
The Mantis Parallel Debugger

Steven S. Lumetta and David E, Culler *

Abstract

Parallel tools often fad to integrate effectively with other

parallel systems, exacerbating the inherent difficulty of pro-

gramming a massively parallel machine. Successful paral-

lel debugging requires the rethinking of traditional debugging

goals in the context of parallelism. The following four objec-

tives: rapid focus, scalability, economy of presentation, and

portability, represent the more dificult aspects of parallel de-

bugging.

In light of these specific goals, this paper presents Man-

tis, a graphical debugger for paraliei programs. Mantis tar-

gets the lwoad class of paralle[ programs known as bulk syn-

chronous SPMD programs and provides support for Split-C,

a paraliel extension of C. Although designed for parallel de-

bugging, the Mantis interface also supports sequential debug-

ging, aIlowing a single environment for both sequential and

parallel debugging.

Mantis currently runs on the Thinking Machines Corp.

CM-5 and on networks of workstations and is built using a

Tcl/Tk graphica! user interface tinked to a modified version

of the Free Software Foundation’s gdb debugger. Through

the application of a clear set of general principles, Mantis

haa become a practical parallel tool. Mantis made its debut

at U. C. Berkeley during the Spring 199J semester and has

been used heavily by the parallel computation course for two

years.

1 Introduction

Parallel programming suffers from a lack of infrastructure.

In nearly every aspect of parallelism, systems lean heavily

on the attributes of particular classes of applications rather

“ This material is based upon work supported under a National

Science Foundation Presidential Faculty Fellowship CCR-9253705,
a Graduate Research Fellowship, and Infrastructure Grant num-

ber CDA-8722788, Lawrence Livermore National Laboratories Inst.

for Scientific Research Grants #UCB-ERL-92/69 and #UCB-ERL-

92/172, and support from Thinking Machines Corporation. Any opin-

ions, findings, conclusions, or recommendations expressed in this pub-

lication are those of the authors and do not necessarily reflect the

views of either organization.

Permission to make dkgitel/hard copies of all or part of ttia material for
personal or clasamom use is granted without fee prwvided rhat the copies
are not rnsde or distributed for profit or commercia[ advantsge, the copy-
right notice, the title of the publication and ita date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to repubtiah, to post on servers or to redistribute to lists, requires apecitlc
permission and/or fee.
SPDT ’96, Philadelphia PA,USA
@1996 ACM 0.89791.846.0/96/05. ,$3.50

than address more general requirements. Although a diver-

sity of approaches is perhaps the only method of discovering

general principles, the lack of consensus prevents the inte-

gration of these systems into usable environments. In par-

ticular, parallel tools often fail to integrate effectively with

other parallel systems, exacerbating the inherent difficult y

of successfully programming a massively parallel machine.

In this paper, we present Mantis, a graphical debugger

for parallel programs currently running on networks of work-

stations and the CM-5. Mantis provides integrated support

for the Split-C language [2]. Although designed for parallel

debugging, the Mantis interface can also be used for sequen-

tial debugging in C, C++, Fortran, and other languages, al-

lowing a single environment for both sequential and parallel

debugging. Through the application of a clear set of gen-

eral principles, Mantis has become a practical parallel tool.

Mantis made its debut on the CM-5 during the Spring 1994

semester and has been used heavily by the parallel compu-

tation course at Berkeley for two years.

Mantis targets the broad class of parallel programs

known as bulk synchronous SPMD programs. These pro-

grams break into two layers. The top layer consists of a

set of bulk synchronous blocks. The processors enter each

block simultaneously and synchronize at the end of each

block before entering the next. The bottom layer occurs

within the blocks. Here the programmer thinks of individ-

ual processors—each operates on a different set of data or

even with different code, but the model itself is sequential.

Mantis provides support for Split-C, a parallel exten-

sion of C. Split-C gives the programmer a clear cost model

couched in a small set of abstractions. A simple translation

from source to executable code enables high-performance

programming. Although Split-C does not require programs

to utilize the bulk-synchronous SPMD paradigm, many do.

Split-C hosts a variety applications on numerous massively

parallel platforms and on networks of workstations.
Successful parallel debugging requires the rethinking of

traditional debugging goals in the context of parallelism.

Towcmds that end, we now consider the goals of sequential

debuggers. A sequential debugging environment must strive

to attain four objectives: first, to support the program-

mer’s conception of the program as defined by the language

and programming environment; second, to rapidly focus the

user’s attention on important data; third, to provide effi-

cient means of performing common tasks; and finally, to be

as portable as the progTam being debugged. Clearly, each

objective remains pertinent in the context of parallel debug-

ging. Parallelism expands the range of issues raised by each

objective, but does not alter the objectives substantially.

118

http://crossmark.crossref.org/dialog/?doi=10.1145%2F238020.238056&domain=pdf&date_stamp=1996-01-01


A further set of parallel objectives can now be drawn

from the sequential set. Parallel bugs range a much larger

space than do their sequential cousins, making the ability

to rapidly focus the user’s attention all the more important.

Both focusing attention and performing common tasks ef-

ficiently require that a parallel debugger use methods that

work independent of the actual machine size, i.e., the meth-

ods must be scalable. The debugger should also be scalable

in terms of program size, enabling the user to debug large,

long-running programs. To maintain efficiency on massively

parallel systems, the debugger must observe economy of pre-

sentation. Finally, portability deserves extra emphasis for

parallel systems. These four goals: rapid focus, scalability y,

economy of presentation, and portability, represent the more

difficult aspects of parallel debugging. We discuss Mantis in

light of these specific goals.

The remainder of the paper is organized as follows: Sec-

tion 2 illustrates the interface and functionality through

an example debugging session; Section 3 highlights the im-

plementation details of Mantis; Section 4 discusses related

work; Section 5 relates user feedback; and Section 6 offers

our conclusions.

2 Features

When evaluating a tool, the overall experience of using the

tool is often as important as the tool’s functionality. For

this reason, we feel that Mantis is more naturally illustrated

through an example than through abstract descriptions of

features. In this section, we step through the process of

debugging a parallel program with Mantis. As we encounter

new features, we explain their functionality and how they

fit into our parallel debugging objectives. At the end, we

summarize Mantis in terms of those objectives.

The program to be debugged simulates the world of Wa-

Tor [3], which has become a valuable tool for teaching paral-

lel programming at Berkeley. We use a version of WaTor in

which fish alone populate an infinite plane and are attracted

to other fish according to an inverse-square law. This version

introduces programmers to basic issues in data distribution

and access as well as typical methods used in solving gravi-

tational and electromagnetic problems.
The solution illustrates the bulk synchronous SPMD pro-

gramming model discussed earlier. At the top level, all pro-
cessors simulate the world in discrete time steps of length
determined by the velocity and acceleration of the fish. Each
time step breaks into synchronous phases for computation of
forces, movement of fish, and collection of statistics. These
phases compose the bulk-synchronous layer of the program.
Within each phase, the code is sequential, although it op-

erates on the global address space. The program is small

but exemplifies the programming model used in many, much

larger programs.

Of the two bugs found in this section, one was introduced

purposefully from an actual program debugged with Mantis,

and the second appeared accidentally while transforming the

code into a more legible format.

2.1 Finding a simple bug

The main window is the first to appear in Mantis, as dis-

played in Figure 1. The window shows the name of the
executable file and the arguments to the program, as taken

from the command line or entered manually. A third en-

try box allows the user to override soufce information from

Figure 1: Main window. Symbols for the f i,sh program have

just been loaded.

Figure 2: Status window. Many nodes are still running and

many others have errors.

the executable. The buttons along the bottom manage the

creation of other windows.

The initial version of the program dumped core after

encountering a bus error. The first step towards finding the

bug is to locate the error—the user runs the program by

pressing the _ button and then opens the status

window shown in Figure 2 with another mouse click.

Almost immediately, the bus error occurs. The user de-

tects the error via the status window, which displays the

current state of all processors as a two dimensional mesh of

squares. The green squares represent executing nodes (per-

haps waiting for a reply from another node), and the white

squares represent nodes with errors. Clicking on a square

creates a node window focused on that processor, allowing

the user to detect problems visually and to investigate them

rapidly.

Selecting one of the problematic nodes, the user clicks

on the sauare in the status window to create the node win-

dow dis~layed in Figure 3. The node window provides a

rich interface to individual processors and serves as the pri-

mary means of investigation for the lower layer of bulk syn-

chronous SPMD programs. The entry box at the top of

the window indicates the current focus of the window—

although Mantis allows multiple node windows, the user can

also examine any processor through a single window. Pro-

cessor numbers correspond to the unique MYPROC identifier

in Split-C. All status, stack, and display information corre-

sponding to a node window is changed automatically when

the user changes the focus.

119



Figure 3: Node window, Node number 46 has had a bus error in all.computefiorce at the line highlighted in black.

The colored bar across the top of the node window re-

ports status information to the user. Each node window

uses a distinct color or pattern to provide easy visual iden-

tification with the various subwindows corresponding to the

node window. 1 Directly below the status region is a region

displaying signal and stack information when the proces-

sor is halted. Note the content of the signal region in the

figure, which confirms the bus error reported earlier. The

stack region displays the call stack; the fish program stopped

in all.comput efi orce. The user can move between stack

frames by pointing and clicking or via a pair of buttons to

the right. When the user moves to a new frame, the source

file display region changes to show the source code corre-

sponding to the stack frame and highhghts the current line

in black, as is apparent in the figure.

Source code is annotated with line numbers and break-

point dots. Empty dots represent possible breakpoints, and

solid dots represent existing breakpoints. The line of con-

trols just above the source region manages the display. A

pull-down menu of three source selection methods appears

as a button marked I-in Figure 3. “Source” allows the

user to select a source file from an alphabetized menu or to

view any file by name or dialog. “Function” allows the user

to select from a menu of recently examined fimctions or to

view any function by name. “Assembly” is equivalent to the

“Function” method except that functions are displayed in

assembly code. If ~{Assembly” is selected when the proces-

sor halts or a new stack frame is chosen, Mantis disassembles

the function corresponding to the stack frame.

1 The subwindows are also grouped with the node window so that

iconifying or deiconifying the node window has a similar effect on the

subwindows.

The left two buttons below the source display area pro-

vide a means of halting and continuing the processor. The

next two allow the user to step the processor through a line

of code—both buttons continue rogram execution until the

d
next line of code, with the step button stepping into func-

tions and the = button stepping over them. During

single-stepping, the pendulum pops up into button form,

allowing the user to override possible deadlock.

After Iooklng briefly at the source line at which the er-

ror occurred, the user decides to investigate e the variables.

Examining state in Mantis can be accomplished in several

ways. The most commonly used method requires only two

clicks of the mouse in the source dkplay region. First, the

left button is pressed to highlight a variable or expression.

Mantis tries to select text intelligently, highlighting only a

variable name on the first click, and expanding the high-

lighting on the second and subsequent clicks of the mouse.

The user can specify an exact portion of the text by dragging

the mouse with the left button held down. Once the variable
or expression is highlighted, a right mouse click creates an

evaluation window and evaluates the expression. The user

selects the expression “local.fish” and brings up the window

shown in Figure 4.

The evaluation window provides a standard interface for

evaluating expressions and changing variable values. The

top entry box receives the expression, and the middle box

returns the value. A menu button to the right of the expres-
sion gives a list of recently evaluated expressions, allowing

the user to easily cycle through a small set of expressions.

The bottom entry allows the user to change the value of an

120



Figure 4: Evaluation window. Examining the expression

“local-fish” reveals the cause of the problem.

Figure 7: Local variables window. The variables shown cor-

respond to the split cmain stack frame chosen in the node

window.

Figure 5: Output window. The partially debugged program

hangs before completion.

expression. Errors in evaluation appear in both the node
window and in the evaluation window.

Evaluation occurs in the context of the selected stack
frame on the halted processor. Mantis fully supports Split-
C abstractions, such as the global address space and spread

arrays. Global and spread pointers appear as a processor-
address pairs: processor ! address. The binary global point-

er creation operator, !, is left associative and has precedence
between arithmetic operators and logical operators. Cre-

ation of global and spread pointers mirrors the language.
As with Split-C, local pointers are dereferenced on the pro-

cessor indicated by the window, regardless of origin.
From the evaluation window, the user learns that the

value of “local-fish has not been initialized. After adding
the initialization, the user recompiles the program and tries
again.

2.2 Locating a more subtle bug

After fixing the first bug, the user finds that the program

hangs after finishing only about a quarter of the time steps.
When run with Mantis, the output from the program ap-

pears in the window shown in Figure 5. Both stdout and
stderr are channeled into this window, which appears au-
tomatically, and user input to the window is delivered to
stdin. Two buttons at the bottom allow the user to discard
the existing output and to dismiss the window completely.
In addition to the output from the process, notification that

the program has exited or terminated is also given here.

A quick look at the status window reveals that all proces-

sors are running, so the user opens a node window (Figure 6)

using the m button in the main window (Figure 1). Af-

ter halting the processor with the @ button, the user
sees that the processor has stopped inside of a barrier called

from split cmain. A click in the stack region brings up the

Figure 8: Display window. The expression “delta-t” is eval-

uated on node O each tim”e the processor stops or the user

changes the frame.

function, with the barrier call highlighted in black. Switch-

ing focus to a few other processors, the user finds that all

have stopped in the same barrier.

The problem at this point is fairly clear: one or more

nodes have not reached the barrier, and the majority of

nodes are idling. To get a better picture of the state on

each node, the user opens the local variables window ap-

pearing in Figure 7 by pressing the ~1 button. This

window lists variables local to the current stack frame and

updates automatically when the frame is changed. In this

case, the user sees that the time t agrees with the last value

shown in the output window, as expected, since node O per-

forms the mint statements. When the user shifts the focus

to another processor, however, the time no longer agrees—

somehow the processors have broken the user’s concept of

bulk synchronous, equal-length time steps. The user hy-

pothesizes that some node has reached T_FINAL and believes

itself to be done, causing the rest of the nodes to wait indef-

initely at the barrier.

To verify the hypothesis, the user sets breakpoints on

two nodes at the point in split cnrain where t is updated.

For each node, we open a display window with the expres-

sion “delta-t, ” as shown in Figure 8. The display window

is like the evaluation window except that the expression is

re-evaluated automatically when the processor halts or the

stack frame is chan~ed. Between time steps, the user must

merely continue each of the two processors. At the second

step, the user notes that the times have diverged.

The user has verified the hypothesis about the nodes

becoming unsynchronized, but has yet to understand how

121



this problem occurs. To understand the process, the user

shifts the viewpoint to the upper layer of the bulk syn-

chronous paradigm. The global window supports the bulk

synchronous vie w of the Split-C program, allowing the user

to toggle breakpoints for all of the nodes simultaneously and

to start and stop all of the nodes. After o ening the global

dwindow shown in Figure 9 with the Global button in the

main window, the user brings up split c-inain and sets a

global breakpoint just before the calculation of delt a_t.

After starting the program, the user waits for all proces-

sors to stop, then picks two processors and examines the

quantities used to calculate delta-t. Finding that both

max.speed and max_acc differ, the user looks up a few lines,

realizes that the calls to all_reduce_to_one_dmax return dif-

ferent values, and finds the bug: all_reduce.to_all_dmax,

which returns the reduced value to all of the processors,

should have been used instead. The user makes the change

and recompiles the program, after which it runs successfully.

2.3 Summary

We now review Mantis in terms of our proposed objectives:

rapid focus, scalability, economy of presentation, and porta-

bility. The process of finding a bug in Mantis begins with

the status window, which visually directs the user to a spe-

cific processor or gives a clear indication of phenomena such

as deadlock. At the processor level, the user is automat-

ically present ed with signal, stack trace, and source infor-

mation, including highlighting of the current line. Com-

bined with severaf efficient methods for exploring the state

of the program, this information helps the user to focus on

bugs rather than on using the debugger. The methods used

by Mantis are scalable to hundreds or thousands of nodes

without change. The bulk synchronous viewpoint separa-

tion helps economy of presentation. Program control issues

are handfed using either a single processor or alf proces-

sors simultaneously. reauirimz onlv minimaf differentiation

in presentation. By pr~vidi~g fle~bility in window focus,

Mantis eliminates the need to juggle between many windows

and circumvents scalability problems. Although methods of

data visualization can help with the presentation of program

state, a commercial package designed specifically for visual-

ization is usually more effective in this regard. Getting data

from Mantis to such a package is straightforward. Finally,

Mantis gains portability through its relationship with gdb,

which is available for nearly all UNIX platforms.

Beyond the specifically parallel goals, a good debugger

must also support the programmer’s conception of the pro-

gram and provide efficient means of performing common

tasks. The global and node windows allow a Mantis user

to view the running program on either level of the bulk syn-

chronous SPMD paradigm, either as a group of processors

and set of bulk synchronous blocks or as indkidual proces-

sors and short pieces of sequential code. Split-C abstractions

can be used in any evaluation context, and are handled cor-

rectly both in input to and output from the debugger. Com-

mon tasks such as expression evaluation, program control,

and source browsing typically require only a keystroke or

a mouse click. When possible, Mantis performs such tasks

automatically or shortens the effort required for repetition.

3 Implementation

In this section, we discuss the implementation structure of

Mantis and its effects. Mantis consists of a graphical user

IG1obal Debugger (gdb)

Global Lun,qua,qe Support ~

zNodalL.unguuge Support

User Process

Figure 10: Internal construction of Mantis. Each node de-

bugger uses a standard sequential interface to its child pro-

cess. The global debugger coordinates node debuggers to

provide machine-wide functionality.

interface process that pipes information to and from a de-

bugger child process. The debugger process performs the

typical debugging tasks, and the interface presents the in-

formation in a more accessible and automatic fashion than

that provided by command line debuggers. The internal

structure of Mantis appears in Figure 10. In the figure, the

bottom four boxes represent processors running a parallel

program; each processor also runs a debugger that interacts

directly with the corresponding user process. A single global

debugger that gathers information from the node debuggers

and directs user requests to them. The user interface process

communicates only with the globaf debugger. This structure

is designed to minimize the size and breadth of modifications

to gdb.

The debugger is based on gdb, the Free Software Founda-

tion’s portable sequential debugging environment. Adding

language support to gdb required much less time than that

required to write a debugger from scratch; a relatively smalf

set of changes transforms a high-quality sequential debug-

ger into a robust parallel debugger. In addition, gdb gives

Mantis portability across a wide range of existing and fu-

ture platforms, as changes are easily incorporated into new

releases.

The user interface is based on Tcl/Tk [7], allowing for

rapid and flexible creation. For ease of use, Mantis observes

known standards in interface design when possible and uti-

Lizes common methods when no standards exist. The inter-

face communicates asynchronously with the debugger, al-
lowing it to remain responsive even when the debugger is
busy with the user’s last request. The interface indicates
debugger activity via a rocking pendulum icon and queues
actions requiring the debugger until the debugger becomes
available.

Like sequential debuggers, Mantis does not perturb pro-

gram behavior except through direct user intervention, e.g.,
halting a processor. Neither does Mantis require any changes

to an executable fde, although compilation with debugging

symbols is necessary for source-level debugging. In the ab-

sence of source information, Mantis can disassemble the

code.

4 Related Work

In this section, we first present alternative methods for par-

allel debugging, commenting on the advantages and draw-

backs of each method. We next examine a handful of parallel

debuggers. After noting each debugger’s apparent goals, we

122



Figure 6: Node window. Node O has hung in a barrier. The user has moved up the stack to split cmain, and the call is

highlighted in black.

123



Figure 9: Global window. The user has just set a breakpoint at line 99 (in split cmain).

evaluate its capabilities in terms of our objectives in order

to facilitate comparison with Mantis. For a more detailed

review of these systems, see [4].

4.1 Tracing

A large fraction of the parallel debugging community be-

lieves that tracing and deterministic replay will prove essen-

tial to debugging parallel programs. Another large fraction,

including the authors, recognize the potential usefulness but

maintain that perturbations to the program and the sheer

volume of trace data generated by real programsz will con-

tinue to make tracing an impractical alternative.

Tracing generally consists of adding small sections of

code to each interprocessor communication call at the li-

brary level. The code records interesting information such

as the time according to the local processor and the type,

size, and destination of the message. The tracing code writes

the data into a special btier and flushes the buffer to disk

when full.

In fact, we must record data for all interprocessor com-

munication. Selecting the size of the trace buffer for full

traces can be tricky. The smaller the buffer, the more fre-

quently the program suffers an extremely slow disk access

as the buffer flushes. The larger the buffer, the less memory

can be used by the parallel program. In our experience with

tracing Split-C communication, real programs often gener-

ate more data than even the largest buffers can hold (more

than 10MB per processor in a sample human genome prob-

lem), causing repeated flushes via slow 1/0 channels and

altering the temporal behavior of the program.

Even for the class of programs that perform sufficiently

little communication that tracing is feasible, the amount

of time taken by the tracing code is generally comparable

to the faster message-passing calls, possibly perturbing the

behavior of the program enough to hide bugs.

2 By ‘(real programs,” we mean programs written by people other

than the language designers to solve problems that they want to solve

(I. . . . not benchmarks, kernels, or example programs).

4.2 Animation

Program animation generally requires that the user spend

time to augment the program with appropriate icons and

annotations to allow an animation package to dkplay the

results. Animation also entails tracing, often beyond that

required for deterministic replay. Only large programs merit

the additional overhead of writing and debugging animation

extensions, but large programs generate an enormous vol-

ume of trace data, invariably changing the behavior of the

program.

4.3 Dynamic instrumentation

The process of dynamic instrumentation involves the addi-

tion of short instruction sequences to an existing executable.

Parallel performance tuning tools like Paradyn [6] avoid per-

turbing the program except during short intervals by dy-

namically inserting and removing performance instrumen-

tation. Dynamic instrumentation also appears in some de-

buggers to supplement debugging capabilities by compiling

extensions to the program immediately, allowing the user

to make small modifications to the program without a full

recompilation process. The modifications generally include

minor changes to source code and creation of fast conditional

breakpoints and watch points. Future work on Mantis in-

cludes the addition of such features along with performance

tuning tools.

4.4 Other Parallel Debuggers

Panorama [5] was developed to integrate the myriad tech-

niques developed for parallel debugging in an easily portable

and extensible manner. It uses Tcl/Tk to enhance portabil-

ity and extensibility, translating between its own portable

debugging interface and that used by the machine vendor’s

debugger via a “platform file.” Debugging interaction is

primarily textual, and visualization interaction is primarily

graphical, Visualization windows use an introsive tracing

mechanism, with overhead ranging from 5 to 65 $ZO of the

cost of a communication call. Although Panorama meets

124



its goals well, the strong emphasis on portability and ex-
tensibility tends to exclude other issues. useful but non-

standard features of vendor debuggers are sacrificed in favor

of a standard set of commands. The model is also unable to

take advantage of important data typically considered inter-

nal to debuggers, including source to executable mappings,
variable scope, and lists of symbols. The textual interface
inhibits the user from rapidly focusing on the problem, and

the reliance on vendor debuggers leaves the issues of scala-

bility y and economy of presentation open for each system.

Node Prism extends the Prism data parallel debugger for

the CM-5 to support the message-passing paradigm [8, 9]

and integrates tools for data visualization and performance

tuning. Prism addresses scalability by taking advantage of

the parallel nature of the debugger itself. Economy of pre-

sentation is addressed by compressing any text entering the

feedback region into a list of unique responses, again tak-

ing advantage of the debugger’s parallel nature. A window

displaying a tree of stack traces helps to focus the user’s

attention on any problems in control flow. Data display re-

lies on a single interface with several options. Prism also
introduces a flexible method of control that enhances the
power of traditional debugging operations, allowing the user
to specify arbitrary subsets of processors. Processor sets are
named with a variant of data parallel array notation. De-
sDite Prism’s success with several of our objectives. it fails to

meet the need for rapid focus and even for efficient means

of performing common tasks. The main difficulty in this

regard is the interface. For example, only one window for

viewing source is allowed, and switching between files is slow

and cumbersome. Controls are unnecessarily complex and

seem to deliberately avoid potential mnemonics. Prism at

times runs inordinately slowly at our installation, even when

the machine is otherwise unloaded. Combined with sporadic

behavior and a complete lack of feedback in some cases, the

speed problems result in an interface that can be almost

painful to use. Thinking Machines is in the process of mak-

ing Prism available on a range of platforms; until recently,

it was only available on the CM-5.

Originally designed for the BBN Butterfiy, the TotalView

debugger is now available on a wide range of parallel plat-

forms. TotalView emphasizes simplicity and consistency in

its user interface, giving the user a very efficient debugging

tool. TotalView had a strong influence on the development

of Mantis, particularly on several aspects of the user inter-

face. TotalView assigns each of the three mouse buttons a

general purpose, an d the buttons act appropriately in all

situations. The left button makes selections from lists and

text, the middle button drives the menu system, and the

right button “dives” deeper into information. Several data

visualization tools are integrated into the debugger. The

TotalView interface caters primarily to the expert user who

prefers to use the keyboard over the mouse, making its use

somewhat difficult for new users and for those wh-o prefer

to use the mouse. Source display windows are tied to indi-

vidual processes, complicating the task of examining several

processors.

Developed approximately a year after Mantis, the Port-

able Parallel/Distributed Debugger, p2d2, adopts a client-

server approach to provide a uniform interface for all plat-

forms, communication libraries, and programming mod-

els [I]. By specifying protocols for interaction between a user
interface client and a debugger server, p2d2 hopes to sepa-

rate the development efforts for these two pieces. Additional

protocols for communication libraries and HPF preproces-

sors allow a client to access data normally considered inter-

nal to such systems. A prototype based upon gdb and Motif

demonstrates the feasibility y of the approach. The prototype

incorporates status, source browsing, and log messages into

a single window. Process status appears hierarchical y: one

region depicts each process as an icon in a grid of processes,

a second region provides a textual explanation for one col-

umn of the process grid, and a third region displays stack

frames and source code for a single process. The user can

customize the icons and conditions used to depict processes

in the graphical status region. Textual data display win-

dows permit the user to investigate and alter array sections;

the interface routes data to a separate package for graphl-

cal visualization. A more detailed review of the prototype

client is hard because of the current lack of published docu-

mentation. The p2d2 prototype has much in common with

Mantis and meets our portability objective in the same man-

ner. Pushing graphical status and source browsing into one

window detracts somewhat from scalability, as the user can-

not afford to dedicate much space to the status. Gauging its

success with other objectives is hard without more details

of the interface. As potential standards, the p2d2 proto-

cols are both beneficial and detrimental. The client-server

interface embodies concepts derived from decades of experi-

ence with sequential debugging, and most new approaches

to debugging can be implemented in terms of the primitives

provided, The communication protocol, however, is based

on PVM and MP I and might tend to exclude alternatives.

5 User Feedback

Since its debut in the Spring 1994 semester, Mantis has been

used by the parallel computation course at U. C. Berke-

ley. Students have favored the integrated Split-C /Mantis

programming environment over alternative systems. While

we have taken no formal user survey, the feedback we have

received has been primarily positive, with a few recurring

requests.

One of Mantis’ main advantages over the other debug-

gers available to the students is the ease with which new

users can start to use the tool. To our amusement, a myth

has arisen that Mantis is the only debugger available. While

true in terms of Split-C language support, the myth is oth-

erwise false. The basis for the myth became clear in a con-

versation with one of the users. After we pointed out that a

commercial debugger provided a feature he had suggested,

he replied, “Sure, if you can get it to run.”

Users praise the use of the status window to focus their

attention on errors and the ability to investigate problems

with a click of the mouse. They also appreciate the separa-

tion of the local and global viewpoints, which mirror most

users’ understanding of their programs.

The most obvious deficiency in Mantis is its failure to ad-

dress control flow bugs. Although these bugs have typically

been easy to detect, locating the problem can be difficult.

Other suggestions have included the addition of library sup-

port for the Split-C communication primitives and minor

extensions to the user interface.

Until this semester, nearly all use of Mantis was on the

CM-5. As students begin to use Mantis with our network of

workstations (NO W), we expect several other problems to

appear. Scheduling on the NOW is much less determinis-

tic than on the CM-5, making bug reproducibility y an issue.

Also, although Split-C does not support multi threaded ap-

plications, several users have already asked about support

for threads with Mantis.

125



6 Conclusion References

The goals of a sequential debugging environment include

support for the programmer’s conception of the program,

rapid focus on important data, efficient means of performing

common tasks, and portability. Mantis supports the bulk

synchronous and individual node viewpoints comprising the

bulk synchronous SPMD paradigm via the global and node

windows. Exrmession evaluation fullv surmorts %ht- C ab-. . .
stractions. Automatic source display with highlighting and
simple mechanisms for evaluation help the user to focus on

bugs rather than on using the debugger. Mantis automates
tasks when possible and remembers recent tasks to ease rep-

etition, and the interface remains responsive even when the
debugger is busy. Source files are alphabetized into a single

menu for quick access. Keyboard shortcuts allow experts to

avoid reaching for the mouse, and but tons are available for

the keyboard-challenged. Finally, Mantis is as portable as

the well-known sequential debugger, gdb.

The parallel objectives also consist of four goals: rapid

focus, scalability, economy of presentation, and portability.

Mantis uses the status window to rapidly focus the user’s

attention on bugs at the systemwide level and to drop down

to the level of the individual processor. The methods used

by Mantis are scalable to hundreds or thousands of nodes

without change. Economy of presentation is handled largely

through the separation of viewpoints for the two layers of

the bulk synchronous SPMD paradigm. Processor control

operations use either a single processor or all processors si-

multaneously. Portability has already been addressed.

Although Mantis has met the goals fairly well, several

issues remain. Rapid focus on control flow bugs is largely

unaddressed, although adding a version of known methods

(e.g., the tree of stack traces in Prism) can adequately han-

dle this problem. The economy of presentation represented

by data visualization is also largely absent from Mantis, but

visualization is perhaps best handled by those commercial

packages specializing in such tasks, and getting the data

from Mantis to such a package is straightforward.

The application of a clear set of general principles and the

integration with Split-C and the bulk synchronous SPMD

paradigm have made Mantis a practical parallel tool. For

two years, nearly every student in the parallel computation

course at U. C. Berkeley has chosen from a wide range of

options to use the integrated Split-C/Mantis programming

environment.

Future work involves the addition of dynamic modifi-

cations to executable code for fast conditional breakpoints

and minor code patches. We are also interested in extending

Mantis to include support for performance tuning.

Acknowledgements

Mantis has a long history of encouraging feedback, and we

want to thank those people without whose endurance Man-

tis might never have passed beyond the alpha stage. Specif-

ically, our thanks go to Professor James Demmel and the

members of his CS267 classes for putting up with early ver-

sions of Mantis, Professor Lawrence Rowe, for his comments

on the design of the user interface, and Arvind Krishna-

murthy, Seth Goldstein, and Andrea Dusseau, for sugges-

tions on all aspects of the project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

D. Cheng, R. Hood, “A Portable Debugger for Parallel

and Distributed Programs,” Proceedings of Supercom-

puting ’94, Washington, D. C., November 1994, pp. 723-

732, available from

vriu. nas. nasa. gov/NMITools/Pro jects/P2D2.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,

S. Lumetta, T. von Eicken, K. Yelick, ‘(Parallel Pro-

gramming in Split-C ,“ Proceedings of Supercomputing

’93, Portland, Oregon, November 1993, pp. 262-273,

available from www. cs. berkeley. edulpro j ect sl

parallel/castle/split-c.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D.

Walker, “Solving Problems on Concurrent Processors,”

Vol. I, Ch. 17, pp. 307-325, Prentice Hall, Englewood

Cliffs, New Jersey.

S. Lumetta, “Mantis: A Debugger for the Split-C Lan-

guage,”, University of California at Berkeley Technical

Report #CSD-95-865, January 1995.

J. May, F. Berman, “Panorama: a portable, extensi-

ble parallel debugger,” SIGPLAN Notices, pp. 96-106,

December 1993.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J.

K. Hol.lingsworth, R. B. Irvin, K. L. Karavanic, K.

Kunchithapadam, T. Newhall, “The Paradyn Parallel

Performance Measurement Tools,” University of Wis-

consin at Madison Technical Report, available from

www. cs. wise. edu/-pwadyn/papers .html.

J. K. Ousterhout, Tcl and the Z% Toolkit, Addison-

Wesley Publishing Company, Reading, Massachusetts,

1994.

S. Sistare, D. Allen, R. Bowker, K. Jourdenais, J. Si-

mons, R. Title, “A scalable debugger for massively par-

allel message-passing programs,” IEEE Parallel &’ Dis-

tributed Technology:-Syst&ns @ Applications, Vol. 2 No.

2, pp. 50-6, Summer 1994.

[9] Thinking Machines Corporation, Prism 2.0 Release

Notes, May 1994.

[10] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E.
Schauser, ‘(Active Messages: a Mechanism for Inte-

grated Communication and Computation,” Proceed-
ings of International Symposium on Computer ArchL
tecture, 1992.

126


