
Automatic Performance Prediction to Support

Cross Development of Parallel Programs *

Matthias Schumann

Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR)

Institut fur Informatik / SAB

Technische Universitat Munchen (TUM), 80290 Munchen, Germany

email: schumanm@nformatik. tu-muenchen.de / matt@lwap0207.them. tu-berlin.de

http://wwwbode. informatik.tu-muenchen. de/- schumanm

Abstract

Cross development techniques are very attractive to be ap-

plied in high performance scientific computing because the

parallel systems are expensive and should rather be uti-

lized to perform production runs than to debug parallel pro-

grams. However, if development and execution platforms

differ, techniques are required to efficiently predict the per-

formance that will be actually gained on the target system.

In this paper, we present a performance prediction

methodology that is able to efficiently support cross develop-

ment of deterministic real-life message-passing programs for

recent parallel multi computer systems. The whole predic-

tion process is supported by an environment of automatic

tools. We demonstrate the feasibility of our approach by

considering four programs from the NAS parallel benchmark

suite and a multi-point boundary-value problem solver de-

veloped at TUM. The programs are implemented under the

NX/NXLib and PVM message-passing environments. Our

experimental environment comprises Paragon, iPSC/860,

and G C/PowerPlus multi computer systems, and a small

cluster of workstations that serves as development platform.

1 Introduction

Porting and developing programs for multicomputers re-

quires enormous efforts and leads to frequent test runs dur-

ing the implementation. A computing center, however, is

more interested in executing production runs on the costly

multicomputers than in spending computing power for de-

bugging purposes. To withdraw this load from the sys-

tems, portable parallel programming environments such as

NX/NXLib [22] or PVM [9] are applied. Such environments

enable the user to cross develop parallel applications on a

cluster of workstations (COW). The COW - or even a single

workstation - emulates a multicomputer by executing par-

allel processes m quasi-concurrence, i.e. in multiprocessing

mode.

Unfortunately, COWS usually do not provide the degree

*We thank FORTWIHR, the Bavarian Consortium for High Per-
formance Computing, for funding our work.

Persnission to make digitsl/bard copies of all or pafi of MIS material for
peraortal or classroom use is granted without fee provided that the copies
are not made or distributed for pmtit or comroetwial advantage, the copy-
dght notice, the title of the publication and ifa date appear, and notice is
given that copyright is by permission of-tie ACM, Inc. To copy otherwise,
to republiab, to post on servers or to redwtributa to lists, requires specific
permission and/or fee.
SPDT ’96, Phdadelphia PA,USA
@ 1996 ACM o-89791 -846-0196i05. .$3.50

of parallelism a multicomputer provides. Moreover, the per-

formance characteristics of COWS and multicomputers dif-

fer significantly. As a consequence, performance debugging,

i.e. identification and elimination of performance bottle-

necks, still has to be carried out on the target multi corn-

puters. In order to withdraw a major part of those activi-

ties from the multicomputers, methodologies and tools are

required that are capable of predicting the desired perfor-

mance values without actually accessing the target systems.

A methodology suitable for this purpose has to meet three

key constraints:

1.

2.

3.

It has to support a wide range of real-life programs

and real-life machines.

The prediction time has to be reasonable.

The predicted performance values have to be suffi-

ciently accurate.

2 Related Work and Research Objectives

2.1 State of the Art

Traditional performance prediction methodologies require

the user to manually model the behavior of programs and

target systems at various abstraction levels, and incorpo-

rate costly analysis techniques such as stochastic analysis

or fine grain simulation. Honoring the second of the three

key constraints mentioned above, this is not feasible unless

the considered programs and machines are of very limited

complexity, leading to a violation of the first constraint.

R. Aversa et al. [1] developed an execution-driven sim-

ulator for heterogeneous environments using PVM. While

the interconnection network is modeled in great detail, the

delay of computational tasks is estimated by means of per-

formance ratios of target platforms and development plat-

forms. They achieve accurate results and reasonable simu-

lation times for small program kernels.

G. Chillariga and B. Ramkumar [6] presented a

simulation-based prediction approach focusing on the

message-driven programming environment Chawn. They

emphasize relative performance criteria and estimate the

delay of computational tasks by linearly scaling the delays

measured by executing a reference program version on the

target system. Unfortunately, they do not quantify the re-

quired simulation times.

A framework based on graph analysis to predict the ex-

ecution time of parallel SISAL programs within a simu-

lated test-bed to evaluate multiprocessor scheduling algo-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F238020.238049&domain=pdf&date_stamp=1996-01-01

rithms was proposed by V.S. Sarkar [19]. Recently, a graph-

based approach to automate the formulation of scalable

workload models for message passing programs containing

synchronous and pipeline communication phases was intro-

duced by R.J. Block et al. [4].

Performance predictors integrated into parallelizing com-

pilers to automatically guide the selection of data partition-

ing strategies and program transformations were developed

by V. Balasundaram et al. [3] for the ParaScope environ-

ment, by T. Fahringer and H. P. Zima [8] for the Vienna

FORTRAN Compilation System, and by Y. Seo et al. [20] for

the PCASE environment. A performance predictor for the

Data-parallel C language was developed by M.J. Clement

and M.J. Quinn [7]. A.D. Malony and K. Shanmugam [13]

presented a performance extrapolation tool to support cross

development of data-parallel C++ programs written in the

pC+-t- language. All these approaches are restricted to pro-

grams of the highly regular SPMD type as they are gener-

at ed by parallelizing compilers. As a benefit, most of these

approaches incorporate a scalable, mathematical workload

model; i.e. they are able to predict the performance of those

highly regular programs for varying processor counts and

problem sizes by using only a single mathematical workload

model.

Yet, existing performance prediction methodologies for

parallel programs either require manual modeling efforts or

substantial prediction times, or severely restrict the target

programs to certain narrow classes. Many of them predict

execution time only and provide custom tailored user inter-

faces. A frequently seen deficiency is that reported results

are often obtained by considering case studies of small pro-

gram kernels rather than red-life parallel programs.

2.2 Performance Requirements and Design Objectives

Our initial claim is that prediction time and generality are

more critical than accuracy. Nobody will ever use a pre-

diction methodology if he first has to spend considerable

effort to design and validate models of the program and the

machine, if the prediction time is by orders of magnitudes

slower compared to program execution and measurement,

or if predictable programs are restricted to a few classes. Of

course, neither will anyone use prediction if it is not reason-

ably accurate.

As our reference point for the prediction time, we con-

sider a time interval that is most familiar one to users of

cross development techniques: a program’s compile-and-run

time on the development platform.

To be suitable for performance debugging, the predicted

performance values have to be sufficiently accurate to prop-

erly identify performance bottlenecks of parallel programs

and to evaluate the performance gain obtained by different

modifications to the program. The predicted performance

criteria should cover a wide spectrum of metrics and should

be visualized by means of widely used performance analysis

tools.

As such, it is the goal of our research to investigate

to what extent a compromise between accuracy, prediction

time, automation, and generality can be settled in order to

efficiently support cross development by performance pre-

diction techniques. In order to evaluate this question, our
central objective is the development of a fully tool-supported

performance prediction methodology comprising automatic

modeling of target machines and programs. The methodol-

ogy should be so general as to consider widely-used parallel
programming environments, recent target systems, and real-

life parallel programs.

2.3 Target Environment

The target machines we consider are real-life parallel mul-

ticomputers. Concerning the target programs, we focus on

real-life message-passing programs from the domain of high

performance scientific computing (HPSC). Because most

HPSC codes today are still written in FORTRAN, we con-

centrate on FORTRAN77 programs that make use of widely

used message-passing environments. In order to fit those

programs onto the development platforms, they have to be

scaled down by reducing the process count, the problem size,

and/or the iteration count. However, even on the actual tar-

get systems, performance debugging is almost ever carried

out by using scaled down program versions because the re-

quired trace files grow extremely large and the intrusion of

the program becomes significant. Fortunately, basic algo-

rithm behavior and most fundamental bottlenecks and inef-

ficiencies in parallel programs are usually already apparent

when viewed wit h scaled down program versions.

We do not consider performance prediction for operat-

ing system and 1/0 activities in this work. Moreover, we

focus on a static process model and do not consider multi-

processing on the nodes of the target machines. Many codes

applied in the HPSC domain make use of a static process

model and reduce their 1/0 requests to reading the initial

data and to writing the results. I.e. operating system ac-

tivities such as process creation, process scheduling, process

deletion, and 1/0 are only occurring at the start and at the

end of a program. Hence, the substantial efforts arising to

predict the performance of those activities are not justified

by the accuracy that will be gained.

2.4 Our Approach

The kernel of our approach is a general, high level language

performance model of parallel multicomputers, denoted as

abstract parallel numerical machine (APNM) model.

For every considered target system, the parameters of

the machine model are automatically identified by a ma-

chine analyzer based on a micro benchmark. For the sake

of model generality and prediction time, we ignore mod-

eling network topology and contention by assuming that -

concerning state-of-the art networking technology - the cor-

responding performance impacts are only of second order at

moderate node counts as they are utilized in performance

debugging.

The workload parameters of the target programs

are automatically identified by a static program ana-

Iyzer/instrumenter tool, and in a subsequent profile run or

execution-driven simulation. Integration of workload and

machine model and analysis of the resulting system model

are carried out either on- line during the execution-driven

simulation or off-line by means of a graph construction and

analysis tool. The predicted performance criteria are visu-

alized by a widely used performance analysis tool.

2.5 Organization of the Paper

The remaining sections of the paper are organized as follows.
First, we introduce our performance prediction methodology

and the supportive environment of automatic tools. Subse-

quently, we present the underlying machine and workload

models and describe the tools used for parameter identifi-

cation and system model analysis. Finally, we evaluate our

89

methodology, discuss the results, and present future research

directions.

3 Performance Prediction Environment

We incorporate a machine model based on the concept of an

abstract parallel machine which is able to directly execute
high level language (HLL) instructions. Thus, we are able to

exploit target machines offering different compilers, running

different operating systems, and providing various message-

passing environments. We denote the current implement a-

tion of the machine model as the abstract parallel numerical

machine (APNM) model, because it emphasizes numerical

applications written in the FORTRAN77 language.

The APNM prediction environment offers two predic-

tion methodologies, namely on-line and off-line prediction,

as shown in Figure 1. Both met homologies require a parame-

ter analysis of the considered program and of the considered

target machine. The MA machine parameter identification

tool evaluates the execution times of a set of predefine,

program independent, high level language (HLL) instruc-

tions and communication parameters which are stored in a

machine parameter data base. The A 5’ workload parame-

ter identification and instrumentation tool identifies basic

blocks in the source code, and stores the HLL instructions

contained in each basic block in a basic block data base.

Furthermore, it inserts basic block counters, simulation time

counters, and library hooks into the source code.

To perform an on-line prediction, the instrumented pro-

gram has to be linked with the simulation library A3simu.

The resulting executable - given the program’s basic block

data base and the machine parameter data base of the con-

sidered target machine as additional input - is executed in an

execution-driven simulation on the development platform.

After termination of the simulation, the user is provided

with the program execution time predicted for the specified

target system. Hence, by combing profiling and prediction

into a single run, on-line prediction enables the user to ob-

tain a quick execution time prediction. Yet, neither does

it provide the user with further performance metrics, nor is

it able to visualize the predicted execution behavior. If the

user is interested in those features, an off-line prediction has

to be performed.

To perform an off-line prediction, the instrumented pro-

gram has to be linked with tracing library A3trace. The

resulting code is executed in a profile run on the develop-

ment platform to generate trace files recording the occur-

ing communication events and the basic block executions

between them. The trace files, the basic block data base,

and the machine parameter data base are fed into the PE

performance predictor tool. PE assembles a weighted task

graph representing the program’s execution behavior on the

target machine, and performs a critical path analysis upon
the resulting graph. Eventually, the estimated performance

metrics are provided by means of widely used performance

analysis tools. In our approach, we employ TA TOO [5], a
trace analysis tool developed by collaborate researchers at

LRR-TUM. Moreover, PE provides a machine independent

characterization of the program execution by visualizing the

execution count profile of abstract HLL instructions, and a

machine dependent characterization by viewing the corre-

sponding execution time distributions.

From a model evaluation point of view, off-line and on-

line prediction are completely equivalent. As such, the pre-

dicted execution time values are the same, independent of

the applied prediction methodology.

Both methodologies provide performance predictions for

the problem size, the process count, and the input data spec-

ified in the respective profile or simulation run. We do not

scale our workload model, because an accurate and auto-

matic scaling (e.g. by statistical regression techniques as

proposed by P. Mehra et al. [14]) of models describing irreg-

ular programs is not feasible with respect to the prediction

time.

4 Modeling Approach

In order to automatically reflect changes in the program

code, and to establish a relation between the predicted per-

formance and the program code, performance prediction

should be applied at the source code level. Because mod-

eling the compiler and the operating system is not feasi-

ble and, moreover, not portable, many existing predictors

model real-life machines by deterministic linear HLL execu-

tion models, i.e. by assuming that the machines are able to

directly execute HLL code.

R.H. Saavedra [18] introduced a sequential abstract

FORTRAN machine. He models a program P in terms of

a vector E holding the execution counts of primitive FOR-

TRAN instructions occuring during an execution of P. In

correspondence, the target machine is described in terms

of a vector C of the instruction execution costs arising on

the target machine. The predicted execution time ~ of P is

computed by a linear execution model, i.e. by computing the

scalar product of both vectors: ~ = E * C. A similar model

extended by message-passing instructions to handle parallel

SPMD programs, was proposed by V. Balasundaram et al.

[3].

We extended Saavedra’s machine model by an abstract

message-passing environment that provides basic commu-

nication and synchronization operations. By abstracting

and reducing the message-passing functions to a certain

core functionality, we achieve a portable approach to per-

formance prediction under different message-passing envi-

ronments. We put a task graph model on top of the tra-

ditional instruction execution count model, in order to be

able to handle even irregular parallel programs. Moreover,

our APNM model extends Saavedra’s model of the abstract

FORTRAN machine by considering features of today’s RISC

microprocessors such as memory hierarchy and parallel ex-

ecut ion units.

4.1 Machine Model

4.1.1 Architecture Model

Precisely modeling individual interconnection network

topologies and the involved network contention in a detailed

simulation is infeasible because the demanded modeling and

model analysis efforts contradict the stated prediction time

requirements. Currently, predictors that are able to effi-

ciently handle network contention are restricted to the clus-

tered communication occuring in SPMD programs, cf. [3],

[8].

These days, however, modern multicomputers are

equipped with high bandwidth, worm-hole routing, virtu-

ally fully interconnected networks, additional communica-

tion processors, active network adaptors, and novel routing

strategies, in order to abstract from the underlying topol-

ogy and to reduce the performance impact of network con-

tention. By ignoring topology and contention in modern

PROGRAM MACHINE

+ +
GENERAL

+ +
PROGRAM EXE;M;ON EXE;CLION

PERFORMANCEMETRICS CHARACTERISTICS

Figure 1: The APNM Performance Prediction Environment

multicomputers - namely an iPSC/860 and an iWARP ar-

ray - M. J. Clement and M. J. Quinn [7] achieved speedup

predictions with an accuracy of 20% in configurations of up

to 64 nodes. We believe that - considering moderate pro-

cess counts as they are usual in performance debugging - this

is currently the most feasible approach to predict the per-

formance of programs that involve irregular communication

structures. Therefore, we model multicomputers as homo-

geneous collections of fully connected processing nodes. As

a drawback of this approach, our predictions severely over-

estimate program performance for multicomputers that do

not incorporate recent networking technology (see Section

7.4).

Each processing node (PN) is modeled to execute a sin-

gle process consisting of abstract FORTRAN instructions.

A processing node consists of an application processor (AP)

that is able to execute abstract instructions, a communica-

tion engine (CE) that connects the processing node to the

interconnection network, and a main memory (MM). The

application processor comprises a computation/control unit

(CCU), a load store unit (LSU), a register file (RF), and

a first level data cache (DC). The communication engine

serves as a network adaptor. By spooling data messages

and synchronization messages to and from the interconnec-

tion network, it takes care of servicing the communication

requests posted by the application processor. The possibil-

ity to overlap computation and communication by means of

the communication engine reflects the presence of dedicated

message co-processors in modern multi computers. The en-

tire architecture model is summarized in Figure 2.

4.1.2 Computation

The computational performance of a target machine is pa-

rameterized by the execution cost vector which holds the

execution times for 179 primitive FORTRAN instructions.

Our approach mainly differs from Saavedra’s in the way

the latency of memory accesses is handled. In their tradi-

tional form, linear HLL execution models do not distinguish

between latencies caused by accesses to different levels of the

memory hierarchy. I.e. they either represent best case mod-

els assuming that all the data is in the cache, or worst case

models assuming that all the data has to be fetched from

main memory. To deal with this problem, R.H. Saavedra

makes use of a cache simulator. This is not feasible in our

approach because of the substantial time effort required to
generate the address trace, to model the memory hierarchy

and to carry out the simulation.

In contrast to reality, we model the memory access be-

havior of a program to be independent of the target machine.

By assuming memory bound programs and large data struc-

tures as they are typical for the HPSC domain, we heuris-

tically try to determine the target of a memory access from

looking at the source code. This is done by means of the A3

tool during the identification of the static workload param-

eters.

The machine model distinguishes data transfers between

the register file and the cache, and data transfers between

the register file and the main memory. Accesses to the main

memory are further categorized by whether the transfer is

carried out in isolation or is part of a stream of transfers to

91

.

I
\
\

\

“\
\
I
I

/
/

Figure 2: Architecture Model

consecutive memory locations. This distinction reflects the

performance differences of isolated and streamed accesses to

the main memory caused by the different degrees of spatial

locality exploited.

4.1.3 Communication

In order to be able to consider diverse message-passing en-

vironments, we define an abstract message-passing environ-

ment featuring the core functionality available in almost

all message passing environments: request of configuration

information, synchronous and asynchronous (following NX

semantics) peer-to-peer and broadcaat transmission, global

synchronization, and typed communication. In the same

way, programs from the HPSC domain often use only the

core functionality of message-passing environments in or-

der to guarantee high portability between different environ-

ments.

Basically, latencies L of communication functions are

modeled by dividing the message length S by a bandwidth

~, and by adding a start-up time a: L = a + (S/@. In

order to account for discontinuities caused by packetization

effects, individual parameters a(k) and ~(k) are kept for n

intervals [Bk_l, Bk], k G {1, n}, of the message length.

The interval bounds Bk are discrete values of the message

length. However, the latencies of broadcasts and global syn-

chronizations are further affected by the number of partici-

pating processes. Therefore, the communication parameters

are additionally parameterized by the process count P, lead-

ing to the following piecewise linear model of communication

latencies:

L(s, P) = cl(k, P) + *

VS E [@-,,~~], keel,..., n}
(1)

4.2 Workload Model

Prediction methodologies that abstract computation by a

linear HLL execution model require the computational tasks

to be modeled by execution count lists of the HLL instruc-

tions in the program. Unfortunately, execution count lists

lack the possibility to establish communication and prece-

dence relations between the computational tasks. Thus, tra-

ditional approaches based on a linear HLL execution model

are restricted to certain algorithmic structures, to SPMD

programs, or do not consider parallel programs at all. Irreg-

ular parallel programs, however, have not been considered

yet.

An elegant way to model irregular parallel programs are

directed acyclic task graphs. Task graphs decompose a par-

allel program into its computational tasks, and the prece-

dence and communication relations between them. In order

to combine the advantages of the HLL abstraction level and

of task graph models, we introduce a hybrid workload mod-

eling approach. The basic idea is to describe the tasks’ ab-

stract computational costs by execution count lists of HLL

instructions, and to annotate the vertices representing the

tasks with the corresponding lists. Furthermore, directed

communication edges are annotated with the lengths of the

transferred messages. The resulting graph is denoted as an-

notated directed acyclic task graph (ATG).

There is a very obvious procedure to construct and ana-

lyze a program’s ATG. It is to explicitly assemble the graph

post mortem, i.e from trace data containing the basic block

execution counts and the communication events, to subse-

quently determine the predicted costs of vertices and edges

by evaluating the machine model, and to finally analyze

the resulting system model by graph theoretic analysis tech-

niques. We denote this form of performance prediction as

off- line prediction. It is often argued that the size of acYclic

task graphs tends to explode if real-life programs are con-

sidered. However, as we demonstrate in Section 7, even

communication intensive programs can be handled by off-

line prediction if they are scaled down as it usually done in

order to carry out performance debugging.

However, there is an interesting alternative to explicitly

constructing and analyzing a program’s ATG. An ATG de-

scribes program execution behavior and, vice versa, a pro-

gram’s execution resembles a traversal of its ATG. As such,

a program itself can serve as a basis to evaluate its ATG in

an execution-driven simulation. In order to derive the HLL

instruction execution count lists and the message lengths

during program execution, the originaf program has to be

properly instrumented. During program execution, this data

can be handed over to a simulation library which evaluates

the machine model and keeps track of the simulation time in

the system. We denote this form of performance prediction

as on-line prediction.

5 Parameter Identification

5.1 Machine Parameters

The machine model parameters of a target machine are au-

tomatically identified by the MA machine analyzer tool. In

fact, the machine analyzer consists of two separate parts. A

sequential micro benchmark measures the execution times

of the computational HLL instructions, while a separate

communication benchmark measures communication per-

formance parameters. Both parts are written in standard

FORTRAN77. When migrating to another target machine,

only the timer calls have to be adapted. In order to ex-

ploit another message-passing environment, the syntax of

the message passing calls has to be adapted, too.

In order to measure the execution time of an HLL in-

struction or of a communication operation, the benchmarks

apply a differential measurement technique: a synthetic in-
struction sequence denoted as body of test is executed for

a number of iterations ITER. From the measured execu-

tion time we subtract the execution time of a reference body

that differs from the body of test only by the considered op-

eration. The obtained time is denoted as an observation.

The value of ITER has to be properly adapted to the clock

resolution and the performance of the target system.

In order to obtain a meaningful statistic, a sample of

REPEAT observations is taken. A sample’s coefficient of

92

variation indicates the quality of the measurement. For a

proper measurement, the coefficient of variation should lie

well below 5%. Unfortunately, the measured average values

are affected by concurrent operating system activities and

by network contention caused by other space sharing users

on the system under test. In order to gain load independent

and reproducible results, we take the minimum of a sample

as our measurement, resulting in a deterministic best case

model of the target system.

The runtime of the complete benchmark set on a consid-

ered target machine strongly depends on its clock resolution

but is usually of the order of hours.

Moreover, by simply counting the number of arithmetic

operators and the number of memory accesses in an arith-

metic expression, A3 determines whether the execution of a

load/store instruction can be overlapped with the execution

of arithmetic instructions.

5.2.2 Dynamic Parameters

The dynamic workload parameters, i.e. the computational

tasks and their precedence and communication relations, are

identified either implicitly during execution-driven simula-

tion or explicitly identified in a profile run. Depending on

the librarv linked to the instrumented code. either on-line

5.2 Workload Parameters
predictio~ is carried out or trace files recording the execution

profile of every parallel process are generated.

5.2.1 Static Parameters A trace file contains the encountered communication

The static workload model parameters of a target program

are automatically identified by the A3 tool which is imple-

mented as a compiler front-end built on top of R.K. Moniot’s

FTNCHEK tool [15]. The A3 tool parses the program’s

source code, identifies its basic blocks, stores the contained

HLL instructions in the basic block data base, and instru-

ments the program with basic block execution counters for

off-line prediction and simulation-time counters for on-line

prediction. Furthermore, A3 replaces communication func-

tions with stubs that invoke functions in the trace and sim-

ulation libraries and afterwards call the actual communica-

tion functions. By a configuration file, A3’s instrumentation

facilities can easily be adapted to different message-passing

environments.

When parsing a basic block to identify the enclosed

abstract instructions, A3 heuristically tries to determine

whether an operand already resides in the register file or

has to be transferred from/to the cache or - in a streamed

or isolated access - from/to main memory. Unfortunately, a

detailed outline of the heuristic would go beyond the scope

of this paper, but the heuristic basically does the following:

e Multiple accesses of the same scalar variable or the

same array element in a basic block are reduced to a

single, yet undetermined memory access, considering

register allocation optimization by the compiler. An

access of an array element which is likely to fall in the

same cache line as a previously accessed element of the

same array is assumed to hit the cache.

e Whether a yet undetermined memory access is as-

sumed to hit the cache or whether the data is assumed

to be transfered in a streamed or isolated transfer from

main memory, depends on the address reference class.

The address reference class indicates whether the ad-

dresses referenced in two consecutive executions of the

same source code operation are likely to be arbitrar-

ily changing, to be locally changing, or even to be

static. In our heuristic, the class static corresponds

to a cache hit, the class locally changing corresponds

to a streamed access of main memory, and the class

arbitrarily changing corresponds to an isolated access

of main memory.

The address reference class of an access to a scalar vari-

able is defined to be static. The address reference class
of an access to an array element depends on the com-

plexity of the individual index expressions, on whether

they contain the loop variables of the immediately sur-

rounding loop, and on their position in the index.

events in the order of their occurrence and - between those

entries - the execution count of every basic block executed in

between the respective communications. Here. it should be.
noted that the trace files are machine independent; i.e. they

do not contain time stamps. In order to overlap flushing of

the trace buffers and communication, the trace buffers are

flushed when a communication event is encountered.

6 System Model Integration and Analysis

6.1 Off-line Prediction

Given the traces generated in a preceding profile run of the

considered program, the PE tool is able to assemble the

program’s annotated task graph by applying an algorithm

of complexity O (Ivertices I + Iedges I). Provided wit h t he t ar-

get program’s basic block data base and with the target ma-

chine’s parameter data base, the PE tool transforms the an-

notated task graph into a weighted task graph. The weights

of the vertices represent the delays of the corresponding com-

putational tasks. They are computed by applying the linear

HLL execution model. The weights of the edges represent

communication latencies which are computed by evaluating

the piecewise linear communication models.

In a subsequent analysis of the weighted graph, the PE

tool computes the tasks’ earliest and latest finishing times,

and identifies the tasks and communications that belong

to the critical path. The graph analysis is of complexity

O([edgesl) and is performed by an adapted version of a

PERT network analysis algorithm proposed in [21]. Finally,

the PE tool provides the user with the predicted execution

time for the program, i.e. with the length of the critical

path, and with the amount of communication time spent

on the critical path. Optionally, the PE tool traverses the

weighted graph again and generates a trace file compliant

with the TATOO Performance analvsis tool. or character-. .
izes the program execution in terms of HLL instruction ex-

ecution frequencies and distributions.

6.2 On-line Prediction

In contrast to the off-line prediction technique described

above, the idea behind on-line prediction is to compute and

traverse the weighted graph in an execution-driven simu-

lation. To carry out an execution-driven simulation, the

program code is instrumented with simulation time coun-
ters and library hooks by means of the A3 tool, and the

simulation library A %imu is linked to the resulting object

code.

The simulation library controls the execution of the pro-

gram. Before starting the program, it reads the program’s

93

basic block data base and the target machine’s parameter

data base. From these data, the execution times of the indi-

vidual basic blocks are predicted by applying the linear HLL

execution model. During the execution of the program, ev-

ery process keeps a local simulation time. Every time a basic

block in the program is executed, a simulation time counter

increments the local simulation time by the basic block’s

predicted execution time. When a communication event

is encountered, the sender computes the estimated t rans-

fer time by calling a function in the simulation library, adds

it to its local simulation time, and sends the result on top of

the actual message to the destination process. By compar-

ing the local simulation time with the transmitted arrival

time, the receiving process updates its simulation time and

proceeds with its execution. Eventually, after the program’s

termination, the predicted execution time is determined by

finding the process with the largest simulation time.

It has to be noted, that off-line and on-line prediction are

completely equivalent techniques. As such, the predicted ex-

ecution times value are the same, independent oft he applied

prediction technique.

7 Discussion and Evaluation

7.1 Limitations

As a consequence of the deterministic workload modeling

approach based on the annotated task graph, the spectrum
of target programs is basically restricted to programs that

show deterministic execution behavior. 1.e. their execution

on the development platform and on the target system must

lead to the same graph model. This may especially not

be the case if a program contains races, or if a program’s

behavior depends on the precision of mathematical libraries

(e.g. iterative solvers) or on real-time events.

Tools and techniques to detect races in a program’s ex-

ecution are available, cf. [16]. If a program was found to

cent ain races, a tool that enforces deterministic execution

as it is proposed in [17] can be applied to generate a set

of traces describing multiple characteristic execution behav-

iors of a single program. By following this approach, the

performance for multiple potential execution behaviors can

be predicted.

Concerning precision and real-time dependencies, a user

has to rely on his own knowledge of whether his program

contains such dependencies and how to eliminate them.

7.2 Experimental Environment

As target systems in our experiments, we use two gen-

erations of Intel multi computers, i.e. the i860 based

iPSC/860 and Paragon systems, and a PowerPC601 based

GC/PowerPlus system [11] manufactured in 1994 by the

German vendor Parsytec. We utilize partitions of up to 16
nodes - a size which is typical for performance debugging

of parallel programs. A COW consisting of four SPARC-

stat ion 10 serves as development platform. The parallel pro-

grams are developed on this platform by executing their pro-

cesses in quasi-concurrence.

Our suite of test programs consists of NX and PVM im-

plementations of the NAS benchmarks cg, ep, ft, and lU [2].

The problem sizes of the programs were chosen so that the

execution times of the sequential codes are of the order of

30 seconds. While the development code is implemented un-

der PVM, the multicomputer implementations to verify our

predictions are running under NX on the Intel systems, and

under PVM on the G C/PowerPlus respectively.

7.3 Accuracy

We start our evaluation by determining to what extent the

fact of ignoring network topology and contention does affect

the accuracy of the predicted results. We characterize accu-

racy in terms of the relative prediction error E = (~ – T)/T

which compares the predicted execution time T to the ac-

tually measured execution time T on a target system. T

is obtained by taking the average runtime of a sample of

10 executions. The variability of T is characterized by the

coefficient of variation V of the sample.

Table 1 shows accuracies and variabilities, as well as

their root-mean-squares RMS and standard deviations u,

for NAS-cg. Containing frequent, irregular, long distance

communications, NAS-cg is the most communication inten-

sive of the four test programs.

iPSC/860 Paragon GC/Power+

nodes T v E T v E T v E

1 29 0 -9 23 0 -1 20 0 -16
2 16 0 -13 11 0 -3 13 0 -20
4 9.8 0 -lo 6.4 0 4 9.9 0 -25
8 6.9 0 -26 3.8 8 -1 10 0 -40
16 5.8 0 -27 2.9 0 -4 15 0 -46

RMS o 19 4 3 0 32
u o 9 3 3 0 13

Table 1: Relative prediction errors (%) and measurement

variability (Yo) for NAS-cg

For the Paragon system, the predicted execution times

always lie within 4~o of the measured times and, hence, fall

wit hin the variability y of the actual measurements. For the

other systems, the prediction underestimates sequential per-

formance by 9~o and 16Y0. The deviation steadily increases

with the node count and reaches 27~o and 4670 respectively.

This phenomenon clearly is caused by ignoring network con-

tention. It shows that the accuracy is heavily affected by the

net working technology of the target systems.

Concerning the Paragon which provides state-of-the art

networking technology, the predictions are sufficiently accu-

rate. In the GC/PowerPlus system, however, a communica-

tion co-processor is not exclusively dedicated to its process-

ing node; the communication processor also has to take care

of routing and forwarding messages that are passing by. As

a consequence, the communication bandwidth of a node is

significantly reduced under heavy network load. Providing

a circuit switched interconnection network, the networking

technology of the iPSC/860 exhibits performance in-between

those of the two other systems.

Table 2 summarizes the results obtained for the four NAS
programs. The relative prediction errors E obtained for an

individual test program are summarized in terms of their

root-mean-square ~ and their standard deviation o (E). The

variability of the measurements is expressed by the root-

mean-square ~ of the coefficients of variation V. In the A V

row, the averages of ~ and ~ are listed.

Table 2 confirms the results obtained in Table 1. Being

at 7~o, the average prediction error for the Paragon system is

sufficiently accurate compared to the average measurement

variability of 3%. The low standard deviations of the rel-

ative prediction errors emphasize the successful prediction.

Reaching an average prediction error of 14%, the results ob-

94

I

L
Cg

w
ft

&

m
14 017 3

GC/Power+

n

2 a(E) P

32 13 0

321

23 20 0

21 6 0

20 I o

Table2: Summary ofrelative prediction errors (%)and mea-

surement variabilities (Yo) for the NAS test suite

tainedfor theiPSC/860 can be considered acceptable. The

accuracy obtained for the GC system, however, is definitely

insufficient.

The strong relation between the accuracy and the net-

work utilization becomes obvious by looking at the results

for NAS-ep. For this program, which has negligible com-

munication, the accuracies obtained for all the three target

systems are acceptable.

7.4 Prediction Time

We evaluate the required prediction time by presenting mea-

surements for the moderately communicating NAS-ft pro-

gram (Table 3) and for the heavily communicating NAS-cg

program (Table 4). In both tables, the runtime T of the

plain, un-instrumented program on the COW is compared

to the prediction times arising for on-line and off-line pre-

diction. On-line prediction is solely characterized by the

runtime TS of the execution driven simulation. Off-line pre-

diction is characterized by the runtime TT of the trace gen-

erating profile run and by the time TPE that is required to

analyze the system model by means of the PE tool.

The predictions are carried out during regular office

hours when cross development usually takes place. There-

fore, the COW and its Ethernet link are not solely dedi-

cated to cross development and considerable variations of

the measured execution times are observed. The execution

times are listed in terms of the average values of samples of

10 runs and their standard deviations a. The process count

P indicates the number of processes spawned on the COW.

77 KB for the run with 16 participating processes. This cor-

responds to trace generation rates per process of 53 bytes/s

and 758 bytes/s respectively, expressed in terms of the trace

volume generated per second of the runtime of the plain

code.

As a result of the low prediction time overheads and of

the large runtime variations caused by the ever changing

load conditions during office hours, the user is hardly able to

recognize the runtime difference between plain develo~ment

runs and both kinds of prediction runs.

on-line off-line

P T cr(T) TS U(TS) TT u(TT) TPE

1 45 1 69 1 68 2 1

2 72 0 111 4 140 4 6

4 112 2 164 6 230 41 17

8 72 19 255 20 375 13 34

16 292 24 378 6 856 60 67

Table 4: Prediction times for NAS-cg (seconds)

In the case of NAS-cg, the qualitative behavior of the

simulation is similar to that observed for NAS-ft. The run-

time averages differ by factors in the 1.30-1.54 range from

those of the plain code.

The profile times, however, are stronger increasing with

the number of processes, i.e. with the number of communi-

cations. While the average profile time exceeds the runtime

of the plain code only by a factor of 1.5 in the sequential

case, the factor increases up to 2.82 at a process count of

16. This phenomenon is mainly caused by the 1/0 requests

posted to write the trace data. For NAS-cg, the trace size

generated per process reaches from 1.7 KB in the sequential

case up to 1 MB for the run with 16 participating processes,

corresponding to trace generation rates of 39 bytesfs and

3.6 KB/s respectively.

Of the 67 seconds that the PE tool required to analyze

the system model at a process count of 16, the CPU was busy

46 seconds to read and parse the trace data, 19 seconds to

construct the weighted task graph, and 2 seconds to carry

out the critical path analysis. Thus, the main part of the

analysis time is spent parsing the trace and allocating small

chunks of memory to hold the individual elements of the

— annotated task graph.

k
PT

1 96

2 91

4 74

8 89

16 104

on-line off-line

u(T) TS I u(Ts) TT 1 u(TT) I TPE

3 114 I 3 111 I o I 1

Table 3: Prediction times for NAS-ft (seconds)

For NAS-ft, the average simulation time is in the worst

case by a factor of 1.44 higher and in the best case by a

factor of 0.97 lower than the average execution time of the

plain development program.

Compared to the average profile times which exceed the

execution time of the plain development program by factors

of 1.12 to 1.75, the analysis time TPE is negligible - even

at a process count of 16. The size of the traces generated

per process reached from 5 KB in the sequential case up to

Nevertheless; exceeding the runtime of the plain code by

a factor of 3, the time required to predict the performance

of a heavily communicating real-life parallel program is well

in the order of magnitude of its compile-and-run time on the

development platform.

With the current version of the trace library, a trace

entry is generated whenever a communication event is en-

countered. Hence, a more sophisticated trace buffer man-

agement should lead to a considerable improvement of the

trace generation process. By improving memory allocation

and by parallelizing graph construction, it should be possi-

ble to improve the graph analysis, too.

7.5 Case Study

In order to successfully conduct performance debugging

studies, the programmer has to be able to identify the por-

tions of the programs that require tuning and must not waste

time improving code that is not contributing to a bottleneck.

,-.-
Pt-ocessOOOQNodeOOO: BU=W Tim=

Pr-ocessOO1@NodeOO1: BUSH Time

Process002@Nod.002: BUSH Time

Proces.003i2Node003: Bus!j Time

P~ocess004@Nodm004 : Buss Time

P.oc-=s005@Nod.005: Bu=g T i“-

Frocess006@Node006: Busw T i mm

m~
Pvoce=s007@Node007: B“sg Time

I

Figure 3: Predicted execution behavior of MUMUS visualized by means of the TATOO tool

We finally present a short case study describing the suc-

cessful application of our performance prediction environ-

ment during the development of a real-life parallel program.

The program is MUMUS [10], a multi-point boundary-value

problem solver which is applied to solve optimal control

problems arising in flight path optimization.

We ran an eight process configuration of the initial code

on the development platform, and carried out an off-line per-

formance prediction for the Paragon system. Figure 3 shows

the predicted execution behavior visualized by means of the

TATOO tool. It shows an extract of TATOO’s utilization

Gantt chart, and a bar-graph summing up the utilizations

of all eight processes in the program to be 350.75~o. With

respect to the maximum possible utilization of 800~o, the

prediction of sso~o indicates that the eight processes are

blocked in communication calls for 56% of their total ex-

ecution time. The corresponding measurement using the

ParAide environment on the Paragon system revealed an

act ual blocking time of 5970.

The utilization Gantt chart shows a farmer/worker com-

munication pattern whose critical path is dominated by Pro-

cessO04. In order to gain a higher utilization of the processes,

the data distribution algorithm was redesigned. Predicting

the performance after the integration of the new distribu-

tion algorithm lead to a predicted process utilization of 6470,

while actual measurements on the Paragon system revealed

a process utilization of 65~0. Thus, by providing reliable per-

formance estimations, the prediction environment enabled

us discover the underlying performance bottleneck.

Here, it should be noted that ratios of predicted perfor-

mance metrics (the process utilization, for example, is the

ratio of the time the process was busy doing computation

and the total execution time of the process) become very

accurate if the variation of the individual relative prediction

errors are of similar size. The reason is, that the errors tend

to be eliminated during the computation of the ratio.

8 Conclusions and Future Research Directions

We presented a performance prediction environment com-

prising two methodologies, namely on-line and off-line pre-

diction, in order to support cross development of determin-

istic parallel programs. The methodology comprises a set

of tools allowing to automatically derive the model parame-

ters of the target programs and of the target machines, and

to construct and analyze the system model. The predicted

performance is visualized by means of a recent performance

analysis tool.

In contrast to other existing work, we consider real-life

parallel programs developed for widely used message-passing

environments. The achieved prediction time, which includes

the procedure of modeling the target programs, is of the or-

der of magnitude of the compile-and-run time on the devel-

opment platform. The approach is highly portable and, with

respect to a certain core functionality, able to predict per-

formance between different message passing environments.

The low prediction time is partly achieved by ignoring

performance impacts caused by network contention. For

communication intensive programs, hence, prediction errors

below 15% can only be gained for multicomputers that are

equipped with state-of-the-art networking technology. How-

ever, investigations regarding the efficient treatment of net-

work contention are subject of future research.

To date, our environment concentrates on a certain core

functionality of message-passing environments. In future

implementations, we think of extending the underlying mod-

els to cover a great part of the PVM’s message-passing func-

tionality functionality, and to integrate the prediction envi-

ronment into The Toolset [12] which is currently developed

at LRR-TUM.

Techniques have to be investigated in order to deal with

aggressive compiler optimization and microprocessor archi-
tectures that provide a high degree of fine granular paral-

lelism. This is generally a weak point of the abstract high

96

level language machine model. Yet, this should not be a sub-

stantial drawback because macroscopic performance bottle-

necks should already be visible at low levels of optimization.

Acknowledgment

We thank Stefan Hager, Andreas Lobinger, Thomas

Stephan, Norman Thomson, and Michael Uemminghaus for

their interest in our work and for supporting tool imple-

ment ation, test program preparation, and measurements.

Furthermore, we thank Thomas Beisel at Rechenzentrum

Universitat Stuttgart and Thomas Hiller at Technische Uni-

versitat Hamburg-Harburg for kindly supporting our work

on their Paragon and G C/PowerPlus systems respectively.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

R. Aversa et al. The use of simulation for software de-

velopment in heterogeneous computing environments.

In Proceedings of International Conference on Paral-

lel and Distributed Processing Techniques and Applica-

tions, pages 581-590, Athens, GA, November 1995.

D. Bailey et al. The NAS benchmarks. Techni-

cal Report RNR-94-007, NASA Ames Research Cen-

ter, Moffet Field, CA, March 1994. Available at

http://www.nas. nasa. gov/NAS/NPB/.

V. Balasundaram et al. A static performance estimator

to guide data partitioning decisions. In 3rd ACM SIG-

PLAN Symposium on Principles and Practice of Par-

allel Programming (POPP), Williamsburg, VA, April

1991.

R. Block, S. Sarukkai, and P. Mehra. Automated per-

formance prediction of message-passing programs. In

Proceedings of Supercomputing 1995, San Diego, CA,

December 1995.

R. Borgeest, B. Dimke, and O. Hansen. A trace based

performance evaluation tool for parallel real time sys-

tems. Parallel Computing, 21(4):551–564, April 1995.

G. Chillariga and B. Ramkumar. Performance predic-

tion for portable parallel execution on mimd architec-

tures. In Proceedings of IPPS ’95, Santa Barbara, CA,

pages 630-634. IEEE Computer Society, April 1995.

M.J. Clement and M.J. Quinn. Analytical performance

prediction on multicomputers. In Pr-oceedzngs of Su-

percomputing ’93, Portland, OR, pages 886-894. IEEE

Computer Society Press, November 1993.

T. Fahringer and H.P. Zima. A static parameter

based performance prediction tool for parallel pro-

grams. In International Conference on Supercomputing

1993 (ICS’93), pages 177–189, Tokio, 1993.

A. Geist et al. PVM: parallel virtual machine - a users’

guide and tutorial for networked parallel computing. Sci-

entific and Engineering Computation. The MIT Press,

Cambridge, MA, 1994.

M. Kiehl, R. Mehlhorn, and M. Schumann. Parallel

multiple shooting for optimal control problems under

NX. Optimization Methods and Software, 4:259–271,

1995.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

F. Langhammer. The PowerStone project. Technical

report, Parsytec Computer GmbH, Auf der Hiils 183,

52068 Aachen, Germany, 1993.

T. Ludwig et al. THE TOOL-SET - an integrated tool

environment for PVM. In J. Dongarra, M. Gengler,

B. Touracheau, and X. Vigouroux, editors, Proceedings

oj EuorPVM’95 Short Papers, Lyon, France, Septem-

ber 1995.

A.D. Malony and K. Shanmugam. Performance extrap-

olation of parallel programs. In Proceedings of the 1995

International Conference on Parallel Processing, vol-

ume 11, pages 117–120, 1995.

P. Mehra, C.H. Schulbach, and J. C. Yan. A comparison

of two model based performance prediction techniques

for message passing parallel prograns. In Proceedings

of the ACM Conference on Measurement and Modeling

of Computer Systems, pages 181–190, Nashville, Ten-

nessee, May 1994.

R.K. Moniot. FTNCHEK version 2.7. Available from

The Netlib Repository, http://www.netlib. erg, 1993.

R.H.B. Netzer, T.W. Brennan, and S.K. Damodaran-

Kamal. Debugging race conditions in message pass-

ing programs. In Proceedings of the Ist ACM Sympo-

sium on Parallel and Distributed Tools, Philadelphia,

PA, May 1996.

M. Oberhuber. Elimination of nondeterminacy

for testing and debugging parallel programs. In

Mireille Ducassee, editor, Proceedings of 2nd Int.

Workshop on Automated and Algorithmic Debug-

ging, Available at http://wwwbode. informatik.tu-

muenchen. de/- oberhube/PUBS/PS /aadebug95. ps .gz,

May 1995.

R.H. Saavedra. CPU performance evaluation and ex-

ecution time prediction using narrow spectrum bench-

marking. PhD thesis, University of California at

Berkely, 1992.

V. Sarkar. Partitioning and scheduling parallel pro-

grams for multiprocessors. Research Monographs in

Parallel and Distributed Computimg. The MIT Press,

Cambridge, Ma., 1989.

Y. Seo et al. Static performance prediction in PCASE:

a programming environment for parallel supercomput-

ers. In K.M. Decker and R.M. Rehmann, editors,

Programming Environments for Massively Parallel Dis-

tributed Systems,, pages 287–297. Birkhauser Verlag,

Basel, July 1994.

T.A. Standish. Data structures, algorithms, and soft-

ware principles in C. Addison Wesley Publishing Com-

pany, Inc., 1995.

G. Stellner et al. Developing applications for multicom-

puter systems on workstation clusters. In W. Gentzsch

and U. Harms, editors, Proceedings of HPCN’94, vol-

ume 797 of Lecture Notes in Computer Science, pages

286–292. Springer Verlag, Berlin, April 1994.

97

