
Benchmark Tests on the Digital Equipment Corporation Alpha AXP 21164-
Based AlphaServer 8400, Including a Comparison of

Optimized Vector and Superscalar Processing*

Harvey J. Wasserman

Scientific Computing Group

Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract: This paper reports single-processor

performance of the DEC 8400 system, a multi-cpu

mainframe based on the DEC 21164 microprocessor.

Performance is compared with single processors of the

CRAY J90, the IBM RISC System/6000 Model 39H,

and the SGI Power Onyx (75 MHz MIPS R8000).
Benchmark codes representing Los Alamos applications

with a range of computational characteristics were used.

An important part of the comparison uses a particle

transport application with two implementations, one that

is highly vectorized and one that is unvectorizable with

memory access patterns more suitable for superscalar

processors. The results suggest that the best architec-

ture/implementation match is the vectorizable code run-

ning on the vector processor.

Introduction

The second generation of the Digital Equipment

Corp. (DEC) Alpha AXP microprocessor is referred to

as the 21164. An important difference between it and

its predecessor, the 21064, is that the 21164 has twice

the multiply/add throughput per clock period (CP), a

maximum of two floating point operations (FLOPS) per

CP vs. one for 21064. Thus, the peak performance of

the 21164 that we tested can be calculated as twice its

CPU clock rate in MHz (300 MHz, 600 MFLOPS). A

version of the 21064 running at 150 MHz is used in the

Cray Research Inc. CRAY T3D and a version of the

21164 will be used in the CRAY T3E.

* This work was performed under the auspices of the U.S.
Department of Energy by Los Alamos National Laboratory
under contract W-7405 -ENG-36.

ICS’96, Philadelphia, PA, USA
0-89791-803-7/96/05

The AlphaServer 8400 is a shared-memory

multiprocessor with up to 12 central processing units

(CPUS) and up to 14 GB of memory. In this report we

compare single-processor performance of the 8400 with

that of the 66-MHz IBM RISC System/6000 POWER-2,

the 75-MHz SGI MIPS R8000, and the Cray Research

CRAY J90. (The Alpha 21164 is also available in DEC

workstations such as the AlphaStation 800 5/300, and so

comparison with a single-processor workstation, such as

the RISC System/6000, is appropriate.) The

performance comparison is based on Fortran benchmark

codes that represent a portion of the Los Alamos

National Laboratory supercomputer workload. The

codes have already been used to evaluate performance

of a variety of computing systems [1-3]. The advantage

of using these codes, in addition to their specific

workload representation and the extensive database of

existing benchmark data using them, is that the codes

also span a wide range of computational characteristics,

such as vectorizability, problem size, and memory

access pattern. The primary disadvantage of using them

is that detailed, quantitative analysis of performance

behavior of all codes on all machines is difficult.

Appearing in this report is a new implementation of

a benchmark that had been used previously. Whereas

the older version was written for a vector processor, the

newer version is more optimized for microprocessor

architectures. This new version presents the

opportunity to measure performance on a single

application using implementations that expose the

respective strengths of vector and superscalar

architecture.

All results in this report are from single processors.

A subsequent article will explore shared-memory

multiprocessing performance of the 8400 system.

333

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237578.237632&domain=pdf&date_stamp=1996-01-01


The Alpha 21164

The 21164-based system that was used for these

tests is a four-processor, DecServer 8400 shared-

memory system containing 1 GByte total memory. This

system is installed in the open computing network at

Lawrence Livermore National Laboratory.

Many details of the Alpha microprocessor have

been published elsewhere [4]; a few salient features are

as follows. The Alpha consists of five independent

functional units: An integer arithmetic unit with two

separate 64-bit pipelines, a floating-point unit, also with

two 64-bit pipelines, a loadlstore unit, and a bus

interface/cache control unit that provides extra-chip

communication. Four-way superscalar technology is

employed, which allows simultaneous issue of certain

combinations of load/store, integer arithmetic, floating-

point arithmetic, and branch instructions.

The floating-point unit consists of two pipelines,

one for addition and division (although division

operations are not pipelined) and one for multiplication.

Add and multiply latencies have been reduced from six

CP on the earlier Alpha, to four CP each on the 21164.

The floating-point register file holds 32 64-bit words

and has a total of nine ports: two read ports and one

write port for each arithmetic pipeline, two ports for

loads from cache, and one port for stores.

The Alpha 21164 has the same 8-Kbyte, direct-

mapped. write-through, on-chip data cache that its

predecessor had, with the same four 64-bit word line

size. A load instruction that hits in the data cache will

suffer an initial latency of two cycles (reduced from 3

cycles in the 21064). What is altogether new in the

21164 is that the next level of the memory hierarchy

consists of an on-chip, 96-KByte, 3-way set associative

second-level cache. For this cache there is a 7-cycle

(23.3-ns) latency for access to the first 64 bytes of data

and a maximum transfer rate of 1 64-bit word each four

cycles (4.8 GB/s) after that. The 21164 also contains

another structure, called a miss address file, which can

reduce latency for secondary cache access by merging

multiple load misses that access the same 32-byte block

of memory into a single read request.

Alpha AXP systems can be configured with a third-

level, off-chip cache up to 64 MBytes in size that is

direct-mapped and requires an additional penalty of

about 28 CP per 64-bit word. The machine we used

was equipped with a 4-MB third-level cache.

Results

All data were collected using DEC Fortran V3.8-

711 and KAP/Digital_UA_F version 2.1. Compiler

options used for optimization were -05 and -tune ev5.

In all of the Tables in this report, the codes are listed in

order of increasing vectorization effects; that is, in order

of increasing performance on a single CRAY C90

processor as measured by the Cray Hardware

Performance Monitor. The actual performance monitor

data are listed in the Appendix.

Table 1 presents a comparison of benchmark

execution times from the 21064 (unpublished results

from an AXP/3500 system) and the 21164. (Not all of

our current benchmark codes were run on the 21064.)

The expected speedup between the 21064 and 21164 is

4, based on two-fold increase in clock speed and 2-fold

increase in FLOPS per CP. Some of the codes exhibit

speedups that are below the expected value, and

although the reason is not clear, the most likely

explanation is that the compiler is not yet producing

optimal code for the 21164. Note that the codes that

exhibit the lowest speedups are highly -vectorizable

codes with either long vector lengths or large strides

(PUEBLO and HYDRO). For such codes it is possible

that the second on-chip cache used in the 21164 causes

an additional inefficiency relative to the 21064.

Table 2 lists benchmark execution times in seconds

from single processors of the DEC 8400, IBM RS/6000

39H, SGI POWER Onyx, and CRAY J90. The result

that stands out most prominently is the AXP’S

performance on MCNP, an important particle-transport

code that is entirely non-vectorizable. The working set

size for MCNP is also relatively small, since the code

tracks each Monte Carlo “particle” individually and

relatively few data are required for each particle.

MCNP is thus a good example of the high performance

obtainable from the 21164 on largely cache-resident

codes. The AXP’S advantage on MCNP is greatest

when compared with the vector processor J90, but it is

still substantial when compared with the other

microprocessor-based systems. Although not shown in

Table 2, the Alpha’s time on our MCNP test is more

33/,



than four times faster than a single 6.O-ns CRAY Y-MP

processor. (The Y-MP remains an important production

platform within the LANL Central Computing Facility.)

Among the remaining codes there is a great deal of

variation in the ordering and relative performance of the

four machines, but several results seem clear. The first

concerns relative performance vs. peak speed. There

are only two cases in which the AXP’s performance

relative to the other systems approaches that of the peak

speed ratios. This occurs with two moderately

vectorizable codes (operations count-based

vectorization levels in 60-80% range). Thus, for the

vast majority of the codes studied here, the AXP’s high

theoretical peak performance is a poor indicator of its

performance on real applications. The AXP does

provide the fastest execution time in more than half of

the total comparisons, but its advantage is mostly 30-

50% or less, not the factors of 2.25, 2.0, and 3.0

predicted by the peak speeds (AXP: 600 MFLOPS,

RS/6000: 267 MFLOPS, R8000: 300 MFLOPS ; J90:

200 MFLOPS.

The second important result concerns the J90. On

codes with no or only moderate vectorization levels, the

AXP, with much faster clock period, lower operation

latencies, and data caching, is much faster than the J90

processor. However, the J90 is faster than the AXP

system on all of the codes with high vectorization

levels. Although the J90 is only about 1597. faster on

HYDRO, it is more than 3.5 times faster on the larger

SWEEP-D problem and it is on average (harmonic

mean) 2.2 times faster on these six vectorizable codes .

This is in spite of the AXPS 3-fold advantage in peak

speed relative to the J90. Indeed, the J90 has the lowest

peak speed of all the machines considered here; yet is

the fastest on the highly vectorizable codes.

Among the microprocessor-based systems, the SGI

and IBM systems are most similar architecturally, in

that both can process a maximum of four FLOPS per

CP whereas the AXP can process a maximum of two

per CP. The results do not allow a precise

determination of which method (slower clock with

greater concurrent instruction issue vs. faster clock with

fewer concurrent instructions) is better. In fact, with a

few exceptions (as noted below), the three

microprocessor systems provide nearly equivalent

performance on the vectorizable codes.

The processors mentioned in this report all use

different architectural strategies in order to minimize

memory latency. The IBM RISC System/6000 uses a

relatively large primary cache (128 KB) and a

secondary cache, whereas the SGI MIPS R8000 system

has no primary data cache (for floating-point data) and

uses only a large, off-chip “streaming” cache. The

Alpha AXP has a very small (8-KB), on-chip cache, a

larger secondary cache (96-KB), also on-chip, and also

a large, off-chip cache as well. The CRAY J90 uses

vector registers, the primary advantage of which is

compiler control, rather than dynamic placement of

data. Since the vectorizable codes in the benchmark

suite depend heavily on memory bandwidth, they can

give some indication as to the relative success of each

of these strategies.

HYDRO provides an interesting example of

performance improvement on vectorizable code with

use of external caches. HYDRO is a 2-D Lagrangian

Hydrodynamics code that is representative of a large

class of codes in use at Los Alamos, and it is the only

vectorizable code in this study on which microprocessor

performance approaches that of the single-processor

CRAY J90. In older reports, microprocessor

performance on HYDRO relative to vector machines

has generally been lower than that of the other

vectorizable codes in our test suite. For example, in

1990, HYDRO performance on a 33-ns IBM RS/6000-

540 was only about 7% that of a single CRAY Y-MP

processor, whereas five other vectorizable codes

averaged at least twice that [5]. In HYDRO the

majority of vector accesses occur with a stride equal to

the size of the grid (-100) and the non-unit stride access

can cause particularly poor primary data cache reuse.

HYDRO also uses a vectorizable binary search routine

that involves gather operations which also can cause

large numbers of data cache misses. However, all three

Table 1. Comparison of DEC EV4 and EV5 Performance ,

150-MHZ 300-MH?!
Code AXP 21064 AXP 21164 Ratio

Time Time*
MCNP5000 64,8 16.0 4.1 -

TWODANT93 144.4 44.0 3.3

TWODANT915 80.9 18,2 4.4
WAVE 190.0 50.5 3.8

HYDRO 64.5 22.8 2.8

PUEBL032 111.2 41.7 2.7
—.

* in seconds

335



Table 2. Comparison of Benchmark Execution Times (seconds) on Single Processors
DEC 21164 IBM RISC

300MHZ Systetn/6000- SGI MIPS R8000 CRAY J90
Code Time 39H Time 2 Time Time

MCNP 16.0 44.1 64.1 128.8

TWODANT93 44.0 51.0 86.2 97.8

WAVE 50.5 60.6 55.4 67.8

TWODANT915 18.2 27.6 27.0 24.5

SWEEP-L50 23.2 14.7 19.0 20.2

SWEEP-L75 79.4 48.0 64.3 64.1

HYDRO 22.8 26.9 21,1 19.7

NEUT 1117.6 1543.2 1523,2 557.0

SWEEP-D50 32.7 ~9,() 29,9 10.4

SWEEP-D75 129,8 114.9 217.1 35.2

POP 120,2 83.7 140.0 42.0

PUEBL032 41.7 47.6 51.6 17.8

1 2-MB L2 Cache,

microprocessors in this report are equipped with off-

chip caches into which HYDRO (-0.75 MB) fits

completely. For this 2-D code the secondary cache

allows all three microprocessors to perform within 40%

or so of the J90/1. In comparison, the RS/6000 Model

590, which has no secondary cache, is more than two

times slower than the J90/1 on HYDRO [2].

At the very least, these results show the level of

inaccuracy that can result from using solely cache-

resident benchmark codes when determining

microprocessor performance. Factors of two to six

separate the 2-D HYDRO benchmark from the results

of the 3-D vectorizable codes.

NEUT is another code on which microprocessor

performance has always been considerably out of line

with expectation (e.g., RS/6000 performance 30X worse

than CRAY C90, rather than factors of four or so [2]).

In contrast with HYDRO, the most time-consuming

routine in NEUT involves all straight-forward, stride-1

computation. However, in this routine, four loops using

28 arrays of length 32k are used (-7 MB), and so

certainly on-chip data cache reuse. and even off-chip

cache reuse is probably poor. Interestingly, the DEC

AXP system is about 30’%. faster than both the IBM and

SGI systems, suggesting that the AXP’S 3-cache

memory system may provide improvement on codes

with very long, contiguous vectors.

Another scan of the execution data suggests a

possible weakness of the SGI cache strategy relative to

the AXP on larger problems. The SGI R8000-based

system is faster than the AXP system on two codes,

HYDRO and the smaller SWEEP-D benchmark. The

codes on which the AXP system is faster are all larger

problems, e.g., 1-D, order 32K for NEUT, 75-cubed for

SWEEP-D75, 256 X 128 X 20 for POP, and l-D, order

32K for PUEBLO. In other words, to the extent that

execution times depend solely on memory throughput

and the data cache strategy (not true; this neglects, at the

least, per-cycle floating-point throughput and compiler

effects), the benchmark data suggest that for larger

problems the AXP system is superior to that of the SGI

system. As noted in a separate comparison of the IBM

RISC System/6000 Model 590 and the SGI POWER

Onyx [6], the MIPS R8000 suffers from relatively poor

memory bandwidth between the streaming cache and

main memory, so that when a code’s working set size

exceeds that of the cache, MIPS R8000 performance

degrades.

Optimization of Microprocessor Performance.

For several years we have been making performance

comparisons between microprocessor-based systems

and vector processors. The caveat we had to employ

each time was that the benchmark codes were written

with vector processors in mind and thus may have



contained certain characteristics that enhanced vector

performance and at the same time degraded

microprocessor performance,

With SWEEP (a 3-D neutral particle transport code

that uses the Sn method, [7]), we now have two very

different implementations of the same code, one

optimized for vector processors and another optimized

for cache-based processors. The comparison of these

two versions of SWEEP shows the extent to which

reorganization of a vector code can provide significant

benefit on microprocessors.

In both versions of SWEEP the main part of the

computation consists of a “balance” loop in which

particle flux out of a cell in three Cartesian directions is

updated based on the fluxes into that cell and on other

quantities such as local sources, cross section data, and

geometric factors. The cell-to-cell flux dependence,

i.e., a given cell cannot be computed until all of its

upstream neighbors have been computed, implies a

recursive or wavefront structure.

The difference between the two implementations of

SWEEP is best shown using data from the Cray

Hardware Performance Monitor running on a CRAY

C90 system (see Table 3). In one version, (labeled

“SWEEP-D”) the mesh is swept using diagonal planes,

which enables the balance loop to be vectorized. In this

version gather/scatter operations must be used to obtain

local source and cross sectional values. The CRI

Hardware Performance Monitor shows that SWEEP-D

has a average computational intensity, defined as the

number of FLOPS divided by the number of loads and

stores, of 0.5, i.e., the code is highly memory

bandwidth-dependent. However, on the Cray, it is

Table 3. Characteristics of Two Versions of SWEEP as
Determined by the CRAY C90 Hardware Performance
Monitor (Single-Processor).

SWEEP-L50 SWEEP-D50
Average MFLOPS 126.5 293,1

Average Hardware
Vector Length 50.5 122.1

Percent Vector
Operations 66.8 97.0

Average
Computational 1.11 0.54

1 Total FLOPS divided by total memory references.

greater than 96% vectorized (based on operation

counts), and it achieves about 30% of peak CRAY C90

processor performance. It should be noted that SWEEP

has a relatively low floating-point intensity in general;

i.e., without additional computation such as flux fixup

or flux leakage there are less than 40 FLOPS per grid

point per discrete direction per iteration regardless of

the implementation.

The version of SWEEP labeled “SWEEP-L” does

not use a diagonal plane sweep; rather, the three

Cartesian directions are swept explicitly in a 3-D loop

nest. This “line-sweep” version eliminates the need for

any gather/scatter operations; in fact, alll memory

accesses are now unit-stride. Furthermore, there is a

substantial reduction of memory traffic through

“scalarization” of several arrays, so that the

computational intensity is increased to 1.11. However,

with the balance loop proceeding along columns and

rows rather than along the diagonal, recursion now

prohibits complete vectorization. (Using the Cray @p

preprocessor the balance loop is split and some of the

computation is vectorized.) On the C90, the operation-

count vectorization level is about 669?0 and per-

processor performance is reduced to 125 MFLOPS

(12% of peak).

The execution time data in Table 2 show that on the

vector-optimized, diagonal-sweep version (SWEEP-D)

the CRAY J90 processor is three times faster than all of

the microprocessor systems for the smaller grid and 3-

6 times faster for the larger grid.

Using the microprocessor-optimized line-sweep

version (SWEEP-L), microprocessor (AXP, IBM, and

SGI) performance improves by factors of 1.5-2 for the

small grid and by factors of 1.6 - 3.4 for the larger

problem. However, because of poor vectorization,

using the line-sweep version, CRAY J90 prx-formance

decreases by a factor of two, and on this version

microprocessor performance is the same as (or in the

case of the IBM RS/6000 better than) that of the J90

processor.

Nevertheless, the fastest implementa-

tionlarchitecture match is that of the diagcmal sweep

version running on the vector processor. Comparing the

best implementation on each type of machine shows

that the J90 is twice as fast as the SGI and DEC

processors and 1.4 times as fast as the IBM processor.

337



Note again, the difference in peak speeds of the

processors: DEC: 600 MFLOPS; SGI: 300 MFLOPS;

IBM: 270 MFLOPS; J90: 200 MFLOPS.

In other words, even with extensive restructuring of

a vector code and concomitant two-fold improvement in

microprocessor performance, vector processor

performance is still superior to workstations with peak

speeds that are 1.5 to 3 times higher.

Furthermore, there are implications for code

developers: The results for this code show how

optimization for microprocessors adversely affects

vector processor performance (e.g., SWEEP-D50

CRAY J90 time = 10.4 seconds, SWEEP-L50 CRAY

J90 time= 20.2 seconds).

Two different sizes of both SWEEP

implementations were run in order to further assess the

effect of cache performance on microprocessor

execution time. The J90 vector processor shows no

dependence on problem size on a per-gridpoint basis.

Among the microprocessor-based machines, both the

Alpha and RS/6000 systems also show little problem

size effect. However, using the non-optimal diagonal-

sweep version, SGI performance is worse on the bigger

problem (which is 3.3-times larger but runs more than

seven times slower than the smaller one). Again,

previous tests have shown how SGI MIPS R8000

performance degrades significantly due to low memory-

to-cache bandwidth once the working set size exceeds

the capacity of the secondary cache [6]. However, note

that using the more optimal line-sweep version of the

code eliminates this problem size dependence on the

SGI entirely.

Note, also, that both the 50-cubed and 75-cubed

problems run in this benchmark are much smaller than

the problem sizes that are desired to be run; thus, the

cache effect observed in the comparison of the

vectorized version of the code would be even more

exaggerated.

Conclusions

One conclusion from the SWEEP comparison is

that benchmark codes written for vector processors may

not be the best way to measure microprocessor

performance. However, if an existing vector workload

is to be ported to a microprocessor-based system then

the vector codes must be used to obtain an estimate of

initial performance on the microprocessor system

without tuning. The results presented here show the

kind of extensive re-organization of vector codes that

must be done in order to optimize for microprocessors,

and give an estimate of the kind of performance

improvement that can be expected. The key

optimization were elimination of scatter/gather

operations and drastic reduction in memory traffic.

However, even with this extensive rewriting, and even

using microprocessors with fairly large secondary cache

structures, overall performance of the vector processor

was still superior.

The DEC AXP 21164 processor provides, as

expected, a significant improvement in performance

relative to its predecessor, the 21064. The performance

of the 21164 relative to other contemporary

microprocessor-based workstations and compute servers

varies widely depending on the characteristics of the

benchmark code. In particular, codes that do not

vectorize run extremely well on the single processor of

the DEC 8400 that we tested. However, on codes that

do vectorize, despite its very high CPU clock speed and

associated theoretical peak computing rate, performance

of the AXP 21164 is not significantly better than that of

IBM and SGI microprocessor-based systems.

Comparing Alpha AXP 21164 and Cray C90

benchmark execution times along with operation counts

from the C90 Hardware Performance Monitor suggests

that on none of our codes does the Alpha exceed 107o of

its theoretical peak computation rate. The percentage of

peak theoretical performance achieved is an important

metric. Performance on real applications requires

balance between various processor architecture

components, particularly between the floating-point

units and the memory subsystem. The results suggest

that on some codes, substantial tuning is necessary in

order to accommodate the relative imbalance between

the Alpha’s floating-point computation rate and

realizable memory bandwidth.

Note. too, that per-processor Alpha performance as

implemented in a processor such as the 8400

mainframe, with its 4-MB third-level cache, might be

expected to be significantly greater than it would be in

an MPP such as the CRAY T3E, in which no external

cache is present.

338



The results suggest that in spite of the progress

made in microprocessor architecture, transistor

densities, cache size and organization, and CPU clock

speeds, vector processors such as the CRAY J90 can

still out-perform microprocessors on some vectorizable

codes. The J90 uses a relatively conservative CMOS

technology resulting in a low clock speed relative to

today’s fastest ECL/Bipolar vector processors (e.g., a

factor of 5 slower). Microprocessors will undoubtedly

continue to improve clock speeds, but improvement in

CMOS vector processor clock speeds is likely to

continue as well.

Finally, the wide variation in relative performance

observed on the suite of codes used here strongly

suggests that popular benchmarks which yield single-

number results are inadequate measures of performance

for multi-issue microprocessor and vector architectures.

Acknowledgments

The author wishes to thank the following people for

either help in running the benchmarks or in interpreting

the results: Kaivalya Dixit and Liau J. (Danny) Shieh

(IBM, Austin); John Shakshober (DEC); Faith

Shimamoto and Alice Chen (LLNL); Steve Simmonds

(SGI); Richard Sandness (CRI); and Ken Koch

(LANL). This research was performed in part using

resources located at the Advanced Computing

Laboratory of Los Alamos National Laboratory.

Appendix: Description of Benchmark Codes

MC NP: A general-purpose Monte Carlo particle

transport code widely used and Los Alamos and

elsewhere [8]. The code treats an arbitrary three-
dimensional configuration of materials in geometric
cells bounded by first-, second-, and fourth-degree
surfaces. The benchmark problem transports 5,000
source particles.

TWODANT: A two-dimensional discrete ordinates

particle transport code used for neutral particle transport

[9]. It includes a multigrid solver and is vectorizable to
some extent. Two different problems are run that

exercise different portions of the code. Both problems

are three-group tests with fission. TWODANT915 runs

a “k-talc” computation and TWODANT93 runs a fixed-

source multiplication test for a fixed value of k. The

executable size is approximately 10.8 MBytes.

WAVE: A two-dimensional, relativistic,

electromagnetic particle-in-cell simulation code used to

study various plasma phenomena [10]. WAVE solves

Maxwell’s equations and particle equations of motion on

a Cartesian mesh with a variety of field and particle

boundmy conditions. The benchmark problem involves

500,000 particles on 50,000 grid points for 20

timesteps; about 4 MW of memory are required. One

routine containing loops of length 256 and considerable

indirect addressing dominates the code’s runtime.

HYDRO: A two-dimensional Lagrangian

hydrodynamics code based on an algorithm by W. D.

Schulz [11 ]. HYDRO is representative of a large class

of codes in use at the Laboratory. The code is 100%

vectorizable. A typical problem is run on a 100 X 100

mesh for 100 time steps. An important characteristic of

the code is that most arrays are accessed with a stride

equal to the length of the grid.

NEUT: A highly vectorizable Monte Carlo neutron
transport code. that runs a k-talc computation starting
with 32K neutrons. NEUT represents a Fortran77
version of Eldon Linnebur’s (LANL) Connection
Machine Fortran code [12].

SWEEP: SWEEP3D is a three dimensional solver for
the time independent, neutral particle transport equation
on an orthogonal mesh [7]. The first-order form of the
transport equation is solved by sweeping through the
spatial mesh along discrete directions (ordinates). The
solution algorithm in SWEEP3D is
vectorized/parallelized by sweeping though the mesh
along diagonal planes, which requires large numbers of
data gathers/scatters and extensive array indexing. Two
problem sizes are run as benchmark codes, using a 50 X
50 X 50 or 75 X 75 X 75 grid (-85 MByies). The
benchmark is a Fortran77 implementation of a data-
parallel version of the code.

POP: A global ocean model developed on the Thinking
Machines Inc. CM-2 and translated into Fortrim77 [13].
POP is based on the Bryan-Cox-Semtner model but uses
reformulated barotropic equations to solve for surface-
pressure field rather than a volume-transport
streamfunction. It uses a preconditioned conjugate-
gradient solver.

PUEBLO: A 3-dimensional Lagrangian

hydrodynamics code used to model point explosions in
space [14]. The code is highly vectorizable, although

Cray compiler directives are currently included. The
most common loop length is on the order of n:3, where n

=32 for PUEBL032 or 64 for PUEBL064.

339



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Characteristics of the Benchmark Codes as Determined by the
CRAY C90 Hardware Performance Monitor (Single-Processor

Results)

Average Average Percent Average

CODE MFLOPS Hardware Vector Computational
Vector Length Operations Intensity *

MCNP 11.6 12.4 0.2 0.58
TWODANT93 54.3 15.3 58.8 0.58

WAVE 77.5 66.3 63.0 0.88

TWODANT91 5 96.9 70.4 79.8 0.70

SWEEP-L50 126.5 50.5 66.8 1.11

HYDRO 177.7 92.9 94.4 1.00
NEUT32 278.0 111.2 96.6 0.87

SWEEP-D50 293.1 122.1 97.0 0.54
POP 362.1 122.9 96.8 0.64
PUEBL032 458.4 119.9 98.2 1.31

* Defined as total fl oati n ~-noi nt cmerati ons di vialed bv total memm-v references

M. L. Simmons and H. J. Wasserman, “Benchmark

Tests on the Cray Research, Inc. CRAY J90,” Los
Alamos National Laboratory Unclassified Release
LA-UR-95-3827,
http:llwww.c3.lanl .govl-hjw/Web_Papers/j90/j90.
ps.z, 1995.

H. J. Wasserman, “Benchmark Tests on the New
IBM RISC System/6000 590 Workstation,”
Scientific Programming, Vol. 4, No. 1, pp23-34,

Spring, 1995.

M. L. Simmons, H. J. Wasserman, O. M. Lubeck,
C. Eoyang, R. Mendez, H. Harada, and M.
Ishiguro, “A Performance Comparison of Four
Supercomputers,” Comm. of the A Gi4, 35, 116-
124, 1992.

P. Bannon and J. Keller, “Internal Architecture of
Alpha 21164 Microprocessor,” Digest of Papers
COMPCON ’95, March 5, 1995, IEEE Computer
Society Press (Los Alamitos, CA), pp 79-87.

M. L. Simmons and H. J. Wasserman, “Los Alamos
Experiences with the IBM RISC SYSTEM/6000
Workstation s,” Los Alamos National Laboratory
Manuscript LA-1 1831-MS, 1990.

H. J. Wasserman, “Benchmark Tests on a Silicon
Graphics R8000-Based Works tation, ”
http:llwww.c3 Janl.govl-hj wlWeb_Paperslsgilsgi.
ps.z, 1995.

Koch, K. R., Baker, R. S. and Alcouffe, R. E.,
“Solution of the First-Order Form of the 3-D
Discrete Ordinates Equation on a Massively
Parallel Processor,” Trans. of the Amer. Nut. Sot.,
65, 198, 1992.

[8]

[9]

J. Briesmeister, ed. “MCNP: A General Monte
Carlo Code for Neutron and Photon Transport,”
Los Alamos National Laboratory report LA-7396-
M Rev 2, September, 1986.

R. D. O’Dell, F. W. Brinkley, Jr., D. R. Marr, and
R. E. Alcouffe, “Revised User’s Manual for

ONEDANT: A Code Package for One-
Dimensional Diffusion-Accelerated, Neutral
Particle Transport,” Los Alamos National
Laboratory Manual LA-91 84-M, December, 1989.

[10] R, L. Morse and C. W. Neilson, “Numerical
Simulation of the Weibel Instability in One and
Two Dimensions, “ Phys. Fluids, Vol 14, p 4, 1971.

[11] W. D. Schulz, “Two-Dimensional Lagrangian
Hydrodynamic Difference Equations,” Meth.
Computational Phys. Vol 3, pl, 1964.

[12] O. M. Lubeck, M. L. Simmons, and H. J.
Wasserman, “The Performance Realities of
Massively Parallel Processors: A Case Study,”
Proc. Supercomputing ’92, IEEE Computer Society
Press, 403-411, 1992.

[13] (a) R. Smith. R. Malone, and J. Dukowicz,
“Parallel Ocean General Circulation Modeling, “
Physics D 60, pp 38-61, 1990. (b) J. Dukowicz
and R. Smith, “Implicit Free-Surface Method for
the Bryan-Cox-Semtner Ocean Model,” Los
Alamos National Laboratory Unclassified Release
LA-UR-93-2031.

[14] PUEBL03D, written by Eugene Symbalisty of
LANL, is a “stripped-down” version of the LANL
CAVEAT production code. See F. L. Addessio, et
al., “CAVEAT: A Computer Code for Fluid
Dynamics Problems with Large Distortion and
Internal Slip,” Los Alamos National Laboratory
Report LA-10613-MS (1986).

340


