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We investigate the sample size necessary for PAC learning in

the presence of malicious noise, a type of adversarial noise
model introduced by Kearns and Li. We prove the first

nontrivial sample complexity lower bound in this model by

showing that order of &/A2 + d/A examples are necessary
for PAC learning any target class of {O, 1}-valued functions

of VC dimension d, where e is the desired accuracy and

q = &/(1 + e) – A the malicious noise rate (it is well known
that any nontrivial target class cannot be PAC learned with
accuracy E and malicio-us noise rate q > &/(1 + &), this irre-
spective to sample complexity.)

This result cannot be significantly improved in general.
In fact, we show a learning algorithm for the same noise

model that. for each d. learns the class of all subsets of

d elements using a number of examples of the same order

as that proven necessary by our lower bound (disregarding
logarithmic factors). In contrast, we show that to learn any

target class of VC-dimension d in the presence of a high

malicious noise rate ~ (i.e. A = o(s)), the popular strategy

choosing any hypothesis that minimizes disagreements on
the sample needs fl(de/A2 ) examples. This implies that,
for high noise rate and for any target class of VC-dimension
large enough, there are distributions over the target domain
where the minimum disagreement strategy is outperformed

by our algorithm.
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1 Introduction

There are two main extensions of the basic PAC learning

framework that take noise into account. The first one is

the classzjicatton noise model [AL88, Lai88, Kea93, AD!13],

where the boolean value of the target function is indepen-

dently flipped with fixed probability in each example given
to the learner. A second extension, less benign and per-
haps more realistic than classification noise, was later in-
troduced by Kearns and Li [KL93] and appropriately called

malicious noise. In this model, each example of the tar-
get function given to the learner is independently replaced,
with fixed probablhty q, by an adversarially chosen eXaLlII-

ple (which may or may not be consistent with the target.)
The sample size necessary and sufficient for learning classes

of {O, 1}-valued functions (also known as the “sample cclm-

plexity” of the class) is quite well understood for both the

noise-free PAC model and the PAC model with classification

noise. Matching upper and lower bounds (up to logarith-

mic factors) for the noise-free model are given in [EHKV89,
BEHW89, STAB93]. For learning in the presence classifi-

cation noise, the upper bound of Laird [Lai88] is met by
the lower bound of Simon [Sim93], again up to logarithmic
factors. However, there is no such a satisfactory analysis
for learning models where the sample given to the learner is
corrupted by malicious noise.

As shown by Kearns and Li, PAC learning in the presence

of malicious noise is intrinsically harder than in the presence
of independent classification noise. Two target functions

that differ on at least one domain point whose probability is

c can be made statistically indistinguishable by a malicious
noise rate larger or equal than s/(1 + E), thus forbidding

e-accurate PAC learning on information-theoretic grounds,
irrespective to sample size and to the learner’s computa-
tional power. In contrast, it has been shown that choosing
any hypothesis that has the fewest disagreements on the
input sample is sufficient for PAC learning in presence of
independent classification noise with rate arbitrarily close

to 1/2 [AL88]. Using results from [AST94], it is not hard

to show that this minimum disagreement strategy is a PAC
learning algorithm also in the presence of a malicious nc)ise
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rate q = c/(1 + .s) — A, with a sufficient sample size of or-

der ds/A2 (disregarding logarithmic factors), where d is the
VC-dimension of the hypothesis class and s is the desired
accuracy. If A = 0(s), the above sample size reduces to

d/s, which is of the same order aa the sample size sufficient

for PAC learning in the noise-free case. As order of d/s

examples are necessary for learning without noise, we al-

ready have a tight estimate (within logarithmic factors) of

the sample complexity for small rates of malicious noise.
In this paper we study the behaviour of the sample com-

plexity in the case of a high malicious noise rate, i.e. a
malicious noise rate zmbitrarily close to the information-

theoretic upper bound e/(1 + e). We prove the first non-
trivial lower bound in this model by showing that at least
order of S/AZ + d/A examples are needed to PAC learn,

with accuracy e and tolerating a malicious noise rate q =

c/(1 + s) – A, any class of {O, I}-valued functions of VC-
dimension d. Our proof combines, in an original way, tech-

niques from [Sim93, KL93, EHKV89] and uses some new

estimates of the tails of the binomial distribution that may
be of independent interest. We then prove that this lower

bound cannot be improved in general. Namely, we show
that there is an algorithm RMD (for Randomized Minimum
Disagreement) that, for each d, learns the class & of all
subsets of d elements using a noisy sample whose size is
of the same order as the size of our lower bound (up to
logarithmic factors.) Algorithm RMD uses a majority vote
to decide the classification of those domain points which

have a clear majority of one label, and tosses a fair coin to

decide the classification of the remaining points. We also

show a lower bound of order de/A2 for the sample size of
the popular strategy of choosing any hypothesis that min-

imizes disagreements on the sample. Thk bound holds for

any class of VC-dimension d ~ 3 and for any noise rate q

such that s/(1 + E) – q = A = o(e). This implies that, for
high noise rate q and for any target class of VC-dimension d
large enough, there are distributions over the target domain
where the minimum disagreement strategy is outperformed
by algorithm RMD. To our knowledge, this is the first exam-
ple of a natural PAC learning problem where choosing any
minimum disagreement hypothesis from a fixed hypothesis

class is provably worse, in terms of sample complexity, than

a different learning strategy.

2 Basic definitions

We recall the definitions of PAC learning and PAC learn-
ing in presence of malicious noise of a given target class C,
where C is a set of {O, 1}-valued functions C defined on some
domain X. We call instance any x ~ X and labeled instance
or example any pair (z, y) c X x {O, 1}. In Valiant’s PAC
learning model [Va184], the learning algorithm, or learner,

has access to a noise-free oracle returning on each call an ex-

ample (z, C(z) ), where C c C is the target and the inst ante
x is drawn from a distribution D on X. Both C and D are
fixed in advance and unknown to the learner. In Kearns and

Li’s PAC model [KL93] I with malicious noise the noise-free
oracle is replaced by a malicious oracle. If the noise rate
is q, on the t-th call the malicious oracle flips a coin with
bias q for heads. If the outcome is heads, the oracle returns
an example (it,@) chosen from X x {O, 1}. If the outcome

1We use a l-oracle variant of Kearns and Li’s original 2-oracle

learning model. All of our results could be translated to that model

with minor differences.

is tails, the oracle must behave exactly like the noise-free

oracle returning the correctly labeled instance (zt, C(x~ ) ),
where C is the target and zt is drawn from D. The mali-

cious oracle’s choice for the pair (;t, ~t) can depend, in an

arbitrary way, on the current state of the learner and on

the outcome of the oracle’s previous random draws. In both

PAC learning and PAC learning in the presence of malicious

noise, after a polynomial number of calls to the oracle the
learner must output an hypothesis H that with high proba-

bility y is a close approximation of the target C. However, in
the malicious model the learner receives examples corrupted
by adversarial noise.

Formally, an algorithm A is said to learn a target class

C in the PAC model if, for all distributions D on X, for
all targets C c C, and for all s, J > 0, after m calls to the
noise-free oracle A outputs an hypothesis H c C such that

D(H # C) < s holds with probability at least 1 – J with

respect to the oracle’s randomization, where m = m(E, 6)

is some polynomial in 1/6 and ln(l/@. We call E the accw

racy parameter and 6 the confidence parameter. Similarly,

an algorithm A is said to learn a target class C in the ma-
licious PAC model with noise rate q if A learns C in the
PAC model when the noise-free oracle is replaced by any

malicious oracle for noise rate q We allow the number m
of calls to the malicious oracle to depend polynomially also
on I/A, where A = c/(1 + e) – q. The reason for this

choice will be made clear in a moment. When referred to
the resources used by the learner, we will use the expressions
“number of calls made to the oracle” and “sample size” in-

terchangeably. We will occasionally use randomized learning

algorithms that have a sequence of tosses of a fair coin as an

additional input source. In this case the definition of PAC

learning given above is modified so that D(H # C) < e
must hold with probability at least 1 – d also with respect

to A’s randomization.
In [KL93], it was shown that PAC learning (even with

an unbounded number of calls to the malicious oracle) is not

possible whenever the noise rate is close enough to e. They
prove that for any “nontrivial” target class C, for each e >0,
and for each learning strategy A (even noncomputable) there

is a target C c C and a distribution D over the domain such

that the hypothesis H output by A after any number of calls
to the malicious oracle with noise rate q ~ e/(1+ e) satisfies

D(H # C) ~ c with probability at least 1/2. Hence, it
is reasonable to allow the sample size for learning in the

presence of malicious noise to grow polynomially also as a

function of A-1 = (5/(1 + E) – q)-l, where s is the desired
accuracy and q is the malicious noise rate.

In addition to the usual asymptotical notations, let ~(.f)

be equivalent to U,l>o O(~(log ~)d) for some constant d.
—

3 Lower Bounds

This section presents three basic results concerning the sam-
ple size needed for PAC learning in the presence of malicious
noise. Theorems 3.4 and 3.7 establish the generaI lower

bound Q(q/A2 +d/A) that holds for any learning algorithm.
Given the results of Section 4, this bound cannot be signif-
icantly improved. Theorem 3.8 presents the stronger lower
bound fl(de/A2 ) for the minimum disagreement strategy
(and for a somewhat stronger malicious oracle).

We make use of the following definitions and facts from
probability theory. Let SN,P be the random variable that
counts the number of successes in N independent trials, each
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trial with probability p of success. A real number s is called
medzan of a random variable S if Pr{S ~ .s} ~ 1/2 and
Pr{S ~ s} ~ 1/2.

Fact 3.1 ([JS68]) Foral10 <p s 1 and all N z 1, the

median Of SN,P is lNpJ or [Np].

‘Thus, Pr {S~,P < [Npl} z ~ and Pr {S~,P z [Npj} z ~.

Fact 3.2 Let O<p<l andq=l–p. Then forall N~

37/(pq),

Pr {.S’.,P ~ [NpJ + ~~zl ] > ~ (1)

Pr {S.,P s rNp] - ~~-1 } > ~. (2)

The proof is given in Appendix A.

Fact 3.3 For any random vartable S 6 [0, N] with expecta-
tion aN, and for any O < /3 < a ~ 1,

Pr{S 2 ,6N} > (a - B)/(l – P).

Proof. It follows by setting z = Pr{S > /3N} and solving

QN = E[S] = E[S I S < /3N](l – Z) +E[S I S ~ @N]z

< ~N(l – z) + Nz

for z. ❑

Two {O, I}-valued functions Co and Cl are called disjoint if

there exists no z c X such that CO(x) = CI (x) = 1. A target
class C is called trivial if any two targets CO, Cl E C are either
identical or disjoint. Kearns and Li have shown in [KL93]
that nontrivial target classes cannot be PAC learned with
accuracy e if the malicious noise rate q is larger or equal
than s/(1 + e). The proof is baaed on the statistical in-

distinguishability of two targets CO and Cl that differ on

some domain point x which has probability E, but coincide

on all other points with nonzero probability. The malicious

oracle will present x with the false label with probability

qo = &/(1 + E). Hence, x appears with the true label with
probability (1 – qo)e. As (1 – qo)s = qO, there is no chance
to distinguish between CO and Cl.

Our first lower bound is based on a similar reasoning:
For q < q., the targets Co and Cl can be distinguished,

but as q approaches qO, the discrimination task becomes
arbitrarily hard. These ideas are made precise in the proof
of the following result.

Theorem 3.4 For any nontrivial target class C, any O <

E < 1, 0 < 6 ~ 1/38, and O < A = o(e), the sample size

needed for PA C learning C wtth accuracy c, confidence ii,

and tolerating maliczous noise rate q = E/(1 + c) – A, is

,qreater than

971(1 -?l)=Q ~
37A2 () A2

Proof. For each nontrivial target class C there exist two
points Xo, xl c X and two targets CO, CI such that CO(XO) =

C1(ZO) = 1, CO(Z1) = O, and Cl(xl) = 1. Let the distri-
bution D be such that D(zO) = 1 – e and D(xl) = e, We
will use a malicious oracle that, with probability y q, corrupts

the current example by replacing it with x 1 labeled incor-
rectly. Let A be a (possibly) randomized learning algorithm
for C that demands sample size m = m(e, d, q). Consider
the following random experiment:

1.

2.

3.

Flip a fair coin to select target C E {CO, Cl } at ran-

dom.

If A is randomized, draw a sequence of sufficiently

many true random bits for A.

Each time A calls the oracle, draw x from D and fliv
a coin with bias q for heads. ‘If heads, then return th~

corrupt ed example (z i, 1 — C (z 1) ); otherwise, return
(X, c(x)).

Assume for the purpose of contradiction that A PAC learns

C against the above malicious oracle. Let pd (m) be Pr{Il #

C}, where H is the hypothesis generated by A using a sam-
ple of size m = m(s, 6, q). Since H # C implies that His not

an E-accurate hypothesis, we have that pd (m) ~ d < 1/38
must hold. For the above malicious oracle, the probability
that an example shows xl with the wrong label is ~. The
probability to see xl with the true label is a bit higher,
namely (1 - ~)c = q + A + eA. Let B be the Bayes strategy
that outputs Cl if the example (xl, 1) occurs more often in

the sample than (ZI, O), and CO otherwise. It is easy to show
that B minimizes the probability to output the wrong hy-

pothesis. Thus pB (m) < PA(m) for all m. We now show that
m ~ 9q(l – q)/(37AL) implies PB (m) > 1/38. For this pur-

pose, we define events BAD1 (m) and BADz (m) over runs
of B that use sample size m as follows. BAD1 (m) is the
event that at least [(~ + A)ml + 1 examples are corrupted,
BADz (m) is the event that the true label of xl is shown at
most [(q + A)ml times. Clearly, BAD1 (m) implies that the

false label of $1 is shown at least [(q+A)ml + 1 times. Thus,
BAD1 (m) and BADz (m) together imply that B’s hypc,the-
sis is wrong. Based on the following two claims, we will show
that for m too small, Pr{BADl (m) A BAD2(m)} > 1/38.

Claim 3.5 For all m ~ 1,
Pr{B.4DZ(m) I BADI (m)} ~ 1/2.

Proof of the claim. Given BAD1 (m), there are less than

(1 – q – A)m uncorrupted examples. Each uncorrupted

example shows the true label of xl with probability e. In the
average, the true label is shown less than (1 – q – A)sm =
(1 – qo)cm = qom = (q+ A)m times. The claim now follows
from Fact 31. ❑

Claim 3.6 Jf - < m s ‘\$~J) , then

Pr{BADl (m)} > ~.

Proof of the claim. Let S~ ,V denote the number of cor-

rupted examples. Fact 3.2 implies that for all m ~ fin,

The claim follows if

This condition 1s imphed by

m~+~mq(l-?])-l~qm+ Am+3

which, in turn, is implied by

1
j mq(l –q) – 1 >3
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The latter two conditions easily follow from the lower and

the upper bound on m specified in the statement of the

claim. ❑

From these two claims we obtain that for - < m <

‘~tl–~l, it holds that pB (m) > 1/38. Note that A < &/K
fo~7~ sufficiently large constant K implies that the specified
range for m cent ains at least one integer, i.e., the implica-
tion is not vacuous. As B is optimal, it cannot be worse
than a strategy which ignores sample points, thus the er-
ror probability pB (m) does not increaae with m. We may
therefore drop the condition m ~ A. This completes

the proof. ❑

The proof of our next lower bound combines the technique

from [EHKV89] for showing the lower bound on the sample

size in the noise-free PAC learning model with the argument
of statistical indistinguishability, Here the indistinguishabil-
ity is used to force with probability 1/2 a mistake on a point
x, with D(x) = q/(1 – q). To ensure that with probability
greater than b the learner outputs an hypothesis with error

at least e, we use t other points that are empirically seen
very seldom. This entails that the learning algorithm must
essentially perform a random guess on half of them.

Theorem 3.7 For any target class C with VC-dimenszon

d ~ 3, and for any O < E ~ 1/8, O <6 ~ 1/12, and any

O < A < 6/(1+ e), the sample size needed for PAC learning

C with accuracy E, confidence 6, and tolerating malicious
noise rate ~ = E/(1 + E) — @,, is greater than

d–2

32A(1 + e) ()
=Q ;

Note that for A = e/(1 + E), i.e. q = O, this reduces to the
known lower bound on the sample size for noise-free PAC
learning.

Proof. Let t = d–2 and let XO = {zo, z1,. . . ,xt,xt+l} the

set of points shattered by C. We may assume w.1.o.g. that C

is the powerset of XO. We define distribution D as follows:

D(q)) = 1 – *-8(’+8(6–i%) ,J)(Z,+l) = L.
D(zl) = . . = D(u) =

t l–q

(Note that .s < 1/8 implies that D(xo) ~ O.) We will use a
malicious oracle that, with probability y q, corrupts the cur-
rent example by replacing it with zt+l labeled incorrectly.

Therefore z~+l is shown incorrectly labeled with probability
q and correctly labeled with probability (1 – q)D(z*+l ) = ~.
Thus, true and false labels for zt+l are statistically indistin-
guishable. We will call xl, . . . . xt ra~e points in the sequeI.

Note that when q approaches qO the probability to select
a rare point approaches O. Let A be a (possibly) random-
ized learning algorithm for C which demands sample size
m = m(e, 6, q). Consider the following random experiment:

1. Flip a fair coin to select target C c C at random.

2. If A is randomized, draw a sequence of sufficiently

many true random bits for A.

3. Each time A calls the oracle, draw z from D and flip
a coin with bias q for heads. If heads, then return the

corrupt ed example (Z~+ 1, 1 – C(Z 1) ); otherwise, return

(X, c(x)).

There is a subtle way to use the statistical indistinguisha-

bility of the two labels for Zt+l. We obtain an equivalent

random experiment when we modify step 3 by

3’. Determine a true random bit ,6 by an independent coin
flip and let C(z~+l) = ~.

Thus, the probability to misclassify z~+l is always 1/2 (with-
out any dependence on the other randomly chosen quanti-
ties). This observation will be used later in the analysis.

Let eA be the random variable denoting the error Pr{H #

C} of A’s hypothesis H. Then, by pigeonhole,

(3)

and this implies the existence of a concept Co ~ C such
that the probability that .4 does not output an s-accurate
hypothesis for CO is greater than 1/12 ~ J. Let us assume
for the purpose of contradiction that m ~ t/(32A(l + e)).
It then suffices to show that (3) holds.

Towards this end, we will define events BAD1, BADz,
and BADs, over runs of A that use sample size m, whose
conjunction has probability greater than 1/12 and implies (3).

BALZ is the event that at least t/2 rare points are not re-

turned as examples bv the oracle. In what follows, we call

unseen the rare points that are not returned by the oracle.

Given BAD1, we denote by UP the set of t/2 unseen points

with lowest indices and we define BADz as the event that

hypothesis If classifies at least t/8 points of UP incorrectly.

Finally, BAD3 is the event that hypothesis 27 classifies z~+l
incorrectly. It is easy to see that BAD1 A BADz A BAD3
implies (3), because the total probability y of misclassification
adds up to

We finally have to discuss the probabilities of the 3 events.
Only noise-free examples potentially show one of the rare
points. The probability that this happens is

8(’+ (1 -q)= 8(s(1 - q) -V)= 8A(1 +s).

t
Since ~ < S2A(1+,), the examples returned by the oracle

contain at most t/4 rare points on the average. It follows
from Markov inequality that the probability that these ex-

amples contain more than t/2 rare points is smaller than 1/2.
Thus Pr{BADl } > 1/2. For each unseen point there is a

chance of 1/2 of misclassification. Thus Pr{BADz \ BAD1 }

is the probability that a fair coin flipped t/2 times shows
heads at least t/8 times. Fact 3.3 applied with a = 1/2, and
,6= 1/4, implies that this probabdity is greater than 1/3. As
the boolean labels of Zt+l are statistically indktinguishable,
we get Pr{BADs I BADI, BAD2} = Pr{BADs} = 1/2.
Thus

Pr{BADl A BADz A BAD3}

= Pr{BADl} Pr{BADZ \ BADI} Pr{BADa)

1111

‘?”z’5=E’
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which completes the proof. ❑

It follows from the proofs of the previous two theorems that

the lower bound Q(q/A2 +d/A) holds even for a “weak” ma-

licious oracle whose corruption strategy does not depend on

the paat examples in the sample. The upper bound pre-

sented in Section 4 matches the lower bound (ignoring log-
arithmic factors), and holds even for a “strong” malicious

oracle. Learning in the presence of strong malicious noise is
performed according to the following protocol:

The learning algorithm issues all of the m oracle calls at the
beginning. The oracle then draws XI, . . . . x~ independently

and according to D. Afterwards, a coin with biw q for heads

is tossed m times, where heads on the t-th coin toss means

that the oracle is allowed to corrupt the t-th example. Fi-
nally, the malicious oracle answers all calls (note that here

the corruption strategy may depend on the whole sample)
and the learner must compute its hypothesis without any
more calls to the oracle.
The standard malicious oracle introduced in Section 2 lies
somewhere in between the weak one and the strong one, as
the corruption strategy may depend on the past examples,

but not on the future ones. The following lower bound on the

sample size needed by the minimum disagreement strategy

(MDS henceafter) is shown for the strong malicious oracle.

Given the whole sample S’ of corrupted training examples,
MDS will output the hypothesis If c C with the fewest dis-

agreements on S’.

Theorem 3.8 For any target class C with VC-dimension
d~3, any 0<z<l/38,0<6~ 1/74, andany O<A=
O(E), the sample size needed by the Iklmimurn Disagreement
strategy for learning C with accuracy z, confidence 6, and

tolerating malicious noise rate q = ~ – A, is greater than

4(1 – q)(l – &)((d – 1)/38]s de

37(1 + E)2A2 ()=~~’

Proof. The proof uses d shattered points, where d – 1 of

them (the rare points) have a relatively small probability.

The total probability of all rare points is c& for some constant
c. Let p be the mean and u the standard deviation for the
number of true labels of a rare point within the (corrupted)

training sample. If the rare points were shown p times, the
malicious oracle would have no chance to fool MDS. The
basic idea is however to argue as follows. If the sample
size m is too small, it leads to a standard deviation a for
the number of true labels of a rare point z which is too

big. Hence, with a constant probability, the number of true

labels of a rare point is smaller than (roughly) p -a. If this

happens, we call x a hidden point. It follows that there is

also a constant probability that a constant fraction of the
rare points are hidden. This gives the strong malicous oracle

the chance to present more false than true labels for each
hidden point. We now make these ideaa precise.

Our proof needs the following technical am.umption:

m > 37[(d – 1)/38]

– &(l–e)(l– q)”
(4)

This condition can be forced by invoking the general lower

bound Q(d/A) from Theorem 3.7 for A ~ s/K and a suffi-
ciently large constant K. For the purpose of contradiction,
we assume that

~ < 4(1 - q)(l - s)~(d– 1)/381&
—

37(1 + S)2A2 ‘
(5)

Let BAD1 be the event that at least [qmj examples are cor-

rupted by the strong malicious oracle. According to Fact 3.1,

BAD1 has probability at least 1/2. Let t = d – 1 and let

XO = {ZO, . . . . zt} be the set of points shattered by C. Dis-
tribution D is defined by

Points x1,. . . . xt are called rare. Consider a fixed rare point

x,. Each example shows z, with its true label with proba-

bility

P= [t/381-’@ – q) = (t/381 -l(q+A(l +&)).

Let T~ denote the number of examples that present the true

label of x,. Call x, hzdden if

Inequality (4) implies that m ~ A. Thus, according to

Fact 3.2, x, is hidden with probability greater than 1/19.

Using the fact that Pr {x, w hidden} is equal to

Pr {z, 1s hidden I BADI} Pr {BADI}

+ Pr {z, is hidden I +3ADI} (1– Pr {BAD1})

and

Pr {x, is hidden I BADI } ~ Pr {z, is hidden I =BAD1} ,

it follows that

Pr {x, is hidden I B.4D1 } z Pr {z, is hidden} > ~.

Given BAD1, let T be the (conditional) random variable

which counts the number of hidden points. The expecta-

tion of T is greater than t/19. According to Fact 3.3 (with

a = 1/19 and ,B = 1/38), the probability that at least t/38
rare points are hidden 1s greater than 1/37. Thus with prob-

ability greater than J = 1/74, there are (at least) [qmj cor-

rupted examples and (at least) [t/381 hidden points. This

is assumed in the sequel.
The total probability of [t/381 hidden points (measured

by D) is exactly [t/381 (t/381 -l& = e. It suffices therefore to
show that there are enough corrupted examples to present

each of the (t/381 hidden points with more false than true
labels. The total number of true labels for [t/381 hidden

points can be bounded from above:

[t/381 ([pml - [{mp(l -p) - lj)

< qm+ A(l + t)m+ 2[t/381

-’t’38m%-
The number of false labels that the oracle can use is greater
than qm – 1 and should exceed the number of true labels
by at least [t/381. The oracle can therefore force an e-
inaccurate hypothesis of MDS if

qm – 1 ~ qm + A(l -I- e)m + 3[t/381
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or equivalently if

r’/381~’A(1+’)m+3r’/’’l+1
(6)

We will develop a sufficient condition which is easier to han-

dle. The right-hand side of (6) contains the three terms

ZI = 3[t/381, .ZZ= 1,23 = A(1 + s)m.

Splitting the left-hand side Z of (6) in three parts, we ob-
tain the sufficient condition 2/2 ~ .zI, Z/6 ~ .rz, 2/3 ~

23, which reads (after some algebralc simplifications) in ex-
panded form as follows:

/

mz(l-q)(l-s)_l > 6

[t/381

“’381P ~ 6

“’381- 23A(1+&)m

An easy computation shows that these three conditions are
implied by (4) and (5). This completes the proof. ❑

It is an open question whether a similar lower bound can

be proven for the standard (or even the weak) oracle.

4 A tight upper bound for the class of all

subsets over d points

In this section we show that the lower bound proven in Sec-

tion 3 cannot be improved in general. That is, we show that
for each d ~ 1, the class Cd of all subsets over d points can
be PAC learned with accuracy s > 0 and malicious noise

rate q < 5/(1 + s) using a sample of size b(~/A2 + d/A),

where A = &/(1 + E) — q. The learning algorithm uses a

majority vote on the sample to decide the labels of some of

the domain points and tosses a fair coin to decide the labels

of the remaining ones.

4.1 The algorithm RMD

In this section we prove the following result for the ran-
domized algorithm RMD informally described below. The
pseudo-code may be found in Figure 1.

Theorem 4.1 For any d ~ 1 and any 1 ~ E, 6, A > 0,

algorithm RMD, with input parameters Q = ~ – 1,

L = [log 6~L1~J2El , and n = [50 ln(4L/r5)l, PAC learns

the clk cd with a;curacy E, confidence 6, tolerating ma~i-

czous noise rate ~ = E/(1 + E) – A, and using a sample of

swe ~(c/A’ + d/A).

As cd includes all concepts on {1,...,d}, algorithm RMD
can choose its hypothesis by deciding the label of each point
in the domain independently. This is done as follows: based
on the sample, the domain is divided into two main groups.
The label of each point i in the first group is decided by
taking a majority vote on the occurrences of (i, O) and (i, 1)
in the sample. The labels of the points in the second group

are instead chosen in a random way.

Algorithm RMD.
Input: Parameters a, L, n. Domain size d, accuracy e, con-
fidence 6.

● Make m = m(d,s, 6, a, L, n) calls to the malicious or-

acle, where m, = 6(E/A2 + d/A), and get sample

(i~, y~),..., (i~,, vn, ).

I
● For each point t 6 {1, . . ..d}.

1. If z is in strong majority or belongs to a sparse

band, then let H(i) be the most frequent label
with which i appears in the sample;

2. else, let H(i) be a random label.

. Output the hypothesis H.

Figure 1: Pseudo-code for the randomized algorithm RMD

(see Theorem 4.1).

To bound the total error of the hypothesis chosen by the

algorithm, we divide each of the two above groups into sub-
groups, and then separately bound the contributions of each

subgroup to the total error. Within each such subgroup, we
approximately bound the total probability of the domain

points for which the algorithm chooses the wrong label by

the total frequency of corrupted examples of points in the
subgroup. Since, for a large enough sample, the sample fre-
quency of corrupted examples is very close to the actual
noise rate q, and since the noise rate is bounded away from
the desired accuracy c, we can show that the total prob-
ability of the points labeled incorrectly, summed over all
subgroups, is at most the desired accuracy e.

Given a sample (il, yl ), . . . . (i~, y~) drawn from the set

{1, . . . . d} x {O, 1}, let w,, and vi,, be the frequencies with

which each point z E {1, . . . . d} appears in the sample with
label respectwely O and 1. For each Z, we define e, =
min{vo,,, vI,,} and u, = max{vo,,, VI,,}. For some fixed

Q >0, a domain point z IS in strong majority (with respect

to the sample) if u, > (1+ a)l,, and is in weak majority oth-

erwise. We divide some of the points into L bands, for fixed

integer L >1. A point iisinbandlc, for k= 1,. ... L, ifiis

in weak m=jority and (l+a)– Ke <1, s (l+cr)l-kc. We fur-

ther divide the bands in sparse bands, containing less than
n elements, and dense bands, containing at least n elements,
where n is some other fixed positive integer.

4.2 Proof of Theorem 4.1

Let D be any distribution assigning probability p, to each i 6
{1, . . . . d}. We say that a point i is heavy if pi z A/3d. Let
lheavY be the set of all heavy points and ~h~ht its Complement
with respect to {1, , d}. Let In]aJ, IsParse, and Idense be
the sets of all domain points respectively in strong majority,

sparse bands and dense bands. For fixed choice of input

parameters, we denote RMD’s hypothesis by H.
For simplicity, for each point i we will write t,and ~, to

denote, respectively, Vc(,),, and VI-C(,),,%. That is, t,and ~,
are the sample frequencies of, respectwely, clean and cor-
rupted examples associated with each point i. We define
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We now state some classical Chernoff-Hoeffding inequalities
(see e.g. [Lit95]) we will repeatedly use throughout the proof.

Let Sm ,P and S; ,P! be the sums of successesin a sequence
of m Bernoulli trials each succeding with probability respec-
tively at least p and at most p’. Then, for all O < A <1,

Pr{S~,P ~ (1 – A)mp} < e-~2mpf2 (7)

Pr{Sm,P ~ m(p – A)} < e-2~2~, (8)

–A’mp’/3
Pr{SL,p > (1 + A)vtp’} < e (9)

First, we upper bound in probability the sum fmaj + f,p~,,~ +

fd..se Let O be the frequency of corrupted examples in the
sample. By using (9) with p = q and J = A/(3q), we find
that

holds with probability at least 1 – 6/4 whenever the sample

size is at least (27q/A2) ln(4/d) = d(q/A2).
Second, we lower bound in probability the sample fre-

quency t, of uncorrupted examples for each i = ~heavy. Note
that the probability that a point i appears uncorrupted in

the sample is at least (1 – q)p,. Also, l~h~..y I < d, w there
are at most d points. By using (7) with p = A/(3d) and

J = a/(1 + a), we find that

holds with probability at least 1 – 6/4 whenever the sample
size is at least

Thus, if the sample size is 6(q/A2+d/A), then (10) and (11)

simultaneously hold with probability y at least 1- d/2.
Let lW,O,,, == {i : C(i) # H(i)}. Claim 4.5 shows that,

if (10) and (11) hold, then all heavy points are in the set
.I,,laj U l,sp~r.e U Id,.,,. Thus

D(Iwrong) < D(Iwr.ng n Imaj) (12)

+D(l.w.~g n Isparse) + ~(~wrong n ~dense)

+~ (Ilight \ (Imaj U ~sparse U ldense))

Now, Claims 4.2–4.4 show how the first three terms in the
right-hand side of (12) can be simultaneously bounded. In

the rest of this section, we prove Claims 4.2-4.5. We start

by bounding the error made by H on points i G Imaj.

Claim 4.2 (Strong majority) If (11) holds, then

D(lWrO.g n Imaj) < * + ~(~maj n ~light).

Proof, Recall that, for each i E Jmaj, H(i) # C(Z) if and

only if t,= t,.Hence, if (11) holds, we find that for any
i e ~WrO.g n ~maj n ~h~avy, (1 – ~)pt < (1+ ~)tt = (1+ a)~t <

~u, = f,. AS ~,cIW,O,,gnI~~JnI~,~vY j i S fmaj, the proof

is concluded. ❑

We now bound the error occurring in the sparse bands by
proving the following.

Claim 4.3 (Sparse bands) Let the sample swe be at least

Then (10) and (11) together amply that D(IW,ong n I,P~,,~) ~
*+ & holds wzth pro babdtty at least 1 – 6/4 with

respect to the sample random draw.

Proof. Recall that there are L bands and each sparse band

contains at most n elements. We first prove that

holds in probability. To show this, we use (7) to write the
following

‘r’sn7s(p-A)’’’’’=pr{sm<(H)rnp}
‘exp(-$)“XP(-3 (14)

where the last inequality holds for all p’ z p by monotonic-

ity. Now assume (10) and (11) both hold and choose i such

that p, > (1+ a)E/(1– q). Then z E ~heavy ancl ti 2 e.

AS fj < e by (10), i @ l~,~,,g. Hence, (10) and (11) imply

that p, < (1+ CZ)e/(1— V)holds for all i c lW,O,,g. We then
apply (14) to each z c ~~~~~~gn l~P~~~~. Setting p = (1 – q)pz,

p’ = (1+ ~)s ~ p, and A = A/(%Ln) we find that (13) holds

wit h probability y at least 1 – 6/4 whenever the sample size
is at least

18(1 + CY)CL2n2 ,n~=~ E

A’ ii () p’

Finally, from (13) we get that

This concludes the proof. ❑

We move on to bounding the error made on points in dense
bands.

Claim 4.4 (Dense bands) If (11)holds, then

D(lW,O,,, n 1,,.,,s,) < * + D(~ctms. n ~%l,t)

holds with pro babzhty at least 1 – 6/4 with respect to the
algorithm randomization.

Proof. For each k = 1, . . . L, let B~ be all points in the k-th

band. Furthermore, let ~;lax = m= {t! : z ~ Bk n ~wr[jllg }

~d f~,,, = min {f, : 7. 6 Bk n I~~~,,g}. Since all points in

B~ are in weak majority and by definition of bands, we

have that t$,.x < (1 + a)~f~,,,, holds for each k = 1,..., L.
Furthermore, using (11), p,, < ~tj, for each .7 C Bk fl

l~,avY. As for each dense band 113~I ~ n ~ 50 ln(4L/@,

using (8) we can guarantee that [B~ n Iwrong I < ~ 1~~ [ holds
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simultaneously for all bands k = 1, ..., L with probability y
at least 1 — 6/4. Combining everything we get

By choosing a = (5/3)1/3 – 1 so that (3/5)(1+ a)’ = 1, we
get

~(&se n .fwro.gn ~hewy)=x ~ Pi

k Bk nIwrong nIhewy

concluding the proof. ❑

Claim 4.5 If (10) and (11) hold, then

~heavy G Imaj U ~sparse U ~dense.

Proof. If (10) holds, then 1~ < j, ~ q + ~ < c for each

point i. Also, if (11) holds, then, for each i C ~heavy fl .fmaj,

l,?=> ~>+ >-Q=%l+a — l+a — (I+a) pi — 3d(l+a) “
Thus, by the.—,., ... –,

choice of L (and recalling that q < 1/2), z belongs to a
band. Hence, if (10) and (11) both hold, then all points not
in .fIllaj U ~~parse U .fden~e are light points. ❑

To finish the proof of the theorem recall that ~(~light) <

A/3 by definition, and q = O(e). Combining the above we
)< K@<~=~ holds withfind from (12) that D(Iwrong _ ~_.

probability at least 1-6 for a sample of size @E/A2 + d/A),

as desired.
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A Proof of Fact 3.2

Proof. In this extended abstract we prove inequality (1)

(the proof of (2) is similar). We proceed by establishing a
series of inequalities. We shall also use Stirling’s formula

()
%:”

~N

()

<N!<m _ ~iim , (15)
e

Using (15) one can lower bound the binomial coefficient (~,)

as follows (assuming that and N is a multiple of I/p, which
will be justified later in the proof)

()

N

ivp = (NpflNq)!

11
= =X pNP1qN, e-k.

This leads to

()-, 1 N ‘]e-*. (16)

/XpNP q“q NP

Bahadur [Bah60] proved the following lower bound on the
tail of the binomial distribution, where O < k s N,

Pr {SN,P > k} > ()~ k (N-k)
~P9

q(k + 1)

k+l–p(N+l)

( )

–1

1 + (k :%$’ ‘
(17)

In order to be able to apply (16) we remove the first ‘(floors”

in (1). To this end we replace p by p’ = p – y (and q by
q’ = q + T) such that lNpJ = Np’. Then iVp’ is integer and

p’ > p – ~. We shall also need the following observation.

P9 = (P’ +’Y)(q’ –’Y) = P’q’ +-Y(9’ –P’) –i”

= p’q’ + ‘Y(9’ – P’ – 7)

= p’q’ +-f(q –p’)

< p’q’ + T < p’q’ -t ;. (18)

Then (18) and N ~ 37/(pq) imply that

Np’g’ > Npq – 1 ~ 36.

Hence (1) can be lower bounded as follows

(19)

}

> P.{SN,PI>iVP+-[ /G]}

{
> Pr SN,P,

‘N’’+b’=o
(20)

In order to bound (20) we apply inequality (17) with k =

Np’ + l-~ and p and q being replaced by p’ and q’,

respectively. The three factors in the right-hand side of (17),

denoted by F1, F~ and F3, are separately bounded as follows.

F’2 =
/(Np’ + [-j + 1)

Np’+l-~+l– Np’–p’

Np’q’ + q’([-~ +1)
——

[-J +@
>m

(The inequality (22) follows from (16),)

F3 =

.

—.

>

=

>

=

=

( )
–1

1+ (Np( + [=] -NP’)2

(1+,%,)”’
(mm-q’

(-+ 1)2+N@@

Np’q’ – 2-+ 1

2Np1q’ – 2M + 1

Np’q’ – 2W

2Np’q’ - 2W

1

i ( )hm+-1 (23)

The following calculation shows how the product of (21)

and (22) can be lower bounded. For notational convenience

(

–1
let T= e+a

)
and let K = l-~.

(“:+1,) ($)”
F1. F2>

fi(”~J)e’’N;’q’

()
T+’<

N!(Np’)!(N – Np’)!~
~!(Np’ + K)!(N – Np’ – K)!

()
T$

“ (Nq’ - K +1) (Nq’)
=

(Np’ + 1) (Np+ K)

I<

()(~
=Td

‘“ NL1’ -K+i

@ Np’ + i
)

(24)

,=1
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(25)‘ T ($)”(AJK
()

-K

= T l+— Npl

‘ ‘(l+%

-m

Np,

= ‘(l+*)-W
(26)

z Te–q’ (27)

1
. e-q’

~ el*$P’~T
(28)

>
1

‘1 > ().14642, . .
fiche

(29)

In (28) and (29) we used that Np’q’ >36, by (19). For the

step from (24) to (25) we assume that Nq’ - k ~ Np’. If

Nq’ – k < Np’ the steps from (25) in the above calculation

are replaced by the following:

()(?
‘~

K Nq’– K+i

)

(30)

“’”i” FiiK)K ’31)

()

‘ Nq’– K K
= Nq,

(

. ‘ Nq’ – lmj

)

[=]

Nqt

-(

> ‘ Nq’–m

)

m

NqJ

= ‘(’-&)w
(32)

>
1 10e_pj

(33)
~ e 12;P!~T 11

>
1 10 -1

~ e~ tie ~ 0.133112 . . . (34)

The step from (32) to (33) follows from an elementary anal-

ysis of the function (1 - ;)b - se-a. Using (34) (which is
less than the bound in (29)) and (23) we can lower bound

the product F1F2F3 as follows:

FI.F,.F3

(

> 0.123112. ; 1 –
[A] -1 )

> 0.066556.

(1-l~j-1) ’35)

> 0.05324 . ..>~. (36)

For the step from (35) to (36) we again used inequality (19).
0
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