
Abstract

The complexity of matrix rank and

feasible systems of linear equations

(Extended Abstract)

Eric Allender* Robert Bealst Mitsunori Ogihara$

We characterize the complexity of some natural and impor-

tant problems in linear algebra. In particular, we identify
natural complexity classes for which the problems of (a) de-
termining if a system of linear equations is feasible and (b)
computing the rank of an integer matrix, (as well as other

problems), are complete under logspace reductions.
As an important part of presenting this classification, we

show that the “exact counting logspace hierarchy” collapses
to near the bottom level. (We review the definition of this

hierarchy below.) We further show that this class is closed
under NC1-reducibility, and that it consists of exactly those
languages that have Iogspace uniform span programs (intro-
duced by Karchmer and Wigderson) over the rationals.

In addition, we contrast the complexity of these prob-
lems with the complexity of determining if a system of linear

equations has an integer solution.

1 Introduction

The motivation for this work comes from two quite different
sources. The first and most obvious source is the desire to

understand the complexity of problems in linear algebra; our
results succeed in meeting this goal. The other, less obvious,

source is the desire to understand the power of threshold
circuits and enumeration problems. Although our results

do not actually help much in this regard, this motivation is
responsible for some of the notation used later, and thus we
start by explaining this side of things.
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1.1 Complexity Classes for Counting and Enumeration

The counting hierarchy (sometimes denoted CH) is the com-

plexity class PP u PPPP U PPPPPP U . . . . (Here, PP is
unbounded-error probabilistic polynomial time [Gi77].) Al-
though the counting hierarchy was originally defined in order

to classify the complexity of various problems [Wa86], an-
other reason to study CH comes from the connection with

threshold circuits. Using the analogous correspondence be-
tween constant-depth circuits and the polynomial hierarchy

established by [F SS84], it is known that const rutting an or-
acle separating PS PACE from CH is essentially the same

problem as showing that NCI properly contains TCO (the
class of problems computable by constant-depth threshold
circuits of polynomial size). Similarly, the important ques-
tion of whether or not the TCO hierarchy collapses is related
in this way to the question of whether or not CH collapses.

Since ppp = PXP, an equivalent way to define CH is by

p u p#P u p#@p u . . . . In proving results about the com-

plexity of PP and #P and related classes, it has often proved

more convenient to use the related class of functions GapP
[FFK], which is the set of functions that can be expressed

as the difference of two #P functions.
One final complexity class related to CH needs to be de-

fined. A number of authors have studied the class C= P =

{A I ~f G GapP, such that z c A ~ f(z) = O}. Note that
C= P can also be characterized in terms of “exact counting”;
a language A is in C= P iff there is an NP machine M and

a poly-time-computable g such that, for all x, z c A iff the
number of accepting computations of M on input x is ex-

actly g(z). Since PP is contained in C= Pc=p, it follows that
a third characterization of CH can be given in terms of C= P.

1.2 Logspace Counting Classes

There is no a priori reason to expect that logspace analogs

of the classes PP, #P, GapP, and C= P should be interesting,
and in fact, with the exception of PL, the related logspace
classes remained uninvestigated until fairly recently, when

independent discoveries by Vinay, Toda, and Damm showed

that #L actually characterizes the complexity of the deter-
minant quite well. More precisely, the following result is es-
sentially shown by Vinay [Vi91, Theorem 6.5], Toda [To91,
Theorem 2.1], and Damm [Da91]. (See also [Va92, Theorem

2]; further discussion may be found in [A094].)

Theorem 1.1 A function f is in GapL ifi $ is Iogspace
many-one reducible to the determinant.
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It follows immediately from this characterization that a
complete problem for PL is the set of integer matrices whose
determinant is positive (originally proved by [Ju85]). Of
course, checking if the determinant is positive is not nearly

as important a problem as checking if the determinant is
exactly equal to zero, and it is equally immediate from the

foregoing that the set of singular matrices is complete for
the complexity class C= L. (C= L can be defined in any of a

number of equivalent ways; see [A094]. Perhaps the sim-

riest wav is to sav that a set A is in C= L if there is an NL. .
machine such that z is in A iff the machine has exactly the
same number of accepting and rejecting paths on input z.)

Although the machine model for C= L is not as natural as
some, the fact that it exactly characterizes the complexity

of the sinmlar matrices makes this a better-motivated class
than, say~PL.

Logspace versions of the counting hierarchy were consid-

ered in [A094]. Although the hierarchies defined in terms of

C= P, PP, and #P all ~oincide with CH, there seems to be

little reason to believe that the hierarchies defined in terms

of C= L, PL, and #L are equal. It was shown in [A094] that
these hierarchies correspond exactly to ACO reducibility, in

the following sensel:

● The Exact Counting Logspace Hierarchy =

C. L
~= L... c4

= ACO(C.L)

= the class of problems ACO-reducible to the set of
singular integer matrices.

● The PL hierarchy =
PLPL..=L

= ACO (PL) = the class

of problems ACO-reducible to the problem of comput-
ing the high-order bit of the determinant of integer

mat rices.

#L
● The #L hierarchy = L#L” = ACO (#L) = the class

of problems ACO-reducible to computing the determi-

nant of integer matrices.

Note that all of these classes cent sin NL and are con-

t ained in TC] ~ NC2. Ogihara [Og96] recently proved that
the PL hierarchy collapses to PL.

ACO reducibility is a restricted form of the NCl reducibil-
ityy defined and studied in [C085]. For example, Cook defined

DET to be the class of problems NCl reducible to the deter-
minant, and thus his class DET cent ains the #L hierarchy.

1.3 Main results

We show that the exact counting logspace hierarchy col-
lapses to LC=L. It collapses all the way to C= L if and only

if C= L is closed under complement. We further show that
NCl (CSL) = LC=L, and that this class consists of exactly

those language with logspace uniform span programs over
the rational. (cf. [KW93]).

1When defining classes in terms of space-bounded oracle Th-ing

machines, one needs to be careful how access to the oracle is pro-

vided. We use the “Ruzzo-Simon-Tompa” access mechanism [RST],

which dictates that a nondeterministic Turing machine must behave

deterministically while wr$tzrag on its oracle tape. One consequence

of using this definition is that we may assume without loss of gener-

ahty that the list of queries ssked by the machine depends only on

the input c and does not depend on the answers given by the oracle

[RST]. The correspondence with ACO reducibility helps justify this
choice.

We show that testing feasibility of a system of linear
equations is complete for this hierarchy. Another complete
problem for this class is computing the rank of a matrix (or
even determining the low order bit of the rank).

In contrast, verifying that a matrix has a particular rank
is complete for a level of the Boolean hierarchy over C= L.

This is the first time that the complexity of these well-

studied problems in linear algebra has been so precisely char-

acterized.

It should be noticed that there are several other classes

C for which it has been shown that NCl (C) is equal to Lc.
In particular, there is a superficial resemblance between our

result showing NCl (C= L) = LC=L, and the result of [Og95]

that NC1 (C= P) is equal to Lc=p. Also, Gottlob [G096]

has recently studied the question of which classes C satisfy
ACO(C) = Lc. (Our results imply that C= L has this prop-

ert y.) However the techniques of [Og95, G096] do not carry
over to complexity classes with small space bounds such as

C= L, and thus our proofs are correspondingly more com-

plex.

2 Complexity of Problems in Linear Algebra

We will focus mainly on the following problems concerning
integer matrices: verifying that the rank of a matrix is T,

computing the rank of a matrix, and determining if a system
of linear equations is feasible.

Ver.RANh’= {(A, r) I A g Zmxn, r E N,rank(A) = r}.

Comp.RANK =

{(A, i,b) ] A G Zmxn, rank(A) = T, and bit i of ~ is b}

FSLE =

{(A, b) 1A= Zmxn, b 6 Zmx1,3z EQnxl J Az=b}.

(FSLE stands for Feasible Systems of Linear Equations.)
(The analogous problems for rational matrices have the same
complexity in our setting; we will not mention them further
in thk extended abstract.)

We show that

●

●

2.1

FSLE and Cornp.RANIt’ are complete for LC=L, and
these problems are equivalent to the problem of de-
termining if the rank is odd. (Note that all of these

problems are thus complete for the entire Exact Count-
ing Logspace Hierarchy, ACO (C= L), since it collapses
to this level.)

Ver-.RANKis complete for the second level of the Bool-
ean Hierarchy above C= L (i.e., the class of all sets
expressible as the intersection of a set in C= L and a

set in COC=L).

The Complexity of Rank

In this section we present the basic results concerning the
complexity of verifying the rank of integer matrices. We

will make frequent use of the many results that are already
known about the parallel complexity of problems in linear
algebra. An excellent survey article covering this area has
been written by von zur Gathen [vzG93].
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Proposition 2.1 The set

{(M, r)] M E Znxn and r(mlc(JI) < ,)

is complete for C= L.

Proofi Recall that the set of singular matrices is complete

for Cm L, and thus this set remains hard for this class even
when r = n. To see that it is in C= L, let ~ ~ denote the
characteristic polynomial of M, with coefficients co, . . . . Cn,

so XM(Z) = ~;=o C,z’. It was observed in [IMR80] that

the problem of determining if rank(M) < r is reducible
to the problem of whether the coefficients co, c1, . . . . c~_~-I

in XM, (for some M’ easily computable from M) are all

zero. (In fact, even over arbitrary fields F, checking if

rank(lf) < r is reducible to checking to see if several co-

efficients of a characteristic polynomial are zero. This is

mentioned in [ST94, Theorem 10], and can be shown to
follow from [vzG93, Theorem 13.7].2 ) Since it follows easily
from observations in [T091] that the function f(M, i) ::= the
coefficient c, of XM is a function in GapL, and hence that
the set {M, i I f(M, i) = O} is in C=L, it follows that the

set of matrices with rank at most r is logspace-ctt-reducible

to a set in C= L. Since C= L is closed under logspace-ctt re-
ductions [A094], the result follows.D

A more interesting question than asking if the rank of

M is less than r is asking if it is equal to r (and even more

interesting is the problem of computing the rank). In order
to classify the problem of verifying the rank, it is necessary

to define some additional complexity classes.
It is not known if C= L is closed under complement.

Thus, just as has been done with complexity classes such
as NP [CGH*88, CGH*89], one can define the Boolean Hi-
erarchy over Cc L, defined as the class of languages that can

be formed by taking Boolean combinations of languages in

C= L.3 Of particular interest to us will be the class that con-

tains all sets that are the difference of two sets in C= L.

Definition 1 Let C= L A COC= L be the set of cdl languages
A such that there ezist B G CZL and C c COC=L such that

A= BnC.

Theorem 2.2 The sets

{(M, T) I M C Z*”” and rcank(M) = r-}

and
{MI M E Z“xn andrank(M) = n- 1}

are complete for C=L A COC=L.

Proofi It follows easily from Proposition 2.1 that these

problems are in C= L A COC= L. Thus it suffices to show com-

pleteness. To do this, it will be useful to have the following
lemma, which is perhaps interesting in its own right.

‘The full paper will cent ain a detailed proof of t hls observat Ion,

as well as a discussion clarifying the complexity of the problem “IN-

DEPENDENCE” (i.e., determining if a set of vectors is linearly m-

independent or not). In the integer setting, this is easily seen to be

complete for COC=L. In the more general setting working over rings

with umty, [vzG93] lists as an open problem the question of whether

INDEPENDENCE is reducible to the problem of whether a matrix

w .mngular, The full paper will show that this can be done with a

conjunctive truth-table reduction.

31t can be verified that this Boolean hierarchy over C= L in fact

coincides with the class V-DET defined and studied m [sT941.

Lemma 2.3 There is a logspace-computable function f such

that if M is a matrix of full rank, then so is f(M), and if M

is a matrix with determinant zero, then f(M) is a matrix of
rank exactly one less than full.

First we will show that the lemma provides a proof, and

then afterward we will prove the lemma.
Let A = Bm C where B c C.L and G c COC. L. Since

the set of singular matrices is complete for C= L, on input

z we can compute matrices AifI and MZ such that z c A

iff det(M1) = O and det(Mz) # O. By Lemma 2.3 we can

compute matrices Ms and M4 such that z c A iff rank(M3 )

is one less than full and the rank(M4 ) is full. (Note also

that z # A iff either rank(M3 ) is full or rank(M4 ) is one less

than full. ) Thus z E A if and only if the matrix

[M3“ M’]

has rank one less than full. This completes the proof of the

theorem. ❑

Proofi (of Lemma 2.3) Since the determinant of a matrix
is a GapL function, it follows that given a matrix M one
can easily construct directed acyclic graphs G and H such

that the determinant of M is (the number of s-t paths in

G) – (the number of s-t paths in H), and it is easy to

construct these graphs such that any s-t path in either graph

has even length. Now build a graph K consisting of G and

H, together with two new vertices a and b, where A’ has all
of the edges of G and H, along with self-loops on all vertices
ezcept a, and also having edges from a to the start vertices
of G and H, and from the end vertex of G to b, from b to a,

and from the end vertex of H to a.
It is shown in [To91] (modifying an older argument due

to [Va79]) that the determinant of K (i.e., the determinant
of the adjacency matrix of the graph K) is equal to the

determinant of M. (The reason is that the only non-zero

terms in the canonical expression of the determinant of K

correspond to disjoint cycles that cover the vertices of h’.

However, the only way to cover A“ by disjoint cycles is to

have one cycle corresponding to an s-t path in either G or
H, with all other vertices on self-loops. Closer examination

shows that, since the length of cycles through G have odd

length and the cycles through H have even length, the posi-
tive contribution to the determinant comes entirely from the
s-tpaths in G, and the negative contribution comes from the

s-tpaths in H.)

It is not clear what the rank of A- is. However, let us

now create a graph K’ consisting of K along with two new
vertices, giving exactly one new s-t path in G and one new

s-tpath in H. That is, let the two new vertices be c, d, and
put self-loops on c and d, and add edges from the start vertex

of G to c, from the start vertex of H to d, from c to the end
vertex of G, and from d to the end vertex of H. Note that
the determinant of A“ is equal to the determinant of K, since
we have added exactly one new s-t path on each side of K
to obtain A-’. Thus if M has full rank, so does h“’. However
if M has determinant zero, so does K’, but if we delete the
edge leaving vertex d then we obtain a matrix with nonzero

determinant (since we’ve removed one of the s-t paths in H
but not in G). Note that this implies that h“ must have had

rank only one less than full, since changing one bit chan6es
only one of the columns of K’. That completes the proof of

the lemma. CI
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It will be useful later on to observe that the following

fact holds.

Fact 2.4 The language

{(A, B, r) I r is the rank of both A and B}

is in c=~ A coce~.

Proofi This can easily be expressed w the intersection

of sets checking (1) rank(A) = r, and (2) rank(B) = r.
Note that C= L A COC= L is easily seen to be closed under
intersection. ❑

2.2 Feasible Systems of Linear Equations

In this section we introduce one of the complete languages
for L(C= L), and give some preliminary reductions. The
proof of completeness is in the next section.

Definition 2 Let FSLE denote the language {(A, b) I A c
zfzx~,~ ~ Znxl,3z ~ Qnxl I Az= b}.

Proposition 2.5 The language FSLE is logspace many-one
reducible to h’s complement.

Proof: Consider the system of equations Ax = b, and

let W be the subspace spanned by the columns of A. The
system is feasible iff b E W. From elementary linear algebra
we know that b can be written uniquely as b = w + w, where

v is perpendicular to W (i.e., VTA = O) and w G W. If

w # O, then since VTW = O we have vTb = VTV > 0, and
we may let y = (l/vTv)v. We have shown that if Ax = b

is infeasible, then there exists y such that yTA = O and
y~b = 1. Conversely, if such a y exists then Ax = b is

infeasible. The linear equations specifying y are logspace-
computable from A and b, as desired. ❑

The above shows how to “negate” a system of linear
equations. We remark that other logical operations can in
some sense be performed on systems of linear equations. For
example, suppose that we are given two systems, Az = b and
Cy = d, and we wish to make a system that is feasible iff

both original systems are feasible (i.e., we wish to compute
the logical AND of the two systems). The system

(:0(0=(0
is exactly what we want. To construct the logical OR of two
systems, we note that an OR gate can be built out of three

negation gates and an AND gate. It is useful to carry this
observation a little further, for which we need the following:

Definition 3 A logspace dtt reduction from A to B is a
function f, computable in logspace, such that for all r, f(z)

produces a list of strings (yI, Y2, . . . , y,), with the property

that z E A iff at least one of the y; is in B (“dtt” stands
jot- “disjunctive twth table” reducibility). Similarly, one de-
fines “conjunctive truth table reducibility” (ctt reductions).

A more general type of reduction is the following. An NC:
reduction [Ba91] is a uniform sequence of circuits {Cn } of

size no(l) and depth O(log n), consisting o.fjan-in two AND

and OR gates, NOT gates, and “oracle gates”, with the prop-
erty that no path from input to output goes through more
than one oracle gate.

Expanding on the observations in the previous paragraph

easily shows:

Lemma 2.6 The class of languages logspace many-ovae re-
ducible to FSLE is closed under NC; reductions.a

We now give some relationships between FSLE and C= L,

using the results on rank from the previous section.

Lemma 2.7 FSLE is logspace dtt reducible to the class C= L

A COCS L.

Proofi Note that Ax = b is feasible iff the matrices A and
(Ah) have the same rank. So feasibility can be expressed as

a disjunction, for all O < r ~ n, of the statement that A and
(Ah) have rank r. The lemma now follows by Fact 2.4. ❑

Lemma 2.8 Suppose A is Jogspace dtt reducible to C= L A

COCZ L. Then A is logspace many-one reducible to FSLE.

Proofi Let M be a square matrix. Then M is nonsingular

iff there exists a square matrix X such that MX = 1, where
1 is the identity matrix. Observe that this is a system of

linear equations in the entries of X. Since testing singularity

of a matrix is complete (wrt logspace many-one reductions)

for C= L, Lemma 2.6 completes the proof. ❑

Theorem 2.9 FSLE is complete for the class of languages
logspace dtt reducible to C= L A COC= L. This class is closed
under NC: reductions.

Proofi Completeness follows from the preceding two Lem-

mas. Closure under NC; reductions is by Lemma 2.6. ❑

Corollary 2.10 Comp.RANK, Odd. RANK, and FSLE are

equivalent under logspace many-one reductions.

Proofi First we reduce FSLE to Odd. RANK. As noted
above, the system Az = b is feasible iff A and (Ah) have the
same rank. In addition, if Ax = b is infeasible, then the rank
of (Ah) is exactly one more than the rank of A. Therefore,

Az = b is feasible iff the rank of

is even. Thus, FSLE is reducible to Odd. RANK (and this

problem, in turn, is trivially reducible to Comp.RANK).

Now we reduce Comp.RANK to FSLE. Let M be an

m x n matrix. Consider the following set of systems of linear

equations: for O ~ i < n let A’ denote the first a’columns of
M, and let b* denote column i + 1 of M. Then rank(M) is
exactly the number of infeasible systems among the systems
A’z = b’. Since counting can be done in NCl, by Lemma 2.6
any bit (or negation of a bit) of rank(M) can be expressed
as the feasibility of a logspace-computable system of linear

equations, as desired. ❑

2,3 Span programs

The span program model of computation was introduced by
Karchmer and Wlgderson [K W93]. A span program on n

Boolean variables z],..., z ~ consists of a target vector b in

some vector space V, together with a collection of 2n sub-
spaces U, s V, for each literal z c {zl, -ml,..., z~, YZn}
(each subspace is represented by a possibly redundant gen-
erating set). The language accepted by the span program

is the set of n-bit strings for which b lies in the span of the
union of the U., for those true literals z. The complexity of
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the span program is the sum of the dimensions of the U, for

all z.

For a language A, it is clear that if the n-bit strings of A
are accepted by a logspace computable span program over
the rationals, then A is logspace reducible to FSLE. We shall
see that the converse is true as well. In what follows, we
will continue to use z, to denote the bits of a binary string
(which may or may not be in some language A). We will

use VI, . . . , yt to denote the variables in a system MY = b

obtained from x such that z c A iff My = b is feasible (So

the matrix J4 is a function of the z,).
To begin with, let A be a language in C= L. Then A is

Iogspace many-one reducible to the set of singular matrices
over the rationals. In fact, the reduction for #L (cf. [To91])

has the property that strings xl X2 . . . z~ of length n are
transformed into a matrix whose entries are all linear func-
tions of the z~: indeed, only literals and constants in {O, 1}
occur.

By examining the constructions used in the proof of
Lemma 2.8, we conclude:

Lemma 2.11 Suppose A is [ogspace dtt reducible to C= L A
COC= L. Then A is logspace many-one reducible to FSLE,

and this reduction has the following form: strings XIXZ . . . x~
of length n are reduced to a system My = b, where the vec-

tor b is constant (i. e., depends only on n) and the matrix
entries are linear functions of the x: ruith”logspace uniform

coeficierats. O

To arrive at a span program for A, we need to pursue
this a little further. A span program is essentially a system
My = b where b is a constant and each column of M depends
only on a single variable zi. The space Uzt is spanned by

the columns which depend on z~, evaluated at z~ = 1, while
U.=i is spanned by these same columns evaluated at z; = O.

We wish to obtain such a system by modifying the system

My = b from the above Lemma. Our construction will

increase the number of rows and columns polynomially: if
M is an m x 1 matrix. then we will obtain a matrix M’ with

nl columns and m + (n — 1)1 rows.
For simplicity we begin with the 1 = 1 case of the con-

struction, so assume M is a single column. We can easily
represent M as a sum M = VI + w + . . . + v., such that
each v; depends only on ~i. Then My = b is feasible iff b is

a linear combination of the vi with all coefficients equal. So
we are trying to solve the following system:

yl=yz=. ..=yn.

This amounts to adding n – 1 variables and n – 1 constraints
to the original system. This generalizes to the 1 > 1 case

quite naturally: each column of M is replaced by n columns,

each variable in y is replaced by n variables, which are con-
strained to be equal by appending n — 1 rows to the matrix.

We have shown:

Theorem 2.12 A language A C, {O, 1}* has Iogspace uni-

form span programs over the rattonals ifi it is logspace re-

ducible to FSLE.~

Since the span program model is also studied in the

setting of non-uniform circuit complexity, we should say a
few words about non-uniform span programs. In particu-
lar, since the only measure of interest in the non-uniform

model is the number of vectors (and the size of each vec-
tor is not counted) these results do not immediately draw

a connection between non-uniform span programs and non-
uniform versions of LC=L. It is easy to see that the number

of components in a vector is not a source of difficulty; a po-
tentially more difficult problem is posed by span programs
with entries with large numerators and/or denominators. If
we measure the size of a (non-uniform) span program over

the rationals as the sum of (1) the sum of the dimensions

of the U. for all z, and (2) the maximum number of bits

required to represent any single entry in the program, then
polynomial-size span programs over the rationals character-

ize Lc=L/poly, which is also equal to the class of languages

reducible to the set of singular matrices via non-uniform

ACO or NCl reductions.

3 Collapse of the hierarchy

In this section we prove the collapse of the C= L hierarchy,
by showing that LC=L = NC1 (C= L). We shall make use of

the following:

Lemma 3.1 Let A G COCXL. Then there is a B G COCCL

such that A is logspace many-one reducible to B, and there
is a machine N witnessing that B c COCCL such that the

the input tape of N is one-way.

Proofi Let M be an oblivious logspace machine wit-
nessing that A c COC= L, and let p be a polynomial such
that on inputs of length n, M scans the input tape p(n)

times. Let N be a one-way machine that takes an input

x1#z2# . . . #x~#, and simulates M, using x; for the ith
scan of M’s input tape. If the strings x: do not all have the
same length, or if m # p(lxI l), then N generates both an

accepting and rejecting computation. Otherwise, N accepts

iff the simulation of M does. Let B be the set of inputs

for which N has nonzero Gap. Then B G COC= L, and A is
reducible to B via the reduction x + x#x# . . . x#, where

the string z# is repeated p(lx]) times. ❑

Theorem 3.2 LC=L = NCl(C=L). FSLE is complete for
this class.

Proofi The forward inclusion is obvious since Lc= L is
easily contained in the C= L hierarchy, and since every ACO

reduction is an N C1 reduction.
Let B be logspace-uniform NC1 reducible to a language

A c COC = L. Let N be a nondeterministic Turing machine
witnessing that A is in COC=L. By Lemma 3.1, we may

assume that N has a one-way input tape.
Let {C. }n>l be a logspace-uniform NC1-circuit family

that reduces ~ to A. For simplicity, let n be fixed and let
z c Z“ be a string whose membership in B we are testing.
Without loss of generality, we may assume that constants O
and 1 are given as input bits in addition to the actual input
string x.

By definition of NCl (C= L), the product of the degrees

of the nodes on any root-leaf path of Cn is bounded by a

polynomial in n (i.e., the sum of the logs of the degrees

is O(log n). Therefore, (by duplicating polynomially many
gates) we may assume that C’* is a tree. For simplicity, we

may assume that each gate of C~ is an oracle gate. These
assumptions do not affect logspace uniformity.

Now for each oracle gate g in Cn, we assign weight R(g)

of 2m, where m is the number of oracle gates in C. between
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g and the root (the output gate). Clearly, R(g) is bounded
by some polynomial in n and so, the sum of the weights is

bounded by some polynomial in n. Let g(n) be a polynomial
bounding the sum of the weights.

Define M to be the machine that, on input (z, m), be-
haves as follows: First, M sets variable s to m. Next M
guesses the output of Cn. Then M starts traversing the tree
C. by a depth first search. When M visits a new node, say
g, M guesses the output of g and does the following:

● If the guessed output of g is 1, then M subtracts R(g)
from s and starts simulating N on the input of g. Since
IV is one-way on the input tape, the simulation is done

by visiting the children of g from left to right. When M

proceeds to a new blt of g’s input, the subtree rooted at

the corresponding child of g is visited, and on returning

to g the guessed blt is used in the simulation of N.

● If the guessed output of g is O, then M traverses the

trees corresponding to the inputs of g, but does not
simulate N.

e If g is an input gate or an additional constant gate,
then g checks whether the guessed bit for g is cor-
rect. If not, then M aborts all the simulations and
tree traversing and then guesses one bit r to accept if

and only if r = O.

Also, M holds a one-bit parity counter praT, which is set to O

at the beginning. When M finishes one simulation of N, if
M ends up in a rejecting state, then par is flipped. When M

finishes traversing all the nodes in C~, then if the counter s
is not equal to zero, then M flips one more blt b and accepts
iff b = 1. Otherwise, if s is equal to zero, then M accepts if
and only if paT is O.

Note that M can be Iogspace bounded: the space re-
quired by the simultaneous simulation of severaJ computa-
tions of N’s is bounded by O(Depth(Cn )); only O(log n)
many guessed bits have to be maintained, and traversing
the tree also requires only O(log n) many bits.

Define Xl to be the language in COCSL defined by the

gap function with respect to M: (z, rn) belongs to Xl if
and only if M on (z, m) has a nonzero gap. Let m. be the

largest m such that (z, m) is in XI. Also, define M’ to be
the machine that behaves as M does except for guessing 1 as
the output of C. and define X2 to be the language in COC=L

characterized by the gap of M’. Then we will see that z E B
if and only if (z, m=) c X2, which implies B E L(C=L).

Note that M can be viewed as a machine that, on input
x, m, guesses a collection H of oracle gates in Ck so that the
sum of the weight of the gates in H equal to m (the collec-
tion His exactly the set of gates with guessed value 1). For a

fixed H, the Gap generated by M is GapN(yl). ocGapN(u~),
where gl, . . . , gm is an enumeration of all the gate in H, and
the string ya is the string appearing in the gate g, if exactly
those gates in H output 1.

Let Z* be the collection of all oracle gates of C’n that
output 1 on input z and let n= be the sum of the weight of

all gates in Z.. We will show that nz = m..
If M guesses Zm as H, then the gap generated for H is

non-zero, since all of the y, will belong to A and therefore
the factor GapN (~,) will be nonzero. Let Z be a collection

not equal to Zr whose weight sum is at least nz. By con-
struction, the weight of any gate is greater than the sum of
the weights of all of its ancestors. Therefore, there is a gate

g in Z \ Z= such that for every gate h below g, h is in Zs if

and only if h is in Z. Let u be the string that is assumed
to be the input for the gate g in the simulation of N when
M guesses Z= as H. Clearly, u is the actual query string.

So, gap~ (u) = O. On the other hand, when M guesses Z as

Z=, by the as~umpti~n that each oracle gate below g is in
(Z n 2=) u ((Z) n (Z.)), the input string that M simulates
is u. So, the gap generated with respect to Z becomes O

whether or not the traverse is finished.
Thus, n= = ms. Now, the only difference between M

and M’ is that M’ guesses 1 as the output of CL. So, C&
outputs 1 if and only if M’ can generate nonzero gap on
input (z, m=). So, z ~ B iff for some m < q(lzl), (z, m) c
X2 and (for all i ~ m, (z, i) $! Xl). Since Xl and X2
are in COC= L, and since C= L is closed under conjunctive

and disjunctive reductions, this shows that B is logspace

dtt reducible to C= L A COCS L. Therefore, by Lemma 2.8,

B is logspace many-one reducible to FSLE. ❑

4 Integer Solutions

In contrast to the problems considered above, the problem of
determining if a system of linear equations has an integer so-
lution (IFSLE) is not known to have a parallel algorithm at
all. This problem is at least as hard as determining if two in-
tegers are relatively prime, since the equation az+bg = 1 has

an integer solution iff (a, b) = 1. In fact, Kaltofen [Ka95] has
pointed out to us that recent work by Giesbrecht [Gi95] can

be used to show that IFSLE is RNC-equivalent to the prob-
lem of determining if GCD(Z1, . . . . xn) = GCD(yl,.. ., y~).

In addition, it is not too hard to show that the problem
of determining if the determinant of an integer matrix is
equivalent to i mod p is many-one reducible to IFSLE. Thus
a P-uniform NCl reduction can use Chinese Remaindering

to compute the exact value of the determinant. This shows
that #L is P-uniform NC1-reducible to IFSLE, in contrast
to what we are able to show for FSLE.

5 Open Questions

The most obvious open question is: Is C= L closed under
complement ? This happens if and only if the set of singular

matrices can be reduced to the set of nonsingular matrices.
Just as the complementation results of [Im88, SZ88, NT9S]

have Ied to useful insights, we beIieve that a positive answer
to this question would be extremely interesting.

Does the #L hierarchy collapse? Given the collapse of
the other two Iogspace counting hierarchies, it is tempting
to guess that this hierarchy also collapses. Recall that this
hierarchy is the class of problems ACO-reducible to the de-
terminant.

Is NC1 (PL) = ACO(PL) ? (This question has recently

been answered, in the affirmative, by Beigel [Be95], who
also shows that NC1(PP) = AC”(PP).)
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