
Object-Oriented Design in Feature-Oriented Programming

Sven Schuster
TU Braunschweig

Braunschweig, Germany
s.schuster@tu-bs.de

Sandro Schulze
TU Braunschweig

Braunschweig, Germany
sanschul@tu-braunschweig.de

ABSTRACT
Object-oriented programming is the state-of-the-art program-
ming paradigm for developing large and complex software
systems. To support the development of maintainable and
evolvable code, a developer can rely on different mecha-
nisms and concepts such as inheritance and design patterns.
Recently, feature-oriented programming (FOP) gained atten-
tion, specifically for developing software product lines (SPLs).
Although FOP is an own paradigm with dedicated language
mechanisms, it partly relies on object-oriented programming.
However, only little is known about feature-oriented design
and how object-oriented design mechanisms and design prin-
ciples are used within FOP. In this paper, we want to raise
awareness on design patterns in FOP and stimulate discus-
sion on related topics. To this end, we present an exemplary
review of using OO design patterns in FOP and limitations
thereof from our perspective. Subsequently, we formulate
questions that are open and that we think are worth to
discuss in the context of feature-oriented design.

Categories and Subject Descriptors
H.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods; D.3.3 [Program-
ming Languages]: Language Constructs and Features—
inheritance,patterns

General Terms
Languages

Keywords
design pattern, feature-oriented programming

1. INTRODUCTION
When developing software systems, an extensible and

reusable design is crucial for the durability and maintainabil-
ity of the system. To achieve such a clear and maintainable
structure, different mechanisms and design principles exist,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$15.00.

depending on the used programming paradigm. For object-
oriented programming (OOP), abstraction and information
hiding play a pivotal role for the foundation of a clear design.
On the technical side, inheritance but also interfaces are
mechanisms that provide the developer with capabilities to
realize different levels of abstractions. Additionally, object-
oriented design patterns exist to provide general solutions
for complex, recurring problems with [6].
While this is the state-of-the-art for complex, stand-alone

software system, the concept of software product lines (SPL)
gained momentum in recent years [4, 9]. Different approaches
exist to implement software product lines, which can be di-
vided in two categories: annotative and compositional [7]. In
this paper, we focus on the emerging paradigm of feature-
oriented programming (FOP), a compositional approach that
extends OOP by providing reuse facilities for building prod-
uct lines at large-scale. Although FOP distinguishes from
OOP by specific mechanisms such as refinements for imple-
menting software product lines, a clear and evolvable design
is crucial for both approaches, FOP and OOP.
For OOP, well-established design mechanisms (inheritance,

interfaces) and concepts (design patterns) exist while for
FOP only little is known about design issues. However, we
argue that object-oriented design mechanisms and concepts,
especially design patterns, can be applied to FOP as well,
because of related concepts between FOP and OOP. This, in
turn, inevitably leads to several questions: Do we apply OO
design patterns within FOP already (but rather implicitly
than on purpose)? Is there a way to make design decisions
such as usage of design patterns explicitly in FOP? Are OO
design patterns applicable to FOP? What are limitations?
And are there dedicated feature-oriented design patterns?

With this position paper, we want to stimulate the discus-
sion on these (and maybe forthcoming) questions, because
we believe that they are important for future work on feature-
oriented design and languages. To this end, we provide a
review on using OO design patterns in FOP by means of
different examples. Furthermore, we point out limitations
that we observed during our review.
In a broader sense, this paper also contributes to an ongo-

ing discussion on modularity and design in FOP [8]. In this
context, we stimulate discussion on the question whether ded-
icated feature-oriented design patterns are needed to ensure
an evolvable and maintainable feature-oriented design.
Limitations: With this paper, we do not present fully-
fledged and finished research results. Rather, we want to
raise awareness on the role of feature-oriented design and
its relation to object-oriented design (patterns). Further-

more, we focus on a specific feature-oriented approach called
FeatureHouse. Finally, we rely on the exemplary design
patterns presented by Gamma et al. [6], although other
realizations of these patterns are possible.

2. BACKGROUND
In this section we will provide a short background on

object-oriented design patterns and the paradigm of feature-
oriented programming.

2.1 Object-Oriented Design Patterns
During design and implementation, it is common that

certain recurring problems emerge, which have to be solved
without decreasing maintainability or reusability. A design
pattern is a textual description for such a common prob-
lem and its possible solution [6]. Following principles for
“good” object-oriented design, patterns aim at improving
the structure of a program and increasing reusability and
maintainability of the source code by making it more flexible
and more adaptable to changes. Examples for such design
principles that are reflected by patterns are:

• favor object composition over inheritance
• program to an interface, not to an implementation
• encapsulate what varies
While different possibilities exist to realize design patterns,

we here focus on the implementation and representation (us-
ing UML class diagrams) originally proposed by Gamma
et al. [6]. Examplary, we illustrate the Strategy pattern [6,
p. 315 ff.] by means of a class diagram in Figure 1. This
pattern takes a family of algorithms and makes them inter-
changeable by defining an abstract strategy interface. In
this pattern, the class Context holds an object of type
Strategy, which provides the interface to be used. This
object can be replaced with other objects of the same type,
resulting in an interchangeable algorithm for the defined
interface.

Context

+ ContextInterface()
strategy Strategy

+ AlgorithmInterface()

ConcreteStrategyA

+ AlgorithmInterface()

ConcreteStrategyB

+ AlgorithmInterface()

Figure 1: Class diagram of Strategy pattern

Design patterns are classified by their purposes into three
categories of patterns: creational, structural and behavioral
patterns. Creational patterns describe when and how objects
are instantiated such as the Factory Method [6, p. 107 ff.],
which encapsulates and simplifies the creation of similar
objects. The main concern of structural patterns is the com-
position of classes or objects, like the Facade [6, p. 185 ff.],
which hides the structure of a subsystem behind a new, sim-
plified interface. Finally, behavioral patterns deal with the
interaction between objects and provide dynamic behavior
at runtime, like the aforementiond Strategy.

2.2 Feature-oriented Programming
Feature-Oriented Programming (FOP) is a paradigm to

implement software product lines (SPL) in a compositional
way [10]. Different approaches and languages exist to imple-
ment feature-oriented software product lines such as

AHEAD [3], FeatureHouse [1], or FeatureC++ [2]. The
core idea of FOP is to decompose a program into features.
All artifacts (code and non-code) belonging to a certain fea-
ture are modularized within one cohesive unit, called feature
module. A feature is an increment in functionality, visible to
any stakeholder. A feature model describes commonalities
and differences between the different programs of a product
line and thus possible and valid combinations of features.
Due to its modular fashion, FOP provides a one-to-one map-
ping between its implementation units (i.e., feature modules)
and the features of a feature model.

Feature BaseStack
class Stack { ...

void push(int v)
{/*...*/}

int pop() {/*...*/}
}

Feature Undo
class Stack { ...

int backupPush;
void undo() {/*...*/}
void push(int v) {
backupPush=v;
original(v);

}}

Feature Peak
class Stack {

int peak() {/*...*/}
}

Composed class
class Stack { ...

int backupPush;
int pop() {/*...*/}
int peak() {/*...*/}
void undo() {/*...*/}
void push(int v) {
backupPush=v;
/* original */

}}

Figure 2: Feature-oriented implementation of Stack
with features Peak and Undo

In Figure 2, we show an excerpt of a stack product line im-
plementation with FeatureHouse [1], a language-independent
approach for FOP, which uses superimposition as its com-
position mechanism. Feature BaseStack provides the base
implementation of class Stack. The two other features,
Peak and Undo extend the functionality of this class. In the
context of FOP, this extension or increment of functionality
is called refinement. Basically, refinements offer the possi-
bility to add or extend classes, for instance, by adding new
methods or fields or changing existing ones. Methods can
be composed using a specified keyword (original in Fea-
tureHouse) to access an already existing method body. As
an example, feature Undo extends method push by adding
an additional statement followed by the original keyword,
which invokes method push of the original class Stack. Fea-
ture Peak simply adds the method peak. To generate a
program, the selected features (i.e., the corresponding source
code) is composed using superimposition. For instance, if
a user selects features BaseStack, Peak and Undo results
into class Stack with four methods (push, pop, peak,
undo) and one field.

3. COMPARING OBJECT-ORIENTED
AND FEATURE-ORIENTED DESIGN

Object-oriented design mechanisms and patterns are well-
understood and commonly accepted as a mean to achieve a
clear and maintainable design. FOP partly relies on object-
oriented concepts and mechanisms. This raises the ques-
tion, how and where both approaches consolidate, especially
regarding the design of the underlying programs. In this
section, we present some initial thoughts on that question. In
particular, we compare and contrast inheritance and refine-
ments and discuss whether (and how) object-oriented design
patterns could be applied in feature-oriented programming.

3.1 Inheritance versus Refinements
While OOP offers class inheritance as the main language

mechanism to gain variability and abstraction in software
design, FOP additionally offers class refinements to achieve
feature modularity. In the following, we will distinguish these
mechanisms.
Both, inheritance and refinements, are mechanisms to

achieve code reuse and to extend classes, but beyond that,
they do not have much in common. In Table 1, we provide a
short distinction of both mechanisms.

Inheritance . . .
. . . creates a new sub-

class to extend a class
. . . achieves variability at

runtime
. . . is integrated within

the language

Refinements . . .
. . . extend the original

class itself
. . . achieve variability at

compile time
. . . are not integrated

within the language

Table 1: Inheritance versus Refinements

class Stack { ...
void push(int v)

{/*...*/}
int pop() {/*...*/}

}

class UndoStack
extends Stack { ...
int backupPush;
void undo() {/*...*/}
void push(int v) {
backupPush=v;
super.push(v);

}}

class PeakStack
extends Stack{
int peak() {/*...*/}

}

class UndoPeakStack
extends PeakStack { ...
int backupPush;
void undo() {/*...*/}
void push(int v) {
backupPush=v;
super.push(v);

}}

Figure 3: Object-oriented implementation of Stack
with features Peak and Undo

We illustrate the differences between inheritance and refine-
ment with two code examples in Figure 2 and 3, respectively.
The feature-oriented implementation of Stack consists of only
one class that is refined in each feature module (cd. Figure 2).
Hence, for a certain variant, only one composed class exists,
which contains the whole functionality of the selected fea-
tures. In contrast, in our object-oriented implementation
of Stack, we have to introduce a new class for every feature
and every combination of features, resulting in four different
classes (cf. Figure 3). In a nutshell, extending a class with
inheritance always leads to a new subclass, while refinements
extend the original class itself.
Another difference between both mechanisms is their inte-

gration within the language and their scope. Inheritance is a
language mechanism, which can be used to achieve varying
behavior at runtime by creating subtypes and providing inter-
changeability between objects. In our example, all variants
of Stack are interchangeable, since they are subtypes of the
same superclass. In contrast, refinements disappear when
composing the feature modules at compile time. Hence, they
allow for selecting which features and thus which refinements
should be included for a certain variant before this variant is
generated. Overall, inheritance and refinements can be seen
as two different, orthogonal dimensions, which are rather
complementing than contradicting.

3.2 Design Patterns in FOP
Since FOP and OOP share some language mechanisms,

object-oriented design patterns should be applicable in fea-
ture-oriented SPLs. Furthermore, refinements should not
contradict with language mechanisms used for design pat-
terns such as inheritance or interfaces, for the previously
mentioned reasons. Hence, we argue that we can use refine-
ments to modularize design patterns in terms of features.
In the following, we present examples how design patterns
could be extended or modified using refinements.

Feature Foo
class Factory {
Product createProduct(int id) {

if(id == FOO)
return new Foo();

}}

Feature Bar
class Factory {
Product createProduct(int id) {

if(id == BAR)
return new Bar();

else return original(id);
}}

Figure 4: Factory Method extended by new Products
using FeatureHouse

In Figure 4, we show an example for creational patterns
in FOP. In particular, we apply a refinement to a variant
of the Factory Method (cf. Section 2.1) by providing the
method createProduct(int id) with feature module
Foo and using refinements to add new products. Hence,
we offer the possibility of creating products of type Bar
only if the feature module Bar is included. Moreover, new
factory methods or whole new factories with their respective
products can be introduced with new feature modules. In
the same way, other creational patterns can be refined as
well. For instance, the Prototype pattern [6, p. 117 ff.] can be
extended using a feature module that adds new prototypes
to a list of prototypes.
Structural design patterns, e.g., Facade (cf. Section 2.1),

are great examples for the benefits of combining patterns
of OOP with FOP. The Facade pattern hides a whole sub-
system behind a simplified interface. As a result, we may
use refinements to modify or extend everything within the
subsystem, without interfering any other class, as long as
the interface is not modified.
Behavioral design patterns such as the Strategy pattern

(cf. Section 2.1, Figure 1), can be extended by new strate-
gies via features. In Figure 5, we show the Strategy in
Violet1, which is combined with the Prototype. While the
abstract strategy class Graph offers the interface to grant
access to the different prototypes for nodes (and edges), the
concrete strategies like ClassDiagramGraph provide the
corresponding prototypes. Since Violet is refactored in a very
fine-grained manner, every prototype is included in its own
feature module. Hence, the feature module InterfaceNode
introduces the prototype for an interface node (cf. Figure 6).
This leads to a one-to-one mapping of features and strategies
as well as features and prototypes. We can even modularize
more complex behavioral patterns using refinements. For ex-
ample, in the Observer pattern [6, p. 293 ff.], the registration

1source code on www.fosd.de/fh

of different observers could be performed in different feature
modules.

GraphFrame

+ /* methods using graph */

Graph

+ getNodePrototypes() : Node[]

ClassDiagramGraph

+ getNodePrototypes() : Node[]

UseCaseDiagramGraph

+ getNodePrototypes() : Node[]

StateDiagramGraph

+ getNodePrototypes() : Node[]

Figure 5: Strategy pattern in Violet
Feature InterfaceNode

public class ClassDiagramGraph {
static {
NODE_PROTOTYPES[1] = new InterfaceNode();

}}

Figure 6: Introducing an interface node in Violet
Since refinements are a structural mechanism, we cannot

expect to change any dynamic behavior of the OO patterns.
Hence, we argue, even though we are able to change the
behavior of design patterns in a certain way by using refine-
ments, we only gain advantages on a structural level.

3.3 Design Pattern in FOP – Use or Refuse?
Based on the review of OO design patterns and some initial

insights on feature-oriented programs, we briefly address the
questions that we posed at the beginning of this paper. For
a more comprehensive overview, we refer to [12].
Do we already apply OO design patterns in FOP?
Recently, we conducted a preliminary analysis on design
patterns in feature-oriented programs [12]. As a result, we
detected design patterns throughout all programs, regardless
whether they have been refactored or developed from scratch.
Hence, we argue that design patterns are already in use with
FOP. Nevertheless, a more comprehensive and quantitative
analysis is necessary to make claims regarding how and which
patterns are used.
Are OO design patterns applicable in FOP? Based
on our review and preliminary analysis of feature-oriented
programs, the answer is yes. However, it is open which pat-
tern fit very well with FOP and which do not. Furthermore,
how concrete implementations look like for different feature-
oriented languages has to be investigated. Another point,
even discussed for OO languages, is the question whether
design patterns are always beneficial or might even introduce
drawbacks [5]. For instance, Smaragdakis et al. compare
mixin layers, another approach for realizing compositional
SPLs, with the Visitor pattern and point out certain char-
acteristics where mixins are more advantageous than the
visitor pattern [13].
What are limitations? From our perspective, applying
behavioral patterns is limited, because these patterns focus
mainly on changing behavior at runtime. Although it has
been proven by Rosenmüller et al. that such patterns can be
used to support dynamic binding [11], it is generally a very
complex task and maybe only possible for certain languages.
Furthermore, implementing design patterns with features as
an additional dimension could be a complex task, especially
from a programmer’s comprehension point of view.

4. CONCLUSION AND FUTURE WORK
Design patterns describe recurring problems (and its solu-

tion) in object-oriented design. While there is a considerable
body of knowledge on design patterns in OOP, only little
is known about design patterns in FOP. In this paper, we
addressed this topic and reviewed exemplary (OO) design
patterns from a feature-oriented point of view. We hav show
by example, that design patterns are applicable, but also
point to possible limitations and open questions on benefits
and application of patterns in FOP.
While the main contribution of this paper is to raise aware-

ness and stimulate discussion, we determined open questions
during our review of design patterns in FOP that can guide
future research on this topic. In future, we want to ana-
lyze existing feature-oriented systems with respect to the
occurrence of design patterns to determine whether design
patterns are already used in FOP. Furthermore, the concrete
realization of design patterns across different feature-oriented
languages is part of our future work.

5. REFERENCES
[1] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:

Language-Independent, Automated Software
Composition. In Proc. ICSE, pages 221–231. IEEE
Computer Society, 2009.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proc.GPCE,
pages 125–140. Springer-Verlag, 2005.

[3] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. TSE, 30(6):355–371, 2004.

[4] P. Clements and L. Northrop. Software Product Lines –
Practices and Patterns. Addison-Wesley, 2001.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley, 2000.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. ICSE, pages
311–320. ACM Press, 2008.

[8] C. Kästner, S. Apel, and K. Ostermann. The Road to
Feature Modularity? In Proc. FOSD, pages 5:1–5:8.
ACM, 2011.

[9] K. Pohl, G. Böckle, and F. Van Der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[10] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. ECOOP, pages 419–443.
Springer, 1997.

[11] M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel.
Code Generation to Support Static and Dynamic
Composition of Software Product Lines. In
Proc.GPCE, pages 3–12. ACM, 2008.

[12] S. Schuster. Design Patterns in Feature-Oriented
Programming. Bachelor thesis, TU Braunschweig, 2012.

[13] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-based Designs. TOSEM,
11:215–255, 2002.

