
Debugging Heterogeneous Applications with Pangaea+

Leesa Hicks*
leesah@credence. com

Credence Systems Corporation

9000 SW Nimbus Ave.

Beaverton, OR 97008

Abstract

Heterogeneous computing environments pose special chal-

lenges for debugging. They present the same difficulties as parallel

computing environments, including asynchronous communication,

non-detenninism, and increased state information. In addition,

debugging in heterogeneous environments is complicated by the

distribution of work across diverse computational platforms and

heterogeneous communication networks.
In this paper we describe Pangaea, a tool for debugging het-

erogeneous applications targeted to distributed resources which use
PVM. Nondeterminism in the system can cause varying event

orderings for multiple executions. Pangaea assists in debugging
software errors by providing a mechanism to ensure the consistent
replay of the program. Replay ensures that the same event order-
ing will be enforced for each execution. Pangaea supplies an event
logging capability for support of replay as well as a post-mortem
display facility. Users may also use a modified version of XPVM to
display events in any mode while running an application. Pangaea
and XPVM provide a useful environment for debugging many

types of errors that arise when executing parallel applications tar-

geted to distributed heterogeneous systems.

1 Introduction

Debugging any program can be difficult and error-prone.

Debugging parallel programs is particularly challenging. Asyn-

chronous execution results in program nondeterminism, making it
difficult to reproduce program executions. In addition, the enor-
mous amount of information which is potentially relevant for

debugging can contribute added difficulty to the debugging of

codes on parallel platforms [17] [18].
In the last decade, the increase in network speeds has made it

feasible to implement parallel applications on distributed heteroge-
neous networks of machines (heterogeneous applications). Expe-

rience has shown that some applications can utilize heterogeneous
platforms to demonstrate improved performance over the perfor-
mance achievable at any individual site [13] [10].

The implementation of heterogeneous applications creates
new challenges for debugging. A debugger for these applications

*Supported in part by NSF contract number ASC-9301788.

*Available via WWW URL httpVlwww-cse.ucsd.edulusersl

lhicks/pangaea.html or via anonymous ftp to cs.ucsd.edu:/

pub/lhicks

Permission to make dlgitslhad copies of all or part of Wls msterial for
personal or classroom use is granted without fee provided that the copies
~= not ~de or &,stribWed for profit or commercial advsntage, the-Cop)’-

right notice, the title of the publication and its date appear, and not!ce IS
given that copyright is by permission of the ACM, Inc. To copy otheryiw,
to ffipublish, to post on servers or to redktribu@ to lists, rerpms specific
permission and/or fee.

SPDT ’96, Philadelphia PA,USA
@ 1996 ACM f)-89791-84&O196t05. .$3.50

Francine Berman*
berman@cs.ucsd.edu

Department of Computer Science and Engineering, 0114

University of California, San Diego

La Jolla, CA 92093

must provide information about an application’s execution history

both in terms of its usage of the distributed resources and its perfor-
mance at individual execution sites in the system. The problems
which arise in debugging applications on parallel machines must

also be addressed in the heterogeneous environment, although the

solutions must focus on the diveme administrative domains and

communication paradigms of the distributed system.

One of the greatest sources of errors for both parallel and het-

erogeneous applications is communication event ordering. To ilhts-
trate, two tasks A and B may send messages to another task C. In

one execution, a message from A might arrive first, whereas in
another execution a message from B might arrive first. Task C
might behave differently, and perhaps unintentionally, depending

on which message arrives first. For example, task C might produce
a segmentation fault when it receives task B‘s message first, but
runs correctly when it receives task A’s message first. Reproducing

an error triggered by such a message ordering can be troublesome.
In fact, stopping the execution of task B by setting a breakpoint in a
debugger may slow it down sufficiently to allow task A’s message

to always arrive first.

Reproducibility is important in detecting data races, send and
receive mismatches, buffer overflow, etc. Facilities are needed to

capture the event ordering for erroneous behavior and to reproduce
it as many times as necessary to diagnose the error. This reproduc-
tion of event ordering is known as replay. Although there have been
several tools developed which provide replay for parallel applica-

tions on individual multiprocessors, there are few tools available
which provide replay for parallel computations targeted to heterog-
eneousplatforms.

To address the need for a debugger that provides a replay
capability for heterogeneous message passing systems, we have

developed Pangaea. Pangaea targets networked resources which

utilize PVM1 [3], and combines the visual trace information pro-
vided by the XPVM tool [19] with a new facility for program exe-

cution replay. Pangaea’s replay facility can be coupled with PVM’S
ability to access local debuggers at each execution site. In addition,
a new Pangaea event graph view has been added to XPVM to sup-

port visualization of communication events. In this paper, we

describe the Pangaea system design and implementation, and dem-
onstrate an example execution.

2 Related Work

A number of tools have been developed for debugging parallel
applications. In this section, we focus on those tools which target

1. PVM (Parallel Virtual Machine) is a communication

interface for heterogeneous networked resources.

MM [14] was also considered, but at the time of this

research, did not provide task initiation capabilities.

41

http://crossmark.crossref.org/dialog/?doi=10.1145%2F238020.238036&domain=pdf&date_stamp=1996-01-01

parallel programs on distributed resources. There are a number of

tools for debugging heterogeneous applications which do not pro-

vide replay. There are a few tools that provide some type of replay
facility, but these have generally been limited in scope.

2.1 Tools Without Replay

The P2D2 debugger interface [5] supplies a centralized inter-

face to remote, native debuggers for applications using PVM and
MPI. P2D2 utilizes Application Interfaces (API) supplied with
commercial debuggers to provide a consistent debugger interface

for each platform that it supports. This approach eliminates the

need to learn differing debugger interfaces, but relies upon the

debugger vendors to provide APIs in addition to the user-inter-

faces.

The commercial ConvexPVM system from CXSOIT [7]
includes a debugging tool, PVMdb, which also manages multiple

debugging sessions for heterogeneous applications using PVM on

HP 9000/700 systemsl.
Xab [2] supported run-time and post-mortem display of indi-

vidual PVM task events. PVM routines were instrumented to send
event information to the Xab monitor. The Xab display shows the
most recent PVM event that each task performed. When perform-
ing post-mortem display of events (playback), the Xab display pro-
vides control mechanisms for stopping playback, resuming

playback, single stepping, playback speed, and exiting the pro-

gram.
The Xab system was replaced by XPVM along with instru-

mentation implemented directly into PVM. XPVM furnishes a

graphical interface and monitors events for heterogeneous applica-
tions using PVM. XPVM supports several views: a network view,
a space-time view, a utilization view, a call trace view, and a task
output view. PVM trace data is collected into a trace file and is

used to build and update the views. Information can be displayed
real-time or as a post-mortem playback of the trace file. XPVM by
itself has no replay facility, but as we describe herein, XPVM can

be combined with Pangaea to provide replay facilities.

2.2 Tools Supporting Replay

Xmdb [8] provides a very limited set of replay facilities. It

also provides execution control for a single process running on a

modified version of PVM to aid in program development. Xmdb is

intended to be a training tool for inexperienced developers, and

may be useful for initial algorithm testing by more experienced

developers. With Xmdb, the user specifies when messages are
delivered to the controlled process. In addition, the event ordering
for the controlled process can be replayed as an aid to debugging

errors caused by differing event ordering between executions.
Xmdb currently runs all processes on a single platform, limiting

the number of tasks that can be practically run. The application
source code may also require modifications to conform to Xmdb’s
message packing restrictions and to work around unsupported
PVM functions.

Two other systems provide better replay facilities, but have

other limitations. The Agora debugger [9] provides event logging

and replay facilities for a particular heterogeneous system centered

around a shared address space model. The Prospero Resource

Manager (PRM) [16] provides replay with its debugging capabili-

ties, but requires use of the Prospero operating system. This sys-

tem is supported on Sun SPARCstations, Sun-3, and HP9000/700

platforms. Most heterogeneous systems, however, are typically

based on PVM or MPI, support message passing communication,

and span a wide variety of execution sites.

Unlike existing tools supporting replay, Pangaea supports a
wide variety of applications and execution sites. There is no

restriction to any particular heterogeneous system or operating

system as with Agora and PRM. Unlike Xmdb, Pangaea runs in a
production PVM system rather than a test environment. Pangaea

supports replay for all of the application tasks rather than a single
task. Tasks run where the user specifies them in place of a single

platform; thus there is no limitation on the number of tasks that can

be run. Also, Pangaea has no message packing and unpacking
restrictions, and all relevant PVM functions are supported by Pan-
gaea.

3 Overview

Heterogeneous applications are typically composed of a few

coarse-grained components targeted to different machines in the
system. Execution of each of these computations is asynchronous,

and computation and communication can be overlapped to amor-
tize network latency [1]. Debugging such applications requires a
mechanism for debugging each of the components at each of the

execution sites in the system (i.e. local debuggers) as well as a
mechanism for tracing and displaying communication between

components on the network. Replay of the application is espe-
cially important due to the non-determinism inherent in network
communication.

Pangaea is targeted to support applications which use PVM.
An application running in Pangaea must first be runnable from

XPVM. This prohibits the application from using standard input

(stdin) to obtain data, since all tasks spawned by PVM have Idevl

null opened for stdin. Programs are instrumented, requiring that

each task 1) include a Pangaea source file header, 2) invoke a Pan-

gaea initialization function prior to invoking any PVM functions,
3) invoke a Pangaea exit function just prior to exiting PVM, and 4)
be bound with the Pangaea library. Pangaea supports all C lan-

guage functions supported by PVM, although Pangaea requires
that PVM buffer initialization be performed prior to every message
sent. Replay support in Pangaea requires that the application send
and receive the same messages given the same inputs.

The instrumented applications can be initiated by a modified
version of XPVM or by Pangaea without XPVM. XPVM is used

to display information in the event graph real-time in record or
replay mode, and post-mortem in display mode. If the application
is run by the Pangaea modified version of XPVM, then the devel-
oper selects and enters, as with unmodified XPVM, the same infor-
mation for starting a task from the XPVM Spawn Dialog menu. In

addition, the developer selects the desired Pangaea mode (record,
replay or display, defined below). XPVM automatically initiates
the application as needed to run the selected Pangaea option. Pan-
gaea automatically detects that XPVM is running and supplies the
event visualization information to XPVM.

If the application is run with Pangaea options from a shell
without using XPVM, then the overhead of communicating and

displaying events is avoided. In this case, the developer runs the
Pangaea top-level task rather than the application, and supplies
information required for executing the application on the com-
mand line. The record and replay modes are available in this type

of execution and the visualization capability is suppressed.
The recordheplay facility of Pangaea is based on the strategy

used by LeBlanc and Mellor-Crummey in Instant Replay [11].
When sending messages, a header is inserted into the message that

contains enough information to uniquely identify it. The message
header is extracted when it is received to record or replay the
event. Within Pangaea, messages are identified using Pangaea log-
ical task ids and message identifiers to enable matching of events

to tasks in subsequent replay executions. In the record mode, the

1. ConvexPVM is being discontinued after March 1996.
ordering of the task spawn and communication events of a hetero-

42

SOR

Figure 5: Data Dependencies of SOR

geneous application are captured. In the replay mode, the event

ordering from the previously recorded session is displayed while
the application is re-executed using the captured state information.
The replayed session can be repeated as often as necessary to detect

the cause of failure. In addition, a functional interface allows appli-
cation tasks to suspend and resume communication logging and
replay activities (“selective logging and replay”) for the purpose of

minimizing the size of log files and reducing overhead. This

approach is based on [15] and [6] where they were used success-
fully in the parallel setting. Selective logging and replay are espe-

cially useful when the developer or user suspects that a bug is
related to a particular message or message type, and recording a
subset of events is adequate for reproducing an error.

The Pangaea system provides a graphical visualization of
PVM communication events as they are being recorded or replayed.
A new Pangaea event graph view has been added to XPVM to dis-

play send and receive events and their relationships to one another.
All other existing XPVM displays are also available. The Pangaea
event graph view complements the XPVM space-time view. The

event graph view supports the record, replay, and post-mortem dis-
play features of Pangaea. It was implemented as a separate display
for several reasons. First, tasks in the event graph are identified by
Pangaea logical task id instead of by PVM task id as in the space-
time view. Second, communication events in the event graph are
represented with different shapes for different types of events,
whereas the space-time. view makes no such distinction. Third, the
space-time view can be active at the same time as the event graph

view. Finally, separating these two views retains all the existing fea-

tures of XPVM while simultaneously supporting the new Pangaea
features. The following section illustrates this view and describes

how Pangaea works.

4 Example Execution

An application that solves Laplace equations using a red-black

Successive Over-Relaxation (SOR) algorithm is used to demon-
strate Pangaea. This algorithm splits a matrix into strips, with one

strip per task. Each task executes on its strip, shares the proper
rows with its neighbors, and then communicates the maximum
result to all other tasks after each iteration. The SOR application
was run with Pangaea using four tasks with a problem size of 100,

and was executed on a heterogeneous network of Sun and RS6000
workstations. The Pangaea top-level task, pangaea, was run on the
user’s Sun workstation. The data dependencies of the SOR applica-

tion tasks are shown in Figure 1. (Since there are no data dependen-

cies between pangaea and the SOR tasks, pangaea is not shown in
Figure 1.)

During execution, SOR is first run in record mode (Log button
is selected), and Pangaea uses XPVM for visualization (see
Figure 2). With XPVM, the spawn parameters are entered the

same way whether Pangaea is to be run or not. The user enters the

application invocation in the command entry, sets the PVM flags,
and then specifies both where to run the application and how many
tasks to run. The Pangaea top-level task spawns the parent task of
SOR as specified in the spawn parameters, and the SOR parent task
spawns three child tasks. The parent and child tasks each process a
strip of the matrix. In addition, the parent task is responsible for

broadcasting data required by all tasks. If the user needs to start up
a task in a local debugger, the PvmTaskDebug flag can be selected
with the appropriate debugger initialization mechanism [3].

Pressing the Pangaea Options button extends the Spawn Dia-

log with the Pangaea selections, as shown in Figure 2. Selecting

one of the Replay, Log, or Display mode buttons activates Pangaea
and directs XPVM to execute the Pangaea top-level task in place of
executing the application directly. The host on which the Pangaea

top-level task is to be run can be specified, as can the host on which
the Pangaea task coordinator is to be run. (These components of

Pangaea are described further in Section 5). If the None mode but-
ton is selected, Pangaea is not invoked for the application.

In the XPVM example invocation shown in Figure 2, the Pan-
gaea top-level task (pangaea) is initiated on seuss.ucsd.edu. This

in turn spawns the Pangaea task coordinator on trini.ucsd.edu and

SOR as specified by the Spawn Dialog options. Two log files are
created for each SOR task, one for task spawns and one for com-
munication events. (Placing task spawns into a separate log file

allows the user to modify where tasks run in a replay execution, as
discussed in Section 6.2.) In addition, Pangaea notifies XPVM of

each relevant PVM event occurrence for posting to the Pangaea
event graph view, which is visible when the view is activated from
the Views menu.

Figure 3 shows the first few communication events in the
Pangaea event graph that occurred between the tasks of SOR while
logging events with Pangaea. (It is infeasible to show all of the

communication events in this static format.) Each task and its
events are displayed in a horizontal line in chronological order.
Task identification includes the host name, task name, and its Pan-

gaea logical task id.

Circles (red in a color display) in the Pangaea event graph rep-

resent send events, triangles (blue in a color display) represent

receive events, and squares represent broadcast and mukicast

43

Figure 2: XPVM Spawn Dialog

Figure 3: Pangaea Event Graph V~ew

44

.—— ——— ——— — ——— ——.
I

1-
XPVM——— ——— ——— — ——. .

~ _ _ _ PangaeaSupport
(

––r––3–––– –----J
if I

PVM Library

A

Pangaea Library
A A A

mm-
Figure 4: Pangaea Composition

events (green for broadcasts and yellow for multicasts in a color
display). Lines drawn between corresponding sends and receives

show communication. Wkh broadcasts and multicasts, there may
be multiple lines connecting different receive events. Information
for an event or communication is displayed below the view when

the mouse button is pressed over a send, receive, broadcast, multi-
cast, or communication. In Figure 3, a send event has been

selected. The detailed information for this event is displayed

below the horizontal scroll bar, and includes the sending ltid, the

receiving ltid, the PVM message tag, the Pangaea message id, and

the time-stamp.
The scaling of events carr be modified in the event graph to

increase or decrease the spacing between events. Pressing mouse
button 2 increases the spacing between events by decreasing the

time scale, and pressing mouse button 3 decreases the spacing by
increasing the time scale. This capability allows users to adjust the
relative positions of events for better readability or to explore com-
munication patterns.

To reproduce the recorded execution ordering, the application

can be initiated through XPVM by selecting the Replay mode but-
ton instead of the Log mode button in the Spawn Dialog box or by
substituting -replay for -log in the shell invocation. In replay
mode, the application will re-execute on the heterogeneous system
in such a way that PVM events occur in the same order as they
were recorded in the log files. In particular, event ordering is
enforced by matching a current event to a pre-recorded event. If an

irreconcilable difference occurs, such as a task sending a message

to a destination different from that recorded in the log file, an error
message is reported.

The same process is used to run in display mode, although

this option is only available while running from XPVM. In this
case, events will be posted to the Pangaea event graph directly and

only from the log files, bypassing the application code. The dis-
play will look identical to the one created in record mode since all
data, including the time stamps, is extracted from the log files.

In the following, we provide a more detailed look at the struc-

ture and functionality of Pangaea.

5 Pangaea’s Design and Structure

Pangaea’s design supports record, replay, and post-mortem

display of communication events for distributed applications using
PVM for task initiation and communication. The initial implemen-

tation supports C programs using PVM. XPVM provides the
graphical display interface for Pangaea. Pangaea is comprised of a

new C code library that supports the record, replay, and display

capabilities for PVM events, a program to run as the top-level task,
a program to coordinate task identification, and new C and Tcl/Tk
code to implement the graphical display capabilities in XPVM.

Figure 4 shows the structure of Pangaea. The following sub-sec-
tions describe selected components of Pangaea.

5.1 Pangaea Top-Level Task

Replay of communication events relies on unique, determinis-
tic task identification, both to identify events and to name log files.

PVM assigns unique task identifiers (tid), but they are not deter-
ministically generated, PVM task identifiers can and do vary for the
same task from execution to execution. Assume, for example, that a

receive event is to be logged for Task A (PVM tid 40025) that was
sent from Task B (PVM tid cOO08). The log entry needs to include
the sender’s task id for unique identification of the receive. Yet with
PVM, the task identifiers for Task A and Task B can differ from one
execution to the next. So while the logged entry can record the
sender as being Task B’s tid cOO08, a subsequent execution of task
B may assign a new PVM task id (say cOO12, for example), and
there is no means of identifying the logged rid cOO08 as the current
tid cO012, both of which represent Task B.

Reproduction of event ordering from a previously recorded
session relies on deterministic identification of tasks; consequently,
Pangaea assigns each task a unique, deterministic logical task id

(ltid). This is accomplished by using a top-level task to act as a sin-
gle ancestor to all of the tasks of an application in order to generate
logical task identifiers. Ltid assignment requires that the applica-

tion’s tasks must all be spawned either from the Pangaea top-level
task or by the application’s tasks.

In contrast, tasks of a normal PVM application aren’t required

to be related in order to communicate. As an example, tasks A and
B can each be executed from a shell, join a group, obtain each
other’s tid, and then proceed to send messages to each other. It does
not matter whether task A or task B is executed first when using

PVM, because there is no requirement that PVM task ids be
assigned deterministically. It does matter to Pangaea, however,

since tasks must be consistently identified between different execu-
tions. Requiring that all tasks be related imposes a deterministic
execution ordering on each task, thereby enabling deterministic
assignment of logical task identifiers. Users may comply with this
relational requirement by modifying the Pangaea top-level source

code to spawn the tasks of the application that were previously run
from shells. In particular, tasks A and B could be spawned by the

45

,------ -------

@a7: ‘Ta=:7=0s7------------.
I——— ——

JJ&ill: ~
I

I
I

—— —
Application Task Ho~7

—— —

Application FApplication Child Host

- Top-Level Task
Application

? I Child Task

)=3Log/Replay

Functions

I

I
I
I
I

Q;i :Log/Replay
Functions

E!IEiil!l,
—— . -1 ,IL,

9Log/Replay
Functions

PVfvl Library

—. _
L——— 2

‘L———_—_
-1 l—

d L———_——’4

Figure 5: Pangaea Run-Time Hierarchy

Pangaea top-level task in the appropriate order. By adding these

task initiations to the top-level task, the user can meet the task rela-

tionship requirements for Pangaea without modifying the applica-

tion.

The Pangaea top-level task is a C program that initializes the

Pangaea support routines and spawns the application’s top-level

task(s) as specified by the command line arguments. When run-

ning Pangaea options with the XPVM interface, new code in

XPVM executes the Pangaea top-level task automatically, although

the developer may specify the host on which this task runs (the

default is to run on the same host as XPVM). When running

directly from a shell, the developer must invoke the Pangaea top-

level task instead of the application’s top-level task and supply the

appropriate command line arguments specifying how to spawn the

application.

5.2 Pangaea Task Coordinator

The Pangaea task coordinator provides translation facilities

between PVM task ids and Pangaea logical task ids. The Pangaea
top-level task spawns the task coordinator during its initialization.
Each task registers its PVM task id and Pangaea logical task id
with the task coordinator during Pangaea initialization, The task

coordinator collects this information to process translation
requests.

When first sending a message to a particular task (destina-

tion), the sending task knows the destination’s PVM task id (M),
but it may not know the corresponding logical task id (hid). (An
hid is known once the first translation request for the correspond-

ing tid has been processed). The sending task must have the desti-

nation’s logical task id for recording or replaying the event. If the

ltid is not already known, then the instrumented PVM send func-
tions in the Pangaea library (pvm_serrd, pvm_bcast, pvm_mcast)

initiate a translation request for a PVM task id from the task coor-

dinator to satisfy this requirement.
When requesting a tid for a group member with pvm_gettid,

the group member’s ltid is required for recording the event. If the
ltid is not already known, then the Pangaea library function for

pvm_gettid initiates a translation request for a PVM task id from

the task coordinator to satisfy this requirement. When replaying

pvm_gettid, it may be necessary for the Pangaea library function

to request a translation from an ltid to a tid. This occurs when the
tid for the logical task to be returned doesn’t correspond to the

PVM instance id for the current execution and the recorded ltidltid

association is not already known.
The task coordinator is a C program that is spawned automat-

ically during the initialization of the Pangaea top-level task. The

developer may specify the host where the task coordinator is to
run; if no specific host is specified, it is executed on the same
machine as the Pangaea top-level task. The task coordinator is a
simple program which waits for messages to arrive and processes
them. The Pangaea initialization procedure registers a new PVM
task id and its associated logical task id, after which the task coor-
dinator may process translations for that task. If a translation
request arrives before the associated task’s registration, the request
is queued and processed once the registration actually occurs.

5.3 Run-Time Hierarchy

Figure 5 shows the run-time hierarchy of Pangaea. The Pan-
gaea top-level task spawns the application’s top level tasks(s),
which in turn may spawn additional child tasks, etc. If XPVM is
used to spawn the application, then XPVM will spawn the Pan-
gaea top-level task and supply it with the parameters needed to
spawn the application.

Table 1: PVM Functions Instrumented by Pangaea

Task initiation Sends Receives Group Operations

pvm_spawn pvm_initsend pvm_recv pvm_gettid

pvm_mkbuf pvm_nrecv

pvm_send pvm.trecv

pvm_beast pvm_probe

pvm_mcast

5.4 Selective Logging and Replay

The Pangaea library contains a function that users can invoke

to suspend and resume record and replay. When event recording is
suspended, send and receive events are not recorded in the commu-
nication log files. Pangaea message headers are still added to outgo-

ing messages, however, since the sending task does not know
whether recording is suspended in the receiving task. Message

headers are always unpacked by the receiving function for the same

reason. Task spawns and group identification events are always

recorded, as replay cannot be performed without this information.
When event replay is suspended, send and receive messages are not
matched with the contents of the communication log files, but mes-
sage headers are still added and removed by the sending and receiv-
ing tasks.

Selective record and replay can be particularly useful when an
error is correlated with a particular message type, or with messages

received by a particular function, etc. In general, the communica-

tion log files can become quite large. When recording events for a

quantum chromo dynamics application [4], for example, a single

task recorded over 9,000 events in 45 seconds, using an average of
36 bytes per event (9,207 events used approximately 329K bytes).
Restricting the events recorded and replayed to a small subset of all

events can significantly reduce the space required by the log files.
Because record/replay suspension and resumption are derived

from code annotations, a replay execution must use the same static

selection as a previously recorded execution. Use of this feature
must be done with care, since the ordering of unrecorded and non-
replayed events cannot be guaranteed.

Use of static selection may result in unconnected communica-
tion events in the Pangaea event graph. A receive event displayed

will have no matching send when the sender of message has record

suspended while the receiver is recording. Similarly, a send event

displayed will have no matching receive when the sender is record-
ing while the receiver is not. This is not a problem per se, but the
user needs to be aware of this possibility.

6 Pangaea Functionality

We now discuss the functionality implemented in Pangaea for
the instrumented PVM functions for record and replay mode.

These functions are listed in Table 1. Note that although

pvm~send and pvm~recv are defined in the PVM library standard,

these functions are not actually supported by PVM and therefore

are not instrumented by Pangaeal.

1. Use of pvm_serrd and pvm_recv in PVM 3.3.9 results

in an error message that these functions are not imple-

mented.

6.1 Record Mode

Record mode logs all relevant PVM events for use during
replay. Two log files are created for each task in record mode.
The execution log contains task initiation events (spawns), and the

communication log contains group identification requests, send

events, and receive events.

A task initiation event is recorded for each invocation of
pvm_spawn. The information recorded is used to guarantee that

the same tasks will be executed on the same hosts during a replay

execution.
The PVM buffer initialization functions pvm_inirsend and

pvm_mk.bufare instrumented to add a message header for unique
identification of each message. No events are recorded for these
functions. The message header includes the sender’s hid and mes-

sage identifier.
Tasks may join named groups with the pvm~oingroup func-

tion. Each task joining a group is assigned a group instance id.

Wtile the behavior of group joins are deterministic, the assign-

ment of instance identifiers depends on the order of completion by
the joining tasks. After joining a group, tasks may broadcast mes-

sages with pvm_bcast to other group members without specifi-

cally identifying the receiving tasks. Since the destination of a
broadcast message is a group name and group joins are determin-
istic, no special processing for pvm~”oingroup is required.

Sending a message to a particular group member, however,
requires that the sender specify the destination tid. Tasks must call

pvm~ettid to obtain the tid of a specified group member (identi-
fied by group name and instance id). Since instance id assignment

is non-deterministic, Pangaea must provide record and replay

facilities for pvm~ettid. In record mode, the requested group and

the ltid of the tid returned by pvm_gettid are recorded for use by
replay.

A send event is recorded for each invocation of pvm_send,

pvm beast, and pvm_mcast. The destination kid(s) and message

iden~fier are recorded for pvm_send and pvm_mcast. The desti-

nation group name and message identifier are recorded for
pvm_bcast.

A receive event is recorded for each invocation of pvm_recv,

pvm_nrecv, and pvm_trecv. These instrumented functions extract

the Pangaea message header and record the sender’s hid, the
sender’s message identifier, and the message length.

Although pvm>robe is instrumented in Pangaea, no events

are actually recorded for this function as results are irrelevant.
Since a positive result from pvm~robe must be followed by a call
to pvirz recv, it is sufficient to record and replay only the associ-

ated re~eive event.

47

6.2 Replay Mode

Replay mode reproduces the event ordering captured in a
previously recorded session.

For task spawns (pvm_spawrr), replay mode insures that the

same tasks run on the same machines as a previously recorded

session. For example, if Task A spawned Task B on the Sun

workstation seuss.ucsd.edu, and Task C and Task D on the
RS6000 workstation trini.ucsd.edu, then replay also spawns Task
B on seuss.ucsd.edu and Task C and Task D on trini.ucsd.edu.

This guarantees that each task has access to the log files created by
a previously recorded execution. Logically, it would be sufficient

to execute a spawned task on a machine with a file system that has

access to the task’s log files, but this is difficult to determine auto-

matically. The user may, however, modify the execution log to
control where tasks are executed during replay. This would be

useful, for example, when the target system(s) for the application

are expensive to use or are unavailable and alternate systems

could be used for debugging. In this case, the user may need to

copy or move log files to the appropriate systems to ensure that
the appropriate files will be available for each task.

The PVM buffer initialization functions pvm_initsend and
pvm_mk&f are identical to record mode; they simply add the mes-
sage header used to uniquely identify messages.

Group operations pose an interesting challenge for replay.
PVM tasks may join groups, obtain other group members’ PVM

task ids, and send messages to each other. A complication for
Pangaea occurs because PVM assigns each group member a non-

deterministic group instance id, and tasks identify a group mem-
ber by its instance id. Since the tasks execute asynchronously, this

order cannot be predetermined. This has a subtle (and rather
nasty) effect for the design of replay support, because the logical
tasks of a group will need to have the same instance ids as for the
recorded execution. Pangaea manages this group identification
problem by instrumenting pvm_gettid to return the PVM task id of
the task assigned the logical task id recorded for this invocation of
pvm_gettid. As a result, the PVM task id returned by pvm_gettid

may actually belong to a different instance id for the current exe-

cution, but will now be the same logical task as the recorded ses-
sion.

Replay processing for send events (pvm_send, pvm _bcast,

and pvm_mcast) insures that the same message ~dentifier is~ent to
the same destination(s) as recorded in the communication log.

Replay of receive events comprises the heart of Pangaea.
This is where the complexity of event order reproduction resides.

Task initiation (pvm_spawn), group identification @vm_gettid),

send buffer initialization (pvm_initsend and pvm_mkbufl, and
send events (pm send, pvm_bcast, pvm_mcast), merely enable
the replay of rece~ve events. To perform replay for pvm_recv, a

synchronous receive, Pangaea invokes pvm_recv with the user’s
parameters until the message received matches the expected (pre-
viously recorded) receive event. Any messages received out-of-

order are queued until the caller again invokes pvm_recv. If the

expected message is in the receive queue, the queued message is
returned to the caller in place of invoking pvm recv.

The asynchronous receive functions – pvm nrecv and

pvm_trecv require slightly different processing for ~eplay since
they don’t necessarily return a message to the caller. As for
pvm_recv, Pangaea returns the expected message from the receive

que;e if it is present. Otherwise pvm_nrecv (or pvm_trecv) is

invoked. If pvm_nrecv returns a negative result (no message

received), Pangaea immediately returns to the caller. Otherwise
Pangaea determines whether the message received matches the
message expected. If it does match, the message is returned to the
caller. Otherwise the message is stored in the receive queue and a

negative result is returned to the caller.

The pvm~robe function determines whether the next
expected message has arrived. In replay mode, this function deter-

mines whether the expected message is in the receive queue, and if

so, returns a positive result (message arrived). Otherwise Pangaea
invokes pvm_recv, stores the received message in the receive

queue, and determines whether the expected message was
received. If the expected message was received, then a positive
result is returned; otherwise a negative result is returned. After the

caller obtains a positive result from pvm~robe, the subsequent call
to pvm_recv returns the queued, expected message.

Typically, the asynchronous functions pvm_nrecv, pvm_trecv,

and pvm~robe need not be specifically replayed. In some applica-
tions, however, the algorithm may be modified slightly if a mes-

sage is not immediately available, as in exponential back off and

retry. Wh.h the current implementation of Pangaea, the application

could have a run-time error that is not reproducible in Pangaea. To
support these types of applications, Pangaea would need to be

extended to explicitly replay these functions.

7 Pangaea Overhead

Pangaea sends additional messages and requires additional
computation and space. This increased overhead need only be
incurred when actively debugging with Pangaea, howeveL normal
executions need not utilize Pangaea.

To support record and replay, additional messages are gener-

ated by the Pangaea routines, mostly during task initiation and
completion. When spawning a task, the parent sends each child

one message containing the child’s Pangaea logical task id (ltid).

During task initialization, each task registers its PVM task id (tid)

and its corresponding kid with the task coordinator, generating one
message per task. As each task finishes, it sends a completion mes-

sage to its parent. At the conclusion of the top-level task, one mes-
sage is sent to the task coordinator instructing it to exit. The first
(application) send to an unknown destination generates two mes-
sages, one to request translation from a tid to an hid from the task

coordinator and one to answer the translation request. When
requesting the tid of a group member, it may be necessary to
request translation from an hid to a tid from the task coordinator,

generating one message for the request and one message for the
reply.

When running Pangaea record and replay with the XPVM
visual display, messages are sent from the Pangaea routines to
XPVM for event notification: one message for each task spawned
(pvm_spawn), one message for each send event (pvm_send,

pvm_bcast, pvm_mcast), and one message for each receive event

(Pvm_recv, Pvm_nrecv, pvm_trecv). This essentially doubles the
communication volume for each task. Because of this high over-
head, users are more likely to use record and replay mode without
XPVM, and use Pangaea’s post-mortem display facility for visual-

ization of communication events. Fortunately PVM sends are
asynchronous, so at least the application tasks are not blocked
while sending event notifications to XPVM.

A test application was run with and without Pangaea to mea-
sure the added computational overhead. All timings were run inde-
pendently of XPVM. The application was run using four tasks,
each running on a separate Sun4 or RS6000 workstation. Timings
were obtained for 500 to 1 million invocations of each PVM func-
tion. Executable were compiled with full optimization. Most mes-
sages were approximately 44 bytes in length. All timings were
performed on idle systems, apart from Pangaea, PVM, and the
application. Table 2 contains the resulting measurements and com-

parisons of the application run without Pangaea, with Pangaea log-
ging (record mode), and with Pangaea in replay mode. All CPU
utilizations are reported in milliseconds and include both user and

system time. Values reported are averages.

48

Tab1e2: Pangaea Overhead

Logging Replay

Without Whh Added With Added

PVM Function Dependent Function Pangaea Logging Overhead Replay Overhead

(msec) (msec) (msec) (msec) (msec)

pvm_bcast Buffer Init and Msg Packing 18.014 21.873 3.859 22.460 4.446

pvm_mcast Buffer Init and Msg Packing 3.659 3.889 0.230 4.182 0.523

pvm_nrecv Unpacking 0.118 0.201 0.083 0.644 0.526

pvm_probe pvm_recv 0.110 0.142 0.032 0.902 0.792

pvm_recv Unpacking 0.624 0.989 0.365 1.514 0,890

pvm_send Buffer Init and Msg Packing 1.279 1.588 0.309 1.874 0.595

pvm_spawn None 17.996 31.425 13.429 22.331 5.335

pvm_trecv Unpacking 0.225 0.385 0.160 0.756 0.531

Most of the measurements include calls to other PVM func- task coordinator uses 168.0 msec total CPU time. The task coordi-
tions which are always invoked in conjunction with the particular
function listed. These functions are identified as “dependent func-

tions” in Table 2. For pvm_send, for example, this includes the
CPU utilization of the buffer initialization and message packing
that is a prerequisite to pvm_send. Similarly, once pvm~robe indi-

cates that the requested message has arrived, pvm_recv must be

called to actually receive the message. It was not feasible to mea-
sure CPU time separately for pvrn_send and the buffer initializa-

tion (pvm_initsend or pvm_mkbuj), as there was insufficient
precision in the timing information available to measure individual
function calls. More importantly, it is not necessary to measure

them separately since they must be invoked together to complete a

communication activity.

As expected, Pangaea does add computational overhead to

PVM library calls for recording events. Most of this is due to I/O

to the log files. There is one record created for each send event
@m_send, pvm_bcast, pvm_mcast), one for each successful

receive event (pvm recv, pvm_nrecv, pvm_trecv), one for each

group member iden~ification (pvm_gettid), and several for each
task initiation (pvm_spawn). The relative impact of this added

overhead will depend on the ratio of computation to communica-
tion in the application. Assuming that a task invokes pvm_spawn
once, pvm_send 10,000 times and pvm_nrecv 35,000 times, then

the Pangaea overhead would add 6.1 seconds of CPU utilization in

record mode and 24.4 seconds in replay mode, With a computa-
tion to communication ratio of 101, this results in a 3.3~o increase
in CPU utilization in record mode and 13.1 YO in replay mode.

Another component of increased overhead includes the mes-

sage header added to each send event. The average size of the
message header is nine bytes, four for the Pangaea message id and

five for the sender’s hid. The message header increases the length

of each message sent and adds overhead for packing and unpack-
ing the header.

There is also a fixed amount of overhead incurred by using

the Pangaea system in any mode. Each application must invoke
Pangaea initialization and cleanup functions, which use total CPU
utilization of 20.4 msec and 17.5 msec, respectively. The Pangaea
top-level task uses 243.3 msec total CPU time, and the Pangaea

nator and the top-level task spend most of their time waiting, so it is
not surprising that their CPU utilization is negligible.

The actual size of the log files created depends on the number

of events recorded. The average number of bytes per event for SOR
in the example execution is 29. The execution logs will always be

small since they only contain spawn events. Each log file contains a
header describing the format of the contents, and thus has a small,

fixed, minimum size. The Pangaea execution log will always con-
tain at least one spawn event since it initiates the application,

although its communication log will be empty. No log files are gen-
erated for the Pangaea task coordinator.

Replay mode incurs the same amount of fixed overhead as
record mode. The same message headers are added to each send

event. The main difference between replay and record mode is that
replay reads the log files instead of writing to them, and it caches
into memory the incoming messages that are received before they

are expected. This data shows that all instrumented PVM functions,
with the exception of pvm_spawn, add more overhead for replay
than for record. This result was expected since there is more pro-

cessing to perform for replay than for record mode for these func-
tions. Replay processing for pvm_spawn is actually simpler than
that for record. and thus has lower overhead.

8 Conclusion

In this paper, we have described Pangaea, a debugger for par-
allel applications implemented on heterogeneous distributed sys-
tems. Pangaea combines the visualization and trace facilities of

XPVM with a new replay facility and a new event graph view. Pan-
gaea provides the means to capture the event ordering of a particu-

lar execution and reproduce that same ordering as many times as

needed. This capability aids in debugging software errors caused

by non-deterministic communication patterns produced by hetero-
geneous applications.

There are several ways in which the scope of Pangaea can be

expanded. The initial implementation supports only C programs;
other language interfaces, particularly Fortran, need to be devel-
oped. In addition, it would be useful to add additional views to

49

Pangaea, or even to add a facility for customizing views, like that

available in Panorama [12]. The new Pangaea event graph view in

XPVM could be enhanced to allow more sophisticated re-size and

zoom capabilities. A dynamic selection capability could be added

to allow selective logging and replay at run-time in addition to the

existing static selection capability. Pangaea could also be imple-
mented for MPI applications once MPI supports task initiation.
This would increase the availability of Pangaea’s capabilities to
heterogeneous application developers.

To improve ease of use, the Pangaea modifications to XPVM

could be incorporated into the official XPVM release. It is also fea-

sible to implement the Pangaea facilities for record, replay, and

display directly into PVM. With Pangaea features implemented in

PVM and XPVM, there would be no need to install a separate Pan-

gaea package.
Pangaea, coupled with XPVM, provides a useful tool for

replaying and visualizing executions of parallel applications on
heterogeneous distributed systems. Heterogeneous systems are

becoming more and more prevalent, and tools such as these play
an important role in the development of efficient applications
which can exploit the performance potential of such systems.

9 References

[1] Anglano, C., Schopf, J. Wolski, R., and Berman, F.

Zoom: A Hierarchical Representation for Heterogeneous

Applications. University of California at San Diego, Com-

puter Science and Engineering Technical Report CS95-451,

1995

[2] Beguelin, A. Xab: A Tool for Monitoring PVM Pro-

g~ams, In Workshop on Heterogeneous Processing, Los

Alamitos, California, April 1993, pp. 92-97.

[3] Beguelin, A., Dongarra, J., Geist, G.A., Manchek, R.,

and Sunderam, V. A User’s Guide to PVM Parallel Virtual

Machine. Technical Report ORNL/TM- 11826, Oak Ridge

National Laboratory, July 1991.

[4] Bernard, C., Ogilvie, M. C., DeGrand, T. A., DeTar, C.

E., Gotlieb, S. A., Krasnitz, A., Sugar, R. L., and Toussaint,

D. Studying quarks and gluons on MIMD parallel computers.

International Journal of Supercomputer Applications 5,4

(Winder 1991), pp. 61-70.

[5] Cheng, D. and Hood, R. A Portable Debugger for Par-

allel and Distributed Programs. Supercomputing, 1994

(URL http://wkl22.nas.nasa.gov/NAS/Tools/Projects/P2D2/

).

[6] Choi, J. and Stone, J. M. Balancing Runtime and

Replay Costs in a Trace-and-Replay System. In Proceedings

of the ACM/ONR Workshop on Parallel and Distributed

Debugging, pp. 13-22, May 1991.

[7] CXSOFT’S ConvexPVM System, URL http://
www.convex.com/prod_serv/cxsoft/l’roduc ts/pvm_inf.htm 1.

[8] Damodaran-Kamal, S.K. Xmdb Version 1.0 User Man-

ual 1.2. Los Alamos National Laboratory, 1995 (URL http//

www-c8.lanl.gov/dist_comp2/mdb/mdb,html).

[9] Forin, A. Debugging of Heterogeneous Parallel Sys-

rems. International Workshop on Parallel and Distributed

Debugging, 24(1) 130-141, January 1989.

[10] Kuppermann, A., and Wu, M. Quanrum Reaction

Dynamics on a GigabitlSec Network. Proceedings of the

Gigabit Testbed Maxijam, November 1995.

[11] LeBlanc, T,, Mellor-Crummey, J. Debugging parallel

programs with Instant Replay. IEEE Transactions on Com-

puters C-36, 4, April 1987,471-482.

[12] May, J.M. An Extensible, Retargetable Debugger for

Parallel Programs. Technical Report Number CS94-375,

Department of Computer Science and Engineering, Univer-

sity of California at San Diego, June 1994.

[13] Mechoso, C., Farrara, D., and Spahr, J. Achieving

Superlinear Speedup on a Heterogeneous Distributed System.

IEEE Parallel and Distributed Technology, pp. 57-61, Sum-

mer 1994.

[14] Message Passing Interface (MPI). URL http://

www.arc.unm.edu/workshop/mpi/mpi.html.

[15] Miller, B. and Choi, J. A Mechanism for Eficient

Debugging of Parallel Programs. Proceedings of the ACM

SIGPLAN ’88 Conference on Programming Language

Design and Implementation, published in ACM SIGPLAN

Notices 23,7, pp. 135-144, July 1988.

[16] Neuman, B. C., and Rae, Santosh. The Prospero

Resource Manager: A Scalable Framework for Processor

Allocation in Distributed Systems. Concurrency: Practice and

Experience, Vol 6(4), pp. 339-335, June 1994.

[17] Pancake, C. M. Why is there such a mis-match between

user needs and tool products? Presented at the 1993 Work-

shop on Parallel Computing Systems, Keystone, Colorado,

April 1993.

[18] Proceedings of the ACM/ONR Workshop on Parallel

and Distributed Debugging, 1991, 1993.

[19] XPVM: A Graphical Console and Monitor for PVM.

(URL http//www.netlib.org/utldicl/xpvm/xpvm.html).

50

