
On Genericity and Parametricity”

Extended Abstract

Catriel Beeri Tova Milo Paula Ta-Shma

Hebrew University t Tel-Aviv University $ Hebrew University ~

1 Introduction

Genericity is a property of queries expressed in

declarative query languages. The idea, first ex-

pressed in [2, 7], is that data values are uninter-

preted, hence a query should be invariant under

isomorphisms (i.e. element renaming) of dat abases.

This has been generalized, following [10], to ac-

count for preservation of constants. This concept

of genericity is intimately related to classical rela-

tional database research, that considered databases

as constructed over an abstract domain of uninter-

preted elements. However, the scope of database

models has vastly expanded in the last decade.

Multiple domains, use of domain functions and

predicates, user-defined types, and bulk types —

these are essential components of recent data mod-

els. Genericity is central to many results in the

theory of databases, yet little attention has been

paid to it in the development of the new models.

This paper tries to amend this situation.

We show in the paper that there is a rich struc-

ture of genericit y concepts, and argue that generic-

ity provides insight about the relationships between

the properties of data structures used in a data

*Work suported by grants from the Israel Science Foun-
dation, administered by the Israeli Academy of Sciences.

t Department of Computer Science, The Hebrew Univer-
sity, Jerusalem 91904, Israel, beeri~cs. huji.ac.il

$Department of Computer Science, Tel-Aviv University)

Tel-Aviv 69978, Israel, milo@math.tau.ac.il

sDepartment of Computer Science, The Hebrew Univer-

sity, Jerusalem 91904, Israel, paula@cs.huji. ac.il

Permission to make dighal/hard copies of all or pati of this material for
personal or classroom use ia granted whhout fee provided that the copies
ate not made or distributed for profit or commercial advantage, the copy-
m,@t mwe, tbe }itle of the publication and its date appear, and notice ia
gwen that copyright ia by penniasion of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requirca specific

permission and/or fee.

PODS ’96, Montr~l QUeb~ Canada
@1996 ACM 0-89791-781-2/96/06. .$3.50

model, the data types used in instances of a data

model, and queries, Several recent papers have in-

dicated the role of having different notions of gener-

icity [9, 13]. On a more pragmatic level, genericit y

can be used as a tool for proving inexpressibility

results: If one shows that all queries in a language

are of a certain genericit y class, then queries not in

the class are not expressible. We follow Chandra

[6] in presenting a few such results. Also, we argue

that genericity can be related to query optimiza-

tion, since it deals with possible commut ativity of

a query and some mappings. By refining the notion

of genericity, we open the way for providing more

information about queries. Given a query, the in-

teresting question is not whether it is generic but

rather what is the tightest genericity class for it.

The following factors are relevant to genericity:

the functions and predicates of the base types, the

bulk type constructors and their nesting, and the

structure of the query, particularly its type. The

issue of how to account for the use of interpreted

functions and predicates was briefly discussed in

[2, 7], with almost no follow-up in the literature.

This is treated in the first part of the paper,

Sections 2 and 3. To understand the impact of

functions and predicates on genericit y, we start

with the case where no functions or predicates

not even the equality predicate – are used.

This leads us to consider mappings that do not

necessarily preserve equality of values, that is

homomorphisms, or general relations. To our

knowledge, there has been no study of invariance

uncle such mappings in the database area, with

the exception of Chandra’s paper [6], one of the

starting points for our work. The combination of

general relational mappings and set (or bag, list)

constructors provides several interesting notions

104

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237661.237689&domain=pdf&date_stamp=1996-06-03

of genericity. We show how to account for both

constants and interpreted functions and predicates;

for the special case of equality (or a total order), we

arrive back at injective functional mappings. We

also analyze and classify the genericity properties of

many well known database operations, particularly

w.r.t the degree to which they use equality.

The relationship between the type structure of

queries, in particular of polymorphic queries, and

invariance under mappings between different types,

has not been considered in classical genericity, nor

in our refinements so far. ThLs is studied in the

second part, Section 4. Typed lambda calculi are

the framework of choice for studying type structure

and polymorphism of functions. The 2nd-order cal-

culus, also known as System-I’ [14, 8], is a poly-

morphic language, more expressive than all cur-

rent query languages of int crest. The parametricity

theorem states a property of functions expressible

in this language; in a formulation due to Wadler

[15], it is that the function commutes with certain

mappings determined by its type. We show this

is closely related to genericity (where queries are

required to commute with mappings), and in fact

to be more general in several ways. Unfortunately,

the 2nd-order A calculus can express lists, but not

sets. A similar language for sets is not known to

us. We present a technique to relate sets and lists,

and use it to transfer parametricity from lists to

sets, for a restricted set of types, that is, how-

ever, sufficiently expressive to cover the languages

for complex values in [1, 4, 5], powemet included.

We give some examples to illustrate the potential

relationship bet ween genericit y/paramt ericit y and

query optimization.

We conclude with a discussion in Section 5.

2 Definitions, Notions of Genericity

We assume that a database instance maybe defined

over a signature X, namely a collection of base

types with interpreted functions and predicates.

We assume X contains the type bool.

Definition 2.1 A complex value type over Z is a

tree whose leaves are base types, dl, ..., (fn, and

with internal nodes labeled with type constructors

x, {}, {} and <>, for forming products (i.e. pairs
or tuples) sets, bagsl and lists, resp. c1

lIn the full paper we present definitions and results for

bags, but in this abstract, for brevity, bags are not mentioned

Given domains for the base types, the domains for

all types are defined as usual.2 We write x : a to

denote that x is of type a. Since databases can be

viewed as t uples of complex values, we deal with

functions from complex values to complex values.

In the following, for simplicity, we use d~ to name

both a base type and its domain.

2.1 Motivation

The essential idea of genericity is that a query

specifies some pattern(s); hence, if two databases

contain the “same” patterns, they should generate

the “same” answer for the query. Traditionally,

‘having the same patterns’ has been interpreted as

‘related by an isomorphism). But in many cases

the same holds for ‘related by a homomorphism’.

Example 2.2 The query QI = ?r$l,$~(l? N R)

(i.e., R o l?), when applied on the relation

~1 = {(e, ~), (i,~)~(e,~)~ (~,~),(~)9)t(~>9)}J re-

turns {(e, g), (i, g)}.

The relation T2 = {(a, 6), (b, c)} is a homomor-

phic image of rl, under the homomorphism h(e) =

h(i) = a, h(f) = h(j) = b, h(g) = c, and so is

the query result on this relation, {(a, c)}. That is,

Ql(h(~l)) = h(Q~(~l)) holds. ❑

However, one should exercise care in generalizing

genericity to preservation w.r.t homomorphic map-

pings. If r3 is the relation obtained by remov-

ing from T1 the tuples (e, ~), (i, ~), (j, g), then the

query returns 0. But h(r3) is still T2, and thus

the result of the query on this relation is not the

homomorphic image of 0. The problem is that, be-

cause h identifies elements, it may create patterns

in T2 that did not exist in ~3, and that may in-

fluence the query result. Note, however, that this

problem does not arise for all queries. For exam-

ple, the query Q2 = R x R is invariant under all

mappings, regardless of which domain elements are

being identified.

Chandra defines [6]: A function h is a strong

homomorphism from a relation T1 to a relation r2

if rl(E) R ~z(h(~)). It can be seen that h is a

strong homomorphism from TI to T2, but only a

regular homomorphism from I-3 to ~z. The query

Q2 is preserved by regular homomorphisms, but
QI is preserved only under strong homomorphisms.

further.

2We allow infinite complex values.

105

We conclude that queries are often preserved under

homomorphic mappings, and that some queries

are more sensitive to the degree of preservation of

equality than others.

2.2 Relational Mappings

Classical genericity of queries is defined as invari-

ance w.r.t. to extensions of injective functions on

the base domains. As seen above, it is of interest

to consider non-injective mappings. Now, invari-

ance applies symmetrically to both directions of a

mapping. But, the inverse of a function, even of

a strong homomorphism, is not necessarily a func-

tion! So, let us generalize to relations. We thus

consider general binary relations on base domains,

and how they can be extended to complex values.

For example,

K = {(e, a), (i, a), (~, b), (~, b), (9, c), (9, d)}

is a general mapping, that is not functional in

either direction. We also do not require mappings

to be total or subjective on the mapped domains.

To avoid confusion with the standard use of

‘relation’ in databases, we refer to these relations

as mappings. We say that H(z, x’) holds if the

pair (z, z’) is in the mapping H. Note that

mappings are typed. If mapping H has domain

r and codomain Tf, we write H : T x rt.

To be able to extend mappings from base

domains to complex types, we associate a mapping

constructor with each type constructor. Then

if C(X1, . . . Xn)3 is a type constructor, and we

have mappings Hi : r~ x T’;, i = 1 . . . n, we can

extend them to a mapping between C(~l, , . . . rn)

and C(#l, . . . ,#n), denoted by C(H1,. . .,Hn).

(Specific notations for the type constructors of

clef. 2.1 are introduced below.) For complex type

expressions, we can then use induction on type

structure.

For tuple construction there is only one reason-

able choice — the extension is defined component

wise; similarly for lists, since order needs to be pre-

served. More formally,

Definition 2.3 Let Ki : ~; x d;, i = 1.. .n be

given mappings. Their extension to a mapping

between the tuple types TI x. . .x~n and ~{ x. . .x~~,

denoted -KI x . . . x Km, is defined as follows:

Kl x... x Kn(i, @ holds, for n-tuples z : x~i, Y :

X~/, iff ~f~(~~, y;) holds for

3The X, are type variables.

each i. ❑

Definition 2.4 Let K : ~ x r’ be some mapping.

Its extension to a mapping between the list types

(r) and (~’), denoted (K), is defined as follows:

For lists 1: (~), 1’: (~’), (K)(l, 1’) holds iff 1,1’ are

of equal lengths, and K(Ji, i~) holds for each pair of

elements of the lists in corresponding positions. ❑

However, for the set constructor there are (at least)

two possibilities for extension.

Definition 2.5 Let K : ~ x r’ be some mapping.

Then {K}re’, {K} ’t’””g are extensions of K to

mappings over the types {~}, {~’}, s.t. for every

RI

1.

2.

: {T}, R2 : {r’},

{K}rer(R1, R2) holds iff VZI c RI 3Z2 E R2 s.t.

K(zl, X2), and VX2 E R2 3X1 E Itl s.t. K(zl, Zz).

{K} ’tT’’”’(Rl, Rz) holds iff {K}”er(l?l, R2) and

each of R1, R2 is” the maximal- set’ that stands

in the {K}rer relation to the other.

We refer to rel, strong as extension modes. ❑

The notions of strong, rel generalize Chandra’s

strong homomorphism and unrestricted homomor-

phisms, respectively to general mappings.

Example 2.6 Consider the relations rl, ~z, rs and

the mapping h of Example 2.2. The mapping h

can be extended (as explained above) to a mapping

h x h over pairs. This mapping can then be

further extended to a mapping {h x h}’, for x =

rel, strong, over sets of pairs. It is easy to verify

that {h x h}c(rl, r2) holds, for z = rel, strong.

On the other hand, {h x h} ’e~(r3, r2) holds, but

{h x h} ’t’”n’(r~, r2) does not. •1

Mappings are not required to be total or subjec-

tive. For {K} ’(.R1, R2) to hold, for any z, it must

hold that RI ~ dom(K) A R2 g co-dom(K). Thus,

{K} ’(R1, R2) may be false either because K is “too

small”, or because it does not map RI to R2.

Definition 2.7 A type expression T’(X1, X.)

is a tree with type variables (from Xl, . . . Xn) at

the leaves, and type constructors at the inter-

nal nodes. T(7-1/xl,. . .,’r~ /Xn) denotes the re-

sult of substituting ri for Xi in T. Given lists

of base types dl,dn. d~, . . .,d~, the types T1 =

T(dl/X1, dn/Xn) and l’; = T(d~/X1,. . . . d~/Xn)

are called associated types. ❑

106

Now consider how a given a family of mappings

H = {Hi : di x d;}, on base domains, can be

extended to a mapping between 7’1, T;. There are

many ways for doing that. Firstly, if two mappings

share a domain and codomain, and the domain

type appears in two or more positions in a product

in T1, we can select either one for each position.

Hence, we disallow -H where two mappings have

the same domain and codomain. Secondly, we can

use any of the extension modes for each occurrence

of a set constructor. If we label each set node of T

with an extension mode, then the there is a unique

mapping constructor associated with each internal

node, and the tree represents an n-ary function

on mappings: If the variables are substituted

by Hi,..., Hn (subject to the constraints above),

resp., then we obtain a mapping T(lll, H~) :

T1 x T{. In the sequel, we do not consider further

‘mixed extensions’. We denote by H’e’ (Hst’0”9

) the family of extensions of H to mappings on

all (associated pairs of) nested types, where the

rel (strong) mode is used at all occurrences of set

constructors. We write HX(R1, R2), where x is rel

or strong, when RI, R2 stand in the relationship

H’ . Essentially, we consider H“, as a many-

sorted mapping, i.e., a (possibly infinite) collection

of mappings {Hi}, where Hi is a mapping between

pair of domains of associated types. For a class ?-l

of mappings on base domains, we denote by ?ix the

class {Hz I H E H}.

We summarize some useful properties.

Proposition 2.8 .

(i) If H is total or subjective, then so is H’e[.

(ii) If T, T’ are associated types that contain a set

constructor, then H StTm9 on them is injeCtiVe.

(iii) If HI, Hz, H3 are mappings s.t. H3 = H1 o Hz,

then H~l = HP’ o H~(. If further, co-dom(Hl) =

dom(H2), then H~tTOng = H~iTOng o H~tTOng.

(iv,) For every mapping H, {(H-l)}’= ({ H}Z)-l,

for x = rel, strong. •1

2.3 Invariance and Genericit y

We are now in position to define genericity.

Definition 2.9 .

(i) A function Q is invariant4 under Hz, if for any

two legal inputs to Q, El, Rz, if H=(R1, R2) holds,

4This is related to logical relations used in the study of

typed languages [12].

then so does H’(Q(RI), Q(R2)).

(ii) A function Q on a class D of complex types,

is generic w.r.t. a class H of mappings on base

domains, and extension mode z, denoted z –

Genv (7f), if it is invariant under all the mappings

in ‘H’. The queries in the class are called x-generic

functions (On D w.r.t, ?f). •1

For example, the query Q3 s Z$l(R) is invariant

under both H “el and Hst”Ong, for each H, because

two tuples are related iff all their attributes are

related. Thus Q3 is z-generic w.r.t all possible

mappings. The query Q4 s CT$1=$2(R) is not

invariant under all H”1 mappings. For example,

the relations I?l = {[a, a]}, It2 = {[b, c]} are

related by H“el, where H = {(a, b), (a, c)}, but

Q4(R1) = RI, and Q4(R2) = 0 are not. This is

because in the rel extension for tuples, attributes

can be mapped independently of each other, even

if they have the same value. This is immaterial for

injective mappings, and indeed Q4 is rel-generic

w.r.t such mappings.

A well-known property of genericit y:

Proposition 2.IO If Q is in GenD(H) and D’ C

D, W ~ l-t, then Q is also in GenD/(M’). In

particular, for a jixed ‘D, we have Z! c Z +

GenD(7-t) S GenD(W). ❑

That is, a smaller class of mappings induces a

larger class of generic queries. For example, Q4

above is not rel- generic w.r.t all mappings, but

only w.r.t. injective mappings. For a given class

of databases and an extension mode there exists a

hierarchy of genericity classes. One natural path in

the hierarchy goes from all mappings, to functional

mappings (whose extensions are homomorphisms),

then to one-to-one functions (whose extensions are

isomorphisms).

We saw that relational and injective mappings

define different genericity classes, witness Qq. But,

it turns out that under quite general conditions

general and functional mappings define the same

classes. We present it in a restricted, yet rep-

resentative form: We say that a query is de-

fined at all types if it has type T(X1,. . . . X~) +

S(xl,..., Xn) where the X; are type variables.

Cross product, union, projection, are examples.

Proposition 2.11 A query defined at all types is

x-generic w. r. t all functional mappings ijf it is x-

generic w.r. t all mappings, for z = rel, strong. ❑

107

The proof uses the well known idea that a many-to-

many mapping can be decomposed into two many-

to-one mappings.

2.4 Generalizing Genericit y

The class of functions that are generic w.r.t all

mappings (even if only total injective mappings

are considered) is too small — it excludes many

useful queries. For example, for Q5 = O$I=T. It

is easy to find sets RI, ltz and an injective map-

ping H from int onto itself, such that HZ(R1, l?2),

but HZ(Q5(R1), Q5(R2)) does not hold, for both

modes. The point is that queries that mention con-

stants and functions of the domains are invariant

only under mappings that take these constants and

functions into account.

2.4.1 First-Order Constants

Generalizing [10], we say that a mapping H

preserves a (first-order) constant c if H(c, c) holds;

it strictly preserves c if additionally whenever

H(z, y) holds, x = c iff y = c. Equivalently,

H preserves c if H“J({c}, {c}) holds, and strictly

preserves it if .Hs~’O~g({c}, {c}). Preservation of c

allows H to associate c with other values; strict

preservation disallows it.

A query is (strictly) z-c-generic, z being rel, strong,

if it is z-generic w.r.t to all mappings that (strictly)

preserve c. These notions of preservation and

genericity are extended to sets of constants as

usual. Combinations that mix strict and regular

preservations are possible. Strict preservation im-

plies preservation, but not vice versa, hence it al-

lows more functions to be generic. Q5 above is

rel-generic for mappings that strictly preserve 7,

but is not for those that only preserve it.

The accepted notion of genericity is w.r.t. a finite

set of constants, since any query, being a finite

expression, mentions only a finite set of constants.

The following was noted by Chandra [6].

Lemma 2.12 For any finite set C of constants

from an infinite domain the query even is not

strictly x-C-generic, for x = rel, strong. For

regular preservation, C can be arbitrary. ❑

2.5 Second and Higher-Order Constants

even is not C-generic; similarly o$1>$2 is not C-

generic for a finite C. We would like both to be

considered generic. Intuitively, we need to account

for the use of > in the last query, the (implicit)

use of = in even, and in general for the use of

interpret ed functions and predicates in queries.

We say that a mapping H’ preserves a function

~ if ~ is invariant under (i.e., generic w.r.t) Hz;

i.e. if Hr(z, y) than Hz(j(x), f(y)) also holds. For

predicates, there are two possible approaches for

defining preservation. A predicate can be viewed

as a complex value — a (possibly infinite) set of

pairs, or as a boolean-valued function. We present

here only the second: Initially, say that a mapping

Hz preserves a predicate p if p as a function is

invariant under (i.e., generic w.r.t) Hz. This leaves

one detail unclear: how to capture the intended

special semantics of the truth values. For that, we

strengthen our definition and require the mapping

H being considered to be the identity on bool. With

this, we have, for example:

Proposition 2.13 U9tder the functional interpre-

tation, HZ preserves p iff it preserves -Ip. •1

In the full paper we compare the various notions.

As usual, a query Q is x-C-generic, where C is a

set of first and second-order constants, if it is x-

generic, w.r.t all the mappings that preserve each

element of C.

For example, the query Q5 is both rel and strong-

{=, 7} generic. i.e. invariant under all the map-

pings that preserve both the equality predicate,

and the number 7. (Note that only injective map-

pings, that induce isomorphisms, preserve equal-

it y.) In fact, the query is invariant under a larger

class of mappings — those that preserve the unary

predicate “ =7 “. This , therefore, is a more accu-

rate genericit y classification for it.

3 Properties of Genericity

In this section we present some properties of gener-

icity, and also classify many query language op-

erations in terms of their genericit y properties.

We treat operations on (flat) relational databases.

(In the full paper we deal also with nested rela-

tions/complex value operations.)

3.1 The Full Genericity Classes

We refer to queries that are generic w.r.t. the

full class of mappings as (rel/sirong) fully generic.

These are the smallest classes of generic queries.

108

To be able to state closure of genericity classes

under operations, we view operators like u as

function(query) constructors

Proposition 3.1 All genericity classes of rela-

tional queries are closed under composition, x and

U. If f is in some genericity clas~, then the class

is closed under map(f). Also, 0 (returning the

empty relation), Id (identity) and tuple projection

are fully generic for both extension modes c!

Corollary 3.2 The sub-language of the relational

algebra, consisting of the operations x, H’, U, and,.
of the base queries 0 and R, where R is a relation

name, is fully generic, for both modes. ❑

We can give calculus connective and quantifiers

similar interpret ation as function constructors, and

obtain a corresponding result; in particular:

Proposition 3.3 The functions expressed in the

relational calculus, using only atomic formulas

R(i) with no repeated variables, using V on for-

mulas with the same free variables, using A on for-

mulas with disjoint variables sets, and using 3, are

fully generic for both modes. ❑

These results provide insight about which queries

are fully generic, for both modes: those expressed

by operations that do not use equality in any way.

For operations that use equality, we have:

Proposition 3.4 The class of rel-fully C-generic

queries, for any finite set of first-order constants

from an infinite domain, is not closed under the

operations –, n. •1

These two operations are, however, strong-fully

generic, as seen below. With the following Propo-

sition (also from [6]), we have that the classes of

rel/ strong-fully generic queries are incomparable.

Proposition 3.5 The query eq.dO~ (d) (computing

the equality relation over the active domain of a

database), is not strong-fully generic, but is rel-

fulty generic. ❑

Note that although eq&~ (d) is rei-fully generic,

since mappings are not required to preserve =,

operations that require equality (like – and n) are

not rel-fully generic.

3.2 Fully strong-generic Queries

The query oiGj(R) = {t E R [t.i = t.j} is alSO

not strong-generic. (For otherwise, using the re-

sults above we would have that eq@~Om(~)is strong-

fully generic, in contradiction to Proposition 3.5.)

However, Chandra in [6] observed that strong-fully

generic queries do capture some notion of equality.

He defined a variant: 8inj(R) = {~~(t) I t ~

R, t.i = t.j}, where r$i denotes the projection out

of the column j, and proved:

Proposition 3.6 (Chandra) Al/ classes of strong-

generic functions are closed under the relational

operations U, fl, II, x, –, h (hence also under com-

plement w. r. t the active domain).

Thus, strong genericity captures certain usage of

equality in queries, but does not allow to show

equality in the output. In particular, this version

of selection eliminates one of the two occurrences

of the equal values in a tuple, hence we cannot

generate the equality relation. ~$1=$2(R) is strong-

fully generic, but 0$1=$2(R) is not. (A similar

result for the calculus is omit ted.) These results

distinguish four sub-languages of relational algebra

(calculus): One that uses no equality whatsoever,

one that allows its use in the query but not in its

output, one that allows its use in the output but

not in the query (e.g. x, z I ~(z)), and one that

allows full usage of equality, and is thus generic

only w.r.t 1-1 mappings.

In the full paper we present results about fizpoint

and while operations.

3.3 The Full Domain, and Domain

Independence

Proposition 3.6, talks about the active domain.

What about full domain semantics ? The query

{t I +?(t)}, that returns ~, the complement

of R, is not fully generic for either mode, since

mappings are not required to be total or subjective.

A mapping may not be defined on complements

of related relations. In fact, one can express

the property of being domain independent for a

query by saying that it is fully generic. If only

total and subjective mappings are considered then

complement becomes generic.

Proposition 3.7 Let H be a total and subjec-

tive mapping. Then for each two {not necessar-

ily jinite) sets of tuples R, R’, H’i’ong (R, R’) ifi——
HSfr0n9 & RI).

(
•1

109

Thus the active domain can be replaced, in Propo-

sition 3.6, by full domain if only total and subjective

mappings are considered. We also have that

Proposition 3.8 A query Q whose output is a set

of (@at) tuples is strong-generic w. r. t to a class of

total and subjective mappings ifl ~ is. ❑

We conclude by noting that known results can be

explained in terms of genericit y-relat ed properties,

rat her than language-related properties. Let adorn

denote the active domain of a database.

Theorem 3.9 Let Q be a relational query, that is

x-generic w. r. t the total and subjective mappings.

If on a given database its result contains a tuple

with a component from adorn, then it contains

every tuple obtained from it by replacing this

component by any other element from adorn. ❑

This is a simple instance of the four Russians’

theorem [3], stated as a genericity-related result.

4 Parametricity

Parametricity is a property of functions, very

similar to genericity. We proceed to present the

2nd-order A calculus, the parametricity theorem for

the functions expressible in it, and its extensions

and applications to our context.

4.1 The Paramet ricit y Theorem

The 2nd-order A-calculus is an expressive language

with a polymorphic type system. We present

a cursory description. The language has both

value and type expressions. In the pure language,

a type expression is either a base type, a type

variable, or one of S + T, VX.T, where S, T are

type expressions; +, VX. are the function type

constructor, and universal quanti$cation on type

variables. Free and bound variables are defined as

usual. A closed type is a type expression without

free variables. W.1.o.g., we assume that in VX.Z’,

X (possibly other variables also) is free in T, and

write VX.T(X). The value language has iambda-

abstraction, Az : T.e (T is a type expression)5,

application, el e2, and additionally abstraction on

types, AX.e, and application to a type, e[a]. If

f : VX.T(X), then f[a] : T(a/X).

For example, 1 = AX.kt : X.x is the universal

identity function, of type VX.X + X, and

5Note: x is a value variable, X is a type variable.

l[int], obtained by application to type znt, is

the identity function on int, of type int -i ant.

I is polymorphic – its type has V; I[int] is

monomorphic, its type doesn’t contain any type

variables or V. Intuitively, 1, represents a collection

of functions, indexed by types; l[a] is the a’th

component. For a general discussion, and further

references see [12]. We will not refer to the value

part of the language further.

Regarding types, both products (tuples) and lists

are expressible in the language, hence we add them.

Thus, we have x,() from section 2 as additional

type constructors.

Definition 4.1 A type expression is a tree with

type variables or base types at the leaves, and

type constructors, from x,+, (), VX at the internal

nodes. •1

The kind of polymorphism that occurs in the 2nd

order A calculus is called parametric polymorphism

(hence the name parametricity). For this kind,

polymorphic functions must work uniformly at all

types. For example, consider the function -H-,

which appends two lists. It can be applied to a pair

of lists of any element type, and has polymorphic

type VX. (X) x (X) + (X). Since + must work

uniformly for lists of any element type, it cannot

use any information particular to a specific element

type, not even the equality predicate between

elements. In this sense, elements are treated by it

as uninterpreted black boxes. That -+ [a] behaves

like -H-[@] means that if their inputs are related by

any mapping H : a x @ whatsoever, then their

outputs must be similarly related: for any lists

U,V : (a), u’, v’ : (@), if ((H) x (H))([u, v], [u’, v’])

then (H)(it[~]([u, v]) , -tt[p]([u’, v’])). As seen

below, this follows from the parametricity theorem.

If we restrict H to range over mappings that are

extensions of mappings on base types, this implies

that -H- is rel-fully generic. But it provides more:

H can be a mapping between any two types (not

necessarily base), e.g. H : char x (int) could be

{(a, (l)), (b, (7, l))}.

Before presenting the parametricity theorem, we

need to generalize the correspondence between type

expressions and mappings between types, intro-

duced in Section 2. Recall that, to extend map-

pings on base types to related complex types, we

replaced the type variables in the leaves of the tree

110

representing the type expression by the given map- The VX constructor thus takes a junction on types

pings, and then viewed each type constructor in

the tree as a mapping constructor. We generalize,

firstly, by allowing arbitrary mappings as substi-

t utions, and relaxing the restriction from Section 2

that domains of the mappings are distinct. Thirdly,

following our extended set of constructors, we need

to define for + and V corresponding mapping con-

st ruct ors. Finally, we now allow a type expression

to have base types as leaves; these correspond to

special constant mappings.

Firstly, one generalization has been noted - the

mappings substituted for the variables in the leaves

are not restricted to have base types as domains

and codomains. Further, we allow that different

type variables be substituted independently, even

by different mappings with the same domain and

codomain. For example, consider the function

zip : VXVY. (X) x (Y) + (X x Y), that takes a

pair of lists of equal length, and creates a list of

pairs. Since it is polymorphic, we expect that if

Hx : ax x ~x and HY : w x & are mappings,

and we have (Hx)(za, X6) and (HY)(Y~~ YB)~ then

,zip[ax][ay]([za, IJa]) and zip[/3x][/3Y]([z8, go]) are

related by (Hx x HY). This holds also if all four

types are the same type, say int, and Hx and HY

are different mappings from integers to integers.

Contrast these with the restrictions on mappings

substituted in a tree of Section 2.

We now define the new mapping constructors.

Definition 4.2 Let K : ax~, K’ : a’x/3’, be given

mappings. Their extension to a mapping between

the function types a + a’, ~ + /?’, denoted H +

H’, is defined as follows:

(K + K’)(f, ~’) iff whenever K(z, z’) then also

K’(f(z), f’(z’)). •1

That is, functions are related if whenever their

inputs are related then so are their outputs. Note

that for K = K’, and ~ = ~’, this states that ~ is

invariant under K, as defined in clef. 2.9. We can

now restate the previous property of -ii- as: for any

H : a X /0, ((H)x (H)+ (lf))(+[a], +[/3]).

So far, each type constructor we considered was a

function from types to types, and the correspond-

ing mapping constructor was similarly a function

from mappings to mappings. The universal quan-

tifier is different. A type expression T(X) with X

free, is essentially a function from types to types.

to a type. Similarly, the corresponding mapping

constructor takes a function on mappings to a map-

ping. To facilitate the definition, we introduce

mapping variables X, Xl To move from types

to mappings, replace each occurrence of X by X.

For example, (X) x (X) is a type expression, rep-

resenting a unary type function; (X) x (X) is the

corresponding mapping expression, representing a

unary mapping function

Definition 4.3 Assume polymorphic type VX.T(X).

The corresponding mapping, denoted VX.7(X), is

defined as follows:

VX.7(X)(j, Y) holds iff for every H : {a x /3} we

have that 7(H)(~[a], ~’[~]). ❑

That is, polymorphic functions are related if their

a and ~ components are related by every mapping

between a and /3, extended to the appropriate type.

Note that if X is the only free variable of T(X),

then VX.7(X) denotes a fixed mapping, which can

be viewed as an intersection of mappings. A similar

view holds for VX [12]. Now, further rewriting

the property of the append function -I-E, we get

(VX.(X) x (X) + (X))(-H-, it). Note that now we

have a direct statement about append itself, and

the mapping is derived from its type only, without

using any information about the function.

Finally, a base type leaf, b, corresponds to the

identity mapping Ib on that type. The reason

for this is illustrated by the function count :

VX.(X) + int, that counts the number of elements

in a list. Consider two instances of the function

count[cr] : (a) -+ int and count[/3] : (/3) + int,

where a and /3 are related by some mapping H.

Let H’ be some mapping over the integers. For

((H) + H’)(count[a], count[~]) to hold, the output

of the functions should be related by H’ whenever

the input is related by (H). For example, assume

given a list (a, b); the mapping H = {(a, e), (b, f)}

takes it to (e, j). Both lists have count 2, as

one expects, so necessarily H’(2, 2). The same

holds for each cardinality, hence H’ must be Ii~t;

thus, int on the right of + in the type of count

is a “constant” type, and should correspond to a

constant mapping, namely I~~t.

The parametricity theorem states a property of

calculus expressions that depend only on their type.

Theorem 4.4 (Parametricity [14, 15]) Let T be

111

a closed type, and let T be the corresponding map-

ping. If 1 is expressible in the 2nd-order A calculus,

and 1: T then 7(/, 1). ❑

Corollary 4.5 List functions with polymorphic

type are rel-fully generic. ❑

Functions which use equality between elements

do not work uniformly the computation of =

itself is element-type dependent. For example,

consider list difference, where 1 — 1’ removes from

1 all copies of elements appearing in /’. Like

– for sets (proposition 3.4), it is not rel-fully

generic; obviously, the parametricity theorem does

not apply to it. Indeed, it is not polymorphic,

as defined so far, and it does not have type

VX.(X) x (X) --+ (X). It can be given the type

VX=. (X=) x (X=) + (X=), where X= now ranges

only over types wit h =. The paramet ricit y theorem

can be adapted to deal with such functions, by

restricting attention to mappings that preserve =,

i.e., are injective, using 2= to range over such

mappings.

4.2 Paramet ricit y for Sets

The parametricity theorem does not apply to

queries over sets because sets cannot be represented

in the A calculus.6 Our approach is to use the

theorem for lists, and transfer the parametricity

property from lists to ‘similar’ sets. We use

the rei extension mode only. To facilitate the

transfer, we use a simple (set-theoretic) typed

semantic domain, as follows. Domains for base

types, and complex values types are as in Section

2. Domains of higher-order function types are

defined in a straightforward manner: the domain

for a + ~ includes all functions from the domain

of a to that of /3. This construction gives an

interpretation to all monomorphic types. Adding

collections of functions, collections of collections,

and so on, indexed by monomorphic types, gives us

an interpretation for polymorphic types, where in

VX the variable X ranges over monomorphic types

only. A further restriction is that all universal

quantifiers appear on the outside of a type. This

is definitely adequate in the database context.

The semantics of a polymorphic function f is

a collection of a-components f [a], one for each

6The work in [1 I] studies listqueries expressible in the A

calculus.

monomorphic cr. We do not int reduce a language

for sets, but rather consider (pure set) values and

their types from the domain above.

We denote a pure list type expression by T1ist; if

every occurrence of () is replaced by {}, we obt tin

a pure set type expression, denoted Tset. We call

such types related. The mappings, T1ist and Tset

are also called related. Z_set is obtained from TSet

as in the previous section, using the set mapping

constructor with the rel extension mode.

It is simpler to present the claim and proof

for the case that in VX.TSet(X), X ranges over

all mappings between base types only. As this

defines a mapping different from VX.Tsef(X), we

denote it by VX.@et(X). A similar restriction

applies to lists, and we denote the mapping by

VX.~~ist(X). Later we generalize to all mappings

between monomorphic set types.

Let toset be the function which converts a list to

a set with the same elements. The following lemma

relates this function and the rel extension mode.

Lemma 4.6 Let H : a x ~, lists J : (a), 1’: (/3) and

sets s : {a}, s’ : {~} be given.

1. If (H)(l, 1’) and toset(l) = s, toset(l’) = s’ then

{H}’el(s, s’).

2. If {H} ’el(s, s’) then there exists 1,11 such that

toset(l) = s, toset(l’) = s’, and {H)(1, 1’). !3

The following extends toset to higher-order list and

set values.

Definition 4.7 List and set values, 1,s, of related

types T[ist, Tset, are analogous, denoted 1 1*

S,7 if the following holds. The definition is by

induction on the structures of their types:

Base type: 1 = s

Product: the analogy holds component-wise

Lists and sets (T1;st = (T1ist), Tset = {Tset}):

if each element li of 1 can be replaced by an

analogous set value, giving a list of sets 1’, such

that toset(l’) = s

Functions(1 = fl, s = fs): if whenever xl la XS

then also fl(zz) 1= f~(z~)

V types: for all base types a, l[a] la s[a]. ❑

‘Formally, the type has to be included in the notation;

for simplicity, it is omitted.

112

For example, ii- 1~ U, because for flat lists 1, 1’,

toset(l+l’) = toset(i) U toset(l’).

For complex value types (no +, V), 1 is analogous

to s if they are related by toset extended to all

nesting levels, so 1-5’ is a total, subjective function

from lists to sets. However, there are list functions

having no analogous set function (e.g. the function

head) so in general the relationship is partial.

We would like to use this correspondence to pull

parametricity from lists to sets. That is, if @ist(l, 1)

and 11- s, then fit(s) s). Unfortunately, we can

not show this in general; our technique breaks down

for types with complex combinations of bulk and

function constructors. The restricted set of types

that we do cover is sufficient for all set queries of

current int crest.

One technical problem we face is that we need to

show that related sets have analogous related lists.

We can prove this in a restricted case:

Definition 4.8 A list type expression is an s-to-1

type if it cent sins no universal quantifiers, and also

no () appears in it under +. •1

Lemma 4.9 Let Z“’S’(X1,... ,Xn) be s-to-l type.

Given mappings on base types Hi : cq x pi, if

P(HI,..., Hn)(sl, Sz) then there exists 11,12 such

that li 1X si, i = 1,2, and~~ist(H1, . . ., Hm)(11,12).

❑

Proof: (sketch) For bulk types () and {}, we use

the second part of lemma 4.6. The difficult case

is the function constructor. However, in an s-to-l

function type T1ist, there are no list constructors.

Therefore the related set type T’et is identical. The

same goes for mappings ~[ist and pet. Moreover,

functions of these types are analogous iff they are

identical. Therefore, given si, we choose li = si. ❑

For related set functions of general t ypes, we do not

know how to find analogous related list functions.

Definition 4.10 A list type expression is an l-to-

s type if for each T1 + T2 it contains, T1 is an s-to-1

type. No universal quantifiers are allowed. ❑

Lemma 4.11 Let T1ist X(1,..., X~) be an l-to-s
type, and Hi : ~i x /3i mappings on base types.

If @ist(H1 ,..., Hm)(ll, Jz) and li 1- .si then

@et(H1, . . . ,Hn)(sl, s2).

Proofi(sketch) For bulk types, we use the first part

of lemma 4.6. The difficult case is for function

types: say we are given (T~st + ‘Z~st(~~, ~~) for

list functions f;, ~~. That is,

<~i’t(ll, /2)+ ~~i’~(f~(ll), jj(lz)). (*)

Also, ~~ 1~ j;, that is,

li 13 Si + f/(l!i) 13” j~(.Si). (**)

We need to show (~flt ~ ~2Set)($?, j.-j) that is,

~et($l, Sz) + qqff(sl), f:(sz)). (***)

Given ~fl~(sl, S2), since T~st is an s-to-1 type,

by Lemma 4.9, there exist lists 11,12 such that

/i 1- si and ~~ist(ll, 12). Therefore, by (**)

we have j~(li) 13 f~(si), and by (*) we have
-.

rkst(~~ (4) ~~l~z)). Therefore bY induction, We
have ‘Zflt(j~(sl), ~~(s2)) as required by (***). ❑

Definition 4.12 A list type (without free vari-

ables) is LtoS if it is of the form V~.T1ist, where
TJist is l-to-s. ❑

We can now state the main theorem that relates

list values to set values.

Theorem 4.13 Let T1ist be an LtoS type. If

?zist(/l, 12) and/i 19 si then ‘f’’t(s1, S2). ❑

The proof is component-wise on the a-components

of polymorphic values ii ,si. The heart of the proof

is in the lemma for l-to-s types.

So far we have considered only mappings whose

domains and codomains are base types, whereas

in the definitions of Tlist, Tset mappings on all

monomorphic types were included. We do need

this added generality. For example, if we have

(VX.{X} x {%} + {A?}) (U, U), if X ranges

only over mappings bet ween base types, this says

nothing about the behavior of U on nested sets.

We note that in the 2nd-order A calculus we can

choose base types arbitrarily. In particular, we

can embed the domains of monomorphic set types

as base types in the list universe. With this, the

theorem can be stated for ‘Pet rather than pet.

Details are given in the full paper.

Example 4.14 The selection operation u on lists

has LtoS type VX.(X + bool) + (X) + (X),

because X + bool is s-to-1. But the type

VX.((X) + bool) + (X) + (X) is not LtoS, since

(X) +bool is not s-to-1. Also, fold: VX.VY.(X +

Y + Y) + Y + (X) + Y is LtoS, whereas ext :

VX.VY.(X+ (Y))+ (X)+ (Y) is not. ❑

113

For set value s, let s : T’et denote that s has an

analogous list value with type T ‘ist. As a corollary

to the parametricity theorem and theorem 4.13, we

have:

Corollary 4.15 Let Tlist be an LtoS type, Ifs :

T“” t~e~ 7s”(% s). ❑

Now we are able to prove parametricit y properties

for set queries. To do this for a set query q’,

one needs only to find an analogous list query q,

and to know its type T. For example, we know

that + 1= U, and that -H- : VX.(X) x (x) +

(X). Therefore, we can deduce that (VX.{X} x

{X} + {X})(U, U). which implies that U is rel-

fully generic, and more, as seen below. The type

could be found using type inference, or could be

verified using type checking. We note that there

are type inference algorithms for the ML subset

of the 2nd-order A calculus.

4.3 Genericit y vs. Paramet ricit y

Genericit y is a concept: a query being invariant

under a class of mappings. Its definition gives

no tool for deriving occurrences of the property.

Parametricity is also a concept of invariance: We

call a query Q parametric w.r. t. a type T if T(q, q).

But the parametricity theorem is a powerful tool

for deriving invariance from query types. Here we

compare and contrast the two notions. We also

consider which can provide us better information

about the invariance properties of a query.

The following are important differences between

the two notions.

1.

2.

3.

Parametricity deals only with typed queries

(i.e., expressible in the 2nd-order A calculus),

whereas genericity is unrestricted.

Genericity considers only extensions of map-

pings between base types, but parametricity in-

cludes invariance under all mappings.

Genericity considers extensions of mappings on

base types to all complex value types, but there

it stops. Invariance is defined as a separate

notion. In parametricity, given mappings are

extended to all types, including that of the

query. This, in contrast to genericity, allows

to consider diflerent mappings with the same

domain, either because they are obtained from

different type variables, or because one is

obtained from a type, the other is a constant.

These points are elaborated and illustrated below.

Regarding item 2, an extension of mappings on

base types can only relate values of the same struc-

ture, e.g., the same set nesting. For a given II,

fITe~({2}, {3}) and 17re~({{2}}, {{3}}) are possible,

but HTe~({{2}}, {3}) is not. Hence genericity pro-

vides only invariance of restricted (i.e. structure-

preserving) classes of mappings. In contrast, for

a polymorphic query of type VX.T(X), X ranges

over all mappings, including mappings between non

base types, having different structures. Therefore,

for such a query, and such are most queries of in-

terest, parametricit y considers invariance under a

larger class of mappings, and so gives a tighter fit.

(This will also prove important for optimization.)

Of course, the idea implies that certain queries are

generic but not parametric (for any “reasonable”

type). Parametric queries, in contrast to generic

queries, must be invariant under mappings which

don’t preserve structure, hence cannot use any in-

formation about structure. Consider the query nest

parity (np) which accepts a nested set and returns

true if the depth of nesting is even, and false oth-

erwise.

Proposition 4.16 np is fully generic but is not

parametric for any type of the form VX. {”X}” +

bool (where {“ stands for n nested set brackets). n

This result is also related to point 1. It illustrates

the advantage of having different concepts; each

provides more information on some queries. It also

illustrates the use of parametricity for inexpress-

ibility y results.

Regarding point 1, union can be given an

untyped interpret ation, so {1} U {{2}} is legal; it is

fully generic. Parametricity, however, applies only

to the typed version, U : VX.{X} x {X} + {X}.

Regarding point 3, consider again the query

count, which now counts the number of elements

in a set. We have count({2}) = 1; if count is

invariant under any H : int x int, then necessarily

H(l, 1). The same applies to each cardinality,

hence count is rel-generic only w.r.t. the identity

mapping, which provides no information at all
— every function is generic w .r.t. this mapping.

However, by parametricity we have (VX= .{ X=} +

int)(count, count), i.e. count is invariant under all

mappings which are injective on its argument and

the identity on its result. Note that in Section

114

2 we consider invariance under mappings that

preserve constants and functions. Here essentially

we generalize that to preservation of a domain.

The point is that, in genericit y, if we are

rest rict ed to the identity mapping for the query’s

output type, the same applies to all its occurrences

in the type. Parametricit y allows to use different

mappings in different places in the query. The

information as to what extent this is possible is

neatly captured by its type.

We have noted that queries with polymorphic

types are rel fully-generic, since they are invari-

ant under mappings between monomorphic types,

hence are cert airily invariant under extensions of

mappings on base types. Typed union is an ex-

ample. Similarly, queries with types quantified by

VX= are rel-generic w.r.t all injective mappings.

Set difference, – : VX=.{X=} x {X=} + {X=}, is

an example. In both cases, parametricity provides

invariance under more mappings than genericity.

But, we have defined genericity w.r.t. constants

and functions. Can we derive such invariance from

parametricity? The answer is positive, provided

that the use of the constant/function in the query

is well-behaved in the sense that it can be captured

by type information. This is essentially orthogo-

nality in the use of constants/functions in a query

language.

Let ins. be the query that inserts constant

c into a set, insC(ll) = R U {c}. Assuming

c can be any constant, ins is a higher-order

function, ins : VX.X + {X} + {X}. By

corollary 4.15, if II(c, c’) then if {~}re~(l?, R’) then

{Zl}”e~(insC(R), ins,). Similarly, the general

form for the relational select accepts the predicate

as a parameter. OP(S) returns the elements of S

which satisfy p, with type u : VX.(X + bool) +

{X} 4 {X}. We have : if (H + bool)(p, p’) then

if {.lif}re~(lt, R’) then {17}”eJ(aP(l?), aP/(.R’)). For

p = pl, we have UP is generic w.r.t. all mappings

that preserve p, as a function. When p is =C,

that returns true iff its argument is c, a=c is

generic w.r.t. all mappings that strictly preserve

c. Comparing the two examples, the intuition is

that if we need to test equality with a constant, we

need strict preservation, otherwise preservation is

sufficient.

Of course, if a language allows only ass, but

not IS then the type will be {int} + {int},

because this query can only be applied to sets of

integers. Therefore, we only have invariance under

the identity mapping, and we cannot derive that

the query is generic w.r.t. mappings that strictly

preserve 5. The same holds if given U=5 we infer the

restricted type, and do not view it as an instance

of the more general u with a more general type.

The more general the type we have for a query, the

more information that can be gained.

4.4 Optimization

Invariance of a query under mappings means it

commutes with them. We now use genericity and

parametricity to derive generalizations of some well

known algebraic equivalences, and also some new

ones.

Given a functional mapping ~, {~}re~ is the func-

tion map(f), which applies ~ to each element of a

set, {{ f}}re(is map(map(f)), and so on. Thus,

rel-generic queries commute with map(f), for j in

an appropriate class. For fully generic queries, e.g.,

U, ~ is not restricted at all. Thus, for all ~

if (map(~))(R) = R’ and (map(f))(S) = S’

then (map(f))(R U S) = R’ U S’

This is equivalent to

(map(f))(R U S) = (map(f))(R) U (map(f))(S)

In particular, f could be any user-defined method,

in any programming language, about which we

know nothing. But, if a query is invariant only

under the mappings that preserve constant c, then

we require ~(c) = c.

Within the genericity framework, values related

by {~}’eZ must have exactly the same structure,

whereas for parametricity this need not be the case.

For example, consider j = ~1, where ml ([a, b]) = a.

In this case, map(nl) is the relational projection,

11$1. It follows that we can push projection through

fully parametric queries : e.g. for U:

II$I(R U S) = JI$I(R) U II$I(S)

a well known equivalence. Note that the full

genericity of U does not imply the above.

ml, above, is not injective since different tuples

may have the same first component. Therefore, in

general, we cannot push projection through queries

which are invariant only under injective mappings,

such as set difference. However, in special cases irl

might be injective. For example let R and S be

115

relations of employees and students, where their

first columns are a common key (i.e. a key for

R U S) such as a social security number. Then no

two tuples can have the same first component, and

ml is injective on R U S. Then:

II$*(Ii -s)= ll$~(lq – II$~(s).

5 Discussion

We have generalized the classical notion of generic-

ity from one (almost) abstract domain to many do-

mains, and defined it so no predicat e, even equalit y,

need be preserved, and have accounted for preser-

vation of any function or predicate. Equality still

differs from other predicates in that it is used im-

plicitly in many operations. We showed that leads

to a rich structure of genericity notions, and clas-

sified many languages and operations w.r.t. their

genericit y properties.

More import antly, we have shown genericit y and

parametricity to be closely related, although in-

comparable. For queries wit h a general polymor-

phic type the latter, deriving from the type, can

provide more information, such as invariance un-

der mappings on non-base types, and preservation

of interpreted domains. We have also shown that

many algebraic laws can be derived from para-

met ricit y. It follows that, hopefully, type checking

and type inference algorithms can be used to ver-

ify or discover such properties automatically. This

opens new possibilities for optimizing queries de-

fined in general declarative languages, and over

user-defined data types. This is a promising di-

rection for future research.

We point out that the L-to-S types are rich

enough to capture the entire nested relational

algebra. The core constructs of the monadic

algebra of [5] can be expressed using only regular

universal quantification and are thus fully generic.

The addition of = to their algebra gives the full

nested relational algebra, and now we have rel-

generic queries w .r.t. injective mappings. Indeed

their naturality theorem states that their language

is parametric. Our results provide more.

Issues for future research include: Extending

the results to other data types and type systems,

removing some of the restrictions on types in the

proofs, and exploring the applications to query

optimization.

Acknowledgements

We would like to thank the anonymous referees for

their helpful and detailed comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Abiteboul and C. Beeri. On the power of

languages for the manipulation of complex objects.

VLDB Journalj 1996.

A. V. Aho and J. D. Unman. Universality of data

retrieval languages. In POPL, pages 110-120,

1979.

A. Aylamazyan, M. Gilula, A. Stolbushkin, and

G. Schwartz. Reduction of the relational model

with infinite domains to the case of finite domains

(russian). Proc. USSR Acad. Sci. (Doklady),

2(286):308-311, 1986.

V. Breazu-Tannen, P. Buneman, and S. Naqvi.

Structural recursion as a query language. In DBPL,
1991.

V. Breazu-Tannen, P. Buneman, and L. Wong.

Naturally embedded query languages. In ICDT

1992. Springer-Verlag. LNCS 646.

A. Chandra. Programming primitives for database

languages. In POPL, 1981.

A. Chandra and D. Harel. Computable queries for

relational data bases. JCSS, 21(2):156 -178, 1980.

J.-Y. Girard. interpr6t ation fonctionelle et

&limination des coupures de l’arithm&ique d’order

sup&ieur. Th&se D’Etat, Universit6 de Paris VII,

Paris 1972.

T. Hirst and D. Harel. Completeness results for

recursive databases. In PODS, 1993.

R. Hull and C. K. Yap. The format model : a

theory of database organization. JACM, 31(3):518

-537, 1984.

G. Hillebrand and P. Kannelakis. Functional query

languages as typed lambda calculi of fixed order. In

PODS, pages 222–231, 1993.

J. Mitchell. Type systems for programming lan-

guages. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, Vol. B: For-

mal Models and Semantics, chapter 8. The MIT

press/Elsevier, 1990.

J. Paredaens, J. V. den Bussche, and D. V. Gucht.

Towards a theory of spatial database queries. In

PODS, pages 279-288, 1994.

J. C. Reynolds. Towards a theory oft ype structure.

In B. Robinet, editor, Proc. Colloque sur la

Programmation. Springer-Verlag, 1974. LNCS 19.

P. Wadler. Theorems for free! In FPCA, pages 347

-359, 1989.

116

