arrays that appear in a mapping are the par-
ttr-~porrts in the mapping. The owner of the left hand side
of the assignment appearing in the mapping is called the
,on s?lmer and the owner of tbe right hand side of t,he a,s-
.lgnmenr IScalled the producer fol that, mapping. The array
(01 arrav SeCTIOn) that appears on the r@t hand wdr of a
nlappm?]s calIed t,ht source array for the mapping and tbt
une that appeals on the left hand side of a mappinx LScalled
t be sink array for the mapping Ii-e refer to the processes
that constitute a data-parallel program in execution as peer
plc)(-essc’>,

11appings can be specified in two ,vays. For static cou-
pbngs. m which all participants stal t executing at the same
time and the interactions between the applications do not
rhangt throughout the execution. the mappings can be spec-
ified ill a configuration database that can be read by all ap-
I>li<.allons as a part of their initialization Fo: dvnarnlc con-
l)luigs. In !VIIICII some participants mav stal t executrng after

! Mappingspec
! wth freq(A,OIOOl)& freq(B,OIOOl) A[l.101]=8[1020:1] 1
I

I ~.. -~ L —. .- .- ..- —.-. —. —.. ..-

DataMove

Figure 1. Program text and mappings fo~ example,

others or the mt,era,ctions between the part, tc~pants change
during execnt~on. the mappmgs can be createcl m deleted
as the part, tcipants are m execution. Because of space lim-
ttatlons. we defer the description of dvnatmc mappmg to a
techmral report ~8j

3.3 A simple example

In this sectiol[. we illustrate the use of the prol)osed pro-
gl amming model with a snnple example. Consider the two
proglams in Figule 1. Data parallel program j~grrrl registers
lts distributed array .-l with the global name A and the
i,n mode, Data parallel program p,gnrz registers its dis-
tributed array B with the global name B and the out mode.

This mapping specified in the figure couples the section
[1 : 1(J 1] of the one-dimensional array A to the section [10 :
20 : 11 of t he one-dmltnslou al arra~, B with a consist,eucv
that 1sexplained as follo~vs.

Colmdel the varlahle B m pgrr)?

●

●

●

●

Before the first acquire (1. {b} \ completes. the zeroth
~,ersiotl of B is transmitted to the consumer pfgml

For any version t of alra~- B. such that u .: f < 100,

the t rausfer ftom B corresponding to version ~f – 1)
must complete beiore accp.nre f 1. {b} f returns.

In between acquire (1, {b}) and the subsequent
release (1, {b}). no transfers from B can occur.

tt’hen release (1. {l)}) is executed, the version counter. .
corresponding to B 1s incremented at the producel.
Data transfer to eonsurmers may commence at this
point The transiel of data out of B needs to com-
plet - b~fore the next acquire [I. h} completes

SinlilallY. (on~ider I he variable A m pyrn, :

● Before the first acquire (1, {rI j) completes, there is no
defined relationship between .4 anti 1?.

● .-lft er the ftrst acquire (1, { a }) completes, values at
locations [10: 20] of version O of B have been copied
il~to location$ [1: 10] of version O of .4.

● For auv vels]on t of Array .’1. {such thaT O < 7 ~ IUO),
aftf=l acquire ~1. {(J}) completes, values al locations
[10: 201 of version f of B have bfwn copied mto loca-
[iolLs [1 : 10] of version t of .4.

231

●

●

3.4

in between acquire (l, {a}) and the subsequent
release (1. {a}) no transfers into array .1 may occur.

When release (l, {u}) is executed, theversion counter
for A is incremented and pending updates for .4 may
begin for the new version counter.

Informal semantics

There are two major classes of consistency conditions -
strzdedaud wild-card. Strided conditions can take one of two
forms: freq (aTray, constl constz . const3) 01

freq (array, cons?l x : const3). Strided conditions are
useful for specifying periodic interactions between coupled
programs, e.g. a pair of interacting simulations that com-
municate after a fixed number of time-steps. Wild-card com
ditions can also take one of two forms : freq (array, con.~tl :
cor~.stz$)or freq (array, constl : = : *). Such conditions
capture the consistency requirement, for loosely coupled pro-
grams - for example a coupling between a simulation and a
visualization program that displays as many frames as pos-
sible without slowing down the simulation and forcing it to
run at the same speed as the visualizer. In the rest of the
paper, we shall use the general forms of both these classes.
thatis, freq(amay, constl cm : comts) forstrided requests
and freq(amay. const] K *) for wild-card requests

Theprirnar ysynchronizatlon primitives inthe model are
acquire and release. They are used as synchromzatlon
points for the user-specified consistency operations. The
following consistency guarantees are provided :

I. Safe transfer guarantee: No data M transferred
from or to an array between a matching
acquirelrelease pair involving that array. Data can
be transferred from or to an array any time between
a register call and the first acquire or between a
release and the next acquire (or unregister).

2. Single version guarantee: all data transferred to or
from a single array in asmgle consistency action be-
longs tothesarne version. Note that this requirement
does notnecessarilyi mplyexplicit barrier synchronize-
tions at every acquire and release.

There are four classes of consistency specifications. each
corresponding to a different consistency model. They are
tt~lly-c;onstruzned, producer--constrained, consumer-constrain-
ed and ,~ree-runnmg. In the following discussion, k is a non-
negative integer; tort.st~ symbols denote integer constants
~ O: and all mappings are of the form .-! = Et wilere pro-
glam P] exports .4 and program P? exports B.

Fully Constrained Coupling : the form of the consM-
tlencv specification 1s:

with freq(A, constl : N : const2) &
freq(B. consts ~ cm : const4) A = B

In this modei. every const~ version of B is copied mto
A on every const~h acquire call involving A. More pre-
cisely, the data contained in B at the (con.9t3 + k x constl)~h
release(B) call must be transferred to il. The data must
be transferred out, of B between the start, of the (corzst~+ k x

const~)Ch call to release(B) and the completion of the fol-
lowing call to acquire(B) 2. This data must be transferred
mto .4 aft,er the (constl + (k x constz) – I)th release(A) calf
has completed and before the following call to acquire(A)
completes 3. The ~ully-corzstrainedmodel is able to capture a
wide range of consistency requirements for relatively closely
coupled programs.

Producer-constrained coupling : the form of the con-
slstencv specification is:

with freq(.-l. constl : w *) &
freq(B, consts : cc const4) A = B

In this model. everv rorrst~h version of B is copied over
to A. No data is transferred to A for the first Ccmstl calls to
acquire(A). The data must be transferred out of B between
the start of the (consts + k x const4)th call to release(B)
and the completion of the following call to acquire(B).
This data must be transferred into A at a subsequent call
to acquire{ A) after the first constl calls to release(A).
The producer-constrained model constrains only the pro-
ducer and allows the consumer to run freely. It can be used
to couple programs in which the producer runs much faster
than the consumer and periodic consistency is not needed.

Consumer-constrained coupling : the form of the con-
sistency specification is:

with freq(A, constl : z : constz) &

freq(B, constz : cm : *) A = B

In this model, no data is transferred into A for the first
constl calls to acqun-e(.4). Subsequently, data must be
transferred into A once every constz calls to acquire(A).
There is no restriction on the version of B that can be copied
over at each such transfer point, as long as the sequence of
versions is monotonically increasing starting at the const~h
version. That is, every transfer gets a new version of B.

With this proviso, data can be transferred out of B be-
tween any call to release(B) after the const~h call and the
the following acquire(A). The consumer-constrained model
constrains only the consumer and allows the producer to
run freely. It can be used to couple programs in which the
consumer runs much faster than the producer and periodic
consistency M not needed.

Free-running coupling : the form of the consistency
“fi “- ‘-specl cation M.

with freq(A, con,~tl Q : *) &
freq(B, constS : CG: x) A = B

This model provides the loosest coupling.
there are four restrictions on data transfer.

In this model,
First, no data

transfer takes place for the first constl calls to acquire(A)
and the first, consts calls to release(B). Second, at least one

2If con.$t~= O, the first data transfer out of B must happen be.
tween the register call and the first call to acquire(B),

~If const~ = 0, the first data transfer mto A must happen between
the reglsterl ,41call and the tirst, call ro acq”lre(A)

232

(Iata trausfer takes place Tlnrd, monotonwaiiv mcrmsmg
versions of B are transferred. That is. every transfer gets a
new version of 1?. However. there may an arbitrary number
of’ acquires of A and releases of B between any data trans-
fers Finallv. if B’s version number has been changed since
the last acquire of .-1. a consistent new version of B will be
propagated to .4 The,fr~~-runntng nloclel constrains ncvther
the ~1’OdUCC[[101 the COUStlIUer ‘The consumer observes ii
:rend oi the producer ~ va nw as the producer progresses1

$mc, \ve Alow a program to have mldtiple sources al(d
multlple smlis we can form general illt[~rcollllectiolls berween
program+ Howm,e I. this flexlbiht~ call alsc, lead to dead-
locks aitd mhmte buff.mng reqmrementb for certaiu vnfit-
IIiatluus T’ht-se ar~ Iiot alwavs detectable IN Iookmg at the
tl~al)luu~s alone. In onJ mlplementatloli we tixpect the prcj-
grarumer to be aware of these problem+ when building an
iuterconnectlon of applications. }Ye address these Issues m
greater detail in a technical report 18]

4 Implementation

Itje have Implemented our system on a network of four-
processor SNIP Digital Alpha Server 4/ 2100 workstations
1nnnmg I’@t al ~;mx 3.J. The nodes are connected bv an
F’DDI iletwork

The prlrnary goals of our implementation were language
lndependtmc-e and efftclmlcv. The conceru for language ln-
clependence prompted the use of the \leta-Chaos library [;].
which we clescribe below. Fo~ efficiency. we used three tech-
uiq ues First. we used asyuchrouous. one-sided message-
passing for inter-application data transfer: the goal being to
overlap data transfer with computation Second, we com-
puted optimized messaging schedules for data transfer for
each mapping and reused these schedules for all transfers
for the given mapping: the goal being to minimize the nrrnl-
be: of messages transmitted thereby reducing the amount
of time spent in communication. Third. we used buffering
to reduce idle time spent waiting for data, We now present
Ilut Ile] detfarls as well as some probiems we encountered

4.1 Implementation of Mappings

Data transfer can bt initiated by either the producer or the
consumer in a mapping. .k consnmer-initlat,ed transfm is
implemented by a get request to the producer. which is pro-
cessed at an appmprhtet,lmeiri the producer’s execution.
.% producer-initiated transfer 1s implemented by the pro-
~iucer dispatching the necessary data in a pZJtrequest. Thr
data may be received asynchronously at the consumer and
buffered for later consumption.

The initiation scheme is specific to each mappmg and
[Iepeuds onlY on the consistency model it implements For
mappuq+s implementing the ftJlg-ccrnstrawred model or the
prod?l(er-con.stratnd model. data transfer 1smitlated by t,he
producer This eliminates the neecl for a consume] mltr-
ated request message. Since the lelative time when the
data is to be supplied is known a-priors for these models.
a colisll;~ler-illitiatecl recluest, is unnecessary. For mappings
mplemeutiug the cons[imer-c(>n.strclrr?ed model or the free-
runn~ng model, the data transfer is initiated ,b~ the con-
sumer. In the first two cases, the producer mltiates the
data transfer at the end of the release call that generates
the \,erslon to be transferred. In the last two cases. the
consumer initiates the data transfer at the beginning of the
appropriate acquire call.

lf the t,ransiel IS procillcel-lllltla~,ed ensuring the SZngtc-
t,rr. s~onguarontre I i.e. . the guarantee that the consumer sees
a single consistent \rerslon of the distributed data structure j
IS simple. The peer processes of the data-parallel producer

apphcatiou may send their sections of the distributed array
to the consumer on a release. Since the data is buffered and
consumed in FIFO order at the consumer, and the looseiv
synchronous SPM D assumption holds for the producer, the
smgle-vvr.s?on guomntec is ensured.

If the tl ansfer is consumer-initiated. the problem is more
complicate{l. ‘rhl~complication is caused by the fact that
d~fferent PW]S of the data-parallel program can see the same
req uesl at differeltt loglral points m then computation [f
t,ht pvers lespouci as soon as they set the y~f requesl t,hf

consllmel mav see differeut ~ortaons of the distrlbllteci arrav
with different version numbers thereb% vlolat,iug the stng/t -
vcrs~,onguu, mnfec, Some coordination between the producer
peers M required to ensure that this situation does not hap-
pen A simple distributed protocol that guarantees that the
consumer sees a consistent version of the source array has
been implemented and is described in greater detail in [8].

4.2 Data Transfer

For inter-application data transfer, our librar~- is built on
a more basic data movement library called Metw Chao,s ~3J.
II, to- f“hnos M able to m anagsi data movement between data-

paralle~ prqgranrs ~vrlt t eli il~ different languages (including
HPF, C anti pC++) and using different communication li-
blalms (including Multibiock PARTI and CHAOS). Meta-
Chaos operates by cc)mputiug a canonical representation for
the different, distributed arrays and building a schedule for
data movement between the two arrays. Depending on the
structure of the distributed data, the canonical representa-
tion can be compact (e.g. block distributed arrays). or it
could be as large as the array(eg. irregular distributions).
These canonical representations are mapped to each other,
tud a plan for data movement between processors is com-
puted based on this mapping. This plan is optimized to
mmimuze the number of messages between processors. Once
thr plan is computed. lt N cached and re-used for later mter-
applicat,ioli ~iata movements,

E’or portabihtyi Mrta- (~haos relies on ordv a small uum-
ber of query and mapping functions that must be made avail-
able bl~ the runtime libraries of the languages in which the
applications are written. These functions include queries on
index ownership, location and mapping between global and
local indices.

For the underlying messaging iayer between applications,
we used PV M [5]. Each data parallel program is assigned a
distinct PVM group. Asynchronous data transfer is achieved
bv using a dedicated thread for receiving messages. Since,
P12M currently does not handle multlple threads concur-
rently performing pvm~eceive operations in the same pro-
cess correctly, \ve assume that, intra-program commumcation
between th? peers of the data-parallel program will be done
throuqlt some othm means. This has not been an opera-
tlona] p~oi>lem for our expmnments, since the Digital HPF
compiler uses a proprietary version of the LTDP protocoi for
commumcation between the peers of an HPF program.

5 Evaluation

We examined the performance of our system using miui-
applications. These mini-applications were designed to evai-

233

uare our svstem in four ways: (1) comparwon of mappmg-
basecl coupling with hand-coded message-passmg. (2) corrr-
parison of mapping-based coupling with a single monolithic
data-parallel program; (3) variation of produce~ and ron -
surner performance with variation iu the consistency requne-
ments. and (4) cost of additional smchroniz ation caused b\-
the conplmg system, m pa~ticular by the s~ng[f-t,ers~ongtlar-
antee.

To provide a context, for our results, we also measured the
commumcatron performance on our experimental platform.
The apphcatiorr-to-application data transfer rate betweeli
two C programs on the network using collllection-orlellted
sockets and transferring 40 KBvt,es of data per send avel -
aged 24.4 MBits/see Inter application data transfel be-
tween nodes using PVM and transferring 4[) KByte> pm
send. was measured at, 23..5 MBits/see on average The rated
maximum transfer rate of the network]s 100 MBits/see

5.1 Comparison with message-passing

\t c compaleci the performance of mappmg-based coulhl<
au{i hand-coded message-passing by measnrmg the trme re-
quired w transfer a 10IJX1O(Iinteger arl a}’ between two data.
parallel programs In both cases. Mets-Chaos was used fo~
the actual data movement,. Once the schedules for data
movement have been built, the performance of Met,a-Chaos
is ldent,lcal to wha,t can be achieved “b\- direct message Dass-

mg. The mappmg-based coupling scheme incurs addlttonal
overhead due to scheduling delays for the threads used for
as~,llchronous commumcation and due to lock cont,entlou
between the communication threads and the computation
thread.

In this experiment, the producer and the consumer are
run on disjoint sets of 4 nodes each The set of processes
for both applications were distributed round-robin over ail
the processors on these nodes. For the larger confrguratlous,
multiple processes were assigned to indlvidua] nodes brri all
processes assigned to the same node belonged to tht same
application. This ensured that all communication was per-
formed over the netwo~k and not via shared memory Ident-
ical process distributions were chosen for both the i~and
codecl send/receive and mapping-based coupling. The data
was uniformly partitioned, in a blocked fashion, between all
the peer processes in each application.

Table 1 shows the performance of both versions; the tim-
ings are averaged over 1000 iterations of both programs. The
measure used is the time for a single data transfer; time for
generating the schedule is not includecl. The results <how
that +lle over head of mapping-based coupling with respect To

messa,gt- passm~ IS very low and M couswt entfy wlthm ().1 m>
aILd [J.~ ms F~r both versaonti. the tinl? to ~acil TtallSfeI
(Ieci eases flom one processor to four. Th]s 1s due lo au In-
~rwase m the number of communicating uodes and thereh\-
f IIe aggregate commumcation bancl~vldth. FOI- largel con-
figurations (the 8- and 1G-process configurations). multiph
processes are placed on individual nodes aud the throughput
~dropsdue to contention for the network adaptor

We also measnred the overhead of acquire and release
calls when no mappings were in place We found that the
overhead was negligible

5.2 Comparison with monolithic programs

Iire compared the performance of mapping-based coupling
and monolit,luc data-parallel programs by measurmg the

~ Processors ~ mess-passing ~ mapping- 1
I (Serrd/Recv) I ~ based coupling ~
,
~: I 14.5] 14.7 !

i 13.6 ! 14.0
L

4 ! 12.8 ~ 1’2.9
i

I
J

8 I 15.2 ,
I 15.6

16 I 36.8 ! 36.9
i

Table 1: Comparison of transfer time for mapping-based
coupiing and direct message passing (ms pel send averaged
over 100{1 lteratrons),

performance of a simulation over two neighboring grids. The
slmnlatlou sweeps over a .3-dimensional grid doing local op-
erations (nearest neighbor stencil computations) at each grid
point. The loop doing the sweep is parallelized using an
HPF forcll) st aTemerlt. such a sweep is representative of the
romputatrons m a large class of scientific apphcatlons, such
as conipnta,tiona] fltud dvnamics and structural mechamcs.
Each of the grrds cent ains 1WX1OOX100cells i one integer per
cdl): the two grids are connected at then shared boundary.

ITe compared the performance of three versions:

●

b

●

.3 monolithic H PF program that sweeps over a
200x I (lOx] 00 grid using single forall loop. The graph
for this version in Figure .?is labelled “ Monolithic HPF
simulation”,

Two HPF programs. one simulating each grid. They
perform the same computation as the monolith pro-
gram: mapping-based coupling rs used to exchange
data (fill ghost cells 1at the boundaries where the grids
meet. Each HPF program runs on a different set of
nodes The graph fol this version in Figure 2 is la-
belled “ Goupied HPF simulations 1”

same as the secouci version exce~t that an interpola-
tion program is added between the two HPF simula-
tion i>rograms. This represents sitnatlous where the
grids are not exactly aligned (due to resolution differ-
ences or otherwise). In this version. the interpolation
program processes data going in both directions. The
interpolation program is co-located with one of the
simulations. The graph for this version in Figure 2 is
Iabelled “ Coupled HPF simulations 2“.

The g~aphs in Figure 2 compare the performance of the
Three verwons. The mouolitluc version and the coupled ver-
scrn wlthont interpolat,ioli perform The same computation
dud commnmcation. The primary difference is tile rrncferly-
ing messaging layer - the monolithic version uses a propri-
etary version of I~DP I a pal-t of the Digital HPF lmplemen-
t,ation) whereas the coupled version uses P\’M

The coupled version with interpolation performs extra
computation and and communication, The computation it-
self is very simple - just averaging the data values on gr-ttZJ
and grtcl~ and writing the result out to grtds which is then
read back by pgml and pgmz on each iteration. The ad-
ditional communication. too, is not expensive as the added
communication is locai to the node. The interpolation does
introduce additional multi-tasking, the effect of which is dif-
ficult to quantify. But as shown by the graphs in Figure 2,
IT IS not large.

234

Monolithic HPF simulation ——
G Coupled HPF simulations 1 ------

Coupled HPF simulations 2 ~

~:f

\

‘L ‘

b. ,...
_—.-—. ~

o 5 10 15 20 25 30 35
Processors

Figure 2: Performance of coupled simulation vs. monolithic
coupling

Coupling Type Producer Consumer
Loop Time wait time

fullv-constrained 14.7 8.7. I t

consumer-constrained I 1.5 I 190 I
I producer-constrained I 14.0 I .41

I

free-running 1.5 I .11
!

Table 2: Producer loop time and consumer wait time for
different, consistency specifications (rns).

Iu all cases. there isnotmuch improvement in the results
past 8 processors. In fact, there is a slight degradation for
32 processors when compared with 16 processors. This can
be attributed to the relatively high networklatency and the
relatively small main of the comDut,ation.

These result~ show that usin~ mapping-based coupling
to compose a pair of frequently communicating programs
instead of rewriting them into a single monolithic program
does not, degrade performance unacceptably. Even with an
additional interpolation program, the performance loss is
not prohibitive.

5.3 Performance impact of consistency requirements

For this experiment, the producer runs in an infinite loop
incrementing each of the elements in a 100x1OOinteger array
A on each iteration. The consumer adds all the elements of
integer array B on each iteration. The mappmg is of the
form A = B. Both producer and consumer are sequential
apphcations. Each runs on a dedicated node. Ta’ble 2 shows
the variation of the average loop time for the producer and
the average wait time for the consumer for different consis-
tency requirements.

Table 2 shows the impact of changing consistency re-
quirements on the performance of the producer and the
consumer. In the fully-constrained case, a difference be-
tween the wait time and the producer loop time is seen due
to the buffering effect at the consumer. In the corzsurner-
constrained case several producer loop iterations are al-
lowed to run before a single consumer acquire is required
to complete (the stipulation is that a new version should be
supplied on each acquire but there is no stipulation on which

Processors Avg Consumer Avg Produ~
wait time Loop time I

1 190 16.3
~ 196 8,47 <
4 211 4.54

r
8 310 2.86 ~
16 392 ~ 2.41 d

Table 3: Worst-case cost of additional synchronization (ins)

version it is). In the producer-constrained case, consecutive
acquires of A could get the same version - the stipulation
here is that every version of B is seen by some loop iteration
of Pg7m. Thus in this case the producer runs approximately
at the same rate as the fully constrained case. Finally. in the
jree-.unntng case, the consistency requirement is the weak-
est and the performance is the best. The only guarantee here
is that the consumer will observe a trend of the producers
values. For every acquire of A the consumer sees the same
or a later version of B, as compared to the previous acquire,

5A Worst-case cost of additional synchronization

The transfers of data required to implement the consistency
requirements can require additional synchronization. This
has the greatest impact on performance if (1) the peer pro-
cesses in the producer application do not already synchro-
nize for computational purposes and (‘2) the data movement
is consumer-initiated which requires consumer processes to
wait till all producer processes synchronize and generate
a consistent version. W-e evaluated the worst-case cost of
additional synchronization using a mini-application where
the producer processes are independent and the consistency
.rnodel was consumer-constrained.

The producer is a data-parallel simulation program and
exports an array A which contains the state of the simnla-
tlon; the consumer is a sequential visualization program and
exports an array B which contains the data points for visu-
alization. Each array is a 100 x 100 integer arriiy and the
mapping is consumer-constrained. We implemented skele-
ton HPF applications for both the producer and the con-
sumer. We ran the “visualizer” in a tight loop doing only
acquire and release and measured the average wait time for
the acquire operation. The average wait time is an in-
dication of the maximum rate at which the visualizer may
grab frames from the simulation. In this experiment, the
processors for the simulation were allocated in a “greedy”
fashion. All processors on a given node are assigned before
another node is added. The visualizer runs on a separate
node. Table 3 shows the results, The synchronization cost
is approximately the difference between the avg consumer
wazt ttme in column 2 and the avg producer loop tzme in
column 3.

As shown in Table 3, the worst-case cost of synchroniza-
tion can be substantial. But note that this is for the rela-
tively rare case of data-parallel programs with independent
processes which have been coupled in a consumer-constrained

model. The cost increases with the number of prc)cessors for
two reasons: (1) the consumer process has to communicate
with an increasing number of producer processes and (2) the
potential skew between the otherwise-independent producer
processes increases as the number of processes increases.

235

The harp increase m the cost from a -kprocessol con@-

uratlon t o a 8-prmcessor configuration IS clue network t ~afhc
required for the synchronization. For the four-processo] con-
figuration. all communication IS kmal tG a mgk node The
table also shows the producel loop time fol this expermlenI
lte measured the loop time fol the producer in the cas~
when the producer was not coupled and compared It w]tft

the loop time when the producer was coupled. the difference
was not significant. ‘Ilis shows that even in this case. onl\
one of the programs. the consumer pays an slgmficant rosl

6 Related Work

OUI approach 1s smlilar m some respects to the software
bus al~proach used il~ Polylith ~10]. Our approach differs
from Polylitb m that it 1s data-stlearll-clllvell rathe~ t han
remote-procedure-call-driven. Data parallel components can
interact not, onlv at their entrv and exit points but also com
cnrreutlv when they ate in execntlron However, \Ve dO not
plovide a means for remotely invoking procedures indeed.
a software bus approach could complement OU1\vorfi extend-
ing it to allow this facility

Linda [9] offers a tuple-space-or~enteci programmmg. modei
which could be used to couple program> .%stream-orlenr e?,
model such as ours could be implemented on top of Linda
Given that our assumption IS that the source cocle fol thf
lndivltlual applications IS not available at tile time tht apph-
rations ar~ to be composed. the performance wouid pro bahl\-
nol be as good as our Implementation

Cornmunicatron libraries Iike PI’M and MP1 [7] ma~ be
used bv the programmer to direct,l~, transfer messages from
one data parallel task to another. Howevel. such an ap-
proach burdens the programmer with having to understand
low Ie]’ei details about data distributions and message pass-
ing, It is also “hard wiled” in that support has to be de-
veloped for each instance of commumcating data parallel
programs Once a program has been written in this fashion.
it will have to be re-implemented if the components with
~vhich it interacts are altered or if the consistency require-
ments are altered.

7 Conclusions

lVe have demonstrated that, it is possible to link data paral-
lel applications in a flexible and recottfigurable fashion such
that, re-compilat,ion is avoided and data movement between
applications does not, have to be hanci coded The fact that
large amounts of data are being produced and consumed a(i
the fact that the data is distrlbut,ed required us to invent a
mappmg specdication that indicates relative consnmptlon
and production patterns and data structure linkages !-sing
this information, we constructed a commumcat,lon schedule

that optmnzed the flow of data betwren applications \,}-e
chat acterlzed the mappmg specification into four ciasses aucl
discussed how these classes might be useful for different ap-
plication mteract$rorw.

We demonstrated the utility of our method by applyin~
it TO link HF’F applications Our method did not require
any language extens~ons and we were able to implement our
method using the Digital HPF compiler and intrinsic wlth-
ont an}- knowledge of compiler or runtmlr system internals
OUI experiments indicate that coarse graiued parallel tasks
rnav be linked in this fashion without much IOSSin perfor-
mance.

Acknowledgements

M e are grateful to Gagan Agarwal, Chialin Chang, and
Shamik Sharma for several thought provoking discussions.
f3ill Pugh and Pete Keleher reviewed earlier drafts of this
paper and pointed out mconslstencies and ill-specified se-
mantlch

References

Francois Bodin, Peter Beckman, Denms Gannon, Srinivas
.Narayana, and Shelby X. I-ang. Distributed PC++: Basic

]cfeas for an object parallel language Sc! rntijic Pr0gTa7n-

wjr,j, 2(3). Fall 1993

(.K(,ebel. L). Lovenlan. H .Schreiber. G .St,eele Jr., and

SI.Z(RI Tltt HLq/, p. Tf[l.tU[>7LCt Foriran H(,ndbook The
\,II-r P]%., 19%!.

(;UY Ecfjlali et. al, Mets-Chaos - an inter-operability layer for

(1ata-parallel programs. Technical Report in Preparation..
Center For Research Cm Parallel Computation. 1996.

1. Foster. M. WU. B .\valani. and A. Choudhari. A compi-

lat ion system that integrates High Performance Fortran and
Fc,rt,ran .VI. In ProrecxfLn9s of ih r ; .9.fLj Scalable High PrT-
,f,,~,,’at, -t Compufznq [“o~l,frrence. IEEE Computer Society

Press 1994

.%.Geisr. A, Beguelin. J. Dongarra. I&. Jiang, R. JManchek,
and V Sunderam. PVM 3 user’s guide and reference man-
ual Ednncal Report ORNL/TM-I 2187, Oak Ridge Na-

~]onai Laboratory. May 1993.

Y-llar)-Shin Hwang. Bongki .Moon, Shamik D. Sharma, Ravi

Ponnusamy. Raja Das, and Joel H, Salt z. Runtime and

language support for compiling adaptive irregular programs.
.$(ftwcw Practise and Ezwertenct, 25(6):597 -621. June 1995.

Message Passing Interface Forum. Document for a stan-
dard Message-Passing Interface. Technical Report CS-93-
214. University of lennessee, November 1993.

M. Ranganathan, A. Acharya, G .Edjlali, A. Sussman, and
.1.Saltz. Run-time coupling of data-parallel programs. Tech-
nical Report CS-TR-3565. UMIACS TR-95-1 16, University

of Maryland, 1995.

.W.Carriero and D. Gelertner. Linda m context,. C ommun~c(~-

t!(, ns of fhf ACM. 32(4), 1989.

James Purt illo. The Polylith software toolbus. Technical

Report CS-TR-2469. Uni~,ersity of Maryland, Department
of Computer Science and IJMIACS, March 1990.

J. Subhlok. D. O’Hallaron. and T. Gross. Task parallel pro-

gramming m F x. Technical report, School of Computer Sci.
en(~. Carneg]e Mellon [.jmversity. Pittsburg, 1994.

.Man Snssrnan. Gagan Agrawal, and Joel Salt z. A manual

for the multiblock PARTI runtime primitives, revision 4.1.
Iechnlcal ReporL CS-TR-3070. I and UMIACS-TR-93-36.1,
[: niversit y of Maryland, Department of Computer Science
and T~!vJIA~S. December 1993.

236

