Operating System Support for
Redundant Multithreading

Dissertation zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

Vorgelegt an der

Technischen Universitit Dresden
Fakultit Informatik

Eingereicht von
Dipl.-Inf. Bjorn Débel
geboren am 17. Dezember 1980

in Lauchhammer

Betreuender Hochschullehrer:

Gutachter:

Fachreferent:

Statusvortrag:
Eingereicht am:
Verteidigt am:

Prof. Dr. Hermann Hirtig
Technische Universitit Dresden

Prof. Frank Mueller, Ph.D.
North Carolina State University

Prof. Dr. Christof Fetzer
Technische Universitit Dresden

29.02.2012
21.08.2014
25.11.2014

FUR JAKOB

*+ 15. Februar 2013

Contents

Introduction 7

1.1 Hardware meets Soft Errors 8

1.2 An Operating System for Tolerating Soft Errors 9
1.3 Whom can you Rely on? 12

Why Do Transistors Fail And What Can Be Done About It? 15

2.1 Hardware Faults at the Transistor Level 15
2.2 Faults, Errors, and Failures — A Taxonomy 18
2.3 Manifestation of Hardware Faults 20

2.4 Existing Approaches to Tolerating Faults 25
2.5 Thesis Goals and Design Decisions 36

Redundant Multithreading as an Operating System Service 39
3.1 Architectural Overview 39

3.2 Process Replication 41

3.3 Tracking Externalization Events 42

3.4 Handling Replica System Calls 45

3.5 Managing Replica Memory 49

3.6 Managing Memory Shared with External Applications 57

3.7 Hardware-Induced Non-Determinism 63

3.8 Error Detection and Recovery 65

Can We Put the Concurrency Back Into Redundant Multithreading?
4.1 What is the Problem with Multithreaded Replication? 71

4.2 Can we make Multithreading Deterministic? 74

4.3 Replication Using Lock-Based Determinism 79

4.4 Reliability Implications of Multithreaded Replication 92

71

6 BJORN DOBEL

Evaluation 97

5.1 Methodology 97

5.2 Error Coverage and Detection Latency 98
5.3 Runtime and Resource Overhead 109

5.4 Implementation Complexity 121

5.5 Comparison with Related Work 122

Who Watches the Watchmen? 127

6.1 The Reliable Computing Base 127

6.2 Case Study #1: How Vulnerable is the Operating System? 131
6.3 Case Study #2: Mixed-Reliability Hardware Platforms 139
6.4 Case Study #3: Compiler-Assisted RCB Protection 146

Conclusions and Future Work 149

7.1 OS-Assisted Replication 149
7.2 Directions for Future Research 151

Bibliography 163

1

Introduction

Computer systems fail every day, destroying personal data, causing economic
loss and even threatening users’ lives. The reasons for such failures are
manifold, ranging from environmental hazards (e.g., a fire breaking out in
a data center) to programming errors (e.g., invalid pointer dereferences in
unsafe programming languages), as well as defective hardware components
(e.g., a hard disk returning erroneous data when reading).

A large fraction of these failures results from programming mistakes. !
This observation triggered a large body of research related to improving
software quality, ranging from static code analysis? to formally verified
operating system kernels.> However, even if the combined solutions at some
point lead to a situation where software is fault-free, their assumptions only
hold if we can trust in hardware to function correctly.

From a hardware development perspective, Moore’s Law* indicates a dou-
bling of transistor counts in modern microprocessors roughly every two years.
While the law started off as a prediction, it is today used by hardware vendors
as a means to establish product release cycles, research, and development
goals. This has turned Moore’s Law into a self-fulfilling prophecy. Increasing
the number of transistors enables to integrate more and more components into
a single chip. This permits the addition of more processors, larger caches, as
well as specialized functional units, such as on-chip graphics processors.

While transistor counts increase, the available chip area does not. Emerging
technologies, such as three-dimensional stacking of transistors try to address
this problem.5 However, the standard way of solving this problem in practical
systems is to decrease the size of individual transistors by applying more
fine-grained production processes.

Unfortunately, hardware components are exposed to energetic stress caused
by radiation, thermal effects, energy fluctuations, and mechanical force. As
I will outline in Chapter 2, hardware vendors spend significant effort in
keeping the failure probability of their components below certain thresholds.
However, this effort is becoming increasingly difficult as hardware structure
sizes shrink, because smaller transistors are more vulnerable to the effects
previously mentioned.”

This increased vulnerability accounts for an increased amount of inter-
mittent (or soft) hardware faults.” In contrast to permanent faults, which
constitute a constant malfunction of a component, intermittent faults occur
and vanish seemingly randomly during execution time. This randomness
stems from the physical effects mentioned above.® Soft errors are often tran-

! Steve McConnell. Code Complete: A Prac-
tical Handbook of Software Construction.
Microsoft Press, Redmond, WA, 2 edition,
2004

2 Dawson Engler and David Yu et al. Chen.
Bugs as Deviant Behavior: A General Ap-
proach to Inferring Errors in Systems Code.
In Symposium on Operating Systems Princi-
ples, SOSP’01, pages 57-72, Banff, Alberta,
Canada, 2001. ACM

3 Gerwin Klein, Kevin Elphinstone, Ger-
not Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai En-
gelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon
Winwood. sel4: Formal Verification of an
OS Kernel. In Symposium on Operating Sys-
tems Principles, SOSP’09, pages 207-220,
Big Sky, MT, USA, October 2009. ACM

4 Gordon E. Moore. Cramming More Compo-
nents Onto Integrated Circuits. Electronics,
38(8), 1965

3 Dae Hyun Kim et al. 3D-MAPS: 3D Mas-
sively Parallel Processor With Stacked Mem-
ory. In Solid-State Circuits Conference Di-
gest of Technical Papers (ISSCC), 2012 IEEE
International, pages 188-190, 2012

6 Sherkar Borkar. Designing Reliable Sys-
tems From Unreliable Components: The
Challenges of Transistor Variability and
Degradation. IEEE Micro, 25(6):10 — 16,
2005

7 Jorg Henkel, Lars Bauer, Nikil Dutt, Puneet
Gupta, Sani Nassif, Muhammad Shafique,
Mehdi Tahoori, and Norbert Wehn. Reliable
On-chip Systems in the Nano-Era: Lessons
Learnt and Future Trends. In Annual Design
Automation Conference, DAC ’13, pages
99:1-99:10, Austin, Texas, 2013. ACM

8 James F. Ziegler and William A. Lanford.
Effect of Cosmic Rays on Computer Memo-
ries. Science, 206(4420):776-788, 1979

8 BIJORN DOBEL

° Timothy J. Slegel, Robert M. Averill III,
Mark A. Check, Bruce C. Giamei, Barry W.
Krumm, Christopher A. Krygowski, Wen H.
Li, John S. Liptay, John D. MacDougall,
Thomas J. McPherson, Jennifer A. Navarro,
Eric M. Schwarz, Kevin Shum, and Charles F.
Webb. IBM’s S/390 G5 Microprocessor De-
sign. IEEE Micro, 19(2):12-23, 1999

10 Andrew M. Tyrrell. Recovery Blocks and
Algorithm-Based Fault Tolerance. In EU-
ROMICRO 96. Beyond 2000: Hardware and
Software Design Strategies, pages 292-299,
1996

" Jim Gray. Why Do Computers Stop and
‘What Can Be Done About It? In Symposium
on Reliability in Distributed Software and
Database Systems, pages 3—12, 1986

12 Semeen Rehman, Muhammad Shafique,
and Jorg Henkel. Instruction Scheduling for
Reliability-Aware Compilation. In Annual
Design Automation Conference, DAC 12,
pages 1292-1300, San Francisco, California,
2012. ACM

13 Daniel Lyons. Sun Screen. Forbes Mag-
azine, November 2000, accessed on April
22nd 2013, mirror: http://tudos.org/
~doebel/phd/forbes2000sun

4 Nelson Elhage. Attack of the
Cosmic Rays! KSPlice Blog, 2010,
https://blogs.oracle.com/ksplice/
entry/attack_of_the_cosmic_raysl,
accessed on April 22nd 2013

15 Artem Dinaburg. Bitsquatting: DNS Hi-
jacking Without Exploitation. BlackHat Con-
ference, 2011

sient, which means they are only visible for a limited period of time before the
affected component returns to a correct state. As an example, consider a bit in
memory that flips due to a cosmic ray strike: Reading this bit will deliver an
erroneous value until the containing memory word is later overwritten with a
new datum.

Fault tolerance mechanisms to deal with hardware errors have been devised
at both hardware and software levels. While lower-level hardware components
are suitable to detect and correct a large number of these errors, they do not
possess the necessary system knowledge to do so efficiently. For instance,
IBM’s $390 processors provide redundancy in the form of lockstepping.’
However, this effort may not be necessary for all applications, because some
software can protect itself, for instance using resilient programming tech-
niques.'? In such cases, the system could better use the additional hardware
for computing purposes.

Existing software-level solutions often make assumptions about how de-
velopers write software. For instance, they may require use of specific pro-
gramming models, such as process pairs.!! Other solutions apply specific
compiler techniques for fault tolerance.!? These software techniques trade
general applicability for fault tolerance.

The operating system bridges the gap between hardware and software.
In this thesis I therefore evaluate whether we can strike a balance between
flexibility and generality by implementing fault tolerance as an operating
system service.

1.1 Hardware meets Soft Errors

Sun acknowledged soft errors to be the cause for server crashes in 2000,13
reportedly costing the company millions of dollars to replace the affected
components. Anecdotal evidence of soft errors affecting today’s systems can
be found across the internet.'* In Section 2.1 I will give a more thorough
overview of scientific studies investigating causes and consequences of such
hardware errors.

Not all consequences of a soft error may become immediately visible
as a fault. As I will describe in Chapter 2, these errors can also lead to
erratic failures: the affected system continues to provide a service and simply
generates wrong results. Such behavior also opens up new windows of security
vulnerabilities. Dinaburg presented such a vulnerability as an experiment
at BlackHat 2011: The authors registered 30 domain names that were one
bit off popular domains, but that were not susceptible to be plain typing
errors made by users. Examples for such domains were the registration
of mic2osoft.com (as opposed to microsoft.com) and ikamai.net (as
opposed to akamai.net). In a time frame of roughly 6 months, the author
observed more than 50,000 accesses from about 12,000 unique clients going
to these domains.'> This experiment shows that a) soft errors today are a real
issue for consumer electronic devices, and b) new attack vectors may arise if
these errors are not taken care of.

So how do system and hardware vendors deal with soft errors? I will
show in Section 2.4 that approaches to detect and correct soft errors exist at
both the hardware and software levels. Hardware-level solutions are usually

http://tudos.org/~doebel/phd/forbes2000sun
http://tudos.org/~doebel/phd/forbes2000sun
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1
mic2osoft.com
microsoft.com
ikamai.net
akamai.net

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 9

expensive in terms of production cost, chip area, resource consumption, or
runtime overhead. Hence, radiation-hardened processors are only used in
highly-specific environments: NASA’s Mars Rover “Curiosity” for instance
employs a radiation-hardened processor that is rumored to cost about 200,000
US$ a piece.!®

In contrast, the majority of computing systems from servers to personal
computers to mobile phones are built from commercial off-the-shelf (COTS)
hardware components. These components are designed to provide good
overall performance at the minimum possible cost. Customized hardware is
expensive unless there is a large market and therefore COTS systems are the
last to see wide-spread deployment of hardware defenses against soft errors.
This in turn calls for the use of software-level fault tolerance methods.

Software-implemented hardware fault tolerance can be categorized into
two classes: compiler-level techniques aim to generate resilient and self-
validating machine code,!” whereas replication-based solutions run multiple
instances of a program and compare their outputs.18

CLAIM: Observing the need for software-level fault tolerance, I develop
ASTEROID, an operating system (OS) design that protects applications
against both permanent and transient hardware faults on COTS hardware
platforms. To achieve fault tolerance I implement replication as an operating
system service. The system uses modern multi-core CPUs to parallelize
replicated execution and thereby reduce runtime overheads. The architec-
ture detects errors by comparing replicas’ states at synchronization points.
Once detected, the system corrects errors by performing majority voting or
by incorporating alternative recovery strategies, such as application-level
checkpointing.

1.2 An Operating System for Tolerating Soft Errors

Practical systems today consist of a complex web of interacting software
components, which a fault-tolerant operating system needs to accommodate.
Some of these components are small enough to be rewritten for fault tolerance.
However, the majority of existing software is too large and too complex to be
rewritten from scratch. Hence, my solution needs to provide fault tolerance
to real-world applications that are not optimized for dealing with hardware
faults.

If those applications are available as open-source software, compiler-level
transformations can improve fault tolerance without requiring expensive
hardware extensions. Fault-tolerant compilers can generate machine code
that performs operations multiple times using different hardware resources.'’
Other tools extend the data domain a program operates on and transform
operands using arithmetic encoding. This mechanism allows to detect whether
a value can be a valid result of a preceding arithmetic operation.!?

Unfortunately, there is a substantial amount of software that we cannot pro-
tect by using the mechanisms described above. These programs are provided
in their binary form only. As this form of distribution is the business model of
major companies such as Microsoft, Apple, and Oracle, we can safely assume

16 John Rhea. BAE Systems Moves Into
Third Generation RAD-hard Processors. Mil-
itary & Aerospace Electronics, 2002, ac-
cessed on April 22nd 2013, mirror: http:
//tudos.org/~doebel/phd/bae2002/

7George A. Reis, Jonathan Chang, Neil
Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault
Tolerance. In International Symposium on
Code Generation and Optimization, CGO
’05, pages 243-254, 2005

8 A. Shye, J. Blomstedt, T. Moseley, V.J.
Reddi, and D.A. Connors. PLR: A Soft-
ware Approach to Transient Fault Tolerance
for Multicore Architectures. /IEEE Transac-
tions on Dependable and Secure Computing,
6(2):135 -148, 2009

9 Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’10, Vienna, Austria, 2010

http://tudos.org/~doebel/phd/bae2002/
http://tudos.org/~doebel/phd/bae2002/

10 BJORN DOBEL

20 Chi-Keung Luk, Robert Cohn, Robert
Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: Building Cus-
tomized Program Analysis Tools With Dy-
namic Instrumentation. In ACM SIGPLAN
Conference on Programming Language De-
sign and Implementation, PLDI °05, pages
190-200, New York, NY, USA, 2005. ACM

Unreplicated
Application

)
e

Replication Service

Replicated
Application

Fault-Tolerant Microkernel

Figure 1.1: ASTEROID Resilient OS Archi-
tecture

2 Jorrit N. Herder. Building a Depend-
able Operating System: Fault Tolerance in
MINIX3. Dissertation, Vrije Universiteit Am-
sterdam, 2010

22 George Candea, Shinichi Kawamoto,
Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot: A Technique For Cheap
Recovery. In Symposium on Operating Sys-
tems Design & Implementation, OSDI’04,
Berkeley, CA, USA, 2004. USENIX Associ-
ation

2 Fred B. Schneider. Implementing Fault-
Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Sur-
veys, 22(4):299-319, December 1990

2 Steven K. Reinhardt and Shubhendu S.
Mukherjee. Transient Fault Detection via Si-
multaneous Multithreading. SIGARCH Com-
put. Archit. News, 28:25-36, May 2000

% Cheng Wang, Ho-seop Kim, Youfeng
Wau, and Victor Ying. Compiler-managed
Software-based Redundant Multithreading
for Transient Fault Detection. In Inter-
national Symposium on Code Generation
and Optimization, CGO *07, pages 244-258,
2007

it to be the major way of supplying proprietary software to customers. The
rising sales numbers of software distributors for mobile platforms, such as
Apple’s AppStore or Google Play indicate that this fact is likely to remain a
reality.

If this problem only affected end-users, we might avoid it by trusting soft-
ware developers to use the proper tools to protect their applications. However,
the end-user cannot validate that such tools were used when downloading
software through the internet. Furthermore, commercial libraries (for instance
Intel’s PIN instrumentation library?°) are often shipped as binaries only, in
which case a developer cannot apply compiler-based protection anymore.
Lastly, existing software tends to be used for a long time and it might not be
possible to replace such legacy software with newer versions immediately.
For these three reasons I aim to find mechanisms that provide fault tolerance
to binary-only applications.

CLAIM: The operating system is responsible for merging the different
requirements of all applications and providing them with a fault-tolerant exe-
cution environment. The ASTEROID OS architecture introduced in this thesis
and depicted in Figure 1.1 does not enforce a specific model of protection.
Instead, different types of applications are supported:

* Binary applications built without specific fault tolerance mechanisms are
transparently replicated in order to protect them against soft errors.

» Applications that are protected using fault tolerant compiler techniques
or algorithms can be run unmodified without incurring replication-related
runtime or resource overheads.

* Applications integrate with each other regardless of the fault tolerance
model that is chosen to protect them. Unreplicated applications can interact
with replicated applications without having to be aware of this fact as
depicted in Figure 1.1.

ASTEROID is based on the FIASC0.OC microkernel. Microkernels provide
strong isolation between small sets of software components. This design prin-
ciple restricts the effects of hardware errors to single software components?!
and allows for fast recovery once an error is detected.??

In the field of distributed systems, state-machine replication has long
been used to achieve fault tolerance.”® Potentially faulty server nodes are
considered black boxes that implement state machines delivering identical
outputs when presented with the same sequence of inputs. This property
allows to instantiate multiple such server nodes, let them process inputs and
detect a failing node either as it delivers an output different from the majority
of nodes or because it delivers no output at all.

Redundant Multithreading (RMT) is a technique similar to state-machine
replication. In this case the black box is a thread either at the hardware?* or
software level.2 Multiple copies (replicas) of a thread are instantiated and
execute identical code. The RMT system may run those threads independently
on different hardware resources as long as they only process internal state.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 11

Once a thread’s state is made externally visible (e.g., written to memory
or used as parameter to a system call), the replicas’ states are compared to
detect potential errors.

Replication-based fault tolerance allows to treat applications as black
boxes, not requiring any knowledge about program internals. By distributing
replicas across the available compute cores and minimizing the required
state comparisons, replication can achieve low runtime overheads. These
two properties replication an attractive fault tolerance technique. The main
disadvantage of replication-based fault tolerance is the increase in required
resources (e.g., N replicas will roughly consume N times the amount of CPU
time and N times the amount of memory compared to a single application
instance). However, modern servers and even laptop computers provide
users with an abundance of processing elements and memory, which are

underutilized in the common case.2® Therefore, replication becomes a feasible % James Glanz. Power, Pollution and
the Internet. The New York Times,
. accessed on July 1st 2013, mirror: http:
and fast error recovery times. //0s.inf.tu-dresden.de/~doebel/
phd/nyt2012util/article.html,
September 2012

alternative if the user is willing to trade resources for low runtime overhead

CLAIM: The main contribution of my thesis is ROMAIN, an operating
system service that uses redundant multithreading to protect unmodified

binary applications from hardware errors. The service’s structure is depicted : :
in Figure 1.2 and solves the following problems: Replica i Replica i Replica
| |
1. Instead of implementing expensive binary recompilation techniques, RO-
MAIN reuses existing features provided by the FIASC0.OC microkernel Memorb‘:\? System
to implement redundant multithreading. A master process manages replica- Manager | Call Proxy |
tion for a single program. The master maps replicas to OS threads and runs Romain Master
them in isolated address spaces to prevent undetected fault propagation. : :
[cruo| ' [crut]| | [cPuz|
| |

To obtain low runtime overheads, replicas are distributed across the avail-
able physical CPU cores. ROMAIN’s general architecture is introduced in

Section 3.2 Figure 1.2: Replicated Application

2. ROMAIN transparently manages replicas’ resources, such as memory and
kernel objects. Applications do not need to be aware of the replication
framework and can be implemented using any programming language
and development model. Sections 3.4 and 3.5 provide details on replica
resource management.

3. Applications do not run isolated, but interact with the rest of the system
through system calls and shared-memory communication channels. RO-
MAIN allows replicated applications to use both mechanisms. Shared
memory requires special handling, because such channels may constitute
potential input sources influencing replicated program execution. There-
fore shared-memory access must not happen without involving the replica-
tion service. I will describe system call handling in Section 3.3 and discuss
problems related to shared memory in Section 3.6.

“»

http://os.inf.tu-dresden.de/~doebel/phd/nyt2012util/article.html
http://os.inf.tu-dresden.de/~doebel/phd/nyt2012util/article.html
http://os.inf.tu-dresden.de/~doebel/phd/nyt2012util/article.html

12 BJORN DOBEL

27 A. Shye, J. Blomstedt, T. Moseley, V.J.
Reddi, and D.A. Connors. PLR: A Soft-
ware Approach to Transient Fault Tolerance
for Multicore Architectures. IEEE Transac-
tions on Dependable and Secure Computing,
6(2):135 148, 2009

2 Yun Zhang, Jaec W. Lee, Nick P. Johnson,
and David I. August. DAFT: Decoupled
Acyclic Fault Tolerance. In International
Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, pages
87-98, Vienna, Austria, 2010. ACM

¥ L. Leem, Hyungmin Cho, J. Bau, Q.A.
Jacobson, and S Mitra. ERSA: Error Re-
silient System Architecture for Probabilistic
Applications. In Design, Automation Test
in Europe Conference Exhibition, DATE’ 10,
pages 1560-1565, 2010

4. Multithreaded applications cannot easily be replicated, because scheduling-
induced non-determinism may lead to differing behavior between replicas.
The ROMAIN master would detect this behavioral divergence. In the best
case this would merely cost unnecessary time for correcting such a false
positive error. However, in an even worse case all replicas of a program
may have diverged in a way that does no longer allow for error correction
at all. ROMAIN implements two ways of enforcing deterministic behavior
across multithreaded replicas, which I will explain in Chapter 4.

1.3 Whom can you Rely on?

The ASTEROID operating system architecture allows user-level applications
to detect and recover from soft errors. However, ASTEROID relies on a
subset of hardware and software components to always function correctly.
This set comprises the ROMAIN replication service and the underlying OS
kernel. Other software-based fault tolerance methods share this problem,
although the concrete set of required components varies: Some methods rely

1.27 Others additionally rely on the correct

on a fully-functioning Linux kerne
operation of system libraries, such as the thread library.?® I refer to such sets
of required components as the Reliable Computing Base (RCB).

As ROMAIN does not protect the RCB, ASTEROID needs to employ
alternative mechanisms to make the RCB reliable. These additional mecha-
nisms come at an additional cost. The type of cost depends on what exact
mechanism is applied to protect the RCB: Using fault-tolerant algorithms to
implement the RCB will require additional development effort. Protecting the
RCB using compiler-based fault tolerance may increase its runtime overhead.
Integrating specially hardened, non-COTS hardware components into our

system will increase hardware cost.

CLAIM: I introduce the concept of the Reliable Computing Base (RCB)
in Chapter 6 and identify the hardware and software components that are
part of ASTEROID’s RCB. I show that other software-implemented fault
tolerance also possess an RCB and that the OS kernel is part of this RCB in
most cases. Based on this analysis I present three studies that analyze how
RCB components can be protected against the effects of hardware errors:

1. As the OS kernel constitutes a major part of any RCB, I use fault injection
experiments to analyze the FTIASC0.OC kernel’s vulnerability against
hardware faults. Based on these findings I discuss potential paths towards
protecting F1Asc0.0OC in future work.

2. Current COTS hardware is becoming more and more heterogeneous by
incorporating different types of compute nodes that vary with respect to
their processing capabilities and energy requirements. Other researchers
suggested that this may lead to the advent of manycore processors with

mixed reliability properties.?

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Assuming that such hardware will become COTS at some point in time,
we can map RCB software to those components with low vulnerability —
such as hardware-protected CPU cores — while we can run ROMAIN’s
replicas on more fast, cheap, but more vulnerable processing elements.

Such an architecture will require fewer resilient than non-resilient CPUs.

As non-resilient CPUs occupy less chip area, this design allows for an
integration of more processing elements on a single chip while allowing
fault tolerant execution. I show that the ASTEROID architecture can
efficiently be implemented on top of such hardware.
. ROMAIN’s goal is to protect unmodified binary-only applications. How-
ever, we still have full control over the source code of all RCB components.
Hence, applying compiler-based fault tolerance may be a feasible way to
protect them. While this will increase ASTEROID’s error coverage, it will
also lead to an increased runtime overhead. I approximate this overhead
using simulation experiments and show that a hybrid approach that protects
RCB components using compiler methods while replicating user programs
using ROMAIN is a promising approach towards a fully protected software
stack.

13

2
Why Do Transistors Fail And
What Can Be Done About It?

In this chapter I present the fault model I address in my thesis. I first give an
overview about how cosmic radiation, aging, and thermal effects can lead to
the failure of hardware components. Thereafter I introduce a taxonomy of
fault tolerance that I am going to use throughout my dissertation. In the final
part of this chapter I review existing fault tolerance techniques to motivate
assumptions and design goals driving my operating system design.

2.1 Hardware Faults at the Transistor Level

The integrated circuits that form today’s hardware components are built
from metal-oxide-semiconductor field-effect transistors (MOSFETs)." These
transistors can suffer from a range of hardware faults that may cause them
to fail. In this section I give an overview of what makes transistors error-
prone. Unless stated otherwise, I base this summary on Mukherjee’s book on
fault-tolerant hardware design.2

Figure 2.1 shows a MOSFET model. Two semiconductors, source and
drain, are separated by a bulk substrate. During production, source and drain
are doped to create an n-type semiconductor. In contrast, the bulk substrate
is deprived of electrons. The combination of these layers forms a p-type
semiconductor. The boundaries between these regions act as diodes and
prevent current flowing from source to drain.

A gate electrode sits on top of the transistor. A non-conducting oxide layer
(usually silicon-dioxide Si0O») isolates this electrode from the bulk. If we
apply a voltage to the gate electrode an electric field is created. As shown in
Figure 2.2, positive electron holes in the p-type substrate are repelled from the
gate, whereas negative electrons are pulled towards the gate and accumulate
below the oxide layer.

If the gate voltage exceeds a certain threshold voltage Uy, the number of
electrons below the oxide layer is sufficient to create a conducting channel
between source and drain. The accompanying charge at the gate electrode is
termed critical charge Q. yis-

Hardware vendors aim to decrease MOSFET sizes as far as physically
possible. Smaller transistors consume less power and allow to integrate a
larger amount of memory and processing elements into the same chip area.
However, there are three groups of effects that let smaller MOSFETsS fail

'Dawon Kahng. Electrified Field-
Controlled Semiconductor De-
vice. US Patent No. 3,102,230,

http://www.freepatentsonline.com/
3102230.html, 1963

2 Shubhendu Mukherjee. Architecture De-
sign for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008

Oxide Layer

Source

G

©

Bulk

Substrate o)

Figure 2.1: Model of a metal-oxide semicon-
ductor field effect transistor (MOSFET)

COO00
TFF T T

éécgéé

Figure 2.2: MOSFET when switched to con-

ducting state

http://www.freepatentsonline.com/3102230.html
http://www.freepatentsonline.com/3102230.html

16 BJORN DOBEL

3 Yuan Taur. The Incredible Shrinking Tran-
sistor. IEEE Spectrum, 36(7):25-29, 1999

*Miguel Miranda. When Every Atom
Counts. IEEE Spectrum, 49(7):32-32, 2012

3> Dave Reid, Campbell Millar, Gareth Roy,
Scott Roy, and Asen Asenov. Analysis of
Threshold Voltage Distribution Due to Ran-
dom Dopants: A 100,000-Sample 3-D Simu-
lation Study. IEEFE Transactions on Electron
Devices, 56(10):2255-2263, 2009

¢ Kaushik Roy, Saibal Mukhopadhyay, and
Hamid Mahmoodi-Meimand. Leakage
Current Mechanisms and Leakage Reduc-
tion Techniques in Deep-Submicrometer
CMOS Circuits. Proceedings of the IEEE,
91(2):305-327, 2003

7 Lucas Wanner, Charwak Apte, Rahul Bal-
ani, Puneet Gupta, and Mani Srivastava.
Hardware Variability-Aware Duty Cycling
for Embedded Sensors. IEEE Transactions
on Very Large Scale Integration (VLSI) Sys-
tems, 21(6):1000-1012, 2013

8John Keane and Chris H. Kim. An
Odomoeter for CPUs. [EEE Spectrum,
48(5):28-33, 2011

more often: (1) variability introduced during the manufacturing process may
alter the behavior of identically designed transistors, (2) aging and thermal
effects may cause a properly functioning transistor to fail, and (3) radiation
may induce errors into processing and storage elements. I will now survey
research into these effects in more detail.

2.1.1 Manufacturing Variability

As transistors scale down, the gate oxide layer as well as the transistor’s
channel size shrink, resulting in a smaller number of atoms within a single
transistor. Due to this fact, the critical charge and threshold voltage to switch
the transistor’s state decrease. This eventually leads to a reduced energy
consumption.’ While saving energy is an advantage, manufacturing smaller
transistors becomes harder.

The process of doping semiconductor material with excess electrons is far
from precise. Instead, the dopant atoms are randomly distributed. For smaller
transistors, the total number of atoms is small and therefore even tiny random
variations between transistors can have a high impact on their electrical
properties. As a consequence, transistors may exhibit large variations in terms
of threshold voltage and leakage current.*

Reid and colleagues simulated the effects of random atom placement on
a large number of 35 nm and 13 nm transistors.” They found that smaller
structure sizes lead to a larger distribution of threshold voltages across these
devices. While the majority of transistors still exhibits correct behavior, they
showed that at a channel length of 13 nm a significant amount of MOSFETs
falls into ranges where the threshold voltage is either very high or close to
zero. Both effects prevent the transistor from switching states at all.

Even when turned off, there is a small static current flowing through a

transistor.%

Studies showed that depending on manufacturing issues, this
leakage current greatly varies across chips, even if these originate from the
same wafer.” In extreme cases this means that processors exceed their planned
power budget. This is not an immediately visible malfunction, but it will
render mobile devices unusable after a short amount of time if the CPU drains
all battery power.

As the effects described above occur in the manufacturing phase, hardware
vendors can detect them during stress-testing, which they perform before
shipping their products. However, similar effects to manufacturing errors can

also arise much later due to chip aging.

2.1.2 Aging and Thermal Effects

At runtime, the transistors forming a semiconductor circuit switch frequently.
This switching causes voltage and temperature stress, which leads to a degra-
dation of transistor operation over time. The three main contributors to
this degradation are (1) hot-carrier injection, (2) negative-bias temperature
instability (NBTI), and (3) electromigration.8

Electrons traveling from a MOSFET’s source to drain differ with respect
to the energy they carry. Highly energetic (hot) carriers sometimes do not
pass from source to drain, but instead hit the oxide layer that isolates the gate
electrode. Thereby they either show up as leakage current or become trapped

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 17

inside the gate oxide. The latter process is called hot-carrier injection and
results in a shift in the transistor’s threshold voltage Ut;,,.9

Switching a transistor frequently increases the temperature under which the
device operates. At high temperatures, electrons passing through the interface
between bulk and gate oxide may destroy the chemical bonds within the oxide
and create positively charged Si™ ions. Thereby they increase the number
of p-dopants in the transistor, which in turn means that a larger threshold
voltage is required to switch the transistor. This process is called negative-bias
temperature instability (N BTI)lO.

A third effect does not impact the transistor but rather the metal intercon-
nects between transistors. Over time high-energy electrons may cause metal
atoms to move out of their position. This process, called electromigration,'!
leads to voids within the wire that prevent current from flowing and therefore
break the interconnect. The missing material may additionally move to other
locations in the interconnect and create short circuits there.

Circuits suffering from hot-carrier injection or electromigration perma-
nently malfunction. Vendors therefore carefully analyze their circuit’s aging
characteristics so that these aging effects only set in after a given age threshold.
In contrast, the effects of NBTI partially!? revert if the gate voltage is turned
off and temperature decreases. These faults are therefore transient.

2.1.3 Radiation-Induced Effects

35 years ago, Ziegler and Lanford showed that radiation may also trigger
malfunctions in semiconductors.!3 There are two main sources for these
radiation effects: First, cosmic rays may penetrate earth’s atmosphere and
influence transistors. Second, the materials that are used for packaging circuits
carry a certain amount of terrestrial radiation. The radioactive decay of these
materials may therefore also influence circuit behavior.

Given a fixed hardware structure size, the probability of suffering from
a packaging-induced radiation effect is fixed. Cosmic radiation in contrast
becomes stronger with higher altitudes.!*

When a single MOSFET is struck by radiation, particles may create
electron-hole pairs which thereafter recombine and therefore create a flowing
current. This process may increase the transistor’s charge. If the charge then
exceeds the critical charge Q.,i, the transistor’s state may switch.

With smaller transistor sizes, Q,; decreases and the transistors become
more vulnerable against environmental radiation. However, at the same time
the transistor surface that may be hit by a ray also decreases and thereby
the probability of a individual transistor being struck by radiation decreases.
Initially, overall transistor vulnerability dropped when moving below 135 nm
technologies. However, a study by Oracle Labs indicates that transistor
vulnerabilities begin to rise again as transistor sizes shrink below 40 nm. !>

As a single radiation event can force a transistor’s state to change, these
events are termed single-event upsets (SEU). In contrast to the previously
discussed error types, SEUs are non-permanent. Any future reset of the
transistor, e.g., by applying the threshold voltage to the gate electrode, will
return the transistor to a valid state. Correcting SEUs is therefore easier,

® Waisum Wong, Ali Icel, and J.J. Liou. A
Model for MOS Failure Prediction due to
Hot-Carriers Injection. In Electron Devices
Meeting, 1996., IEEE Hong Kong, pages 72—
76, 1996

10 Muhammad Ashraful Alam, Haldun Kuflu-
oglu, D. Varghese, and S. Mahapatra. A Com-
prehensive Model for PMOS NBTI Degra-
dation: Recent Progress. Microelectronics
Reliability, 47(6):853-862, 2007

! James R. Black. Electromigration — A
Brief Survey and Some Recent Results. IEEE
Transactions on Electron Devices, 16(4):338—
347, 1969

12 Literature distinguishes reversible short-
term NBTI and irreversible long-term NBTI.

13 James F. Ziegler and William A. Lanford.
Effect of Cosmic Rays on Computer Memo-
ries. Science, 206(4420):776-788, 1979

14 Ziegler, James F. and Curtis, Huntington W.
et al. IBM Experiments in Soft Fails in Com-
puter Electronics (1978-1994). IBM Journal
of Research and Development, 40(1):3-18,
1996

5 A. Dixit and Alan Wood. The Impact
of new Technology on Soft Error Rates.
In IEEE Reliability Physics Symposium,
IRPS’11, pages 5B.4.1-5B.4.7, 2011

18 BJORN DOBEL

16 Algirdas Avizienis, Jean-Claude Laprie,
Brian Randell, and Carl Landwehr. Basic
Concepts and Taxonomy of Dependable and
Secure Computing. [EEE Transactions on
Dependable and Secure Computing, 1(1):11-
33,2004

Failure

Figure 2.3: Chain of errors

because overwriting a faulty memory location will fix a radiation-induced
error. For this reason, SEUs are also called soft errors.

SUMMARY: Computer architects understand that semiconductors
suffer from manufacturing and aging faults as well as the influence
of radiation. These faults can be permanent or transient. A reliable
system needs to cope with both cases of faults.

2.2 Faults, Errors, and Failures — A Taxonomy

Before I review how hardware and software-level solutions provide fault
tolerance against the types of hardware errors described above, it is necessary
to introduce a terminology that we can use to talk about cause and effect of
these errors. In this thesis I am going to use a terminology that was introduced
by Avizienis,16 which I summarize below.

The cause, effect, and consequence of component misbehavior form a
chain as depicted in Figure 2.3. We call the ultimate cause of misbehavior
a fault. In the exemplary case of radiation-induced soft errors, a cosmic ray
strike hitting a transistor constitutes a fault.

Malfunction of the affected device only occurs if a fault becomes active
and modifies the component’s internal state. This is an error. A radiation fault
is for instance activated if the particle’s charge exceeds the affected transistor’s
critical charge Q.. and the transistor is currently not in its conducting state.

If a component’s state is modified due to an error, the component may
provide a service that deviates from the expected service. For instance, a
transistor struck by radiation may be part of a memory cell and the radiation
fault may cause the memory cell’s content to change. If this erroneous content
is then read, it may impact further computations. This externally visible
deviation is called a failure.

Not every error will eventually lead to a visible component failure. For
instance, even if a memory cell’s value is modified, this data does not impact
system behavior as long as it is not used. If a fault or error does not escalate
into a failure, we call this a masked fault or masked error respectively.

The terminology so far only considers a single component. Computer
systems are complex networks of interacting components and therefore the
distinction between faults, errors, and failures fades. One component’s failure
may be input to a second component. From the second component’s per-
spective this will be a fault, which again may activate and trigger an error
and potentially escalate into a failure. This domino effect is called fault
propagation.

We can furthermore distinguish faults by their lifetime: Permanent faults
enter the system at a certain point in time and the affected component there-
after constantly behaves incorrectly. For example, production errors in proces-
sors may lead to situations in which certain bits of a register always deliver
the same value or where a broken interconnect never transmits any current.

In contrast, transient (or soft) faults vanish after a certain period of time.
This is the case for radiation-induced faults I introduced in Section 2.1 on
page 15. These faults may cause single bits of a register to change their value.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 19

However, overwriting the register with a new value will correct these errors,
because writing will recharge the affected transistors.

Literature sometimes uses the term intermittent fault to denote a fault that
occasionally activates and then vanishes again. These faults are believed to
stem from complex interactions between multiple faulty hardware compo-
nents.!”

2.2.1 Fault-Tolerant Computing

Fault-tolerance mechanisms strive to prevent faults from escalating into fail-
ures by either masking faults or detecting and correcting errors before they
lead to failures. Decades of research and product development have produced
guidelines on how to design computer components so they can tolerate faults
efficiently.

If a device stops providing a service when encountering a failure, it is
considered a fail-stop component.'® Such a component cannot produce
erroneous output. Therefore, a fault-tolerance mechanism can easily detect
if this unit becomes unresponsive. In contrast, detecting erroneous output is
a much harder task. Some publications also refer to components that stop
providing output after a failure as fail-silent components.'?

If the termination of service happens immediately after the service provider
failed, the respective component is considered fail-fast. 2 Failing fast means
that the propagation of an error into other components of the system is limited.
Consequently, repairing the system becomes easier.

I will examine existing fault-tolerance mechanisms and their properties
more closely in Section 2.4. However, to do so we need metrics that allow us
to evaluate the suitability of a certain mechanism in a given scenario.

2.2.2 Reliability Metrics
When assessing fault tolerant systems, Gray distinguishes between reliability
and availability:20

» “Reliability is not doing the wrong thing.” By this definition, a fail-stop
system is considered reliable, because it never provides a wrong result.

* “Availability is doing the right thing within the specified response time.”

This definition adds the requirement of a timely and correct response. To
be available, a fail-stop system needs to be augmented with a fast and
suitable recovery mechanism.

Researchers use temporal metrics as shown in Figure 2.4 to quantify these
terms. The expected time between failure events in a component is termed the
component’s Mean Time Between Failures (MTBF). MTBF is often measured
in years. Computer architects use the rate of Failures In Time (FIT), which is
closely related to the MTBF and defined as FIT := 1/MTBF. The FIT rate
is usually given in failures per one billion hours of operation.

The lifetime and evolution of a fault can also be measured: the time

between the occurrence of a fault and its activation is called the Fault Latency.

The subsequent time elapsing between the manifestation of an error and its

detection by a fault tolerance mechanism is termed Error Detection Latency.

17 Layali Rashid, Karthik Pattabiraman, and
Sathish Gopalakrishnan. Towards Under-
standing The Effects Of Intermittent Hard-
ware Faults on Programs. In Workshops on
Dependable Systems and Networks, pages
101-106, June 2010

18 Richard D. Schlichting and Fred B. Schnei-
der. Fail-Stop Processors: An Approach
to Designing Fault-tolerant Computing Sys-
tems. ACM Transactions on Computer Sys-
tems, 1:222-238, 1983

19 Francisco V. Brasileiro, Paul D. Ezhilchel-
van, Santosh K. Shrivastava, Neil A. Speirs,
and S. Tao. Implementing Fail-Silent Nodes
for Distributed Systems. Computers, IEEE
Transactions on, 45(11):1226-1238, 1996
20 Jim Gray. Why Do Computers Stop and
What Can Be Done About It? In Symposium
on Reliability in Distributed Software and
Database Systems, pages 3—12, 1986

Activation
Fault l Detection Fault

Error

Correct

1 —Time Between Failures
2 —Time To Repair

3 — Error Detection Latency
4 — Fault Latency

Figure 2.4: Temporal Reliability Metrics

20 BJORN DOBEL

21 Xin Li, Kai Shen, Michael C. Huang,
and Lingkun Chu. A Memory Soft Er-
ror Measurement on Production Systems.
In USENIX Annual Technical Conference,
ATC’07, pages 275-280, June 2007

Applying fault tolerance to a system adds development, execution time and
resource overheads. For instance, periodically taking application checkpoints
adds both additional execution time and memory consumption. These over-
heads are of concern for evaluating fault tolerant systems, because they are
often paid regardless of whether the system is hit by a fault. Additionally,
once an error has occurred, the system needs to repair this error. The time
to do so is called the Mean Time To Repair (MTTR). Gray uses MTBF and
MTTR to define an availability metric: 20

MTBF
MTBF +MTTR

Lastly, the fraction of errors covered by a fault tolerance mechanism in

Availability :=

contrast to the overall amount of errors a system may encounter is called error
coverage.

An ideal fault-tolerant system achieves a high error coverage while keeping
overheads and repair times minimal. Unfortunately, in practice there is no free
lunch. Real solutions therefore need to choose between increased execution
time overheads and increased error coverage and find a sweet-spot for their
purposes. Therefore, I review existing solutions to fault tolerance with respect
to their cost and applicability in the next section.

SUMMARY: Component malfunctions follow a chain of events:
faults affect the component and escalate to errors in the component’s
state. An externally visible error is considered a failure.

Fault tolerant systems are designed to either mask errors or detect
and correct them in time. Reliability metrics, such as MTBE, MTTR,
and error coverage, allow to evaluate the impact and usefulness of
fault tolerance mechanisms.

2.3 Manifestation of Hardware Faults

The errors discussed in Section 2.1 originate from the transistor level. My
thesis focuses on tolerating the software-visible effects of these errors. Hence,
it is useful to understand how hardware errors manifest from an application’s
point of view. Therefore, I will now explore studies that analyze the rate at
which errors occur in today’s hardware and the impact they have on program
execution.

2.3.1 Do Hardware Errors Happen in the Real World?

Hardware faults are rare events in actual systems. This makes studying
their effects a tedious task, because we need to obtain data from a large set
of computers over a long time. The resources required to do so are often
unavailable to researchers and even to most industrial hardware and software
vendors. As an example, Li and colleagues monitored a set of more than 300
computers in production use over a span of three to seven months and were
only able to attribute two observed errors as being the likely effects of a soft
error in memory.21

Researchers often study hardware error effects by looking at memory
hardware. This is appropriate for two reasons: First, memory makes up a

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 21

large fraction of hardware circuits in a modern computer. Halfhill reports
that 69% of a modern Intel CPU’s chip area are used for the L3 cache.??
Additional area is consumed off-chip by the several gigabytes of RAM in
modern machines. Memory is therefore most likely to encounter a hardware
fault. Second, detecting memory errors is straightforward by either monitoring
complete memory ranges in software or using error information provided by
the memory controller.?!

Instead of monitoring computers for a long time, we can also expose
hardware to an increased rate of radiation in a special experiment setup. In
these investigations hardware is ionized at a rate much higher than cosmic
radiation. This approach amplifies the number of soft errors that affect the
investigated devices. Autran and colleagues used such an experiment to
measure the SEU effects on 65 nm SRAM cells. They extrapolate from their
measurements that at sea level we are likely to see a FIT rate of 759 bit errors
per megabit of memory within one billion hours of operation.?3

SRAM cells are used in modern CPUs for implementing on-chip caches.
If we assume an 8 MB L3 cache size as is common in Intel’s Core i7 se-
ries of processors, Autran’s FIT/Mbit rate leads us to a cache FIT rate of
759 FIT /Mbit x 64 Mbit = 48,576 FIT. This number corresponds to an
MTBEF of about 2.3 years. This fault rate may appear negligible from the
perspective of a single user’s home entertainment system. However, modern
large scale computing installations — such as high-performance computers
and data centers powering the cloud — contain thousands of processors. Con-
sequently, failures in these systems happen in intervals of minutes instead of
weeks or months.

Focusing on such large-scale installations, Schroeder and colleagues
carried out a field study of DRAM errors by monitoring the majority of
Google Inc.’s server fleet for nearly two years.?* They found that about a
third of all computers experienced at least one memory error within a year.
The error rates strongly correlated with hardware utilization. Furthermore,
they observed that DRAMs that had already encountered previous errors were
more likely to suffer from errors in the future. From these observations they
concluded that memory faults are dominated by permanent faults, because
otherwise errors would be distributed more evenly across the machines
under observation. They then confirmed this assumption with a second study
incorporating an even larger range of machines.>

AMD engineers performed an independent 12 month study using the Jaguar
cluster at Oak Ridge National Laboratories, containing 18,688 compute nodes
and about 2.69 million DRAM devices.2® They report that while only 0.1% of
all DRAMs encountered any kind of fault during their study, the large number
of devices translates this number into an MTBF of roughly 6 hours.

In contrast to Schroeder’s studies, the AMD study aims to attribute errors
to their underlying faults. The authors argue that counting errors instead of
faults leads to a bias towards permanent errors. Because of their very nature,
permanent faults will produce reportable errors until the defective memory
bank is replaced. In contrast, radiation-induced soft errors are only reported
once and then corrected. By only considering actual faults, the study reports
a transient fault rate of 28%.

2Tom R. Halfhill. Processor Watch:
DRAM+CPU Hybrid Breaks Barriers.
Linley Group, 2011, accessed on July
26th 2013, mirror: http://tudos.org/
~doebel/phd/linleyllcore/

23 J.-L. Autran, P. Roche, S. Sauze, G. Gasiot,
D. Munteanu, P. Loaiza, M. Zampaolo, and
J. Borel. Altitude and Underground Real-
Time SER Characterization of CMOS 65nm
SRAM. In European Conference on Radia-
tion and Its Effects on Components and Sys-
tems, RADECS’08, pages 519-524, 2008

2 Bianca Schroeder, Eduardo Pinheiro, and
‘Wolf-Dietrich Weber. DRAM Errors in the
Wild: A Large-Scale Field Study. In Inter-
national Conference on Measurement and
Modeling of Computer Systems, SIGMET-
RICS’09, 2009

2 Andy A. Hwang, Ioan A. Stefanovici, and
Bianca Schroeder. Cosmic Rays Don’t Strike
Twice: Understanding the Nature of DRAM
Errors and the Implications for System De-
sign. In International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems, ASPLOS
XVII, pages 111-122, London, England, UK,
2012. ACM

26 Vilas Sridharan and Dean Liberty. A Study
of DRAM Failures in the Field. In Inter-
national Conference on High Performance
Computing, Networking, Storage and Anal-
ysis, SC *12, pages 76:1-76:11, Salt Lake
City, Utah, 2012. IEEE Computer Society
Press

http://tudos.org/~doebel/phd/linley11core/
http://tudos.org/~doebel/phd/linley11core/

22 BJORN DOBEL

%7 Sherkar Borkar. Designing Reliable Sys-
tems From Unreliable Components: The
Challenges of Transistor Variability and
Degradation. IEEE Micro, 25(6):10 — 16,
2005

28 Robert Baumann. Soft Errors in Advanced
Computer Systems. [EEE Design Test of
Computers, 22(3):258-266, 2005

V. B. Kleeberger, C. Gimmler-Dumont,
C. Weis, A. Herkersdorf, D. Mueller-
Gritschneder, S. R. Nassif, U. Schlichtmann,
and N. Wehn. A Cross-Layer Technology-
Based Study of how Memory Errors Impact
System Resilience. IEEE Micro, 33(4):46—
55,2013

30 Horst Schirmeier, Martin Hoffmann, Riidi-
ger Kapitza, Daniel Lohmann, and Olaf
Spinczyk. FAIL*: Towards a Versatile Fault-
Injection Experiment Framework. In Gero
Miihl, Jan Richling, and Andreas Herkers-
dorf, editors, International Conference on
Architecture of Computing Systems, volume
200 of ARCS’12, pages 201-210. German
Society of Informatics, March 2012

31 Siva Kumar Sastry Hari, Sarita V. Adve,
Helia Naeimi, and Pradeep Ramachandran.
Relyzer: Exploiting Application-Level Fault
Equivalence to Analyze Application Re-
siliency to Transient Faults. In International
Conference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, ASPLOS XVII, pages 123—-134, New
York, NY, USA, 2012. ACM

As described in Section 2.1, hardware circuitry is constantly shrinking and
therefore becoming more vulnerable to both radiation and aging effects. This
trend has been pointed out by studies from both industry?’ and academia.?8
As a result, the error rates described above will grow larger with future hard-
ware generations, making the quest for efficient fault tolerance mechanisms

more urgent.

SUMMARY: Hardware faults and the resulting failures are a practi-
cal problem. Today, the probability of encountering a hardware error
in an end user’s computer is fairly low.

High-performance computers and data centers already amass a suffi-
cient amount of hardware to encounter such faults on a daily basis.
They therefore require protection by hardware or software mecha-

nisms.

Future generations of computer hardware will bring these problems
to the consumer market as well.

2.3.2 How do Errors Manifest in Software?

Before designing a fault tolerance mechanism, developers specify how they
expect the behavior of a component to change if this component suffers from
an error. This fault model is used as the basis for evaluating the efficiency of
newly implemented mechanisms.

Software-level fault tolerance often assumes that hardware errors manifest
as deviations in the state of single bits in memory or other CPU components,
such as registers or caches.?? Based on this assumption, permanent errors are
often modeled as stuck-at errors, where reading a bit constantly returns the
same value. In contrast, a commonly used fault model for transient errors is
a bit flip, where a memory bit is inverted at a random point in time. The bit
then returns erroneous data until the next write to this resource resets the bit
to a correct state.

Ideally, to evaluate a fault tolerance mechanism, we would fully enumerate
all potential errors according to the assumed fault model and check if these
errors are detected and corrected by the mechanism. Unfortunately, this is
infeasible because the total set of errors is huge: For instance, when assuming
register bit flips, we would have to test the mechanism for a bit flip in every bit
of every register for every dynamic instruction executed by a given workload.
This leads to millions or billions of potential experiments.

Real-world studies often work around this problem by sampling the error
space. Fault injection tools?? aid in performing coverage analysis. These
tools furthermore allow to determine which samples to select in order to get
representative results.3!

The total set of fault injection experiments carried out is called a fault
injection campaign. In every experiment a single fault is injected. The
system’s output is then monitored and compared to that of an unmodified
execution, the so-called golden run. The experiment results are then classified.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 23

The names of these result classes vary throughout literature. Nevertheless,
studies often distinguish between four general result classes and I will use the
following distinction when evaluating ROMAIN’s error coverage capabilities
in Chapter 5:

* If the application continues execution without visible deviation and suc-
cessfully generates the correct output, the error is considered to have no
effect. This is also called a benign fault.

¢ An error that leads to a visible application malfunction, for instance be-
cause it drives the application to access an invalid memory address, is
called a detected error or a crash.

 If the application terminates successfully in the presence of an error,
but produces wrong output, the error is considered a silent data corrup-
tion (SDC) error.

* Sometimes the application does not terminate within a specific time frame
at all, for instance because the error affects a loop condition and the pro-
gram gets stuck in an infinite loop. These cases are classified as incomplete
execution.

In the following paragraphs I survey six studies that investigated different
aspects of how hardware errors affect software.

Error Propagation to Software Saggese and colleagues studied fault effects
using gate-level simulators of both a DLX and an Alpha processor.32 Using
these simulators they were able to inject faults into the different functional
units of the processor in operation. For logic gates they found that 85% of the
injected errors were masked at the hardware level. Consequently, software-
level fault tolerance should focus on detecting errors that affect stored data,
such as registers or memory.

The authors furthermore analyzed whether failure distributions vary across
the different functional units of a processor. I render their results in Figure 2.5.
Most notably, they found that execution units (such as the instruction decoder)
contribute largely to crashes. In contrast memory accesses make up a large
fraction of silent data corruption failures.

Error Manifestation at the OS Level Two studies by Arlat and Madeira
inspected how transient memory errors in commercial-off-the-shelf (COTS)
hardware impact an operating system. Arlat focused on Chorus?? whereas
Madeira’s work considered LynxOS.34

Both studies found that — after filtering faults masked by hardware — be-
tween 30% and 50% of all errors lead to no difference in application behavior.
A fault tolerance mechanism that successfully ignores benign faults while
properly handling all others will therefore cause less execution time overhead
than a mechanism that tries to correct all errors. Hence, the way a mecha-
nism deals with benign faults constitutes a major opportunity for optimizing
performance.

Arlat’s study focused on exercising certain kernel subsystems. A large
fraction of visible errors triggered CPU exceptions or error handling inside
the kernel. These errors can easily be detected by an OS-level fault tolerance
mechanism.

¥ Giacinto P. Saggese, Nicholas J. Wang,
Zbigniew T. Kalbarczyk, Sanjay J. Patel, and
Ravishankar K. Iyer. An Experimental Study
of Soft Errors in Microprocessors. IEEE Mi-
cro, 25:30-39, November 2005

100

Contribution to Errors in %

Crash SDC Incomplete

B Memory Access
H Speculation

[Control Units

M Execution Units

Figure 2.5: Study by Saggese32 on how soft
errors in different parts of the processor man-
ifest as software failures

33 Jean Arlat, Jean-Charles Fabre, Manuel
Rodriguez, and Frédéric Salles. Depend-
ability of COTS Microkernel-Based Systems.
IEEE Transactions on Computing, 51(2):138—
163, February 2002

3 Henrique Madeira, Raphael R. Some, Fran-
cisco Moreira, Diamantino Costa, and David
Rennels. Experimental Evaluation of a
COTS System for Space Applications. In In-
ternational Conference on Dependable Sys-
tems and Networks, DSN 2002, pages 325—
330, 2002

24 BJORN DOBEL

35 Takeshi Yoshimura, Hiroshi Yamada, and
Kenji Kono. Is Linux Kernel Oops Useful
or Not? In Workshop on Hot Topics in Sys-
tem Dependability, HotDep’12, pages 2-2,
Hollywood, CA, 2012. USENIX Association

% Man-Lap Li, Pradeep Ramachandran,
Swarup Kumar Sahoo, Sarita V. Adve,
Vikram S. Adve, and Yuanyuan Zhou. Un-
derstanding the Propagation of Hard Errors
to Software and Implications for Resilient
System Design. In International Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems, AS-
PLOS XIII, pages 265-276, Seattle, WA,
USA, 2008. ACM

37 Nicholas Wang, Michael Fertig, and San-
jay Patel. Y-Branches: When You Come
to a Fork in the Road, Take it. In Inter-
national Conference on Parallel Architec-
tures and Compilation Techniques, PACT
’03, pages 56—, Washington, DC, USA, 2003.
IEEE Computer Society

3 Christoph Borchert, Horst Schirmeier, and
Olaf Spinczyk. Protecting the dynamic dis-
patch in C++ by dependability aspects. In G/
Workshop on Software-Based Methods for
Robust Embedded Systems (SOBRES ’12),
Lecture Notes in Informatics, pages 521-535.
German Society of Informatics, September
2012

In contrast to Arlat’s study, Madeira also considered applications that spent
a substantial amount of time executing in user space. In these experiments, up
to 50% of all errors led to silent data corruption or incomplete execution of the
user program. These errors cannot easily be detected by the OS, because from
the kernel’s perspective such a failing application does not behave differently
from a program executing normally.

Arlat and Madeira also investigated whether errors propagate through the
OS kernel into other applications. They report this to happen rarely and
attribute this to the fact that hardware-assisted process isolation is a suitable
measure to prevent error propagation across applications. Both kernels make
use of this feature. Yoshimura later confirmed that this isolation property also

exists for Linux processes.>?

Manifestation of Permanent Errors While the previous studies focused on
transient errors, Li and colleagues studied the manifestation of permanent
errors on a simulated CPU running the Solaris operating system and the SPEC
CPU benchmarks.3® They found that permanent errors are only rarely masked
by hardware and seldom manifest as silent data corruption. Instead, these
errors often lead to hardware exceptions (such as page faults), which are
detected by the OS kernel. The authors also measured that in most cases
an error leads to a crash within less than 1,000 CPU cycles. However, in
65% of the cases, the kernel’s internal data structures are corrupted before
error detection mechanisms are triggered. Therefore, these important data
structures require special protection even when a system is protected by
special fault tolerance mechanisms.

Errors Meet Programming Language Constructs In addition to the previ-
ous studies, software developers investigated whether certain programming
languages or development models influence the reliability of a program. One
such investigation was performed by Wang and colleagues, who explored
branch errors in the SPEC CPU 2000 benchmarks.>” They forced the pro-
grams to take wrong branches and found that in up to 40% of the dynamic
branches the program converged to correct execution without generating
wrong data.

The authors attribute these observations to the use of certain programming
constructs. For example, they point out that programs sometimes contain
alternative implementations of the same feature. In such cases selecting one
or the other (by taking a different branch) does not make a difference with
respect to program outcome.

A different study by Borchert and colleagues shows that programming
language features can also have an impact on the vulnerability of programs.38
In the C++ programming language, inheritance hierarchies are implemented
using a function pointer lookup table, the vtable. Borchert et al. evaluated
C++ code using fault injection experiments and determined that these vtable
pointers are especially vulnerable to memory bit flips. They then devised a
mechanism to replicate these vtable pointers at runtime and thereby increase
the program’s reliability.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 25

Limitations of the Bit Flip Model The studies discussed in this section
analyzed the vulnerability of large application scenarios. Fault injection
campaigns for such scenarios are computationally impossible to carry out by
simulating hardware at the transistor level. Instead, the studies used simulation
software that abstracts away details of the underlying hardware platform in
order to gain performance and allow conducting such a vast amount of fault
injection experiments.

While these studies allow analyzing the effectiveness of reliability mecha-
nisms, a recent study by Cho points out that the absolute numbers produced
by high-level simulation need to be taken with a grain of salt:3% their com-
parison of transistor-level experiments with memory fault injections based
on the bit-flip model indicates that bit flip experiments tend to over-estimate
SDC errors, whereas real hardware shows a higher rate of crash errors. This
means that high-level fault injection is not suitable to perform an absolute
vulnerability analysis of a given system. However, these campaigns are still
suitable to investigate whether a fault tolerance mechanism increases reliabil-
ity with respect to a given fault model. This latter scenario only requires an
apples-to-apples comparison between unprotected and protected execution
within the same simulator.

SUMMARY: Both permanent and transient hardware faults can
propagate to the software level. They mostly manifest in storage cells,
such as registers and main memory. Despite limitations, the bit-flip
model is commonly used to analyze the impact these errors have on
software and whether fault tolerance mechanisms detect and correct
them efficiently.

Depending on the workload, up to 50% of all errors are benign and
do not modify program behavior. Fault tolerance mechanisms can
leverage this fact to optimize performance if they find a way to ignore
benign faults and only pay execution time overhead for actual failures.

2.4 Existing Approaches to Tolerating Faults

In the previous sections I explained why hardware suffers from faults and
how these faults manifest at the software level. In this section I review
previous work in the field of fault-tolerant computing. I first give an overview
of hardware-level solutions that try to prevent hardware faults from ever
becoming visible to software.

Hardware extensions increase the required chip area for a processor and
therefore make the chip more expensive to produce and consume a higher
amount of energy during operation. As an alternative, software-level solutions
try to address fault tolerance without relying on dedicated hardware. I explore
such mechanisms in the second part of this section.

Operating systems have long tried to increase the reliability of kernel code.
While many of these solutions focus on dealing with programming errors,
some of their design principles can also aid in dealing with hardware faults.
Hence, I review these works in the third part of this section.

3% Hyungmin Cho, Shahrzad Mirkhani, Chen-
Yong Cher, Jacob A. Abraham, and Subha-
sish Mitra. Quantitative Evaluation of Soft
Error Injection Techniques for Robust Sys-
tem Design. In Design Automation Confer-
ence (DAC), 2013 50th ACM / EDAC / IEEE,
pages 1-10, 2013

26 BJORN DOBEL

4W. G. Brown, J. Tierney, and R. Wasser-
man. Improvement of Electronic-Computer
Reliability Through the Use of Redundancy.
IRE Transactions on Electronic Computers,
EC-10(3):407-416, 1961

Inputs

e]le]le]

T
@

Output

Figure 2.6: Triple modular redundancy
(TMR)

#! Ying-Chin Yeh. Triple-Triple Redundant
777 Primary Flight Computer. In Aerospace
Applications Conference, volume 1, pages
293-307, 1996

2 David Ratter. FPGAs on Mars. Xilinx Xcell
Journal, 2004

4 John L. Hennessy and David A. Patterson.
Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 3rd edition, 2003

“Dean M. Tullsen, Susan J. Eggers, and
Henry M. Levy. Simultaneous Multithread-
ing: Maximizing on-chip Parallelism. In /n-
ternational Symposium on Computer Archi-
tecture, pages 392-403, 1995

4 Steven K. Reinhardt and Shubhendu S.
Mukherjee. Transient Fault Detection via Si-
multaneous Multithreading. SIGARCH Com-
put. Archit. News, 28:25-36, May 2000

2.4.1 Hardware Extensions Providing Fault Tolerance

Computer architects address the problem of failing hardware components
by adding additional hardware to detect and correct these failures. These
components may be simple copies of existing circuits. More lightweight
approaches achieve fault tolerance using dedicated checker components to
dynamically validate hardware properties. Lastly, memory cells and buses
can be augmented with signature-based checkers to protect stored data.

Replicating Hardware Components One of the simplest ways to achieve
fault tolerance in hardware is to replicate existing components. This concept
is called N-modular redundancy.*® The protected components are instantiated
N times and carry out the same operations with identical inputs. Outputs are
sent to a voter, which in turn selects the output produced by a majority of all
components.

Figure 2.6 shows such a system with N = 3. This triple-modular redun-
dant (TMR) setup is able to correct single-component failures using majority
voting. The major drawback of simple replication is that the multiplication
of components increases production cost (due to larger chip area used) as
well as runtime cost (due to increased energy consumption) of the system.
Hence, TMR setups are mainly used in high-end fault tolerant systems, such
as avionics*' and spacecraft.*?

Redundant Multithreading Modern microprocessors improve instruction-
level parallelism by pipelining®3 as well as by executing multiple hardware
threads in parallel. The latter technique is known as simultaneous multithread-
ing (SMT) or hyper-threading.** While SMT normally increases utilization of
otherwise unused functional units, researchers have also investigated whether
this parallelism can be used to increase fault tolerance.

With a technique called Redundant Multithreading (RMT), Reinhardt and
Mukherjee extended an SMT-capable microprocessor to run identical code
redundantly in different hardware threads. Whenever these threads perform a
memory access, the RMT hardware extension compares the data involved in
this access and resets the processor in case of a mismatch.*

RMT’s authors use the term sphere of replication (SoR) to express which
part of the system is protected by a fault tolerance mechanism. They ar-
gue that in order to reduce execution time overhead, replicas should not be
compared while they only modify state internal to their SoR. Only once this
state becomes externally visible (for instance by being written to memory),
RMT performs these potentially expensive comparisons. Using this deferred
validation, RMT reduces execution time overhead while maintaining strict
fault isolation and error coverage.

This last property motivated several software-level solutions that apply
ideas similar to RMT, but use software threads. I will discuss these solutions
in the following section on software-level fault tolerance mechanisms.

Mainframe Servers Practical applications of RMT’s ideas can be found in
highly available mainframe servers. IBM’s PowerPC 750GX series allows
to operate two processors in lockstep mode. The lockstep CPUs execute the

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 27

same code using identical inputs. Whenever they write data to memory, an
additional validator component compares the outputs and raises an error upon
mismatch.*6

HP’s NonStop Advanced Architecture*’ aims to decrease production cost
by working with COTS components wherever possible. These components
are cheaper because they are produced for the mass market instead of being
specifically designed for highly customized use cases.

NonStop servers include COTS processors, which run replicated. To
improve fault isolation, NonStop pairs processors from different physical
processor slices, each using individual power supplies and memory banks. A
dedicated (non-COTS) interconnect intercepts and compares the replicated
processors’ memory operations, flags differences, and implements recovery
of failed processors. The comparator component itself can also be replicated

so that it does not become a single point of failure for this system.*

Dedicated Checker Circuits Replicating whole hardware components re-
quires a large amount of additional chip area. Alternative approaches add
small, light-weight checker circuits that monitor the execution of a single
component in order to detect invalid behavior. For instance, Austin’s DIVA
architecture, which is shown in Figure 2.7, extends a standard superscalar
processor pipeline with an additional validation stage.*”

The traditional, unmodified pipeline stages (shown white in the figure)
fetch and decode instructions before submitting them to an out-of-order
execution stage. By default, instructions remain in this stage until they along
with all their dependencies have been successfully executed. Thereafter, the
instructions are committed, which makes their results externally visible.

DIVA extends this pipeline by inspecting all instructions, their operands,
and their results before they reach the commit stage. Additional components
recompute the result (CHKComp) and revalidate data load operations (CHK-
Comm). As the validators see all instructions in commit order, they can be less
complex than a complete out-of-order stage, because there are no unresolved
dependencies and no speculative execution is required. Furthermore, Austin
suggests to build the validators from components with larger structure sizes,
which in turn are less susceptible to hardware faults.

As a result, the DIVA pipeline can be built from standard, error-prone
components and only the validators need to be carefully constructed in order
to protect the remainder of the system. Performance overhead is introduced
only by the additional pipeline stage. The checker cores only slightly im-
pact performance, because they only validate instructions that are actually
committed. This means, there is no overhead from checking speculatively ex-
ecuted instructions and the checkers never have to stall for data from memory,
because this data is already available from the previous phases.

While DIVA verifies correct execution using recomputation, other archi-
tectures address the problem that the physical properties of hardware change
due to faults. As explained in Section 2.1, aging and temperature-related
hardware faults may modify a transistor’s critical switching voltage. With this
modification the time needed for state changes increases. This effect becomes
visible once switch timing exceeds the processor’s clock period, because then

4 IBM. PowerPC 750GX lockstep facility.
IBM Application Note, 2008

“THP NonStop originates from the products
of Tandem Computer Inc.

“ David Bernick, Bill Bruckert, Paul del
Vigna, David Garcia, Robert Jardine, Jim
Klecka, and Jim Smullen. NonStop: Ad-
vanced Architecture. In International Confer-
ence on Dependable Systems and Networks,
pages 12-21, June 2005

4 Todd M. Austin. DIVA: A Reliable Sub-
strate for Deep Submicron Microarchitecture
Design. In International Symposium on Mi-
croarchitecture, MICRO’32, pages 196-207,
Haifa, Israel, 1999. IEEE Computer Society

Decode

%Jrz(e):_ PN Reorder
Execution Bufer
v D
CHKComm CHKComp \Il
I I A

Figure 2.7: DIVA: The Dynamic Implemen-
tation Verification Architecture extends a
state-of-the-art microprocessor pipeline with
an additional execution validation stage.

28 BJORN DOBEL

% Ernst, Dan and Nam Sung Kim et al.
Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In Inter-
national Symposium on Microarchitecture,
MICRO’36, pages 7-18, 2003

31'J. Postel. Transmission Control Protocol.
RFC 793 (Standard), September 1981. Up-
dated by RFCs 1122, 3168, 6093

2 Daniel Henderson and Jim Mitchell.
POWER?7 System RAS — Key Aspects of
Power Systems Reliability, Availability, and
Servicability. IBM Whitepaper, 2012

3 Richard W. Hamming. Error Detecting
And Error Correcting Codes. Bell System
Technical Journal, 29:147-160, 1950

5% Shubhendu Mukherjee. Architecture De-
sign for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008

33 Shubhendu S. Mukherjee, Joel Emer, Tryg-
gve Fossum, and Steven K. Reinhardt. Cache
Scrubbing in Microprocessors: Myth or Ne-
cessity? In Pacific Rim International Sympo-
sium on Dependable Computing, PRDC "04,
pages 37-42, Washington, DC, USA, 2004.
IEEE Computer Society

the results of a computation may not reach other circuits fast enough to carry
on computation.

Hardware vendors typically increase timing tolerance by running CPUs
with a higher supply voltage than actually needed. Thereby, aging-related
changes in switching times are hidden by initially switching transistors faster
than required for a certain clock frequency. To cope with additional variability
arising from the manufacturing process, these supply voltage margins need
to be chosen conservatively. Due to these higher margins a processor may
consume more energy than would otherwise be necessary.

The Razor architecture®® tries to reduce these voltage margins by introduc-
ing additional timing delay checkers into a processor. These checkers test if
the timing of the critical path through a CPU is still within the specified range.
Only if the checkers detect a timing violation the supply voltage is increased
to neutralize this effect.

Error Detection Using Data Signatures The mechanisms discussed so far
protect the actual execution of a hardware component by validating results
and timing. However, as I explained in Section 2.3, the hardware components
most susceptible to hardware faults are those units storing and transmitting
data. Replicating all data storage in a system would significantly increase
resource requirements, because memory and caches constitute a large fraction
of today’s chip area.

An alternative to keeping copies of all data for fault tolerance is to apply
checksumming and only store checksums along with the data. This approach
is used in networking, where network protocols add checksums to transmitted
data in order to detect transmission failures.”! Mainframe processors, such as
the IBM Power7 series, furthermore use Cyclic Redundancy Checks (CRC)

to protect data buses.>?

Hardware Memory Protection Modern memory controllers can apply Error-
Correcting Codes (ECC) to protect data from the effects of hardware faults.
ECC adds additional parity or checking bits to data words. These additional
bits are updated with every write operation and can be used during a read
operation to determine if the values are identical to the previously stored ones.

Memory ECC is usually based on Hamming Codes> as they are fast
and easy to implement in hardware. Current implementations mostly use a
(72,64) code, which means that 64 bits of actual data are augmented with
8 bits of parity. Such codes can correct single-bit errors and detect (but not
necessarily correct) double-bit errors (SECDED - single error correct, double
error detect).>*

ECC defers detection of an erroneous memory cell until the next access.
Unfortunately, data is sometimes stored without being accessed for a long
period of time. In such a time frame multiple independent memory errors
might affect the same cell, rendering ECC useless because SECDED codes
can only recover from single-bit errors. Advanced memory controllers address
this problem by periodically accessing all memory cells. This technique is
called memory scrubbing.> The scrubbing period places an upper bound on
each memory cell’s vulnerability against multi-bit errors.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 29

Hardware research as mentioned in Section 2.1 pointed out that radiation
influences are likely to not only affect a single memory cell. Depending on
angle and charge of the striking particle, multiple adjacent bits may suffer
from a transient error.>® This makes memory prone to multi-bit errors, which
standard ECC cannot correct. Advanced ECC schemes, such as IBM’s Chip-
kill address this issue by not computing parity over physically adjacent bits.
Instead bits from different memory words and even separate DIMMs are
incorporated into a single ECC checksum.>’

ECC is an effective and well-understood technique for protecting mem-
ory cells in hardware. It has become a commodity in recent years and is
often considered a COTS hardware component. For this reason many of the
software-level mechanisms I will introduce in the next section assume ECC-
protected main memory and focus on guarding against errors in the remaining
components of a CPU. However, there are two reasons why ECC is not ap-
plied in all hardware: First, ECC even in combination with scrubbing and
Chipkill technologies can still miss multi-bit errors and studies have shown
that this actually happens in large-scale systems.58 Second, ECC increases
the number of transistors in hardware and consequentially impacts energy
demand. For the latter reasons, developers of embedded systems and low-cost
consumer devices refrain from adding ECC protection to their hardware.

SUMMARY: Hardware-level solutions exist that reduce the failure
probability for the hardware error scenarios described in Section 2.1.
These solutions include replication of computing components, intro-
duction of specialized validation circuits, as well as using signatures
to detect errors in data storage and buses.

The major drawback of hardware-level fault tolerance is cost. New
circuitry increases chip size, which directly correlates with production
cost. Furthermore, additional circuits require power at runtime and
thereby increase a chip’s power consumption.

2.4.2 Software-Implemented Fault Tolerance

While hardware-implemented fault tolerance is effective, platform vendors
abstain from using these methods especially in COTS systems. Customers
are interested in the cheapest possible gadgets and may be willing to live with
occasional failures due to hardware errors.

COTS components are still vulnerable against increasing hardware fault
rates, though. For this reasons it is becoming necessary to add special protec-
tion to mass-market computers as well. Software-implemented fault-tolerance
mechanisms try to achieve this protection without relying on any non-COTS
hardware components. These methods include compiler techniques to gener-
ate more reliable code. Alternative approaches use replication at the software
level and utilize operating system processes or virtual machines to enforce
fault isolation.

Manually Implemented Fault Tolerance Early research into fault tolerance
investigated whether programs can be manually extended with mechanisms

56 Jose Maiz, Scott Hareland, Kevin Zhang,
and Patrick Armstrong. Characterization
of Multi-Bit Soft Error Events in Advanced
SRAMs. In IEEE International Electron De-
vices Meeting, pages 21.4.1-21.4.4, 2003

57 Timothy J. Dell. A White Paper on the Ben-
efits of Chipkill-Correct ECC for PC Server
Main Memory. IBM Whitepaper, 1997

% Andy A. Hwang, Ioan A. Stefanovici, and
Bianca Schroeder. Cosmic Rays Don’t Strike
Twice: Understanding the Nature of DRAM
Errors and the Implications for System De-
sign. In International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems, ASPLOS
XVII, pages 111-122, London, England, UK,
2012. ACM

30 BJORN DOBEL

% Kuang-Hua Huang and Jacob A. Abraham.
Algorithm-Based Fault Tolerance for Matrix
Operations. IEEE Transactions on Comput-
ers, C-33(6):518-528, 1984

% Dong Li, Zizhong Chen, Panruo Wu, and
Jeffrey S. Vetter. Rethinking Algorithm-
Based Fault Tolerance with a Cooperative
Software-Hardware Approach. In Interna-
tional Conference for High Performance
Computing, Networking, Storage and Analy-
sis, SC’13, pages 44:1-44:12, Denver, Col-
orado, 2013. ACM

! Aamer Mahmood, Dorothy M. Andrews,
and Edward J. McClusky. Executable As-
sertions and Flight Software. Center for Re-
liable Computing, Computer Systems Lab-
oratory, Dept. of Electrical Engineering
and Computer Science, Stanford University,
1984

2 Andrew M. Tyrrell. Recovery Blocks and
Algorithm-Based Fault Tolerance. In EU-
ROMICRO 96. Beyond 2000: Hardware and
Software Design Strategies, pages 292-299,
1996

% Namsuk Oh, Philip P. Shirvani, and Ed-
ward J. McCluskey. Control-Flow Checking
by Software Signatures. /EEE Transactions
on Reliability, 51(1):111 —122, March 2002

% Namsuk Oh, Philip P. Shirvani, and Ed-
ward J. McCluskey. Error Detection by
Duplicated Instructions in Super-Scalar Pro-
cessors. IEEE Transactions on Reliability,
51(1):63-75, 2002

05 George A. Reis, Jonathan Chang, Neil
Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault
Tolerance. In International Symposium on
Code Generation and Optimization, CGO
’05, pages 243-254, 2005

that detect and correct errors. The field of algorithm-based fault toler-
ance (ABFT) focuses on finding algorithms that are able to validate the
correctness of their results.”® For ABFT, a developer inspects the data do-
main of a specific algorithm and augments data with checksums and other
signatures, similar to encoding-based hardware techniques. Thereafter, the
algorithm is redesigned to incorporate signature updates and validation. This
approach is labor-intensive, but results in low-overhead solutions with high
error coverage. Nevertheless, recent research in high performance computing
found that other fault-tolerant techniques are less suited for future exascale
compute clusters. This has lead to renewed interest in ABFT within the HPC
community.%0

Software engineering aims to formalize the development of fault-tolerant
software. Executable assertions allow the developer to specify assumptions
about the state of data structures in program code.%! These assumptions are
then checked at runtime. As assertions manifest programmer knowledge
in code, they also lend themselves to detect state that is corrupted due to a
hardware fault.

If a program’s state validation mechanisms detect an error, the developer
needs to specify how to deal with this situation. The program might choose
to retry computation, use an alternative implementation of the algorithm,
or simply terminate. These respective actions can be implemented using
the concept of recovery blocks.%% Since their inception, both assertions and
recovery blocks have found their way into every software developer’s toolbox.

Development Tools for Fault Tolerance Manually implementing fault-
tolerant software is a labor-intensive and error-prone task. Development tools
relieve programmers of this burden. Therefore, compiler writers aim to auto-
mate the process of generating fault-tolerant code. Oh proposed a compiler
extension that extends a program’s control flow with compiler-generated
signatures.®3 These signatures are updated on every jump operation. Runtime
checks can then verify that the current instruction was reached by taking a
valid path. This approach detects invalid jumps that were caused by errors
affecting the jump target or during instruction decoding.

Another compiler extension by Oh generates code that doubly performs
all computations using different CPU resources and validates their results.®*
Such augmented code detects transient hardware faults that impact computa-
tional components. Intuitively, doubling the amount of computations would
at least double the execution time of the generated code. Oh’s work shows
that this overhead can be lowered by relying on a state-of-the-art pipelined
processor architecture.

Reis and colleagues built on Oh’s idea of duplicating instructions, but opti-
mized their compiler to further reduce execution time overhead. Their main
observation was that memory is often already protected by hardware ECC
and therefore duplication of memory-related instructions is no longer neces-
sary. With this optimization their SWIFT compiler achieved the same error
coverage as Oh’s compiler, but at less than 50% execution time overhead.%?

SWIFT leaves some parts of the protected code vulnerable to errors. By
excluding memory operations from duplication, stores to memory may be
lost. These lost updates then remain undetected. Furthermore, SWIFT’s

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 31

internal validation code runs itself unprotected and is therefore susceptible
to errors. Schiffel’s AN-encoding compiler addresses these shortcomings by
applying arithmetic encoding to all operands and operations.®® In a closer
analysis Schiffel and colleagues showed that their improvements come with
an increased execution time overhead, but at the same time eliminate most of
the vulnerabilities introduced by SWIFT.%7

The previously discussed compiler extensions assume all instructions to be
affected by hardware errors with the same probability. Rehman and colleagues
observed that different classes of instructions remain in the processor for a
different amount of cycles. While a simple arithmetic instruction involving
registers may be finished within a single cycle, memory operations that include
a fetch may remain in the pipeline for several cycles. They therefore analyzed
the instruction set and implementation of a specific SPARC v8 processor and
attributed each instruction with an instruction vulnerability index (IVI).%8

The IVI represents how likely an instruction is to suffer from a hardware
error relative to other instructions. Based on the I'VI the authors then designed
a compiler that prioritizes the protection of instructions with higher IVIs
over those with lower IVIs. The compiler can then be configured to keep
the overhead for generated code below a certain threshold. Developers may
thereby explicitly trade error coverage for performance depending on their
system’s needs.

Borchert used an aspect-oriented compiler to protect data structures of
an operating system kernel implemented in C++ from memory errors.®
His aspects leverage additional knowledge about important data structures
provided by the kernel developer. These data structures are automatically

extended with checksumming and validation upon every access.

Compiler-level fault tolerance requires all applications to be recompiled
using a new compiler version. Binary-only third-party libraries as well as
programs downloaded without their source code cannot be protected. Most
compilers however allow interaction between protected and unprotected code.
For this purpose they generate code that translates between encoded and non-
encoded values as well as between duplicated and single-instance variables
and function parameters.

Software-Implemented Replication Replication-based software fault toler-
ance works for binary-only software and thereby addresses the shortcomings
of the compiler-level solutions discussed above. Similar to replication at
the hardware level, software-level replication creates multiple instances of
software components and compares their outputs to detect erroneous behavior.

Software-implemented approaches differ in their spheres of replication.
At a large scale, replication is used to achieve fault tolerance in distributed
systems. Here, whole compute nodes are replicated with dedicated hardware
resources, operating system, and software stack. Kapritsos and colleagues
showed with the EVE system that this kind of replication can achieve fault tol-
erance at low overhead, because replication can incorporate application-level
knowledge and batch operations for more efficient processing.”? My thesis

% Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’10, Vienna, Austria, 2010

67 Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. Software-
Implemented Hardware Error Detection:
Costs and Gains. In Third International
Conference on Dependability, DEPEND’ 10,
pages 51-57, 2010

% Semeen Rehman, Muhammad Shafique,
Florian Kriebel, and Jorg Henkel. Reliable
Software for Unreliable Hardware: Embed-
ded Code Generation Aiming at Reliability.
In International Conference on Hardware/-
Software Codesign and System Synthesis,
CODES+ISSS ’11, pages 237-246, Taipei,
Taiwan, 2011. ACM

% Christoph Borchert, Horst Schirmeier, and
Olaf Spinczyk. Generative Software-Based
Memory Error Detection and Correction for
Operating System Data Structures. In Inter-
national Conference on Dependable Systems
and Networks, DSN’13. IEEE Computer So-
ciety Press, June 2013

M. Kapritsos, Y. Wang, V. Quema,
A. Clement, L. Alvisi, and M. Dahlin. EVE:
Execute-Verify Replication for Multi-Core
Servers. In Symposium on Opearting Sys-
tems Design & Implementation, OSDI’12,
Oct 2012

32 BJORN DOBEL

7! Thomas C. Bressoud and Fred B. Schnei-
der. Hypervisor-Based Fault Tolerance. ACM
Transactions on Computing Systems, 14:80—
107, February 1996

72 Avi Kivity. KVM: The Linux Virtual Ma-
chine Monitor. In The Ottawa Linux Sympo-
sium, pages 225-230, July 2007

7 A. Shye, J. Blomstedt, T. Moseley, V.J.
Reddi, and D.A. Connors. PLR: A Soft-
ware Approach to Transient Fault Tolerance
for Multicore Architectures. /EEE Transac-
tions on Dependable and Secure Computing,
6(2):135 148, 2009

7 Nicholas Nethercote and Julian Seward.
Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. In ACM
SIGPLAN conference on Programming Lan-
guage Design and Implementation, PLDI
’07, pages 89-100, New York, NY, USA,
2007. ACM

75 Hamid Mushtaq, Zaid Al-Ars, and Koen
L. M. Bertels. Efficient Software Based Fault
Tolerance Approach on Multicore Platforms.
In Design, Automation & Test in Europe Con-
ference, Grenoble, France, March 2013

75 Yun Zhang, Jae W. Lee, Nick P. Johnson,
and David I. August. DAFT: Decoupled
Acyclic Fault Tolerance. In International
Conference on Parallel Architectures and
Compilation Techniques, PACT 10, pages
87-98, Vienna, Austria, 2010. ACM

explicitly focuses on hardware faults in single compute nodes. Therefore I am
not going to further look into distributed systems fault tolerance from here on.

On a single compute node, Bressoud and Schneider showed that virtual
machines (VMs) can be used to replicate whole operating system instances.’ !
These instances are completely isolated using virtualized hardware. The un-
derlying hypervisor makes sure that replicas receive the same inputs in terms
of interrupts and I/O operations. VM states are compared after a predefined
interval of VM instructions to detect errors. Unfortunately, implementing
virtualization-based replication is fairly complex. Modern hypervisors, such
as KVM’2, require tens of thousands of lines of code not yet including vir-
tualized device models. Furthermore, Bressoud’s work reports a significant
execution time overhead of at least a factor of two.

Shye’s process-level redundancy (PLR) moves replication to the operating
system level and replicates Linux processes.”> When launching a program,
PLR instantiates multiple replicas as well as a replica manager. PLR uses a
binary recompiler to rewrite the program in a way that all system calls are
redirected to the manager process for error detection. Using this approach,
PLR does not require source code availability. Furthermore, by distributing
replicas across concurrent compute nodes, PLR achieves low execution time
overheads of less than 50% on average for the SPEC CPU 2000 benchmarks
in triple-modular redundant mode.

PLR’s architecture motivates the ROMAIN replication service I present
in this thesis. As an improvement over PLR, I implement ROMAIN as an
operating system service that reuses existing OS infrastructure instead of
relying on a complex binary recompiler. This approach significantly reduces
the code complexity of the replication mechanism, because binary recompilers
such as Valgrind’# comprise more than 100,000 lines of C code.

Furthermore, ROMAIN supports replication of multithreaded applications.
A recent work by Mushtaq shares these improvements.”> In contrast to
ROMAIN, their work however assumes ECC-protected memory and differs
in recovery overhead. I will discuss these differences more thoroughly when
I discuss multithreaded replication in Chapter 4.

Zhang’s DAFT compiler combines compiler-assisted fault tolerance with
redundant multithreading.’® Instead of encoding data differently, DAFT uses
multiple software threads for redundant execution. The compiler then only
inserts additional code to exchange and compare compute results between
replicas. DAFT furthermore executes code speculatively within its sphere of
replication and thereby achieves a execution time overhead of less than 40%.

In the context of high-performance computing, Fiala and colleagues noted
that HPC applications traditionally use checkpoint/restart mechanisms to
tolerate failing nodes. They modeled the cost for such strategies in future
exa-scale systems. Based on these models they claim if current hardware
failure trends remain constant, the overhead involved in checkpointing will
require more than 80% of the total compute time in 10,000 node systems. This
observation makes replication by running replicated processes concurrently
on the huge amount of available CPUs a feasible alternative. Fiala therefore

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 33

proposed a replication extension for the Message Passing Interface (MPI)
that replicates MPI processes as well as the communication among those

programs.”’’

SUMMARY: Software-implemented fault tolerance solutions can
be categorized into two classes: compiler-assisted fault tolerance
and replication-based approaches. Compiler-level solutions generate
machine code that includes additional checksums and validation of
results. They require the protected program’s source code to be
available.

In contrast, replication-based approaches protect software by running
it in multiple instances and comparing these instances’ results. Repli-
cation can be applied at various levels ranging from virtual machines
through operating system processes down to software threads. While
these solutions support binary-only software, they often come with a
high resource overhead.

2.4.3 Recovery: What to do When Things go Wrong?

Detecting an error before it becomes a failure is only one half of what a fault
tolerant system needs to do. In order to provide availability by the definition
introduced in Section 2.2.2, the system also needs to react by correcting the
error and delivering a correct result. This process is called recovery. Many
implementations of recovery mechanisms exist. Randell categorizes them
into two classes: backward and forward recovery.’8

Backward (or Rollback) Recovery comprises solutions that—upon de-
tecting an error — return the system into a previous state that is assumed to
be error-free. The most intuitive version of such a mechanism is to simply

terminate the erroneous software component and restart it.”

Unfortunately,
with this approach all non-persistent application state is lost. To address this
issue, checkpoint/rollback systems periodically create copies of important
application data. Upon a restart, the most recently stored version can be
recovered.®0 Still, all results computed after the last checkpoint are lost and
need to be recomputed. This leads to an increased time to repair.

In contrast to rollback, forward recovery tries to repair the erroneous com-
ponent so that it can continue without the need for re-execution. Replication-
based mechanisms implement forward recovery using majority voting. If state
comparison detects a mismatch between replicas, the majority of replicas is
assumed to be correct and the mismatching replicas are overwritten. This con-
cept has been formalized by Schneider as t-fault tolerance: a t-fault-tolerant
system can handle ¢ erroneous components. In order to perform successful re-
covery, 2t + 1 replicas are required.3! As a consequence, replication requires
a lower time to repair, but in turn may require a larger amount of resources
and energy during normal operation.

While replication is able to recover from transient errors, it will not fix
permanent ones, because a replica encountering a permanent error will simply
suffer from it again. A forward recovery method to deal with permanently
broken hardware is to adapt the running system. This may include turning

"7 David Fiala, Frank Mueller, Christian En-
gelmann, Rolf Riesen, Kurt Ferreira, and
Ron Brightwell. Detection and Correction of
Silent Data Corruption for Large-Scale High-
Performance Computing. In International
Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC
*12, pages 78:1-78:12, Salt Lake City, Utah,
2012. IEEE Computer Society Press

78 Brian Randell, Peter A. Lee, and Philip C.
Treleaven. Reliability Issues in Computing
System Design. ACM Computing Surveys,
10(2):123-165, June 1978

7 Shubhendu Mukherjee. Architecture De-
sign for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008

% Jason Ansel, Kapil Arya, and Gene Coop-
erman. DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop.
In 23rd IEEE International Parallel and Dis-
tributed Processing Symposium, Rome, Italy,
May 2009

81 Fred B. Schneider. Implementing Fault-
Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Sur-
veys, 22(4):299-319, December 1990

34 BJORN DOBEL

82 Albert Meixner and Daniel J. Sorin. De-
touring: Translating Software to Circumvent
Hard Faults in Simple Cores. In Interna-

tional Conference on Dependable Systems
and Networks (DSN), pages 80-89, 2008

83 Krishna V. Palem, Lakshmi N.B. Chakra-
pani, Zvi M. Kedem, Avinash Lingamneni,
and Kirthi Krishna Muntimadugu. Sustain-
ing Moore’s Law in Embedded Computing
Through Probabilistic and Approximate De-
sign: Retrospects and Prospects. In Interna-
tional Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems,
CASES 09, pages 1-10, Grenoble, France,
2009. ACM

84 Nicolas Palix, Gaél Thomas, Suman Saha,
Christophe Calves, Julia Lawall, and Gilles
Muller. Faults in Linux: Ten Years Later.
In International Conference on Architectural
Support for Programming Languages and
Operating Systems, ASPLOS " 11, pages 305—
318, Newport Beach, California, USA, 2011.
ACM

85 Alex Depoutovitch and Michael Stumm.
Otherworld: Giving Applications a Chance
to Survive OS Kernel Crashes. In Euro-
pean Conference on Computer Systems, Eu-
roSys 10, pages 181-194, Paris, France,
2010. ACM

86 George Candea, Shinichi Kawamoto,
Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot: A Technique For Cheap
Recovery. In Symposium on Operating Sys-
tems Design & Implementation, OSDI’04,
Berkeley, CA, USA, 2004. USENIX Associ-
ation

87 Michael M. Swift, Muthukaruppan Anna-
malai, Brian N. Bershad, and Henry M. Levy.
Recovering Device Drivers. ACM Transac-
tions on Computing Systems, 24(4):333-360,
November 2006

off broken CPU cores and running the respective replicas elsewhere. Alterna-
tively, malfunctioning hardware may be worked around by using a software
implementation that does not leverage the broken hardware units. As an ex-
ample for that, Meixner developed Detouring, a compiler solution to deal with
permanent errors in floating point hardware. Upon detecting a broken FPU,
Detouring switches to program paths that use software-level floating point
computations, which are slower but work solely using integer arithmetic.®?

A different line of research argues that future hardware and software will
suffer from so many errors that developers should rather try to live with them
instead of trying to build correct systems. Palem suggested to use probabilistic
hardware that generates results that are correct within certain thresholds. He
showed that the resulting hardware may be smaller and less energy-demanding
than standard processors.®3 Unfortunately, with such an approach all software
needs to be redesigned to cope with hardware-level uncertainty. It remains to
be shown whether this prerequisite is easier to meet than building traditional
fault-tolerant systems.

SUMMARY: Error recovery mechanisms can be distinguished into
backward and forward recovery. In general, these mechanisms are
orthogonal to error detection. Therefore, most of the previously
discussed error detection mechanisms can be combined with any
suitable recovery technique.

2.4.4 Fault-Tolerant Operating Systems

Research in operating system fault tolerance is mostly concerned with soft-
ware errors. Researchers and developers argue that software bugs, especially
in device drivers and other hardware-related code, are the main reason for fail-
ures in today’s systems.3# In this section I have a closer look at how operating
systems deal with software errors. I argue that main design principles —such
as the use micro-rebootable components —may be employed for tolerating
hardware faults as well.

Building Reliable Operating Systems Operating system crashes, such as
the infamous Windows blue screens or Linux’ kernel panics are a major
annoyance for computer users. When the system reaches panic mode, it has
already failed and a reboot is the only way of returning into a working state.
Reboots may take several minutes and therefore have a major impact on a
system’s availability ratio.®>

To improve recovery times after software crashes, Candea proposed to
design systems to be micro-rebootable.3® Such systems are built from many
small, isolated components that do not share state. If one of these components
fails, it is enough to restart this single component instead of rebooting the
whole machine. Hence, service downtime is reduced drastically.

Componentization comes with another advantage: in traditional —
monolithic — operating systems, device drivers are a main source of software

87

failures. Swift’s Nooks system demonstrated that these drivers can be

isolated into separate Linux address spaces. This approach protects unrelated

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 35

kernel data from being overwritten by a faulty device driver and thereby
increases system reliability.%”

Operating systems focusing on the isolation of components are nothing new.
These design principles have been advocated by the microkernel community
since the 1980s.88 Microkernels move traditional kernel services, such as file
systems, network stacks and device drivers, out of privileged kernel mode
into isolated user-level applications. Microkernel proponents argue that this
improved isolation leads to an increase in scalability, portability, and security.
While early microkernels were dismissed for their performance overheads,
later kernel generations showed that the improved isolation properties can be
gained at a low cost.3?

Minix3 is a microkernel-based operating system that was specifically
designed to tolerate software failures.”® When a Minix3 process crashes
or stops sending heartbeat messages, a system-wide manager terminates
and restarts the respective program. Thereafter, all other applications are
notified of this restart, so that they can adapt to this situation, for instance by
resending outstanding service requests. This approach works best for stateless
processes, such as device drivers. Based on Minix3, Giuffrida investigated
how stateful services can be restructured to fit into this paradigm. He showed
that applications can be written in a transactional manner where either all
state is written to a central state storage upon commit or an operation can be

rolled back if the application crashes while processing it.”!

Formally Verified Systems Code Programming errors often lead to software
failures. In the worst case, attackers can exploit these bugs to attack the
system. Ryzhyk analyzed failing systems code and found that for device
drivers, these errors are often not syntactic or algorithmic errors but instead
stem from subtle misunderstandings regarding the hardware or operating

system interface.”?

Based on this observation he proposed to formalize
software development by creating well-defined models of the underlying
software and hardware components and then have a compiler automatically
generate code that adheres to these models.”3

The idea to generate code from formal models to improve security is
also found in safety-critical systems, such as the Partitioned Operating Sys-
tem Kernel (POK).** However, creating the respective models requires a
non-negligible manual effort. The involved cost is therefore only spent for
building critical systems, whereas standard consumer electronics rather live
with occasional crashes to reduce development cost.

In contrast to monolithic operating systems that consist of hundreds of
thousands of lines of code, microkernels have a relatively small code size.”
It is therefore possible to model such a kernel and formally verify this model
adheres to well-defined properties. This approach is prohibitive for large sys-
tems software because building these formal models requires a huge manual
effort. Klein et al. were able to formally prove the correctness of the seL.4

microkernel 2

8 Mike Accetta, Robert Baron, William
Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach:
A New Kernel Foundation for UNIX Devel-
opment. In USENIX Technical Conference,
pages 93-112, 1986

% Kevin Elphinstone and Gernot Heiser.
From L3 to seL4: What Have We Learnt in
20 Years of L4 Microkernels? In Symposium
on Operating Systems Principles, SOSP’13,
pages 133-150, Farminton, Pennsylvania,
2013. ACM

% Jorrit N. Herder. Building a Depend-
able Operating System: Fault Tolerance in
MINIX3. Dissertation, Vrije Universiteit Am-
sterdam, 2010

! Cristiano Giuffrida, Lorenzo Cavallaro,
and Andrew S. Tanenbaum. We Crashed,
Now What? In Workshop on Hot Topics in
System Dependability, HotDep’ 10, Vancou-
ver, BC, Canada, 2010. USENIX Association

2 Leonid Ryzhyk, Peter Chubb, Thor Kuz,
and Gernot Heiser. Dingo: Taming Device
Drivers. In ACM European Conference on
Computer Systems, EuroSys *09, pages 275—
288, Nuremberg, Germany, 2009. ACM

% Leonid Ryzhyk, Peter Chubb, Thor Kuz,
Etienne Le Sueur, and Gernot Heiser. Au-
tomatic Device Driver Synthesis with Ter-
mite. In Symposium on Operating Systems
Principles, SOSP *09, pages 73-86, Big Sky,
Montana, USA, 2009. ACM

% Julian Delange and Laurent Lec. POK,
an ARINC653-compliant operating system
released under the BSD license. In Realtime
Linux Workshop, RTLWS’11, 2011

% Kevin Elphinstone and Gernot Heiser.
From L3 to seL4: What Have We Learnt in
20 Years of L4 Microkernels? In Symposium
on Operating Systems Principles, SOSP’13,
pages 133-150, Farminton, Pennsylvania,
2013. ACM

% Gerwin Klein, Kevin Elphinstone, Ger-
not Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai En-
gelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an
OS Kernel. In Symposium on Operating Sys-
tems Principles, SOSP’09, pages 207-220,
Big Sky, MT, USA, October 2009. ACM

36 BJORN DOBEL

7 Gabriele Keller, Toby Murray, Sidney
Amani, Liam O’Connor, Zilin Chen, Leonid
Ryzhyk, Gerwin Klein, and Gernot Heiser.
File Systems Deserve Verification Too! In
Workshop on Programming Languages and
Operating Systems, PLOS *13, pages 1:1-1:7,
Farmington, Pennsylvania, 2013. ACM

% Hadi Esmaeilzadeh, Emily Blem, Renee
St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark Silicon and the End
of Multicore Scaling. In Annual Interna-
tional Symposium on Computer Architecture,
ISCA’11, pages 365-376, San Jose, Califor-
nia, USA, 2011. ACM

While formal verification of practical code is still in an early phase, efforts
are underway to not only prove the correctness of a microkernel, but to also
include other operating system components, such as file systems.”” It is
therefore safe to assume that future systems software is going to contain much
fewer programming errors than today. However, all these formal efforts still
assume that the hardware their software runs on is behaving correctly. As
I have shown in the previous sections, this is not necessarily the case. We
therefore need additional hardware or software layers that allow to deal with
faulty hardware.

SUMMARY: Operating system research has largely focused on
hardening the kernel against software errors. A commonly found
concept to tolerate software failures is to isolate components into
separate address spaces, so that a malfunctioning component can only
harm itself.

Formal modeling and verification of systems components strives to
drastically reduce programming errors and the resulting failures. All
these efforts assume hardware to work correctly. In order to really
protect a system, we need additional measures to tolerate hardware
faults.

2.5 Thesis Goals and Design Decisions

In this thesis I develop a fault tolerant operating system architecture. I will
call this architecture ASTEROID from now on. ASTEROID aims to protect
software from transient and permanent faults arising at the hardware level.
Based on the observations presented in the previous sections I derive the
following design goals, which I aim to accomplish:

1. Support for COTS Hardware: Building fault-tolerant hardware compo-
nents incurs additional design cost, chip area, as well as execution time
overhead. ASTEROID strives to avoid these costs by solely relying on
features that are available in commercial-off-the-shelf hardware, so that its
results are applicable to other existing COTS platforms.

For some hardware mechanisms, such as ECC-protected memory, it is
hard to say whether they are already a commodity or still considered
specialized. In such situations I will conservatively assume these features
to be unavailable.

2. Exploit Hardware-Level Concurrency: Modern hardware platforms

usually contain multiple CPU cores in combination with abundant memory
and complex cache hierarchies. It is likely that the number of cores will
continue to grow, although not all cores might be powered at the same time
anymore.”®

These practical realities make the use of replication-based fault toler-
ance feasible and ASTEROID therefore uses replication as the foundation
for detecting and correcting errors. Additionally, I will in this context also

have a look at the interaction between caches, memory, and CPU cores

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 37

in modern platforms in order to make informed decisions about resource
allocation and replica placement.

. Efficient Error Detection and Correction: Hardware faults are still rare

enough that a system will run error-free for most of its lifetime. Error
detection mechanisms should therefore aim to decrease execution time
overhead. Correction needs to be fast in order to reduce its impact on
system availability.

ASTEROID replicates software on distinct physical CPU cores, al-
lowing replicas to run independently as long as possible. I implement
a replication service leveraging the redundant multithreading concept in
order to minimize execution time overhead.

Recovery mechanisms are orthogonal to error detection techniques. AS-
TEROID supports various ways of recovery including application restart,
checkpoint/rollback, as well as majority voting. Restart and checkpointing
have already been considered in previous work.”? T will focus on majority
voting as a recovery technique in this thesis.

. Use a Componentized Operating System: Previous work in OS-level
fault tolerance has shown that isolating OS components into separate pro-
cesses is useful with respect to tolerating software faults. I believe that this
assumption holds with respect to hardware errors and will therefore base
ASTEROID on a microkernel. I use the FIASC0.OC microkernel'%,
because this kernel is freely available and has a proven track record of
working in different scenarios, such as real-time, security, and virtualiza-
tion.

. Binary Application Support: Modern software is often distributed in
its binary form and the source code is unavailable to the general public.
ASTEROID protects any existing program without relying on parsing
or modifying their source code. I do not leverage compiler-based fault
tolerance mechanisms in this thesis. However, I will discuss situations
in which compiler support may be useful and evaluate what impact this
would have on ASTEROID in general.

. Support Multithreaded Programs: With the abundance of CPU cores in
modern hardware, software developers speed up program execution times
by parallelizing compute operations. The OS kernel typically implements
threads and schedules them on the available CPU cores.

Scheduling multi-threaded applications introduces non-determinism
into the system. Determinism is however a prerequisite for replication. I
will present a solution to replicate multithreaded applications.

. Protect the Reliable Computing Base: Software-level fault tolerance
mechanisms suffice to protect execution of user-level programs as well as
high-level operating system services against hardware errors. However,
most of these mechanisms implicitly rely on the fact that at least parts of
the underlying hardware and software stack always function correctly. I
call these components the Reliable Computing Base (RCB).

I will investigate ASTEROID’s RCB in this thesis and propose ways of
hardening this part of the system against hardware faults.

% Dirk Vogt, Bjorn Débel, and Adam Lacko-
rzynski. Stay Strong, Stay Safe: Enhancing
Reliability of a Secure Operating System. In
Workshop on Isolation and Integration for
Dependable Systems, IIDS’ 10, Paris, France,
2010. ACM

100 Adam Lackorzynski and Alexander Warg.
Taming Subsystems: Capabilities as Univer-
sal Resource Access Control in L4. In Work-
shop on Isolation and Integration in Embed-
ded Systems, IIES’09, pages 25-30, Nurem-
burg, Germany, 2009. ACM

38 BJORN DOBEL

SUMMARY: In this chapter I reviewed hardware effects that may
lead to erroneous behavior and surveyed existing research that tries
to mitigate these problems. From this survey I derived requirements
and design goals for ASTEROID, the fault-tolerant operating system
architecture I present in this thesis.

ASTEROID aims to leverage replicated execution to provide error
detection and correction to binary-only programs. The architecture
relies on modern multi-core COTS hardware and aims to protect all
parts of the software stack against the effects of hardware errors.

In the remainder of this thesis I present how ASTEROID achieves the
above goals. In Chapter 3, I give an overview of ASTEROID and introduce
ROMAIN, an operating system service for replicated execution on top of
F1AsCco0.0OC. Thereafter, I describe how to extend ROMAIN to replicate mul-
tithreaded applications in Chapter 4 and evaluate ASTEROID’s overhead and
error detection capabilities in Chapter 5. Finally, I investigate ASTEROID’s
Reliable Computing Base in Chapter 6.

3
Redundant Multithreading as an

Operating System Service

In the previous chapter I explained that hardware faults do occur in today’s
systems and that their rate is likely to increase in future hardware generations.
The goal of my thesis is to develop an operating system architecture that
detects errors by replicating applications and that uses majority voting to
recover from errors.

The main focus of this chapter is ROMAIN, an operating-system service
implementing redundant multithreading for applications running on top of
F1Asco0.0C. I describe how ROMAIN interposes itself between application
replicas and the operating system kernel. I present mechanisms to manage
replicas’ resources. Furthermore, I describe how ROMAIN provides error
detection and recovery based on these mechanisms. The ideas and decisions
described in this chapter were originally published in EMSOFT 2012! and
SOBRES 2013.2

3.1 Architectural Overview

In order to protect platforms based on commercial-off-the-shelf (COTS) hard-
ware components, we need to apply software-level fault tolerance techniques.
A large fraction of today’s software is only available in binary form and
vendors do not provide access to the source code. It is therefore infeasible
to protect the whole software stack solely using existing compiler-level fault
tolerance methods.

The operating system lies at the boundary between hardware and software
and is in control of all programs. Placing a fault tolerance mechanism at the
OS level therefore protects the largest possible set of applications. However,
fault tolerance is potentially expensive in terms of execution overhead and
resource requirements. The OS should therefore not enforce a mechanism on
all applications but allow the system designer to selectively protect programs.
This approach has two advantages over full-system replication:

1. Applications that have been implemented using fault tolerant algorithms
or programs that were compiled using a fault-tolerant compiler take care
of fault tolerance themselves. These applications do not require additional
support from the OS.

! Bjorn Dobel, Hermann Hértig, and Michael
Engel. Operating System Support for Re-
dundant Multithreading. In /2th Interna-
tional Conference on Embedded Software,
EMSOFT’ 12, Tampere, Finland, 2012

2 Bjorn Dobel and Hermann Hirtig. Where
Have all the Cycles Gone? — Investigating
Runtime Overheads of OS-Assisted Repli-
cation. In Workshop on Software-Based
Methods for Robust Embedded Systems, SO-
BRES’ 13, Koblenz, Germany, 2013

40 BJORN DOBEL

Figure 3.1: ASTEROID System Architec-
ture: The ROMAIN replication service ex-
tends the L4 Runtime Environment. Replica-
tion on a per-process basis allows to integrate
both replicated and unreplicated applications
into the system. Using a microkernel archi-
tecture, replication also covers traditional OS
services, such as file systems.

3 Joshua LeVasseur, Volkmar Uhlig, Jan
Stoess, and Stefan G6tz. Unmodified Device
Driver Reuse and Improved System Depend-
ability via Virtual Machines. In Symposium
on Operating Systems Design and Implemen-
tation, SOSP’04, San Francisco, CA, Decem-
ber 2004

4 Carsten Weinhold and Hermann Hirtig.
jVPFS: Adding Robustness to a Secure
Stacked File System with Untrusted Local
Storage Components. In USENIX Annual
Technical Conference, ATC’ 11, pages 32-32,
Portland, OR, 2011. USENIX Association

° Tomas Hruby, Dirk Vogt, Herbert Bos, and
Andrew S. Tanenbaum. Keep Net Working -
On a Dependable and Fast Networking Stack.
In Conference on Dependable Systems and
Networks, Boston, MA, June 2012

® We will see in Chapter 7 that replication of
device drivers is still an open issue.

"http://l4re.org

2. In resource-constrained environments, a user may be willing to accept a
failure in an unimportant application while still wanting to protect another,
more important program.

For the above reasons, I structured the ASTEROID fault-tolerant operating
system design as shown in Figure 3.1. ASTEROID uses software-level
replication to detect and correct errors that manifest as the effects of hardware
faults. It runs on COTS hardware components and protects binary-only
applications. This approach makes fault tolerance transparent to user-level
applications and developers do not have to take specific precautions to counter
hardware errors.

L4Re: L4 Runtime
Environment

ROMAIN repli-
cation service

ASTEROID replicates on a per-application basis using an OS service
named ROMAIN. This design decision allows users to selectively turn on
replication for applications that require this service. ASTEROID’s sphere
of replication is a process. As long as a process only performs internal
computation, there is no interaction with the replication service or the kernel.
Only when application state becomes visible to outside observers, replicas
are compared for state deviations that indicate an error. This redundant
multithreading approach reduces the execution time overhead imposed by the
replication service. This benefit does not come for free, because replication
increases memory and CPU usage compared to native execution.

In the previous chapter we saw that splitting software into small, isolated
components improves system reliability. Hence, a microkernel is a natural
choice for building a fault tolerant operating system. ASTEROID is based on
the FIASC0.0OC microkernel developed at TU Dresden. In addition to its
isolation properties, a microkernel foundation offers another advantage: as
traditional operating system services —such as device drivers,? file systems,*
and networking stacks> —run in user space, ROMAIN can replicate them and
thereby provide protection against hardware faults.®

ASTEROID reuses L4Re, F1ASC0.OC'’s existing user-level runtime en-
vironment.” In the remainder of this chapter I focus on my extension to this
system, the ROMAIN replication service. I describe how ROMAIN adds
replication capabilities to L4Re and how it detects and recovers from the
effects of hardware errors.

http://l4re.org

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 41

3.2 Process Replication

RoMAIN-the Robust Multithreaded Application Infrastructure—is an exten-
sion to L4Re that allows replicated execution of single processes. It provides
replication as a form of redundant multithreading as described in Section 2.4.1
on page 26 and leverages software threads provided by the F1ASCc0.0OC ker-
nel. Figure 3.2 shows ROMAIN’s architecture for a triple-modular redundant
setup.

Resource
Management

System Call
Proxy

ROMAIN Master

Replicated Application Figure 3.2: ROMAIN Architecture

Replicas execute a single instance of a protected application. They run in
separate address spaces to achieve fault isolation and prevent a failing replica
from overwriting the correct state of other replicas. Users can configure the
number of replicas at application startup time and thereby create arbitrary n-
modular redundant setups. For every replicated application, a master process
is responsible for managing replicas, validating their states, and performing
erTor recovery.

The ROMAIN master process has three tasks:

1. Binary Loading: During application startup, the master acts as a program
loader. According to the configured number of replicas, the master creates
address spaces and loads the respective binary code and data segments
from the executable file. Thereafter, the master creates a new thread for
every replica and makes these threads start executing program code within
their respective address spaces.

2. Resource Management: Redundant multithreading executes replicas inde-
pendently while they only modify their internal state. In terms of ROMAIN
areplica’s internal state comprises:

* Replica-owned memory regions,
» Each replica’s view on FIASC0.OC kernel objects, and
* Each thread’s CPU register state.

The master process maintains full control over the above resources for
every replica. Thereby, the master ensures that the replicas always receive
identical inputs. The replicas then execute identical code and will produce
identical outputs as long as they are not affected by a hardware fault.

We will see in Chapter 4 that we need to take additional precautions to
handle multithreaded replicas, because these programs may suffer from
scheduling-related non-determinism, which the master process needs to
cope with as well. In the scope of this chapter I will however assume
single-threaded replicas.

42 BJORN DOBEL

8 Piyus Kedia and Sorav Bansal. Fast Dy-
namic Binary Translation for the Kernel. In
Symposium on Operating Systems Principles,
SOSP ’13, pages 101-115, Farminton, Penn-
sylvania, 2013. ACM

° Derek Bruening and Qin Zhao. Practical
Memory Checking with Dr. Memory. In Sym-
posium on Code Generation and Optimiza-
tion, CGO ’11, pages 213-223, 2011

19 Adam Lackorzynski. L*Linux Porting Op-
timizations. Diploma thesis, TU Dresden,
2004

3. Error Detection and Correction: The master process detects and corrects
errors by monitoring replica outputs. In the context of ROMAIN a replica
output is any event that makes application state visible to the outside world.
These events include system calls, CPU exceptions (such as page faults),
as well as writes to memory regions that are shared with other applications.
I will refer to these events as externalization events in the remainder of
this thesis.

3.3 Tracking Externalization Events

To remain in control over the replicas’ states, the master process needs a way
to intercept externalization events. Shye’s Process Level Redundancy (PLR),
which I described in Section 2.4.2 on page 32, applies binary recompilation
for this purpose and rewrites the replicated program so that all system calls
are reflected to the PLR replication manager.

Why not use Binary Rewriting? Binary rewriting is a complex task® and
applying it to general-purpose programs needs to solve two problems: First,
we need to identify all binary instructions in order to instrument them. This
is difficult for instruction set architectures with variable-length instructions,
such as Intel x86. The rewriter here needs to disassemble all instructions
step by step. Furthermore, dynamic branches due to function pointers and
register-indirect addressing mean that not all instructions can be rewritten
statically, because runtime information is needed to identify the targets of
dynamic branches. The rewriting process therefore needs to be carried out
incrementally.

The second issue with binary rewriting is how to instrument code. Naively,
we might assume that instrumentation would simply replace the instrumented
instruction with a call to an external instrumentation handler. Unfortunately,
given x86’ variable instruction lengths this does not work: instructions may
be as short as a single byte, but a call instruction requires 5 bytes to be
overwritten.

Solving these problems correctly and efficiently is difficult® and out of
scope for this thesis. Furthermore, Kedia’s efficient binary translation work
reports an execution time overhead of about 10% for application workloads.®
This is the base overhead even a very efficient replication service would have
to work with. I therefore decided to avoid binary rewriting and instead rely on
existing F1ASC0.OC infrastructure for intercepting externalization events.

Virtual CPUs ROMAIN tracks a replicated application’s externaliza-
tion events using a software exception mechanism implemented by the
F1Asco0.OC kernel. Whenever a monitored thread performs an activity that
becomes visible to the kernel —such as issuing a system call or raising a page
fault— F1ASC0.OC notifies a user-level exception handler of this fact.

In previous versions of FIASC0.OC developers had to distinguish be-
tween different types of exceptions (page faults, system calls, protection
faults) and register specific handler threads for these events.'? In its most
recent version, FTIASCO.OC unifies all types of exception handling into a
single mechanism called a virtual CPU (vCPU). vCPUs constitute threads

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 43

that execute within the bounds of an address space and are subject to the
kernel’s scheduling, as well as resource and access limitations. Besides being
easier to program against, the vCPU exception handling model requires fewer
kernel resources and is slightly faster.!!

vCPUs differ from normal threads in the way system calls and exceptions
are handled by the kernel. I illustrate this handling in Figure 3.3. Instead of
directly handling a CPU trap (1), the kernel delivers this trap as an exception
message to a user-level handler process (2). This exception handler inspects
the vCPU’s register state and then reacts upon the exception by modifying this
state or the vCPU’s resource mappings (3). Thereafter the handler instructs
the kernel (4) to resume execution of the vCPU (5).

I

veru —{IT

Exception Handler [©)

FiAsco.0C Kernel

time

Using the vCPU model, the external exception handler can intercept all
CPU traps caused by a program. These traps include system calls, page

1.12 Hardware- and

faults, as well as all other traps defined by the x86 manua’
software-induced traps are the only way for an x86 program to break out
of user-mode execution and communicate with other applications through a
system call. ROMAIN uses vCPUs for executing replica code. The master
process takes over the role of the external exception handler and thereby
intercepts all such externalization events. We will see in Chapter 5 that this
way of inspecting replicas has an execution time overhead of close to 0% for
application benchmarks. It is therefore more efficient and less complex than

applying binary rewriting.

Limitations of Using vCPUs There is one type of externalization event that
the ROMAIN master cannot intercept using the vCPU model: reads and
writes to memory regions shared with external applications. If a memory
region is mapped to an application, any further accesses to it will not raise
any externally visible trap that the kernel can intercept. I will describe my
solution to this problem in Section 3.6 on page 57.

A second drawback of my decision to use vCPUs is that ROMAIN depends
on FIASC0.0OC. The implementation cannot easily be transferred to another
operating system, such as Linux. This problem can be solved by retrofitting
the target OS with a vCPU implementation. However, this would require
a substantial effort. Alternatively, we can exploit mechanisms in the target
OS that provide features similar to the vCPU model. Florian Pester showed
that a ROMAIN implementation on Linux is possible13 by leveraging Linux’

kernel-level virtual machine (KVM) feature.!4

' Adam Lackorzynski, Alexander Warg, and
Michael Peter. Generic Virtualization with
Virtual Processors. In Proceedings of Twelfth
Real-Time Linux Workshop, Nairobi, Kenya,
October 2010

Figure 3.3: F1AsC0.0C: Handling CPU Ex-
ceptions in User Space

2 Intel Corp. Intel64 and IA-32 Ar-
chitectures Software Developer’s Man-
ual. Technical Documentation at http://
www.intel.com, 2013

3 Florian Pester. ELK Herder: Replicat-
ing Linux Processes with Virtual Machines.
Diploma thesis, TU Dresden, 2014

4 Avi Kivity. KVM: The Linux Virtual Ma-
chine Monitor. In The Ottawa Linux Sympo-
sium, pages 225-230, July 2007

http://www.intel.com
http://www.intel.com

44 BJORN DOBEL

Figure 3.4: ROMAIN: Handling of external-

ization events

15 Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995

Observer [Purpose

Syscalls Proxies or emulates system
calls (see Section 3.4)

PageFault | Handles memory faults and
shared memory access
(see Sections 3.5 and 3.6)

Time Handles timing information,
such as gettimeofday ()
(see Section 3.7)

Debug Allows to set breakpoints
and debug replicas

SWIFI Performs fault injection
experiments

Lock- Implements determinis-

Observer tic lock acquisition for
replicating multithreaded
programs (see Chapter 4)

Table 3.1: ROMAIN event observers

Replication using vCPUs To replicate a program, ROMAIN launches one
vCPU for each replica. A replica vCPU then executes inside a dedicated ad-
dress space as explained in the previous section. System calls and other CPU
exceptions are handled as depicted in Figure 3.4. (I do not show involvement
of the microkernel for better readability.)

Repica 2 — [e

e ®]‘
Aepica 1 — —
O\ /f@
ROMAIN Master ‘ ® e —
W e
®

In line with the concept of redundant multithreading, replicas execute
independently until their next externalization event occurs. At this point the
kernel delivers information about the event along with the faulting vCPU’s
state to the ROMAIN master process. Externalization acts as a barrier blocking
execution of all replicas that raise an event (1) until the last replica raises an
event as well (2).

Once all replicas arrive at their next externalization event, the master
begins processing it (3). The master first compares the replicas’ states and
detects and corrects potential errors. I will have a closer look at this stage in
Section 3.8 on page 65. Once this phase is completed, the master is sure that
all replicas agree on their state. The master then handles the actual event.

Depending on the event type, the master performs different actions. While
most system calls are simply proxied to the kernel, resource management
requests are handled by the master itself. I will discuss in detail how replica
resources are managed in Sections 3.4-3.7. During event processing the
master may perform one or more additional system calls and allocate addi-
tional resources and kernel objects (4). Once the event is handled, the master
updates the replicas’ states according to the event’s outcome and directs the
vCPUs to continue execution (5).

Replica Event Processing From a software engineering perspective, RO-
MAIN’s event processing is implemented using the Observer design pattern. !
Each event observer is capable of handling a specific event type. After validat-
ing replica states, the master’s exception handler iterates over a list of these
independent observer objects. Each observer inspects the current event and
decides whether the event can be handled. If the observer handled the event,
processing is stopped and the replicas resume execution. Otherwise the event
is passed to the next observer in the list.

Table 3.1 lists ROMAIN’s most important observer objects. Listing 3.5 on
the next page gives an overview of the event processing steps described in
this section as pseudo-code.

SUMMARY: ROMAIN replicates binary applications running on
top of the FIASC0.OC microkernel. To make replicas deterministic,

27

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 45

void Master::handle_event()

{

state_list = wait_for_all_replicas();
compare_states_and_recover(state_list); // see Section 3.8

// We know all states to be identical, so just
// pick the first one.
ReplicaState state = state_list.first();

for (Observer o : eventObservers)

{

// Event processing, see Sections 3.4 - 3.7
ret = o.process_event(state);

if (ret == Event::Handled) // processing successful

{
for (ReplicaState replica : state_list) {
// update from processed state
replica.update(state);
replica.resume();

}

return;

}

ERROR("Invalid_event_detected!");

a master process needs to remain in control of all input going into
a replicated application. Outputs need to be intercepted to validate
replica states before they become visible to external applications.
These properties are achieved using FIASC0.0OC’s vCPU mecha-

nism.

3.4 Handling Replica System Calls

Whenever programs access OS services, they interact with the underlying
kernel using system calls. The kernel provides services through specific
kernel objects. The actual implementation of these objects varies: Unix-
like systems —such as Linux — provide kernel services through files, whereas
Windows uses service handles. FIASC0.OC enables object access using an
object-capability system. 10

Referencing Objects Through Capabilities Before introducing system call
replication, I explain FIASC0.0OC’s object model using Figure 3.6 as an
example. The kernel manages objects (A, B, C) that represent execution
abstractions (threads), address spaces (processes), and communication chan-
nels. These objects exist inside the kernel. The kernel implements access
control for these objects using a per-process capability table that stores object
references.

Programs invoke kernel functionality by issuing a system call to a kernel
object. They denote the kernel object using an integer capability selector,
which is interpreted by the kernel as an index into the process’ capability table.
In the example, Program 1 has access to objects A and C through capability

Listing 3.5: ROMAIN processing of external-
ization events

1 Mark Miller, Ka-Ping Yee, Jonathan
Shapiro, and Combex Inc. Capability Myths
Demolished. Technical report, Johns Hop-
kins University, 2003

Figure 3.6: F1ASC0.0OC’s object-capability
mechanism in action

46 BJORN DOBEL

17 Jochen Liedtke. Improving IPC by Kernel
Design. In ACM Symposium on Operating
Systems Principles, SOSP *93, pages 175—
188, Asheville, North Carolina, USA, 1993.
ACM

selectors 1 and 3. Program 2 has access to objects B and C through capability
selectors 2 and 4.

Programs can furthermore create new kernel objects. During creation a
reference to the new object will be added to the creator’s capability table. The
kernel does not track allocation of capability table entries — it is up to the
application to decide where to place the new object reference.

System Call Types In order to perform a system call, an application needs to
send parameters to the kernel. FIASC0.OC provides a per-thread memory
region for this purpose, the user-level thread control block (UTCB). A calling
thread puts parameters into its UTCB and then invokes a specific kernel object.
The kernel then interprets the UTCB’s content and handles it depending on
the type of invoked object.

In the context of ROMAIN, a system call constitutes an externalization
event where data exits the application’s sphere of replication. The master
process intercepts these events and compares replica states. If they match,
the event handler inspects system call parameters and distinguishes between
kernel object management, messaging system calls, and resource mappings.

1. F1Asco.OC implements kernel objects, such as processes and threads.
For the purpose of creating and managing these objects, the kernel pro-
vides specific system calls. The ROMAIN master needs to intercept these
calls and replicate kernel-level objects in order to implement redundant
multithreading. For instance, when a replicated application creates a new
thread, the master needs to ensure that a separate instance of this thread is
created inside every single replica.

2. Messaging system calls send a message through FIASC0.0OC’s Inter-
Process Communication (IPC) mechanism. The kernel provides a specific
object for this purpose, the IPC channel. Sending data through such a
channel copies the message payload to a receiver. IPC system calls do
not modify any kernel or application state. The master process therefore
simply executes them using the replicas’ system call parameters.

3. Resource mappings are an extension to the IPC mechanism. In addition to
a data payload they contain resource descriptors, which are called flexpages
in FIASCc0.0C terminology. Flexpages are used to transfer access rights
to kernel objects to or from the calling thread. Flexpage IPC therefore
modifies the state of a replicated application and requires special handling
by the master process.

On the following pages I first describe how ROMAIN handles data-only
IPC messages. Thereafter I discuss the handling of object-capability map-
pings. I defer the discussion of memory management and related issues to
Sections 3.5 and 3.6.

3.4.1 Proxying IPC Messages

Microkernel-based operating systems implement most OS functionality inside
isolated user-level applications. Clients use these OS services through a
kernel-provided IPC mechanism. IPC therefore constitutes the largest fraction
of system calls in any microkernel-based system and is considered to be most

crucial when designing such a kernel. 17

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 47

F1Asco0.0C provides IPC through the previously mentioned communica-
tion channel kernel object. A sender thread puts data into its UTCB and issues
a system call. The kernel then copies data into the receiver thread’s UTCB.
Messages are limited by the UTCB payload size of 256 bytes. Aigner showed
that this size is sufficient for most messaging use cases in microkernel-based
systems.18

When detecting a messaging system call, the ROMAIN master sends the
respective IPC message once to the specified target thread. Conceptually, it
does so by copying the message from a replica’s UTCB into its own UTCB
and then performing a system call to the same communication channel that
was originally invoked by the replica. Replica threads are always vCPUs,
which are blocked while the master is processing a system call. Therefore we
can in practice avoid the UTCB-to-UTCB copy. Instead, the master reuses
the trapping replica’s UTCB when it proxies the [PC message.

Sending a replicated IPC message only once enables replicated and un-
replicated applications to coexist on the same system as shown in Figure 3.7:
Unreplicated programs will only receive messages once, regardless of the
number of replicas in the sending application. They will furthermore always
send their messages to the master process, which then multiplexes incoming
messages to the actual replicas.

However, this design decision makes the transmission of a single IPC mes-
sage vulnerable to hardware errors. The same is true for any other execution
within the master process and other interactions with the kernel, because these
mechanisms remain outside ROMAIN’s sphere of replication and therefore
form a single point of failure for the ASTEROID system. I will return to this
problem and possible solutions in Chapter 6.

3.4.2 Managing Replica Capabilities

In order to correctly redirect IPC messages, the master needs to know which
kernel objects the replicas were trying to invoke. For this purpose all the
capabilities of these objects need to be mapped into the master’s capability
space. New kernel objects are always created through a system call and the
master intercepts all of these calls. Through this mechanism the master can
always add such object mappings to its own capability table.

As mentioned in Section 3.4, the layout of a capability table is managed
by each user application itself. L4Re applications do so by keeping a bitmap
of used and unused capability slots in memory. Modifications of this bitmap
are plain memory accesses, will never lead to a system call, and can therefore
not be inspected by the master process. When replicating an application this
leads to the problem shown in Figure 3.8.

The figure shows the capability tables of two replicas and their master
process after running for some time. As the replicas are deterministic, their
capability tables are always laid out identically. Modifications to the capability
table happen in the form of system calls so that any divergence would be
detected by the master process. In this example, two objects are mapped into
slots 1 and 2. The remaining slots are still unused. The master process also
gets access to the replicas’ capabilities by mapping these objects into free slots
inside its own capability table. Additionally, the master may allocate objects

8 Ronald Aigner. Communication in
Microkernel-Based Systems. Dissertation,
TU Dresden, 2011

() Ghannel)

Figure 3.7: Integrating replicated and un-
replicated applications

Replica 1 Replica 2

Master

Figure 3.8: Replica capability selectors need
to be translated into master capability selec-
tors.

48 BJORN DOBEL

!9 The master can rewrite replicas’ system
call parameters by modifying their UTCB
and their register state. Both are available
during vCPU exception handling.

Replica 1

[

Replica 2

[

Master

Figure 3.9: Partitioning capability tables al-
lows the master to relay replica system calls
without translation overhead.

201 chose the number 16,384 after some ex-
perimentation and it sufficed for all applica-
tions that I used throughout this thesis. The
number can be adapted if necessary.

for private use, so that its capability table contains more object references
than the replicas’ tables. In the example, the master has allocated private
objects into slots 2 and 3, whereas the replica-visible objects are mapped to
slots 1 and 4.

A Capability Translation Mechanism If the master wants to relay IPC mes-
sages to the destination requested by the replicas, it has to translate the
capability selector specified by the calling replica into a valid selector in
the master’s capability table. An intuitive solution to this problem would
be to maintain a Selector Lookup Table (SLT). This SLT is then used in the
following three cases:

1. If the replicas request to add a kernel object to their capability tables at
slot R, find an empty slot M in the master’s capability table. Store R — M
in the SLT. Rewrite the replica system call parameters to obtain mapping
into master capability slot M.'® Then perform the system call.

2. If the replicas perform a system call using an existing capability selector R,

look up the corresponding master capability selector M from the SLT.
Rewrite the system call parameters to use M. Then perform the system
call.

3. If the replicas remove a capability R using the 14_fpage_unmap () system

call, look up the master capability selector M from the SLT. Rewrite the
system call parameters to delete M. Perform the system call. Finally,
remove R — M from the SLT.

Avoiding Capability Translation Using an SLT to translate capability selec-
tors is feasible, but adds rewriting and lookup overhead to every replicated
system call. To avoid this overhead, ROMAIN uses partitioned capability
tables as shown in Figure 3.9. As explained in Section 3.2 on page 41, the
master acts as the program loader for its replicas. During program loading
the master also sets up the replicas’ initial memory regions. The replicas’
capability bitmap resides at a fixed location in one of these memory regions.

To partition capability tables the master marks the first 16,384 entries in
the replicas’ capability bitmaps as reserved by setting their bits to 1 during
application loading.?? In turn, all but the first 16,384 entries in the master’s
capability bitmap are marked as used as well. Reserved regions are marked
gray in Figure 3.9. As a result the replicas will always map kernel objects
into capability slots R >16,384, whereas the master will allocate all its private
objects within capability slots M <16,384.

Using this partitioning approach replica and master capability selectors
will never overlap. Furthermore, all capability selectors used by replicas will
have matching empty slots in the master’s capability table. The master may
therefore map copies of replicas’ capabilities into the same slots in its own
capability table, thereby creating a 1:1 mapping between replica and master
capability selectors. For this reason the master neither has to perform any
translation of capability selectors, nor does it need to rewrite replicas’ system
call parameters.

As a drawback, the partitioning approach reduces the number of avail-
able capability selectors for both the replicas and the master. However, this
was not a problem in any of the experiments I conducted during this thesis.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 49

F1AsC0.0C’s possible capability space is much larger than the number of
capabilities actually used by applications.

Partitioning furthermore only works for applications where the master
can locate the fixed capability management bitmap. This is the case for all
applications that link against the L4Re libraries, which in turn is the default
way of building FIASC0O.OC applications. If an application did not use
L4Re, the master would have to fall back to using an SLT as described above.
However, I did not implement an SLT yet as this feature was not necessary
for any of the experiments conducted in this thesis.

SUMMARY: System calls are the main way for an application to
perform input and output. ROMAIN uses FIASC0.OC’s virtual CPU
mechanism that allows to intercept any CPU exception raised by a
replica. Upon a system call, the master compares replica states for
error detection.

If the replicas’ states match, the master performs the requested system
call on behalf of the replicas. Afterwards, the replica vCPUs are
modified as if they had done the system call themselves. Thereby the
master ensures that identical inputs reach the replicas.

F1Asco0.OC’s object-capability system maintains a table of capa-
bility selectors for every process. These selector tables will always
be identical between correct replicas. However, the master’s selector
table may differ. To avoid complicated translations between replica
and master capabilities, the master applies a partitioning scheme that
allows 1:1 translation of replica to master capabilities.

3.5 Managing Replica Memory

In the previous sections I described replication techniques that allow the
ROMAIN master to execute replicas inside isolated address spaces, intercept
and monitor their system calls, and maintain control over all kernel objects
that are used by a replicated application. Replicas furthermore access data in
memory, which therefore needs to be managed as well.

From the perspective of redundant multithreading, we can distinguish
between private and shared memory regions. Private memory, which is the
focus of this section, is only used by an application internally and never
becomes directly accessible to an outside observer. ROMAIN provides each
replica with dedicated physical copies of private memory regions. After an
initial setup, the replicas can use these copies without synchronizing with the
master or other replicas. Private memory regions therefore only have a low
impact on replicated execution overhead.

In contrast to private memory, shared memory regions exist between mul-
tiple applications and are therefore not in full control of a single ROMAIN
master process. I will show in Section 3.6 that this can lead to inconsistencies
within a replicated application and that these regions therefore need to be
handled in a special way by the master process.

50 BJORN DOBEL

2 Mohit Aron, Luke Deller, Kevin Elphin-
stone, Trent Jaeger, Jochen Liedtke, and
Yoonho Park. The SawMill Framework for
Virtual Memory Diversity. In Asia-Pacific
Computer Systems Architecture Conference,
Bond University, Gold Coast, QLD, Aus-
tralia, January 29-February 2 2001

Address Dataspace 2

Space

Dataspace 1

\
\
\
N

Region Map
Region 1 — (DS, Offset A, Size B)

Region 2 — (DS1, Offset C, Size D)

Region 3 — (DS2, Offset X, Size Y)

Figure 3.10: A F1ASc0.OC application’s
address space is managed by a local region
manager, which combines memory pages
from different dataspaces.

22 The kernel distinguishes between object
mappings that require modifications to the
capability table and memory mappings that
lead to modification of the page table.

3.5.1 F1AsCc0.0C Memory Management

Microkernel-based operating systems implement the management of memory
regions inside user-level applications and only provide kernel mechanisms to
enforce these management decisions. FIASC0.0OC’s memory management
is derived from Sawmill’s hierarchical memory managers.?! I explain the
concepts involved in this management using Figure 3.10 as an example.

Transferring Memory Mappings Making chunks of memory available to
another application requires modifications to the target’s hardware page table,
which is only accessible in privileged processor mode. FIASC0.0OC’s IPC
mechanism provides means to send memory mappings from one application
to another. The kernel then carries out the respective page table modifications.
This procedure is identical to the one used to delegate kernel object access
rights described in Section 3.4.22

Dataspaces as Generic Memory Objects Memory content can originate from
different sources, such as anonymous physical memory, memory-mapped
files, or even a hardware device. In F1ASC0.OC all these sources of memory
are managed by user-level servers, which provide access to the memory they
own through a generic memory object, a dataspace.

Region Manager An application’s address space consists of a combination
of regions. Regions are parts of remote dataspaces mapped to a specific virtual
address range within the local address space. For every application, a region
manager (RM) maintains a region map, which stores a mapping between
regions and the dataspaces that provide backing storage for them.

Page Fault Handling 'Whenever an application accesses a virtual address that
has no corresponding entry in the hardware page table, the CPU raises a page
fault exception. The kernel’s page fault handler redirects this exception to the
faulting application’s RM. The RM then looks up the faulting address’ region
and asks the corresponding dataspace to receive a valid memory mapping
via IPC. Using this mechanism all page faults are handled by a user-level
component as well.

3.5.2 ROMAIN Memory Management

Before a FIASC0.OC application can successfully access an address in
memory, it has to complete three actions:

1. The application needs to obtain a capability to a dataspace.

2. A new region in the application’s virtual memory must be associated with
this dataspace. For this purpose the application asks its RM to attach this
region to its address space.

3. Finally, the application accesses the memory address. The RM catches the
resulting page fault and asks the corresponding dataspace manager for a
memory mapping to the appropriate virtual address.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 51

The main difference with respect to memory management in a replicated
environment is that ROMAIN needs to provide each replica with a dedicated
copy of its respective memory regions. Then, the replica can access memory
independently from other replicas with no further execution time overhead,
while ROMAIN still remains in control of all input and output operations for
the purpose of error detection.

Obtaining Dataspace Capabilities (Step 1) Dataspaces are implemented
using the communication channel kernel object. ROMAIN does not replicate
these objects, but instead attaches any incoming dataspace to the replicas’ and
master’s capability tables as described in Section 3.4.2.

Region Management (Step 2) For the second step, the ROMAIN master
process takes over the role of each replica’s region manager. To achieve
this, the master uses the system call interception mechanism described in
Section 3.4.1 to intercept all messages replicas send to their respective RM.

The master then performs replicated region management as shown in
Figure 3.11. Upon interception of a dataspace attach() call, the master
creates a copy of the respective dataspace for every replica (a). For this
purpose the master obtains additional empty dataspaces and copies the original
dataspace’s content. Thereafter, each replica gets its dedicated copy inserted
into its region map (b).

L4Re uses an AVL tree?3 to store the region map. Such trees allow fast
lookups, which in case of memory management are required for every page
fault handling operation.

The intuitive solution to manage replicated memory in ROMAIN would be
to let the master maintain one copy of the region map for every replica. This
requires no modification to L4Re’s region management code at all. However,
it would multiply the number of lookups and modifications that need to be
performed during every RM operation.

Looking closer at the problem we find that the replicas’ address space
layouts will never differ, because correctly functioning replicas will always
attach identical dataspaces to identical memory regions. Incorrect replica
operations will be detected by ROMAIN before any modification of the region
map takes place. Hence, the region maps can be stored in a single AVL tree.

ROMAIN extends L4Re’s region map implementation with a specialized
leaf node type. ROMAIN’s leaf nodes do not store a single mapping from
region to dataspace, but instead store one dataspace capability for every
replica. Thereby ROMAIN is able to find all dataspace copies for a memory
region with a single lookup operation instead of performing N lookups when
managing N replicas.

Page Fault Handling (Step 3) The ROMAIN master process sets itself up
to be the page fault handler for all replica threads. This is necessary to
prevent an external page fault handler from obtaining unvalidated replica state.
Furthermore, it allows the master to remain in control of the replicas’ address
space layout.

When receiving a page fault message, the master process looks up the
replicas’ memory regions in the region map. It then translates the page

Replica 2

Master

Dataspace

o

Figure 3.11: ROMAIN provides each replica
with a dedicated copy of each memory re-
gion.

2 Donald E. Knuth. The Art of Computer
Programming, Volume 3: Sorting and Search-
ing. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1998

Replica 1

52 BJORN DOBEL

2 Andy A. Hwang, Ioan A. Stefanovici, and
Bianca Schroeder. Cosmic Rays Don’t Strike
Twice: Understanding the Nature of DRAM
Errors and the Implications for System De-
sign. In International Conference on Ar-
chitectural Support for Programming Lan-
guages and Operating Systems, ASPLOS
XVII, pages 111-122, London, England, UK,
2012. ACM

Replica 1
Master
Rights: RO
Rights: RW
Rights: RW
Replica 2

Figure 3.12: Combining ROMAIN and ECC-
protected memory allows to reduce memory
overhead by using a single copy of read-only
memory for all replicas.

fault address to an address within its own virtual address space to find the
local mapping of the replica region. Finally, the master uses FIASC0.0C’s
memory mapping mechanism to map the respective memory regions into each
replica address space.

3.5.3 What if Memory was ECC-Protected?

As I explained in Section 2.4.1 on page 28, many modern COTS memory
controllers provide ECC protection of the stored data. Therefore, software
fault tolerance mechanisms —such as SWIFT — often rely on such protection.
They can thereby reduce their performance overhead by never validating data
in memory.

ROMAIN maintains dedicated copies of all memory regions for every
replica and therefore does not require this kind of memory protection. Any
fault in a memory word that leads to incorrect outputs by a replica will be
detected on the next externalization event. Furthermore, ROMAIN replicas do
not suffer from cases where ECC protection does not suffice to detect errors,
which were for instance reported by Hwang and colleagues.2* However,
ROMAIN’s solution leads to increased memory overhead: N replicas require
N times the amount of memory compared to a single application instance. If
ECC memory protection allowed us to significantly decrease this memory
consumption, it might therefore be a useful configuration option.

If we assume having functioning ECC-protected memory, ROMAIN can
improve memory consumption for read-only regions: This kind of data never
gets modified by the application, and the master can therefore use a single
copy of a read-only region and map it to all replicas’ address spaces. ECC
will make sure that replicas always read correct data. Furthermore, the virtual
memory’s write protection can be used to intercept any attempt to overwrite
this data by a faulty replica.

Unfortunately, this approach does not work for writable memory regions.
As ROMAIN’s replicas execute independently, they may read or write those
regions at different points in time. If their memory accesses went to the same
physical memory location, this might induce inconsistent states and applica-
tion failures. In order to overcome this, replicas would have to synchronize
upon every access to such a memory region, which in turn would largely
increase ROMAIN’s runtime overhead.

ROMAIN’s memory manager supports an ECC mode as shown in Fig-
ure 3.12. Read-only memory regions are stored as a single copy and mapped
to all replicas. Writable regions are copied as explained in the previous section.
While this mode integrates ECC-protected memory into ROMAIN, it does not
significantly reduce memory overhead. For example, the SPEC CPU 2006
benchmarks — which I use for evaluating ROMAIN’s execution time overheads
in Chapter 5 —may share their read-only executable code and data regions this
way. However, these regions only occupy a few kilobytes of memory, whereas
the benchmarks dynamically allocate hundreds of megabytes for their heap.
Heap regions are however writable and hence need to be copied. As a result,
RoMAIN’s ECC optimization is disabled by default.

This optimization may however be useful in other scenarios where the text
segment makes up a larger fraction of an application’s address space. For

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 53

example, my work computer runs the chromium web browser. For this appli-
cation, the text segment and the dynamically loaded libraries consume about
50% of the application’s address space. In this setup, not physically repli-
cating read-only memory segments would significantly reduce the memory
overhead required for replication.

3.5.4 Increasing Memory Management Flexibility

Memory management requires a substantial amount of work on the side of
the ROMAIN master process. It is therefore a source of runtime overhead. To
quantify the memory-related runtime overhead I implemented a microbench-
mark that stresses FIASC0.0C’s memory subsystem. Listing 3.13 shows
the benchmark as pseudocode.

void membench()

{
// Step 1: Dataspace allocation
Dataspace ds = memory_allocator.alloc(l GiB);
// Step 2: Attach to address space
Address start = region_manager.attach(ds, size=1 GiB);
// Step 3: Touch memory
for (Address a : range(start, start + 1 GB)) {
*address =0;
address += L4_PAGE_SIZE;
’ Listing 3.13: Memory management mi-
}
crobenchmark
C s . . . Execution
An application first allocates a dataspace of 1 GiB size. This first phase time
constitutes simple object allocation that in the ROMAIN case is proxied by 900 ms | —
the master process. The application thereafter attaches this dataspace to its 800 ms |
address space by calling its region manager. This second step triggers region 700 ms 1
management within the master process. We can use this second phase to 600 ms |
compare ROMAIN’s and L4Re’s original region management. In the third 500ms + o
phase, the benchmark touches every virtual memory page in this dataspace 400 ms 1| -
exactly once by writing a single memory word in each page. This last step is 300 ms |
dominated by the page fault handling that every memory access will cause.
. ENS 12N
I first executed the benchmark natively on top of FIASC0.0OC to get a 3us |
baseline measurement. Thereafter I ran the benchmark as a single replica 2us | |
using ROMAIN. The second measurement therefore solely shows the over- 1us
head introduced by proxying system calls and memory management and does
not contain replication cost. I will investigate replication cost for real-world Native ?;Z’ F:\l,':a
[

applications in Chapter 5.

I executed the benchmark on an Intel Core i7 (Nehalem) clocked at 3.4 GHz
with 4 GB of RAM. Figure 3.14 shows the benchmark results and breaks
down total execution time into the dataspace allocation, region management,

and page fault handling overhead. The results are arithmetic means of five Figure 3.14: Microbenchmark: Memory
Management in ROMAIN compared to na-

tive FIASC0.OC. (Note the changing scale
cache effects. The standard deviation was below 0.1% for all measurements of the Y axis.)

[l Page fault handling
O Region Management
[l Dataspace allocation

benchmark runs each. The test machine was rebooted for each run to avoid

and is therefore not shown in the graph.
We see that page fault handling overhead dominates native execution.
Allocating a dataspace and attaching it to a region each cost one IPC message

54 BJORN DOBEL

2 Remember, master and replica run in dif-
ferent address spaces. The page faults during
region management made this memory only
available within the master’s address space.

2 Narayanan Ganapathy and Curt Schimmel.

General Purpose Operating System Support
for Multiple Page Sizes. In USENIX Annual
Technical Conference, ATC *98, Berkeley,
CA, USA, 1998. USENIX Association

plus server-side request handling time. These steps are completed within
2 ps. The remainder of the time is spent resolving one page fault for every
4 KiB page. These faults result in sending 1GiB/4KiB = 262, 144 page fault
messages, which the pager then translates to the same amount of dataspace
mapping requests.

In the ROMAIN case we see that dataspace allocation takes slightly longer
than in the native case. This overhead stems from the fact that the single
allocation message is now intercepted and proxied by the master process.
However, this overhead is negligible compared to the other two phases.

Region management costs around 400 ms in contrast to 0.5 s in the native
case. In contrast to native execution, the master has to perform additional
work in this phase. Instead of only managing application regions, it also
attaches all memory to its own address space, causing the respective page
faults in this course. Given this fact, attaching a region with ROMAIN should
therefore be as expensive as the total page fault handling time in the native
case, because all 4 KiB page faults need to be resolved here as well. This is
not the case because ROMAIN does not touch every single page, cause a page
fault, and translate it into a dataspace mapping request. Instead, the master
process uses the dataspace interface directly and thereby avoids additional
page fault messages.

Once the region is attached in the master, the replica continues execution
and touches all memory pages. This case is equivalent to the native case and
causes the same amount of page faults to be handled.?> Hence, the page fault
handling phase takes as long in ROMAIN as in the native case.

Reducing Memory Management Cost 1 implemented two optimizations in
ROMAIN that reduce the overhead for managing replica memory. First,
ROMAIN tries to use memory pages with a larger granularity to manage
replicas’ address spaces and thereby reduce page fault overhead. As we will
see this requires hardware support and is not always a viable option. As a
second optimization, ROMAIN leverages a FIASCO0.OC feature that allows
to map more than a single memory page in the case of a page fault.

Using Larger Hardware Pages Page fault handling is expensive because
x86/32 systems by default manage memory using page sizes of 4 KiB.
While this allows for flexible memory allocation, it requires handling lots
of page faults and has been observed to pollute the translation-lookaside
buffer (TLB).26 To address this issue, most modern processor architectures
support larger page sizes for memory management. On x86/32, these larger
pages of 4 MiB size are called superpages. In the example above, using
superpages will reduce the number of page faults the master needs to service
to 1GiB/4MiB = 256. This decrease directly leads to a reduction of total
page fault handling time.

L4Re’s dataspace manager for physical memory pages supports requesting
superpage dataspaces, but clients do not use this feature by default for reasons
explained in the next section. However, ROMAIN intercepts all replicas’ data-
space allocation messages. It can therefore inspect these requests’ allocation
sizes and above a certain threshold (e.g., 4 MiB) modify the allocation to
request a superpage dataspace in order to reduce page fault overhead.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 55

Using Larger Memory Mappings Most modern processor architectures (x86,
ARM, SPARC, PowerPC) support some form of superpage mappings. How-
ever, it is not useful to solely rely on this feature for two reasons: First, many
applications allocate memory in chunks much smaller than 4 MiB. In these
cases, using superpages wastes otherwise available physical memory.

Second, using multiple different page sizes makes memory management
more complex: Allocating superpages requires contiguous physical memory
regions of 4 MiB size to be available, which may not always be the case
because of fragmentation arising from memory allocations with smaller page
sizes. As an implementation artifact, L4Re’s physical dataspace manager
restricts allocation even more and requires superpage dataspaces to be com-
pletely physically contiguous, meaning that allocating a 1 GiB dataspace
composed of superpages requires exactly 1 GiB of contiguous physical mem-
ory to be available, lest allocation fails.

For these reasons applications by default refrain from using superpages.
However, the FIASCO.OC kernel provides an additional mechanism to
reduce page fault processing cost that is independent of the actual hardware
page size. When sending a memory mapping via IPC, the sender may chose
to send more than a single page at once. The kernel reacts upon such requests
by simply modifying multiple page table entries during the map operation.
The F1ASCc0.0OC Application Binary Interface (ABI) allows to send memory
mappings sized with any power of two, e.g., 4 KiB, 8 KiB, 16 KiB and so
on, but requires the start address of such mappings to be a multiple of the
mapping size.?’

Figure 3.15 illustrates the alignment problem. We see a master and a
replica address space consisting of 8 pages each. A three-page region shall be
mapped from the master (pages 3-5) to the replica (pages 4-6). The maximum
possible mapping size for this region is two pages. However, the pages
are improperly aligned, so that every page fault on an even page number
in the replica will be resolved with a mapping from an odd page number
in the master and vice versa. This does not suit FIASC0.0OC’s alignment
requirements and the master therefore has to map three single pages.

The master can reduce paging cost by properly aligning memory regions
according to the replica’s needs as shown in Figure 3.16. Here, master pages
2-4 are mapped to replica pages 4-6. Any page fault in replica pages 4 or 5
allows the master to handle this page fault by mapping a complete two-page
region (pages 2 and 3) to the replica at once. This reduces the number of
replica page faults and therefore decreases page fault handling overhead.

ROMAIN leverages FIASC0.OC’s support for multi-page mappings to
reduce the number of page faults. Whenever a replica raises a page fault,
the master process tries to map the largest possible power-of-two region that
contains the page fault address to the replica. To facilitate this approach,
during every region attach() call the master identifies the best possible
alignment and largest possible mapping size for each replica and master
region. This approach makes sure that later page faults can be resolved using
the largest possible memory mapping.

2" This requirement allows the kernel to fit
memory mappings into the least possible
amount of page table entries and simplifies
the map operation.

0 2

| I Replica

L1 L PP [vaser
4 6

0 2

Figure 3.15: If source and destination re-
gions are improperly aligned, the master can-
not send large-page mappings to the replica.

0 2 4 6
T w| | Repiica
Ll PP | [wester
0 2 4 6

Figure 3.16: Adjusting alignment in replica
and master memory reduces the number of
page faults to handle.

56 BJORN DOBEL

Execution
time
900 ms T
800 ms T
700 ms T
600 ms T
500 ms T
400 ms T
300 ms T

3pus T
2us T
1us +

Native ROMAIN ROMAIN
Best
Align

[l Page fault handling
[0 Region Management
[Dataspace allocation

Figure 3.17: Microbenchmark: Memory
Management minimizing number of page
faults compared to previous microbench-
marks. (Note the changing scale of the Y
axis.)

Execution
time
200 ms T
180 ms T
160 ms T
140 ms T
120 ms T
100 ms T
80ms t
60ms t
40ms t
20ms T

Native ROMAIN
+Align
+4 MiB

[l Page fault handling
[0 Region Management
@ Dataspace allocation

Figure 3.18: Microbenchmark: Memory
Management combining superpages and the
best alignment strategy

8 The IEEE and The Open Group. The Open
Group Base Specifications — Issue 7. http:
//pubs.opengroup.org, 2013

Effect of Larger Mappings 1 repeated the microbenchmark introduced in
the beginning of this section and applied the previously described memory
management optimizations. First I enabled the alignment optimization that
reduces the number of page faults independent from hardware-supported
superpages. I configured the ROMAIN master process to map up to 4 MiB
of memory at once during page fault handling. Figure 3.17 compares the
benchmark’s outcome (Best Align) to the previously measured results.

We see that dataspace allocation and region management do not change
in ROMAIN. This is expected, because we did not modify these parts of the
system. Additionally, we see that the Best Align strategy reduces page fault
handling cost for ROMAIN. Overall ROMAIN execution time is reduced
by 30% for this benchmark. The overhead compared to native execution is
reduced to 16%.

Effect of Using Superpages In the next step I enabled use of superpages for
mapping the 1 GiB memory region. This modification reduces the number
of page faults to be handled to 1GiB/4MiB = 256. Comparing the result to
the previous native benchmark would not be fair, because this would compare
native execution with thousands of page faults to ROMAIN with much fewer
faults. Instead, I also adjusted the native version of the benchmark to use
superpages and compare the results in Figure 3.18.

We see that native execution of the microbenchmark with superpages en-
abled is already five times faster than the previous native benchmark (102 ms
vs. 512 ms). Dataspace allocation actually gets much slower (97 ms vs. 1.5 ps),
because the dataspace manager has to perform more work to reserve a physi-
cally contiguous memory region. The observation that this is external data-
space management overhead is underlined by the fact that dataspace allocation
in ROMAIN is as fast as in native execution, because most of this time is spent
executing outside ROMAIN’s sphere of replication. Execution in ROMAIN
also gets faster than in the previous benchmark (190 ms vs. 590 ms). However,
the relative overhead compared to native execution increases to 90%.

Are These Optimizations FIASCO.OC-Specific? The optimizations I intro-
duced in this section appear to leverage features specific to the F1Asc0.0C
microkernel. This raises the question whether they are micro-optimizations
for a specific kernel or can be applied to other OS environments as well.

Superpages are a feature of the underlying hardware and are supported
by many operating systems. Linux’ mmap () system call supports allocation
of anonymous superpage regions using the HUGE_TLB flag. The SystemV
shmget () operation to create shared memory regions also supports shared
memory segments to consist of superpages.2® Hence, a ROMAIN implemen-
tation on Linux could apply optimizations similar to the ones I implemented
on top of F1ASsc0.0OC.

SUMMARY: ROMAIN manages replica memory by maintaining a
dedicated copy of each memory region for each replica. To do that,
ROMAIN interposes dataspace allocation, address space management,
and page fault handling for the replicated application.

http://pubs.opengroup.org
http://pubs.opengroup.org

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 57

Memory overhead can be reduced by relying on ECC-protected mem-
ory. ROMAIN can then work with a single copy for each read-only
memory region and does not need to copy these. The effect of this
optimization is limited, because most memory regions are writable
and must still be copied.

Replica memory management leads to a significant execution time
overhead. I mitigate this overhead by reducing the number of page
faults that need to be serviced by the master process. For this purpose
ROMAIN uses hardware-provided superpages and maps the largest
possible amount of memory when handling a single page fault.

3.6 Managing Memory Shared with External Applications

As we saw in the previous section, memory that is private to a replicated
application can be efficiently replicated using ROMAIN. However, additional
mechanisms are required to deal with shared memory regions. I consider
all virtual memory regions that are accessible to more than one process as
shared memory. Microkernel-based systems use such regions for instance
to implement communication channels that allow streaming data between
applications without requiring kernel interaction.?”

Shared memory therefore constitutes both input and output from the per-
spective of a replicated application. Due to its nature, shared memory content
is not under full control of the ROMAIN master process. This results in two

problems, which I call read inconsistency and write propagation.

Read Inconsistencies Replicas in a redundant multithreading scenario exe-
cute independently and may access memory at different points in time. For
example, assume we have a read-only shared memory region that is accessible
to a replicated application. Further assume the master process has found a
way to directly map this region to all replicas.

A read inconsistency between two replicas occurs if first a replica R; reads
a value v from the shared region and starts to process this datum. Thereafter,
an external application updates v to a value v, with v! = v,. Last, a second
replica R reads the new value v, and processes it. This scenario violates the
determinism principle: Replicas have to obtain identical inputs at all times.
Otherwise they may execute different code paths, which leads to falsely
detected errors and respective recovery overhead.

Write Propagation If shared memory channels are writable for the replicated
application, a second problem needs to be solved: We saw in the previous
section that independently running replicas must perform all their write oper-
ations to a privately owned memory region. However, in the shared memory
scenario the ROMAIN master needs to make the replicas’ modifications visi-
ble to outside users of the shared memory channel. This write propagation
needs to be done at a point where all replicas’ private copies contain identical
and consistent content. It is impossible for the master process to know when
this is the case without cooperation from or knowledge about the replicated
application.

2 Jork Loser, Lars Reuther, and Hermann
Hartig. A Streaming Interface for Real-Time
Interprocess Communication. Techni-
cal report, TU Dresden, August 2001.
URL: http://os.inf.tu-dresden.de/
papers_ps/dsi_tech_report.pdf

http://os.inf.tu-dresden.de/papers_ps/dsi_tech_report.pdf
http://os.inf.tu-dresden.de/papers_ps/dsi_tech_report.pdf

58 BJORN DOBEL

% Gerald J. Popek and Robert P. Goldberg.
Formal Requirements for Virtualizable Third
Generation Architectures. Communications
of the ACM, 17(7):412-421, July 1974

3'https://github.com/vmt/udis86

Z1Intel Corp. Intel64 and IA-32 Ar-
chitectures Software Developer’s Man-
ual. Technical Documentation at http://
www.intel.com, 2013

ROMAIN solves both the read inconsistency and the write propagation
problem by translating all accesses to shared memory into externalization
events. I implemented two strategies to achieve this: Trap & Emulate in-
tercepts every memory access and emulates the trapping instruction. Copy
& Execute removes the software complexity and execution overhead of this
emulator from the ROMAIN master process.

3.6.1 Trap & Emulate

As accesses to shared memory may be input or output operations, the RO-
MAIN master needs to intercept all these accesses and validate them to ensure
correct execution. If replicas got shared memory regions directly mapped,
such interception of accesses would be impossible. Therefore, ROMAIN
handles page faults in shared memory regions differently than for private
regions.

When a replicated application accesses a shared region for the first time, the
resulting page fault is delivered to the master process. Instead of establishing
a memory mapping to the replica, the master now emulates the faulting
instruction and adjusts the faulting vCPU as well as the master’s view of the
shared memory region as if the access was successfully performed. Thereafter,
replica execution resumes at the next instruction.

This approach is conceptually identical to the trap & emulate concept
that Popek and Goldberg developed for implementing virtual machines.>?
By trapping all read and write operations to shared memory, trap & emulate
solves both the read inconsistency and the write propagation problem.

An Instruction Emulator for x86 1added an instruction emulator to ROMAIN
that is able to emulate the most common memory-related instructions of the
x86 instruction set architecture. The emulator disassembles instructions using
the UDIS86 disassembler.3! Based on UDIS86’ output the emulator is able
to emulate the call, mov, movs, push, pop, and stos instructions.3?

These instructions only comprise a subset of all x86 instructions that
access memory. However, these instructions suffice to start a “Hello World”
application in ROMAIN and emulate all its memory accesses on the way.
Implementing a full-featured instruction emulator is out of scope for this
thesis. I will show in Section 3.6.2 that such an emulator is furthermore

unnecessary for most shared memory use cases.

Overhead for Trap & Emulate Emulating instructions instead of allowing
direct access to memory considerably slows down execution: Rather than
reading a memory word within a few CPU cycles, a shared memory access
causes a page fault that gets reflected to the ROMAIN master. This overhead
stems from hardware and kernel-level fault handling. Additionally, the master
adds overhead itself because the faulting instruction needs to be disassembled
and emulated.

https://github.com/vmt/udis86
http://www.intel.com
http://www.intel.com

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 59

I implemented three microbenchmarks to quantify the overhead caused
by trap & emulate. These benchmarks all work on a 1 GiB shared memory
region and mimic typical memory access patterns:

1. Memset: The first benchmark fills the whole 1 GiB region with a constant
value using the memset () function provided by the standard C library. A
typical x86 compiler optimizes this function call into a set of rep stos
(repeat store string) instructions.

2. Memcopy: The next benchmark uses the C library’s memcpy () function
to copy data from the first 512 MiB of the shared memory region into
the second half. This function call usually gets optimized into rep movs
(repeat move string) instructions.

3. Random access: The last benchmark writes a single data word to a random
address within the shared memory region. As we will see, this benchmark
is the most demanding in terms of emulation overhead, because random
access due to their very nature cannot be optimized into anything else but
single-word mov instructions.

I executed the benchmarks on the test machine described in Section 3.5.4
and once again compared native execution to the execution of a single replica
in ROMAIN. Native execution measures the pure cost of memory operations
— memory is directly mapped into the application, all page faults are resolved
before the measurements begin. Within ROMAIN, I allocated and attached
the shared memory region before starting the benchmark. The Memset and
Memcopy benchmarks were repeated 50 times each. The random access
benchmark performed 10,000,000 random memory accesses to the shared
region.3

Figure 3.19 shows the benchmark results. I compare my results to native
execution and execution in ROMAIN with the memory marked as a private
region. The latter two execution times are identical, because once memory
is mapped to a replica, all memory accesses directly go to the hardware and
there is no difference to native execution. In contrast, if the memory region
is marked as shared memory in ROMAIN, there is a visible overhead for all
benchmarks.

For the Memset and Memcopy benchmarks emulating memory accesses is

comparatively cheap (57% overhead for Memset, 9% overhead for Memcopy).

These overheads result from the optimizations I explained above: in both
cases the compiler replaces calls to the C library’s memset () and memcpy ()
functions by a single x86 instruction with a rep prefix. As a result, each

benchmark run results in only a single emulation fault for the whole operation.

In contrast, randomly accessing memory leads to a slowdown by a factor
of 120. In this benchmark every single memory access causes a separate
emulation fault. This means that the ROMAIN instruction emulator is called
10,000,000 times. Random memory access therefore constitutes a worst case
for instruction emulation.

A Closer Look at Random Access Cost To find out how the benchmarks
relate to a real-world scenario, I inspected the source code of SHMC, an L4Re
library that provides packet-based communication channels through a shared
memory ring buffer. SHMC uses memcpy () operations for the potentially

33 The number of iterations were chosen so
that all three benchmarks had comparable
execution times.

Execution time in seconds

0 L _—

Memset Memcpy Random
[Native

[Romain/Private
[] Romain/Shared

Figure 3.19: Microbenchmark: Overhead for
trap & emulate memory handling

60 BJORN DOBEL

Figure 3.20: Breakdown of random access
emulation cost (trap & emulate)

3 David Levinthal. Performance
Analysis Guide for Intel Core i7 Pro-
cessor and Intel Xeon 5500 Processors.
Technical report, Intep Corp., 2009.
https://software.intel.com/sites/
products/collateral/hpc/vtune/
performance_analysis_guide.pdf

large payload-related operations. However, SHMC additionally needs to do
packet bookkeeping within the shared data region. For the latter purpose,
SHMC requires random access operations.

I therefore had a closer look at where the overhead for emulating random
shared memory accesses comes from. Figure 3.20 breaks down a single
emulated memory access into four phases: First, an emulated access causes a
page fault in the CPU, which gets delivered to the ROMAIN master process.
This exception handling part takes roughly 1,900 CPU cycles. Another
1,400 CPU cycles are spent by the master for validating CPU state and
dispatching the event to the PageFault observer. Inside the emulator, time is
spent on disassembling the faulting instruction (6,400 cycles) and emulating
the write effects (2,400 cycles).

0 2,000 4,000 6,000 8,000 10,000 12,000

Execution time in CPU cycles

[Exception Handling] ROMAIN Dispatch
[Disassembly [Emulation

In total, ROMAIN spends around 12,000 CPU cycles emulating a shared
memory access, whereas the benchmark indicates a cost of about 100 cycles
for a native memory access. About half of this time is spent inside the UDIS86
disassembler for parsing the faulting instruction and filling a disassembler
data structure. (While 100 cycles sound high for a memory access, Intel’s
Performance Analysis Guide roughly approximates an uncached DRAM
access to cost about 60 ns, which would come down to about 150 cycles on
my test computelr.34 As the Random Access microbenchmark uses 1 GiB of
memory, randomly picking one word for the next access is highly likely to
miss the cache.).

Additionally, the disassembly and emulation infrastructure add a large
amount of source code complexity to the ROMAIN master. The UDIS86
library alone comprises about 8,000 lines of code. For these reasons I imple-
mented an alternative shared memory interception technique that does not use
the disassembler at all.

3.6.2 Copy & Execute

The ROMAIN instruction emulator has two jobs: First, replica-virtual ad-
dresses need to be translated into master-virtual ones, because instruction
emulation takes place in the master and the master’s address space layout may
differ from the replicas. Second, the actual instruction needs to be emulated
and the replica vCPUs need to be adjusted accordingly. If we can solve
both problems without a disassembler, we can avoid both the implementation
complexity and the performance drawbacks explained above.

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 61

Avoiding Address Translation Using Identity Mappings As explained pre-
viously, the master process keeps dedicated copies of every private memory
region for every replica. For this reason, virtual addresses in the replicas and
the master may differ. However, shared memory regions are never copied,
but only exist as a single instance in the master. ROMAIN uses this fact to
solve the address translation problem. The master intercepts IPC calls that
are known to obtain capabilities to shared-memory dataspaces. When the
replicated application then tries to attach such a dataspace to its address space,
the master maps the respective region to the same virtual address in replica
and master address spaces.

Due to this 1:1 mapping of shared memory regions, no address translation
is necessary anymore. Unfortunately, this approach only works if the virtual
memory region requested by the replica is still available in the master pro-
cess. This may be a problem if replicas request mappings to a fixed address.
However, most L4Re applications leave selection of an attached region’s
virtual address to their memory managosr.35 In case of the replicas this is the
ROMAIN master, which can then select a suitable region.

A Fast and Complete Instruction Emulator Using identity mappings any
faulting memory instruction will now use the faulting replicas’ register state
and virtual addresses that are identical to addresses in the master. Hence, there
is no need for instruction emulation anymore. Instead, we can perform the
faulting shared memory access directly in the master process using the fastest
and most complete instruction “emulator” available: the physical CPU!

I added a shared memory emulation strategy to ROMAIN that I call copy
& execute. This strategy performs shared memory accesses by executing the
following four steps:

1. Create a dynamic function: Allocate a buffer in memory, fill this buffer
with the faulting instruction followed by a return instruction (Byte 0xC3).

2. Adjust physical CPU state: Store the current physical CPU state in memory
and copy the faulting replica’s CPU state into the physical CPU.

3. Perform the shared memory access: Call the dynamic function created in
step 1. This will perform the memory access in the master’s context and
works because we use identity-mapped shared memory regions. After the
memory access, the dynamic function will return to the previous call site.

4. Restore CPU state: Store the potentially modified physical CPU state into
the replica’s vCPU. Restore the previously stored master CPU state.

The copy & execute strategy does not require expensive instruction disas-
sembly. However, as the x86 instruction set uses variable-length instructions,
we need to identify the actual length of the faulting instruction to perform
the copy operation in step 1. For this purpose I used MLDE32,3¢ a tiny
instruction length decoder that does this job faster than UDIS86.

Benefit of Copy & Execute 1 repeated the previously introduced memory
microbenchmarks and show the results in Figure 3.21. The Memset and
Memcopy benchmarks do not show any overhead anymore. The overhead for
random accesses decreased from a factor of 120 down to about a factor of 47.

35 This behavior is similar to most Linux ap-
plications that obtain anonymous memory to
an arbitrary address using the mmap () func-
tion.

w

26

Q

O

Q

(7]

£

(o]

g

c

o

3

3 2

w D

0 (I —
Memset Memcpy Random
[Native

[]Trap & Emulate
[Copy & Execute

Figure 3.21: Microbenchmark: The Copy &
Execute strategy improves the performance
of memory access emulation.

3 http://www.woodmann.com/
collaborative/tools/index.php/
Mlde32

http://www.woodmann.com/collaborative/tools/index.php/Mlde32
http://www.woodmann.com/collaborative/tools/index.php/Mlde32
http://www.woodmann.com/collaborative/tools/index.php/Mlde32

62 BJORN DOBEL

Figure 3.22: Breakdown of random access
emulation cost (copy & execute)

Furthermore, Figure 3.22 compares the cost for a single random memory
access for copy & execute to the trap & emulate case I presented before.
Exception handling and ROMAIN’s internal event dispatch are not touched
by the modifications at all and therefore remain the same. For the copy &
execute case, disassembly contains the cost of determining the instruction
length, which is significantly smaller than for trap & emulate. In total, a
random access to shared memory using copy & execute takes about 4,800
CPU cycles.

Copy & Execute

Trap & Emulate _

0 2,000 4,000 6,000 8,000 10,000 12,000

Execution time in CPU cycles

[Exception Handling] Romain Dispatch
[Disassembly [Emulation

Limitations of Copy & Execute While copy & execute significantly de-
creases shared memory access cost, this approach has two drawbacks: It does
not support all types of memory accesses, and it relies on identity-mapped
memory regions. I will explain these limitations below.

Emulating memory accesses using copy & execute only supports memory
instructions that modify the state of shared memory and the general-purpose
registers. It does not support memory-indirect modifications of the instruc-
tion pointer, such as a jump through a function pointer, because this would
divert control flow within the master process. So far I did not encounter any
application that uses function pointers stored in a shared memory region. I
therefore argue that it is safe to assume that well-behaving applications never
modify the instruction pointer based on a shared-memory access.

I already explained that the ROMAIN master process can establish iden-
tity mappings for the majority of shared memory regions. Most memory
instructions on x86 only have a single memory operand, so that they will
always read or write a dedicated 1:1-mapped shared memory location. There
is one exception to this rule, though. The rep movs instruction, which is for
instance used to implement memcpy (), uses two memory operands. In this
case, one of the addresses may point to a replica-private virtual address that
still requires translation into a master address.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 63

For this special case, ROMAIN’s implementation of copy & execute in-
cludes a pattern-matching check for the respective opcode bytes (0xF3 0xA5).
If this opcode is detected, ROMAIN additionally inspects the instruction’s
operands for whether they point into a shared memory region. If one of the
pointers is replica-private, the master rewrites this operand to the respective
master address.

SUMMARY: From the perspective of a replicated application,
shared memory content may constitute input as well as output. The
ROMAIN master never gives replicas direct access to these regions,
but instead handles every access as an externalization event and emu-
lating the access.

I showed that the overhead of the naive trap & emulate approach to
emulating memory operations can be significantly reduced by a copy
& execute strategy. The latter strategy is however not universally
applicable because it makes assumptions about the type of memory-
accessing instructions and their memory operands.

3.7 Hardware-Induced Non-Determinism

The ROMAIN master process intercepts all replica system calls, administrates
kernel objects on behalf of replicas, and manages the replicas’ address space
layouts. These three mechanisms cover close to all replica input and output
paths. They ensure that replicas execute deterministically and that replica
states are validated before data leaves the sphere of replication.

In addition to these sources of input, applications can also obtain in-
put through hardware features, such as reading time information or using a
hardware-implemented random number generator. Hence, accesses to such
hardware resources needs to be intercepted and handled by the ROMAIN
master in order to ensure deterministic replica execution.

3.7.1 Source #1: gettimeofday()

Software can read the current system clock through the gettimeofday()
function provided by the C library. To speed up clock access, many operating
systems implement this function without using an expensive system call.
Linux for example provides fast access to clock information through the

virtual dynamic shared object (vDS0).37

The vDSO is a read-only memory
region shared between kernel and user processes. The kernel’s timer interrupt
handler updates the vDSO’s time entry on every timer interrupt. Based on this
mechanism the gettimeofday () function can be implemented as a simple
read operation from the vDSO.

F1Asco0.0OC provides a mechanism similar to the vDSO, which is called
the Kernel Info Page (KIP). The KIP provides information about the running
kernel’s features as well as a clock field that is used to obtain time information.
An intuitive solution to make time access through a KIP or vDSO mechanism
deterministic would be to handle these regions as shared memory. With this
approach the ROMAIN master would intercept and emulate all accesses to
time information.

37Matt Davis. Creating a vDSO: The
Colonel’s Other Chicken. Linux Jour-
nal, mirror: http://tudos.org/~doebel/
phd/vds02012/, February 2012

http://tudos.org/~doebel/phd/vdso2012/
http://tudos.org/~doebel/phd/vdso2012/

64 BJORN DOBEL

3 Microsoft Corp. Symbol Stores and
Symbol Servers. Microsoft Developer
Network, accessed on July 12th 2014,
http://msdn.microsoft.com/library/
windows/hardware/ff558840 (v=
vs.85).aspx

¥ Since the Nehalem microarchitecture
rdtsc is actually incremented using its own
frequency to provide a constant clock regard-
less of CPU-internal frequency scaling. This
detail is not important for my explanation.

“Intel Corp. Intel64 and IA-32 Ar-
chitectures Software Developer’s Man-
ual. Technical Documentation at http://
www.intel.com, 2013

Avoiding KIP Access Emulation Virtual memory only allows us to configure
the access rights for whole memory pages (i.e., 4 KiB regions). ROMAIN
can therefore only mark the whole KIP as shared memory and emulate all
accesses. Unfortunately, the KIP not only contains a clock field, but also a
heavily used memory region specifying FIASC0.0OC’s kernel entry code.
This means that the KIP is accessed multiple times for every system call.
Emulating all KIP accesses to maintain control over time input is therefore
prohibitive, because we would as a collateral damage slow down every system
call by several orders of magnitude.

To avoid this slowdown, I implemented TimeObserver, an event observer
that emulates the gettimeofday() function within the ROMAIN master.
During application startup, the observer patches the replicated application’s
code and places a software breakpoint (byte 0xCC) on the first instruction
of the gettimeofday() function. When this function gets called by the
replicated program at a later point in time, this will cause a breakpoint trap
in the CPU. F1AsC0.OC then notifies the ROMAIN master about this CPU
exception. During event processing, the TimeObserver then reads the KIP’s
clock value once and adjusts the replicas’ vCPU states as if a real call to the
instrumented function had taken place.

Limitations of the TimeObserver To patch the function entry point, TimeOb-
server needs to know the start address of the gettimeofday () function. This
symbol information is not available for every binary program that ROMAIN
replicates. If the binary was for instance stripped from symbol information,
TimeObserver could not perform its instrumentation duties. However, soft-
ware vendors in practice often provide debug symbol information along with
their binary-only software.3® This information can be sourced by TimeOb-
server to determine the respective address. If such information is not available,
ROMAIN could still fall back to emulating all KIP accesses as I explained
above. However, I did not implement this mechanism yet.

3.7.2 Source #2: Hardware Time Stamp Counter

Apart from timing information provided through a kernel interface, CPUs
often have dedicated instructions that allow to determine time. On x86 the
rdtsc instruction provides such a mechanism and allows an application to
determine the number of clock cycles since the CPU was started.3”

By default, rdtsc can be executed at any CPU privilege level. Replicas
may use this instruction to once again obtain different inputs depending on
their temporal order and the physical CPU they run on. ROMAIN therefore
needs to intercept rdtsc calls to provide deterministic input.

This problem can in principle be solved using the TimeObserver approach.
We would have to know all locations of rdtsc instructions in advance and
would then convert these instructions into software breakpoints during ap-
plication startup. However, as explained in Section 3.3, finding specific x86
instructions within an unstructured instruction stream is difficult. To avoid
these difficulties, ROMAIN instead uses a feature provided by x86 hardware:
Kernel code can set the TimeStampDisable (TSD) bit in the CPU’s CR4
control register to disallow execution of the rdtsc instruction in user mode.*°

http://msdn.microsoft.com/library/windows/hardware/ff558840(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/ff558840(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/ff558840(v=vs.85).aspx
http://www.intel.com
http://www.intel.com

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 65

ROMAIN asks the kernel to set the TSD bit for every replica. Executing
the rdtsc instruction within the replica will then cause a General Protection
Fault. This fault is reflected to the master process and then handled by the
TimeObserver without having to patch any code beforehand.

3.7.3 Source #3: Random Number Generation

In addition to time-related hardware accesses, modern processors provide
special instructions to access other non-deterministic hardware features. In-
tel’s most recent CPUs for instance provide access to a hardware random
number generator through the rdrand instruction.*! Intel have furthermore
announced the introduction of the Software Guard Extensions (SGX) instruc-
tion set extension in future processor generations. SGX allows to execute parts
of an application within an isolated compartment, called an enclave.*? En-
clave memory is protected from outside access by encryption with a random
encryption key.

For replication purposes both rdrand and SGX instructions need to be
intercepted by ROMAIN in order to ensure determinism across replicas. I did
not implement this kind of interception yet, but there are two options to do so:

1. Disallow Instructions: Both kinds of instructions will only be available in
a subset of Intel’s CPUs and software is therefore required to check the
availability of these extensions on the current CPU before using them. This
is done using the cpuid instruction. ROMAIN can intercept cpuid and
pretend to a replicated application that these instructions are unavailable
on the current CPU. Software will then have to work around this problem
and must not use the non-deterministic instructions.

2. Virtualize Instructions: Intel’s VMX virtualization extensions allow the
user to configure for which reasons a virtual machine will cause a VM exit
that is then seen by the hypervisor. Random number generation, SGX, as
well as rdtsc can thereby be configured to raise a visible externalization
event. ROMAIN could be extended to run replicas not only as OS processes
but as hardware-supported virtual machines and thereby intercept and
emulate these instructions.

Florian Pester demonstrated that replication based on hardware-assisted
virtual machines is feasible.*> With such an extension we can implement both
of the above options. However, while the first alternative will be easier to
implement, some applications may simply refuse to work if their expected
hardware functionality is unavailable. Therefore, I suggest to investigate
option number two in future work.

3.8 Error Detection and Recovery

With the mechanisms described above, ROMALIN is able to execute replicas
of a single-threaded application. The replicas run as isolated processes and
the management mechanisms I presented in the previous sections provide four
isolation properties, which are fundamental for successful error detection and
recovery:

“I'Intel Corp. Intel Digital Random Number
Generator (DRNG) — Software Implemen-
tation Guide. Technical Documentation at
http://www.intel.com, 2012

“Intel Corp. Software Guard Exten-
sions — Programming Reference. Technical

Documentation at http://www.intel.com,
2013

4 Florian Pester. ELK Herder: Replicat-
ing Linux Processes with Virtual Machines.
Diploma thesis, TU Dresden, 2014

http://www.intel.com
http://www.intel.com

66 BJORN DOBEL

1. Replicas have an identical view of their kernel objects. Kernel objects
are created using system calls. ROMAIN intercepts all system calls and
is therefore able to ensure that replicas always have an identical view of
these objects. As a result, we can assume all system calls that target the
same object to have the same semantics.

2. Replicas have identical address space layouts. The ROMAIN master
process acts as the memory manager for all replicas. For this purpose
it intercepts all system calls related to dataspace acquisition and address
space management. ROMAIN thereby establishes identical address space
layouts in all replicas. By servicing replica page faults, the master process
furthermore ensures that the replicas’ accessible memory regions exactly
match.

3. Replicas obtain identical inputs. Replicas receive inputs through system
calls, shared memory, and timing-specific mechanisms. ROMAIN inter-
cepts all these sources of input and thereby provides all replicas with the
same inputs. Replicas execute the same code and therefore will determin-
istically produce the same output unless they suffer from the effects of
hardware faults.

4. Data never leaves the sphere of replication without being validated. Repli-
cas output data using system calls or shared memory channels. ROMAIN
intercepts both types of output. As a consequence of properties 1, 2, and
3 these outputs will be identical as long as the replicas do not experience
hardware faults.

3.8.1 Comparing Replica States

While executing a replicated application, the FIASC0.OC kernel reflects all
externalization events to the ROMAIN master process. Once all replicas reach
their next externalization event, the master compares the replicas’ register
states and the content of their UTCBs. If all these data match, the intercepted
externalization event is valid and can be further handled by the master.

The replica state comparison only validates that the replicas at this point in
time still agree about their outputs. In order to decrease comparison overhead
the master does not compare the replicas’ memory contents. If a hardware
error modifies a replica’s memory state and the replica still reaches its next
system call in the same state as all other replicas, this faulty state remains
undetected.

Such an undetected error can lead to two scenarios: First, the erroneous
memory value does not case the application to misbehave at all. This is a case
of a benign fault and not detecting it does not harm the replicated application.
Redundant multithreading mechanisms often avoid detecting benign errors in
order to reduce their execution time overhead.

In the second scenario, the faulty memory location is used to compute
subsequent output operations. The affected replica will then produce a future
externalization event that differs from the other replicas and ROMAIN will
then detect the error. Not detecting faulty memory state immediately in this
scenario increases error detection latency, but does not impact the correctness
of the replication mechanism.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 67

If replica states mismatch, the master initiates a recovery procedure. First,
ROMAIN tries to perform forward recovery using majority voting. The master
checks if the state of a majority of replicas matches. If this is the case, the
faulty replicas’ states are overwritten with the majority’s state. This includes
overwriting registers, UTCBs, as well as all memory content. After successful
forward recovery all replicas are in an identical state once again and may
immediately continue operation.

If the number of replicas does not allow to make a majority decision,
ROMAIN falls back to providing fail-stop behavior. The replicated application
is terminated and an error message is returned.

3.8.2 Reducing Error Detection Latency

ROMAIN detects faulty replicas as soon as they cause an externalization event
that differs from the other running replicas. The underlying assumption is
that applications regularly cause externalization events in the form of page
faults and system calls that trigger validation. Unfortunately, this assumption
does not hold in all cases.

Replicas Stuck in an Infinite Loop The first problem results from errors

that cause replicas to execute infinite loops that do not make any progress.

This may for instance happen if a hardware fault modifies the state of a loop
variable in a way that the loop’s terminating condition is never reached.**
In this case the ROMAIN master will never be able to compare all replicas’
states because the faulty replica never reaches its next externalization event
for comparison.

ROMAIN solves this problem by starting a watchdog timer whenever the
first replica raises an externalization event. If this watchdog expires before all
replicas reach their next externalization event, error correction is triggered. In
case a majority of replicas reached their externalization event, the remaining
replicas are considered faulty. ROMAIN then halts these replicas and triggers
recovery as described before. If fewer than half of the replicas reached their
externalization event, these replicas may be the faulty ones. ROMAIN then
continues to wait for externalization events from the remaining replicas before
performing error detection.

Bounding Validation Latencies A second problem related to error detection

was analyzed by Martin Kriegel in his Bachelor’s Thesis* which I advised.

Compute-bound applications may perform long stretches of computation in

between system calls as shown in Figure 3.23 on the following page. This

increases the period between state validations, #,. A fault happening within
this computation may have a potentially long error detection latency te.
Kriegel identified this as a problem in three cases:

1. Multiple errors: 1f t, becomes greater than the expected inter-arrival time
of hardware faults, a replicated application may suffer from multiple
independent faults before validation takes place. In this case, recovery
through majority voting may no longer be possible.

4 Martin Unzner. Implementation of a Fault
Injection Framework for L4Re. Belegarbeit,
TU Dresden, 2013

45 Martin Kriegel. Bounding Error Detection
Latencies for Replicated Execution. Bache-
lor’s thesis, TU Dresden, 2013

68 BJORN DOBEL

46 Philip Axer, Moritz Neukirchner, Sophie
Quinton, Rolf Ernst, Bjorn Dobel, and Her-
mann Hirtig. Response-Time Analysis
of Parallel Fork-Join Workloads with Real-
Time Constraints. In Euromicro Conference
on Real-Time Systems, ECRTS’13, Jul 2013

Figure 3.23: Long-running computations in-
crease error detection latency if ROMAIN
only relies on system calls for state compari-
son.

“"Intel Corp. Intel64 and IA-32 Ar-
chitectures Software Developer’s Man-
ual. Technical Documentation at http://
www.intel.com, 2013

“David Levinthal. Performance
Analysis Guide for Intel Core i7 Pro-
cessor and Intel Xeon 5500 Processors.
Technical report, Intep Corp., 2009.
https://software.intel.com/sites/
products/collateral/hpc/vtune/
performance_analysis_guide.pdf

2. Checkpoint Overhead: If ROMAIN operates in fail-stop mode, recovery

may trigger checkpoint rollback and re-computation. The longer ¢, is, the
longer the required re-computation takes.

3. Loss of Timing Guarantees: The above two effects may eventually lead to

loss of timing guarantees due to hardware errors. Note, that this thesis does
not deal with providing real-time guarantees for replicated applications in
the presence of hardware faults. Research on this topic is ongoing and has
for instance been published by Philip Axer.*¢

<€ t, >

| |

I <€ teg >

| | |

! € 1 =P !

| | | |

1 1
Long-running computation

State State State State
valida- valida- valida- valida-
tion tion tion tion

To address these issues, Kriegel proposed to insert artificial state validation
operations at intervals smaller than #,. These intervals are shown in cyan
in Figure 3.23. With these additional state validations, detection latency is
reduced to e, and ROMAIN may therefore trigger recovery operations faster.

Kriegel validated his proposal with an extension to ROMAIN and the
F1Asco0.0OC kernel. This extension inserts artificial exceptions into run-
ning replicas by leveraging a hardware extension. Modern CPUs provide
programmable performance counters to monitor CPU-level events.*’” These
counters can be programmed to trigger an exception upon overflow. Kriegel
used this feature to trigger exceptions for instance once a replica retired
100,000 instructions. As replicas execute deterministically, they will raise
such an exception at the same point within their execution and the ROMAIN
master can use these exceptions to validate their states.

During his work, Kriegel found that counting retired instructions leads to
imprecise interrupts, because this performance counter depends on complex
CPU features, such as speculative execution. Depending on the workload and
other hardware effects, speculation may lead to the retirement of multiple
instructions within the same cycle. Due to this effect, replicas may get
interrupted by a performance counter overflow, but still their instruction
pointers and states differ because some replicas may already have executed
more instructions than others. Kriegel devised a complicated algorithm to let
replicas catch up with each other in such situations. However, the fundamental
problem is well-known and Intel’s Performance Analysis Guide suggests to
use other performance counters —such as Branches Taken —to obtain more
precise events.*8

http://www.intel.com
http://www.intel.com
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 69

SUMMARY: ROMAIN detects erroneous replicas upon their next
externalization event by comparing the states of all replicas. If possi-
ble, ROMAIN provides forward recovery by majority voting among
the replicas. If this is impossible, ROMAIN falls back to fail-stop
behavior.

ROMAIN relies on frequent externalization events, but some applica-
tions may not use system calls often enough. In this case, hardware
performance counters can be used to insert artificial state validation
operations.

In this chapter I described how ROMAIN instantiates application replicas,
manages their resources, and validates their states. Redundant multithreading
assumes that replicas always execute deterministically if presented with the
same inputs. This is unfortunately not the case if the replicated application
is multithreaded, because scheduling decisions made by the underlying ker-
nel may introduce additional non-determinism. Replicating multithreaded
applications therefore requires additional mechanisms, which [am going to
discuss in the next chapter.

4

Can we Put the Concurrency Back
Into Redundant Multithreading ?

Many software-level fault tolerance methods — such as SWIFT introduced in
Section 2.4.2 on page 29 — were developed or tested solely targeting single-
threaded application benchmarks. And despite their names even redundant
multithreading techniques — such as PLR and ROMAIN in the version I
introduced until now — cannot replicate multithreaded applications. In this
chapter I explain that scheduling non-determinism causes false positives in
error detection for such programs. Multithreaded replication needs to correctly
distinguish these false positives from real errors in order to be both correct
and efficient.

Deterministic multithreading techniques solve the non-determinism prob-
lem. I review related work in this area and then present enforced and co-
operative determinism—two mechanisms that allow ROMAIN to achieve
deterministic multithreaded replication by making lock acquisition and re-
lease deterministic across replicas. I compare these two mechanisms with
respect to their execution time overhead and their reliability implications.

The ideas discussed in this chapter were published at EMSOFT 2014.!

4.1 What is the Problem with Multithreaded Replication?

Developers make use of modern multicore CPUs by adapting their applica-
tions to leverage the available resources concurrently. Multithreaded pro-
gramming frameworks — such as OpenMP2, Cilk,? or Callisto* — support
this adaptation. These frameworks usually build on a low-level threading
implementation.

The POSIX thread library (Libpth read) is one of the most widely used
low-level thread libraries. Extending ROMAIN to support libpthread ap-
plications therefore allows to replicate a wide range of multithreaded pro-
grams. Throughout this chapter I will therefore focus on applications using
libpthread. In this section I first give a short overview of multithread-
ing primitives. Thereafter I explain how non-determinism in multithreaded
environments counteracts replicated execution.

! Bjorn Dobel and Hermann Hirtig. Can We
Put Concurrency Back Into Redundant Multi-
threading? In /4th International Conference
on Embedded Software, EMSOFT’ 14, New
Delhi, India, 2014

2L. Dagum and R. Menon. OpenMP: An
Industry Standard API for Shared-Memory
Programming. Computational Science Engi-
neering, IEEE, 5(1):46-55, Jan 1998

3 Matteo Frigo, Charles E. Leiserson, and
Keith H. Randall. The Implementation of the
Cilk-5 Multithreaded Language. In Confer-
ence on Programming Language Design and
Implementation, PLDI’98, pages 212-223,
Montreal, Quebec, Canada, June 1998

4 Tim Harris, Martin Maas, and Virendra J.
Marathe. Callisto: Co-Scheduling Parallel
Runtime Systems. In European Conference
on Computer Systems, EuroSys *14, Amster-
dam, The Netherlands, 2014. ACM

° The IEEE and The Open Group. POSIX
Thread Extensions 1003.1c-1995. http://
pubs.opengroup.org, 2013

http://pubs.opengroup.org
http://pubs.opengroup.org

72 BJORN DOBEL

®Konstantin ~ Serebryany and Timur
Iskhodzhanov. ThreadSanitizer: Data Race
Detection in Practice. In Workshop on
Binary Instrumentation and Applications,
WBIA’09, pages 62-71, New York, NY,
USA, 2009. ACM

7 Maurice Herlihy and Nir Shavit. The Art

of Multiprocessor Programming. Morgan
Kaufmann Publishers, 2008

Figure 4.1: Blocking Synchronization

4.1.1 Multithreading: An Overview

A thread is the fundamental software abstraction of a physcial processor
in a multithreaded application and represents a single activity within this
program. The thread library manages thread properties, such as what code it
executes and which stack it uses. The execution order of concurrently running
threads is determined by the underlying OS scheduler. This separation has
two advantages: first, applications do not need to be aware of the actual
number of CPUs and can launch as many threads as they need. The OS will
then take care of selecting which thread gets to run when and on which CPU.
Second, in contrast to a single application, the OS can incorporate global
system knowledge into its load balancing decisions.

To cooperatively compute results, threads use both global and local re-
sources. While local resources are only accessed by a single thread, global
resources are shared among all threads. The state of global resources and
hence program results heavily depend on the order in which threads read
and write this shared data. These situations are called data races. Races and
the potential misbehavior they may induce are an important concern when
developing and testing parallel applications.®

A code path where threads may race for access to a shared global resource
is called a critical section. Thread libraries provide synchronization mecha-
nisms, which developers can use to protect critical sections from data races.
These mechanisms include a range of different interfaces, such as blocking

and non-blocking locks, condition variables, monitors, and semaphores.7

lock(L) unlock(L)
T @ L
critical
critical
y | - NP TPP
lock(L) unlock(L) —
Time
—— Running Blocked

Figure 4.1 gives a general overview of how synchronization primitives
work. Critical sections are protected by one or more synchronization variables,
such as a lock L. Whenever a thread 7 tries to execute a critical section, it
issues a synchronization call, such as lock (L), to mark the critical section
as busy. When a thread 7 tries to enter a critical section protected by the
same lock while the lock is owned by 77, 7> gets blocked until 7] leaves
its critical section by calling unlock(L). The synchronization mechanism
thereby makes sure that only one thread at a time can execute the critical
section.

4.1.2 Multithreading Meets Replication

As presented in the previous chapter, ROMAIN implements fault tolerance
by replicating an application N times and validating the replicas’ system call
parameters. Intuitively, extending this approach to multithreaded applications
is straightforward: ROMAIN should launch N replicas of every application
thread and compare these threads’ system calls independently. Unfortunately,

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 73

this approach fails for applications where threads behave differently depending
on the state of a global resource and the time and order of accesses to this
resource.

To illustrate the problem let us consider a multithreaded application that
uses the ThreadPool design pattern® to distribute work across a set of worker
threads as shown in Figure 4.2. An application consists of two worker threads
Wi and W,. The workers operate on work packets (A-C) which they obtain
one packet at a time from a globally shared work queue. The workers exe-
cute the code shown in Listing 4.3: A packet is first removed from the work
queue (get_packet()). Let us assume this function is properly synchro-
nized so that no data race exists and it always removes and returns the first
entry from the shared work queue. In the second step, the worker processes
this packet (process()). Finally, the worker makes this operation’s results
externally visible (output()).

If the two worker threads are scheduled concurrently by the OS scheduler,
their behavior depends on who gets to access the work queue first. Fig-
ures 4.4 @ and ® show two possible schedules for processing work packets
A and B. Both schedules are valid, but lead to different program behavior
from an external observer’s point of view. Schedule a) will produce the
event sequence “output(A); output(B)”, whereas schedule b) will pro-
duce “output(B); output(A).”

get_packet() process(A) output(A)

Wla { L J @

WZn """ { J @ o—
get_packet() process(B) output(B)
get_packet() process(B) output(B)

Wip «e--- ® @ ®

Wap ® @ ®

E——
get_packet() process(A) output(A) Time

We see in the example that different timing of events can impact program
behavior and lead to non-deterministic execution even given the same inputs.
Scheduling decisions made by the underlying OS are a main source of such
non-determinism and remain out of control of the application or the thread
libralry.9

Let us now assume, we use ROMAIN to replicate our application using
the intuitive approach of replicating threads independently. Each application
thread is instantiated twice: Wy, and Wy, are replicas of worker 1, W,, and
W, are replicas of worker 2. Replicas execute independently and ROMAIN
intercepts their externalization events (output ()) to validate their states. In
this scenario schedules ® and ® from Figure 4.4 may constitute schedules
executed by the two application replicas.

To detect errors ROMAIN will compare externalization events generated
by replicas of the same application thread. The master will thereby find
that replica Wy, executes output (A), while replica Wy, calls output(B).

8Doug Lea. Concurrent Programming
In Java. Design Principles and Patterns.
Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1999

Shared
Work @
Queue

Wi W,

Figure 4.2: Example ThreadPool: Two
worker threads obtain work items from a
globally shared work queue.

1 void worker()
2 {

3 while (true) {

4 p = get_packet();
5 process(p);

6 output(p);

7

8

}

Listing 4.3: Worker thread implementation

Figure 4.4: Example schedules for the
ThreadPool example

° That is, unless the application uses OS func-
tionality to micromanage all its threads and
thereby forgoes any benefits from OS-level
load balancing and scheduling optimizations.

74 BIJORN DOBEL

0 Edward A. Lee. The Problem with Threads.
Computer, 39(5):33-42, May 2006

""Robert L. Bocchino, Jr., Vikram S.
Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey
Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A Type and Effect Sys-
tem for Deterministic Parallel Java. In Con-
ference on Object Oriented Programming
Systems Languages and Applications, OOP-
SLA’09, pages 97-116, Orlando, Florida,
USA, 2009. ACM

ROMAIN will deem this a replica mismatch, report a detected hardware fault,
and trigger error recovery. The same will happen for replicas W», and Wp,.

In the best case, this false positive error detection will induce additional
execution time overhead, because ROMAIN performs unnecessary error re-
covery. In the worst case, non-deterministic execution will lead all replicas of
an application to execute different schedules and produce different events. In
this case, no majority of threads with identical states may be found. ROMAIN
is then no longer able to perform any error recovery at all.

SUMMARY: Scheduling-induced non-determinism may yield mul-
tiple valid schedules of a multithreaded application that generate
different outputs. This non-determinism may either seriously impact
replication performance or hinder successful replication completely.

4.2 Can we make Multithreading Deterministic?

Non-determinism originating from data races and from OS-level scheduling
decisions makes development of concurrent software complex and error-prone.
These issues raise the question whether thread-parallel programming really is
a useful paradigm and if we can replace traditional concurrency models with
a more comprehensible approach.'® Deterministic multithreading (DMT) is
such an alternative.

The goal of DMT is to make every run of a parallel application exhibit iden-
tical behavior. Methods to do so have been proposed at the levels of program-
ming languages, middleware and operating systems. Applying these mecha-
nisms to multithreaded replicas in ROMAIN will solve the non-determinism
problem introduced in the previous section — deterministic replicas yield
deterministic externalization events unless affected by a hardware error. I will
therefore review DMT to find techniques that are applicable in the context of
ROMAIN.

Language-Level Determinism Programming-language extensions introduce
new syntactic constructs or compiler-level analyses to allow developers to
express concurrency while maintaining freedom of data races. As an example,
Deterministic Parallel Java augments the Java programming language with
annotations to specify which regions in memory are accessed by a piece of
code. Developers specify these regions and then use parallel programming
constructs to parallelize code segments. The compiler uses the annotations to
verify that concurrent code segments are race-free.!!

If applications are implemented to be completely deterministic, they will
never exhibit alternative schedules. Such deterministic programs can be repli-
cated without intervention from the replication system. ROMAIN therefore
benefits from these language extensions. However, my aim is to support a
wide range of binary-only applications and it is hence impractical to rely on
all applications being implemented using specific programming languages.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 75

Determinism in Multithreaded Distributed Systems Distributed systems
often use state machine replication to distribute work across compute nodes
and tolerate node failures. Recent distributed replication frameworks address
the fact that the software running on single nodes may exhibit behavioral
variations due to multithreaded non-determinism.

Cui’s Tern'? analyzes parallel applications and their inputs with respect to
the schedules they induce. The Tern runtime then classifies incoming data and
tries to force scheduling and lock acquisition down a path that was previously
learned from similar inputs. Tern batches inputs into larger chunks that are
executed concurrently. The runtime can thereby reduce the number of input
classifications. Tern has low execution time overhead unless data does not
match the precomputed schedule. In this latter case, the runtime has to start a
new learning run. As Tern requires applications to be analyzed before running
them, it is not a practical alternative for ROMAIN because that would require
adding a complex input classification and schedule prediction engine to the
master process.

Similar to Tern, Storyboard enforces deterministic replication by relying
on application-specific input knowledge to force applications to take precom-
puted schedules.!> EVE batches inputs into groups that are likely to have
no data conflicts. If this is the case, concurrent processing of these inputs
is likely to have no non-deterministic effects.!* Rex avoids an expensive
training phase by using a leader/follower scheme. Leader replicas execute,
log their non-deterministic decisions, and finally validate that they reached
the same result. Follower replicas then consume the logged values and replay
the logged decisions. 15

As ROMAIN replicates operating system processes, batching their system
calls and distributing them deterministically is unfortunately not an option.
We will however see on page 78 that the idea of leader/follower determinism
can be applied to multithreaded replication as well.

Deterministic Memory Consistency Models Memory models at both the
hardware and the programming language level describe how modifications
to data in memory become visible to the rest of the system. Based on these
models we can reason about whether programs will expose deterministic
behavior.

Lamport defined sequential consistency as a parallel execution that orders
memory writes as if they were executed by one arbitrary interleaving of

sequential threads on a single processor.16

Most importantly, all threads
observe the same interleaving. Note that sequential consistency does not
provide freedom from data races — it simply provides a framework to reason
about the existence of these problems.

Other researchers recognized that sequential consistency is too strict as it
forbids compiler-level or hardware-level optimizations, which would improve
the performance of concurrent execution. Alternatives — such as release con-
sistency — therefore weaken consistency rules to allow for optimizations.!”
Release consistency diverges from the need for a common shared view of
memory and supports arbitrary reordering of memory accesses. However, the
model requires all accesses to globally shared objects to be protected by a pair

of acquire and release operations. In combination, reordering can be used

12 Heming Cui, Jingyue Wu, Chia-Che Tsai,
and Junfeng Yang. Stable Deterministic Mul-
tithreading Through Schedule Memoization.
In Conference on Operating Systems Design
and Implementation, OSDI’ 10, pages 1-13,
Vancouver, BC, Canada, 2010. USENIX As-
sociation

13 Riidiger Kapitza, Matthias Schunter, Chris-
tian Cachin, Klaus Stengel, and Tobias Dis-
tler. Storyboard: Optimistic Deterministic
Multithreading. In Workshop on Hot Topics
in System Dependability, HotDep’ 10, pages
1-8, Vancouver, BC, Canada, 2010. USENIX
Association

“M. Kapritsos, Y. Wang, V. Quema,
A. Clement, L. Alvisi, and M. Dahlin. EVE:
Execute-Verify Replication for Multi-Core
Servers. In Symposium on Opearting Sys-
tems Design & Implementation, OSDI’12,
Oct 2012

15 Zhenyu Guo, Chuntao Hong, Mao Yang,
Dong Zhou, Lidong Zhou, and Li Zhuang.
Rex: Replication at the Speed of Multi-core.
In European Conference on Computer Sys-
tems, EuroSys 14, Amsterdam, The Nether-
lands, 2014. ACM

16 Leslie Lamport. How to Make a Multi-
processor Computer that Correctly Executes
Multiprocess Programs. IEEE Transactions
on Computers, 28(9):690-691, September
1979

7 Kourosh Gharachorloo, Daniel Lenoski,
James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory Consis-
tency and Event Ordering in Scalable Shared-
Memory Multiprocessors. In International
Symposium on Computer Architecture, ISCA
’90, pages 15-26, Seattle, Washington, USA,
1990. ACM

76 BIJORN DOBEL

'8 Amittai Aviram, Bryan Ford, and
Yu Zhang. Workspace Consistency: A
Programming Model for Shared Memory
Parallelism. In Workshop on Determinism
and Correctness in Parallel Programming,
WoDet’11, Newport Beach, CA, 2011

19 Amittai Aviram, Shu-Chun Weng, Sen Hu,
and Bryan Ford. Efficient System-enforced
Deterministic Parallelism. pages 193-206,
Vancouver, BC, Canada, 2010. USENIX As-
sociation

20 Amittai Aviram and Bryan Ford. Deter-
ministic OpenMP for Race-Free Parallelism.
In Conference on Hot Topics in Parallelism,
HotPar’11, Berkeley, CA, 2011. USENIX
Association

2 Timothy Merrifield and Jakob Eriks-
son. Conversion: Multi-Version Concur-
rency Control for Main Memory Segments.
In European Conference on Computer Sys-
tems, EuroSys *13, pages 127-139, Prague,
Czech Republic, 2013. ACM

22 Tom Bergan, Owen Anderson, Joseph De-
vietti, Luis Ceze, and Dan Grossman. Core-
Det: A Compiler and Runtime System for
Deterministic Multithreaded Execution. In
Conference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, ASPLOS XV, pages 53—64, Pittsburgh,
Pennsylvania, USA, 2010. ACM

to improve concurrent performance, while the rules about protecting global
objects still allow to reason about the order of object updates and hence about
the existence of data races.

Aviram and Ford argued that in order to reduce implementation complexity,
we not only need a memory model to reason about races, but one that enforces
determinism. They proposed a model that ensures completely deterministic
execution and called it workspace consistency.'® Instead of acquiring access
to each global object, workspace consistency requires threads to work on
dedicated copies of these objects. Threads obtain copies using a fork oper-
ation and merge this copy back into the global program state using a join
call. This approach is similar to release consistency. However, instead of
preventing concurrent modification, workspace consistency lets each thread
modify its local object copy. The consistency model furthermore defines
rules about the order in which updated copies are merged back into the global
application view. Thereby any potential data races that exist between threads
are resolved in a deterministic order. As a result, the whole program becomes
deterministic.

Aviram first implemented workspace consistency in the Determinator oper-
ating system.!® This approach requires all programs to be rewritten for a new
system and is therefore impractical if we want to reuse the large quantities of
existing applications on existing operating systems. The authors later demon-
strated that the idea of workspace consistency can also be retrofitted into ex-
isting parallel programming frameworks. For that purpose they implemented
a deterministic version of OpenMP and showed that most state-of-the-art
parallel benchmarks can be adapted to use workspace consistency.20 Merri-
field later added workspace-consistent memory management to Linux and
showed that many concurrent applications —including deterministic threading
systems, shared-memory data structures, and garbage collectors — can benefit
from such management mechanisms being present in the OS.2!

Programs using workspace consistency are automatically deterministic.
As with language-level determinism, replicating such applications does not
require additional support from ROMAIN and works out of the box. Also
similar to language-level approaches we can however not assume that all
applications are implemented deterministically. Hence, deterministic memory
consistency provides no silver bullet for replication.

Deterministic Runtimes In addition to developing new deterministic pro-
gramming methods, researchers proposed ways to retrofit existing systems
with determinism. Bergan’s CoreDet splits multithreaded execution into par-
allel and serial phases and dynamically assigns each memory segment an
owner.22 In the parallel phase threads are only allowed to modify memory
regions they own privately. Once a thread accesses a shared variable it is
blocked until the serial phase. Serial execution is started after a preset amount
of time. Here, threads perform their accesses to shared state in a deterministic
order. CoreDet relies on compiler-generated hints to track memory ownership
and provides a runtime that periodically switches between parallel and serial
thread execution.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 77

A large quantity of multithreaded applications already exists and rewriting
or recompiling them to become deterministic is often infeasible. As mentioned
previously, while these applications may use one of many different parallel
programming paradigms, these paradigms in the end map to a low-level thread
library, such as libpthread.

Most of today’s applications are linked dynamically.23 These programs
do not provide their own version of commonly used libraries —such as 1ibC,
libpthread and 1ibX11—but use a library version globally provided by
the underlying system. While this concept was originally introduced to
reduce binary program sizes and save system memory, it also allows to
transparently replace a system’s implementation of a library. Deterministic
versions of libpthread have been proposed as a drop-in replacement using
this approach.

Strongly deterministic libraries — such as DTHREADS2* and Grace? —
provide fully deterministic ordering of every memory access. Both approaches
do so by emulating workspace consistency: each thread runs in a dedicated
address space and works on dedicated copies of data. When threads reach
predefined synchronization points — such as well-known libpthread func-
tions — their changes are merged back into the main address space determin-
istically.

Spawning per-thread address spaces and merging data back and forth does
not come for free. DTHREADS’ authors report a slowdown of up to a 4 times
when comparing DTHREADS applications to their native 1ibpthread ver-
sions. Parrot2% reduces DTHREADSs overhead using developer hints. These
hints allow the programmer to specify concurrent regions and performance-
critical non-deterministic sections within their application. This approach is
unfortunately no option for ROMAIN because it a) requires modifications to
the application and b) forgoes determinism to improve performance, which is
not a viable alternative for replicated execution.

Olszewski’s Kendo?’ and Basile’s LSA algorithm?® observe that as long
as a multithreaded application is race-free and protects all accesses to shared
data with locks, we do not need to enforce deterministic ordering of every
memory access. Instead, it suffices to ensure that all lock acquisition and
release operations are performed in a deterministic order. Their weakly de-
terministic libraries implement such behavior by intercepting libpthread’s
mutex_lock and mutex_unlock operations.

Weak determinism provides lower execution time overheads than strongly
deterministic methods. Kendo’s authors report less than 20% execution time
overhead compared to native libpthread. As a downside, their approach
requires applications to be race-free and therefore limits its applicability.

Deterministic Multithreading for Replicating Multithreaded Applications
While many of the previously discussed solutions use replication as one exam-
ple to motivate their work, only few researchers showed that their approach
actually works for this purpose.

Bergan implemented dOS, an operating system modification in Linux that
adds CoreDet deterministic management to a group of processes and thereby
makes this subset of Linux applications deterministic.?’ Using this solution,
the authors were able to replicate a multithreaded web server. However, their

2 John R. Levine. Linkers and Loaders. Mor-
gan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1st edition, 1999

% Tongping Liu, Charlie Curtsinger, and
Emery D. Berger. Dthreads: Efficient De-
terministic Multithreading. In Symposium
on Operating Systems Principles, SOSP ’11,
pages 327-336, Cascais, Portugal, 2011.
ACM

% Emery D. Berger, Ting Yang, Tongping
Liu, and Gene Novark. Grace: Safe Multi-
threaded Programming for C/C++. In Confer-
ence on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA
’09, pages 81-96, Orlando, Florida, USA,
2009. ACM

26 Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao
Li, Ben Blum, Xinan Xu, Junfeng Yang,
Garth A. Gibson, and Randal E. Bryant. Par-
rot: A Practical Runtime for Deterministic,
Stable, and Reliable Threads. In ACM Sym-
posium on Operating Systems Principles,
SOSP’13, pages 388—405, Farminton, Penn-
sylvania, 2013. ACM

27 Marek Olszewski, Jason Ansel, and Saman
Amarasinghe. Kendo: Efficient Determinis-
tic Multithreading in Software. In Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems, AS-
PLOS XIV, pages 97-108, Washington, DC,
USA, 2009. ACM

28 Claudio Basile, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer. Active Replication of
Multithreaded Applications. Transactions on
Parallel Distributed Systems, 17(5):448-465,
May 2006

2 Tom Bergan, Nicholas Hunt, Luis Ceze,
and Steve Gribble. Deterministic Process
Groups in dOS. In Symposium on Oper-
ating Systems Design & Implementation,
OSDI'10, pages 177-192, Vancouver, BC,
Canada, 2010. USENIX Association

78 BIJORN DOBEL

% Hamid Mushtaq, Zaid Al-Ars, and Koen
L. M. Bertels. Efficient Software Based Fault
Tolerance Approach on Multicore Platforms.
In Design, Automation & Test in Europe Con-
ference, Grenoble, France, March 2013

3! Their only addition to Linux is a non-
POSIX-compliant multithreaded fork sys-
tem call.

32 Dongyoon Lee, Benjamin Wester, Kaushik
Veeraraghavan, Satish Narayanasamy, Pe-
ter M. Chen, and Jason Flinn. Respec: Effi-
cient Online Multiprocessor Replay via Spec-
ulation and External Determinism. In Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems, AS-
PLOS XV, pages 77-90, Pittsburgh, Pennsyl-
vania, USA, 2010. ACM

solution relies on a significant modification to the Linux kernel. Their patch
adds and modifies more than 8,000 lines of code in the kernel and touches
all major subsystems, such as memory management, scheduling, file systems,
and networking.

Mushtaq implemented a deterministic replicated thread library on Linux
that requires only minor kernel modifications.3? His solution uses a modified
libpthread. A leader process executes libpthread calls and logs their
order and results into a shared memory area. A second follower process
executes behind the leader and reads the leader’s log data. The follower
uses this log to detect errors by comparing his results to the logged ones.
Furthermore, the follower uses the log to assign locks to his threads in the
same order as the leader process.

31 and

Mushtaq’s work is attractive because it works solely in user space
he reports low overheads for replicated execution. Upon detecting an error,
Mushtagq rolls back to a previous checkpoint. Similar to other Linux check-
pointing solutions,32 he creates a lightweight checkpoint using the fork()
system call: fork() creates a copy-on-write copy of the calling process. Par-
ent and child thereby share all memory until the parent starts modifying pages,
which are then dynamically copied by the OS kernel. In the checkpointing
scenario, the child process never runs. It is solely used to store the memory
contents of its parent. If the system detects an error, rollback is achieved by
killing the erroneous parent and continuing execution in its child.

Checkpointing using fork() works well for restarting after a software
error, but is seriously flawed if we want to tolerate hardware errors: Due to
the copy-on-write nature of a forked process, the original process and its
checkpoint will share any data that is read-only. If this data is affected by a
fault in the memory hardware, the data will be modified but no copy will be
created. Hence, if this fault leads to a failure in the protected process, rolling
back to the previous checkpoint will not fix the problem but instead re-execute
from a corrupted checkpoint. Using ECC-protected memory would help to
detect such corruption, but Mushtaq discusses neither the problem nor the
solution in his paper.

SUMMARY: To replicate multithreaded applications we need to
make their execution deterministic. Deterministic multithreading
methods provide this feature and implementations exist at the level
of programming languages, runtime environments, and operating
systems.

Modifying the system’s libpthread thread library seems to most
generic option to make replication deterministic, because these mech-
anisms apply to a wide range of programs and do not rely on the
program or the underlying OS to be modified in any way.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 79

4.3 Replication Using Lock-Based Determinism

I will now describe how I extended ROMAIN to support multithreaded ap-
plications. Starting from the status presented in the previous chapter, I will
first explain how concurrent threads generating externalization events are
handled by the master process. Thereafter I will describe how multithreaded
replicas are made deterministic in order to avoid the problems introduced in
the previous section.

4.3.1 An Execution Model for Multithreaded Replication

I extended ROMAIN’s replication model with another abstraction to facilitate
multithreaded replication. Figure 4.5 illustrates the resulting terminology.
As before, ROMAIN runs multiple replicas (Replica 1, Replica 2) of an
application. These replicas constitute isolated address spaces and serve as
resource containers. Similar to Kendo, which I introduced on page 77, each
replica of a multithreaded application runs all its replica threads concurrently
within the replica address space. In the figure we see three such threads in
every replica. To distinguish threads across replicas I will from now on denote
T; ; as the j-th thread in the i-th replica.

The master process intercepts and handles replica threads’ externalization
events. In Section 3.3 I described how the master waits for all replica threads
to reach their next externalization event, compares their results, and then
handles the respective event. This is insufficient for multithreaded replication,
because we now no longer need to wait for all replica threads, but only for
all replicas of the same replicated application thread. For instance, if all else
is identical, then thread T, ; in Replica 1 and T, ; in Replica 2 will execute
the same code and their externalization events need to be compared for error
detection. I refer to the set of threads that have the same local thread ID and
execute identical code within different replicas as a thread group.

E

Tia ® Py
Replica 1 E4
Ti2 ® y
y Handling
M o—————©O
A
Master ¥ Handling
M, ’70
Ty —@ A
Replica 2 E,
Tan ® J
Esz
_—
time

Figure 4.6 shows how thread groups are handled by the master. We see
two replicas running two threads each. The thread pairs (T 1, T,1) and (T 2,
T,) form two thread groups. Once T | raises an externalization event E;
it gets blocked until the other thread in its thread group, T, 1, also reaches
its next externalization event (E;). The events are reflected to the master for

Replica 1 Replica 2

Replica

N\
e/ @+
: : Thread
Il | Group

Externa-
lization
Event

Figure 4.5: Terminology overview

Figure 4.6: Multithreaded event handling in
ROMAIN

80 BIJORN DOBEL

event handling in thread M, which resumes execution of threads Ty ; and Ty |
once handling is finished. The second thread group executes independently
from the first one. While T;; and T, ; are handled by the master, T, and
T, continue execution until they hit their next externalization events Ez and
E4, which are then handled by the master in thread M;.

Besides distinguishing events by their thread groups, ROMAIN handles
system calls and manages resources in the same way as I described in Chap-
ter 3. However, in order to ensure that thread groups always behave identically,
we need to resolve non-deterministic behavior in our replicas as discussed in
the previous section.

4.3.2 Options for Deterministic Multithreading in ROMAIN

As stated in Chapter 2, one of my design goals for ASTEROID is to protect
unmodified binary applications against the effects of hardware faults. When
considering multithreaded replication, this requirement rules out any solu-
tions that demand applications to be rewritten using DMT mechanisms or
recompiled using a DMT-aware compiler. Based on this requirement and the
review of DMT techniques in the previous section, two options remain for
protecting multithreaded applications: I can make applications deterministic
by either modifying the whole system or by implementing a deterministic
multithreading library.

Determinism at the System or Library Level? To provide system-level deter-
minism I need to adapt the FIASC0.OC kernel, the L4 Runtime environment,
as well as important libraries — such as libC —to guarantee deterministic
execution for multithreaded applications. This approach mirrors CoreDet and
dOS, which I introduced on page 76 and has been shown to induce low execu-
tion time overheads. However, this approach affects all applications running
on F1ASCc0.OC regardless of whether they are protected by ROMAIN. As
a consequence, applications that protect themselves against hardware faults
suffer from overheads related to deterministic execution even if they are not
affected by non-determinism at all.

Library-level determinism uses a modified version of the libpthread
library to implement deterministic multithreading on a per-application basis.
As explained previously, the dynamic nature of this library allows us to replace
its implementation without modifying application code. Furthermore, a
system can provide different implementations of this library: When ROMAIN
loads a replicated application it can dynamically load a deterministic version
of libpthread. In contrast, L4Re’s system-wide application loader may
still use an unmodified, non-deterministic Libpthread for applications that
should not suffer from determinism-related overheads.

SUMMARY: I decided to implement multithreaded replication
using library-level determinism as this approach provides more flexi-
bility to the system’s users and also promises to be less complex to
implement than modifying FIASc0.OC and L4Re.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 81

Weak or Strong Determinism? In the previous section I distinguished be-
tween strongly and weakly deterministic thread libraries. Weak determin-
ism — such as Kendo — requires the application to be race-free and protect
all shared data accesses using synchronization operations. This approach
promises low execution time overheads and low resource requirements: all
threads run within the same address space and share global resources.

Strong determinism — as implemented by DTHREADS — provides deter-
minism even in the presence of data races. This benefit is paid for with higher
runtime overheads and resource requirements: by running all threads in indi-
vidual address spaces and implementing workspace consistency, DTHREADS
needs a copy of all globally shared memory for every thread. In the worst
case this means that a deterministic application with N threads requires N
times the amount of memory of the original application.’>

As described in Section 3.5.2, ROMAIN maintains a copy of each memory
region for every replica it runs. If we replicated a DTHREADS application
with N threads using M replicas, this means we need M x N times the amount
of memory of the unreplicated and non-deterministic version. This require-
ment leads to practical limitations: I developed ROMAIN for the x86/32
architecture where every application can address 3 GiB of memory in user
space.>* The ROMAIN master is the pager for all replicas and hence needs to
service their page faults from his private 3 GiB of user memory.

Let us now assume we replicate a multithreaded application in triple-
modular redundant mode. Memory replication demands that this application
can use at most 1 GiB per replica lest the ROMAIN master cannot serve
all replica page faults. If we now assume our application to run 4 threads,
this 1 GiB includes workspace-consistent copies of memory regions for each
thread. In the worst case this means that our application can only use 256 MiB
of distinct memory for computation purposes.

To reduce replication overhead in terms of execution time and resource
usage I therefore decided to implement a weakly deterministic thread library
for replicating multithreaded applications. I am going to describe this weakly
deterministic library and its integration into ROMAIN in the upcoming sec-
tions. In Section 4.3.7 I will outline how a strongly deterministic solution
would differ from the design presented in this section.

4.3.3 Enforced Determinism

Ensuring weakly deterministic multithreaded execution requires that Ro-
MAIN replicas reach an agreement on the order in which threads acquire locks.
In my first approach to implement this agreement, I let the master process
decide on lock ordering. I call this approach enforced determinism because
an external instance imposes ordering on the otherwise non-deterministic
replicas.

Adapting the Thread Library 1 implemented enforced determinism with
an adapted libpthread library that transforms synchronization operations
into externalization events visible to the ROMAIN master. For this purpose
I analyzed the synchronization operations in L4Re’s libpthread library,
which is derived from pClibC.33

3 DTHREADS reduces this worst case by
not copying thread-private memory.

31 GiB is reserved for the FIASC0.0C ker-
nel. Linux and Windows do the same.

3 http://www.uclibc.org/

http://www.uclibc.org/

82 BIJORN DOBEL

int

attribute_hidden
__pthread_mutex_lock
(pthread_mutex_t * mutex)

asm volatile ("int3");

/* rest of code omitted
* [..]
10 */

n o}

1
2
3
4
s q
6
7
8
9

Listing 4.7: Introducing debug exceptions
into libpthread mutex operations

36 Remember, the master has full access to
all replica memory as it also functions as the
replicas’ memory manager.

Four functions within uClibC need to be adapted in order to enforce
deterministic ordering of synchronization events:

1. pthread_mutex_lock(),
2. pthread_mutex_unlock(),
3. __mutex_lock(), and

4. __mutex_unlock().

The former two functions implement libpthread’s mutex synchroniza-
tion primitive. The latter two functions are used for synchronizing concurrent
accesses to data structures internal to libpthread. If we manage to ensure
proper ordering for calls to these functions across all replicas, we will also
achieve deterministic ordering of higher-level synchronization primitives —
such as barriers, condition variables, and semaphores —because libpthread
internally implements these primitives using the above four operations.

I adapted L4Re’s libpthread implementation and replaced the entry
points to the four synchronization functions with an INT3 instruction as
shown in Listing 4.7. This single-byte x86 instruction raises a debug trap
when it is executed. Thereby, whenever a program calls into one of the
synchronization functions, the program will raise a debug exception, which
gets reflected to the ROMAIN master process.

Lock Event Handling in the Master To enforce deterministic replica oper-
ation, the master process needs to implement ordering while handling the
debug exceptions raised by lock operations. For this purpose I added a new
event observer to ROMAIN’s chain of event handlers, the LockObserver.

The LockObserver handles all exceptions related to lock operations by
intercepting these events through ROMAIN’s event handling mechanism.
The observer mirrors each libpthread mutex M, that exist in the replicas
with a dedicated mutex M,, within the context of the master process. The
LockObserver handles synchronization events in three steps:

1. Inspect parameters: We inspect the faulting replica’s stack to determine
the current function calls’ parameters.3® Thereby we obtain the mutex ID
M, that is currently being used as well as the return address at which the
replicas shall resume execution after the lock operation.

The LockObserver uses a hash table to map mutex M, to the corre-
sponding master mutex M,,. If no such entry exists in the hash table, a new
mutex M, is allocated and initialized.

2. Carry out lock operation: The replica’s synchronization operation is per-
formed by the master using the master mutex M,,. All thread groups that
perform lock operations will go through the LockObserver’s event handler.
If these thread groups use the same replica mutex M, they will at this
point carry out an operation on the same master mutex M,,. Thereby, the
LockObserver achieves synchronization between concurrently executing
thread groups identical to the synchronization a native mutex operation
achieves in the context of a single application instance.

3. Adjust replica state: Once the master synchronization operation returns,
we know that we can also return in the replica context. To do so, the

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 83

LockObserver adjusts the thread group’s states to emulate a return from the
lock function. This means setting the replica threads’ instruction pointers
to the previously determined return address and setting the return value
(EAX on x86_32) and stack pointer registers appropriately.

The LockObserver mechanism provides deterministic lock acquisition
across replicas, because all synchronization operations are serialized and
ordered within the master’s handler function. In contrast to other DMT
techniques, multiple runs of the same application will not necessarily produce
identical behavior. The LockObserver still works for replication purposes,
because we are only interested in deterministic ordering between the replicas
in a single application run.

4.3.4 Understanding the Cost of Enforced Determinism:

Worst Case Experiments

I implemented a microbenchmark to evaluate the worst case overhead induced
by using enforced determinism. Two concurrent threads execute the code
shown in Listing 4.8, so that each thread increments a global counter variable
5,000,000 times. For each increment a global mutex mtx is acquired and re-
leased. The benchmark therefore spends most of its time within libpthread’s
synchronization operations and will suffer most from any slowdown induced
by a DMT mechanism.

int counter = 0;
const int increments = 5000000;
pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

1

2

3

4

5 void thread()

6 {

7 for (unsigned i = 0; i < increments; ++i) {
8 pthread_mutex_lock(&mtx) ;

9 counter++;

10 pthread_mutex_unlock(&mtx) ;

Similar to the microbenchmarks in Chapter 3, I executed this benchmark
using ROMAIN with one, two, and three replicas and compared their execu-
tion times to native execution. For these experiments I used a system with
12 physical Intel Xeon 5650 CPU cores running at 2.67 GHz and distributed
across two sockets. Each replica thread as well as each native thread were
pinned to a dedicated physical CPU to maximize concurrency.

Figure 4.9 shows the measured execution times for the benchmark. The
results represent the average over five benchmark runs in each setup. The
runs’ standard deviation was below 0.1% in all cases and is therefore not
shown in the figure. We see that the pure overhead of intercepting all lock
and unlock operations already slows down the benchmark by a factor of 121.
Double and triple-modular redundancy increase this cost even more with a
maximum slowdown of 309 for TMR. These high overheads demand a more
thorough investigation to find their sources.

Listing 4.8: Thread microbenchmark

90 309x

80
70
60 197x

50
40 121x
30
20
T
10
0 —

Native Single DMR TMR

Execution time in seconds

Figure 4.9: Execution times measured for the
multithreading microbenchmark

84 BIJORN DOBEL

0o

T T T
@@ Socket 1

@ Socket 0
T T T T : ‘
Figure 4.10: Sequential assignment of the

benchmark threads to CPU cores on the test
machine

¥ F1Asco0.0C provides a pingpong bench-
mark suite to evaluate the cost of kernel op-
erations and hardware features.

@@ Socket 1

@ Socket 0
1 1 1

)))0

| | |

Figure 4.11: Assignment of the benchmark
threads to CPU cores on the test machine,
optimized to minimize synchronization cost.

Adjusting CPU Placement While the benchmark is designed to run two
worker threads, a closer inspection of libpthread showed that in addition
to these worker threads, a third manager thread is launched. libpthread
uses this thread to internally distribute signals, launch new threads, and
perform cleanups once threads are torn down. The manager thread is
launched lazily once an application becomes multithreaded, e.g., when it first
calls pthread_create(). As a result, the startup order of these threads is
Worker 1 —Manager — Worker 2.

As mentioned before, ROMAIN assigns replica threads to dedicated phys-
ical CPUs. My naive implementation of this assignment was to distribute
threads sequentially across all CPUs starting at CPU 0. As my test machine
has two CPU sockets with six cores each, the replicas in a TMR setup will be
distributed as shown in Figure 4.10.

Unfortunately, this setup assigns replicas of the two heavily synchroniz-
ing worker threads to different processor sockets. Every synchronization
operation requires messages to be sent between the sockets. While L4Re
implements such messaging using FIASC0.OC’s IPC primitives, these will
eventually require Inter Processor Interrupts (IPIs) to be sent between CPUs.

Using a microbenchmark I found that sending messages between cores
on the same socket requires about 8,500 CPU cycles, whereas sending mes-
sages between cores on different sockets costs about 19,500 CPU cycles.?’
Additionally, the manager thread does not perform any real work in the bench-
mark, so distributing these replica threads across CPUs does not gain any
performance and only wastes resources.

To optimize for low IPI latencies I manually adapted the CPU placement
algorithm. The idle replicas of the manager thread are co-located with the
first worker’s thread group, making room to place the second worker thread
group on CPUs 3-5. As Figure 4.11 illustrates, all replica threads thereby
run on a single socket and therefore benefit from reduced IPI latencies for
synchronization purposes.

Reducing Synchronization Cost In a next step I instrumented the ROMAIN
master to determine where the remaining overhead comes from. I separated
replica execution into four different phases, which are depicted in Figure 4.12.
These phases distinguish between active and passive replicas: One active
replica enters the master, performs state validation and potential event han-
dling. The remaining replicas are passive. They wait for the active replica to
finish its processing and then resume execution based on its results.

1. User time (M) measures the time spent executing outside the master
process. This includes both actual application time as well as the time
spent in the FIASC0.0OC kernel for delivering vCPU exceptions. Note
that this time does not include time spent in actual system calls, because
those are handled within the master process.

2. Pre-Synchronization (/') measures the time between entering the master

process and executing event handling. For passive replicas this is equivalent
to the time waiting for all other replicas to enter the master. For active
replicas, this includes state validation time as well as the management
overhead for processing the list of event observers.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 85

3. Observer time () measures the time an active replica spends in one of
ROMAIN’s event observers for handling replica events. This time also
includes time the master spends in system calls on behalf of the replica as
described in Section 3.4 on page 45.

4. Post-Synchronization time (M) tracks the time spent between event han-
dling and resuming replica execution. For the active replica this includes
time for storing the event handling result and waking up all passive replicas.
For passive replicas this is the time to obtain the leader’s state and resume
execution.

Passive
Replicas

Wait for all
Replicas

Active
Replica

Wait for
Handler
to Finish

Wakeup
and
resume

Validate
State

Handle
Event

I re-executed the previous microbenchmark with the CPU placement opti-
mization turned on and measured the fraction of time replicas spend in each
of the four phases and show the results in Figure 4.13. The libpthread
manager thread that runs in every application spends 100% of its time in
event handling, because it is indefinitely waiting for an incoming management
request. It is not shown in the figure. The bars show the average time each
worker thread replica spends in one of the four phases. I always show the
distribution for the first replica of the first worker thread. All other replicas
have similar phase distributions with standard deviations below 1%.

Worker/TMR [11
Worker/DMR _
Worker/Single
1‘0 2‘0 3‘0 4‘0 5‘0 6‘0
Execution time in seconds
[User time [Pre-Synchronization

[Observer Time [Post-Synchronization

First of all we see that the workers spend about 8 seconds of the benchmark
in the actual user code and that this value does not change when increasing the
number of replicas. Given the test machine’s clock speed of 2.67 GHz and the
fact that we execute 10 million lock and unlock operations in each thread, this
number maps to an average user time of around 2,000 CPU cycles per lock
operation. I confirmed with a microbenchmark that this is roughly equivalent

-

Figure 4.12: Execution phases of a single
replica

Figure 4.13: Time the microbenchmark
threads spend in the execution phases shown
in Figure 4.12 when running with optimized
CPU placement.

86 BJORN DOBEL

Execution time in seconds

80
70
60 I ,

T

50
40
30
20
10
0
DMR

Single MR
[Unoptimized
[] CPU Placement

[Fast Synchronization

Figure 4.14: Execution times measured for
the multithreading microbenchmark when
run with optimizations turned on. Unopti-
mized data from Figure 4.9 plotted for refer-
ence.

to the cost of delivering a FIAsSCc0.0OC vCPU exception and resuming the
vCPU afterwards. This shows that user time is dominated by vCPU exception
delivery.

Second, the results show that in the single-replica case we spend most
of the master execution time (87.4%) in the master’s event handler. This
time decreases for double and triple modular redundancy: Here the replicas
spend most of their time (73.3% for DMR, 82.8% for TMR) in the pre- and
post-synchronization phases.

I had a closer look at where synchronization overhead comes from and
found two sources of overhead. First, replicas within a thread group need
to wait for each other whenever they enter the master. This is a problem for
exception-heavy benchmarks as the multithreaded one: When an exception is
handled, the active replica wakes up the passive ones and performs cleanup
work. In the meantime the passive replicas resume to user space and immedi-
ately raise their next exception. Here they have to wait for the active replica
to catch up. This overhead reason is inherent to replicated execution and
fortunately only a problem for such microbenchmarks.

As a second reason I found that in my initial implementation, the master
used a libpthread condition variable at the beginning of event handling to
wait for incoming replicas and at the end of the event handling phase to wait
for all replicas to leave the master. Each of these synchronization operations
requires expensive message-based notifications.

I implemented an optimization for the synchronization phase that replaces
the condition variables with globally shared synchronization variables and let
the replicas poll on this variable instead of using message-based synchroniza-
tion. This optimization avoids synchronization IPIs between replicas and I

call it fast synchronization.

Improved Synchronization Overhead 1 compare the effects of the two opti-
mizations to the previously presented microbenchmark results in Figure 4.14.
We see that TMR execution benefits most from the CPU placement optimiza-
tion, whereas DMR shows nearly no effect because the DMR replicas were
already placed on a single socket in the first place. In turn, DMR shows a
better improvement from the fast synchronization optimization than TMR.
This is due to the fact that in the TMR case more overhead is spent waiting
for other replicas to catch up whereas in the DMR case more time is spent
sending synchronization messages.

Figure 4.15 breaks down the fully optimized version (CPU placement and
fast synchronization) of the benchmark into user, synchronization and event
handling times. Compared to the previous results shown in Figure 4.13 we
see a decrease in both the pre and post synchronization phases for DMR and
TMR execution.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 87

Worker/TMR | |]

Worker/DMR | | (]

Worker/Single | | | |

10 20 30 40 50 60

Execution time in seconds

[User time [Pre-Synchronization
[Observer Time [Post-Synchronization

SUMMARY: I presented enforced determinism, a mechanism that
transforms lock operations into exceptions visible to the ROMAIN
master process. The master handles these exceptions and thereby
establishes lock ordering. In turn, multithreaded replicas behave
deterministically.

I used a microbenchmark to analyze replication overhead and found
that the placement of replicas on different CPUs influences overhead.
I furthermore pinpointed inter-replica synchronization during event
handling as a second source of overhead. I devised optimizations to
address both of these issues in order to reduce replication overhead.

4.3.5 Cooperative Determinism

We saw in the previous section that enforced determinism has a high worst-
case overhead. Even after optimizing, TMR execution is slowed down by two
orders of magnitude. We also saw that there are three main contributors to
overhead:

1. Mirroring of data structures and work in the master: All lock oper-
ations in the replicas are mirrored with additional data structures and
operations in the ROMAIN master process. Furthermore, every lock opera-
tion has to go through the master’s event handling mechanism.

2. CPU traps per lock operation: Every lock operation leads to a CPU trap.
This adds a constant cost of about 2,000 CPU cycles to each operation,
whereas a normal lock function call would require less than 100 CPU
cycles if the lock is uncontended.

3. Replica synchronization: Waiting for all replicas to reach their next
lock operation is the biggest contributor to replication overhead. This
synchronization is often unnecessary: If a replica thread wants to acquire
a lock and the other threads in the same thread group simply lag behind
this first thread, there is actually no need to wait for them. The first thread
can optimistically continue and trust the others to make the same decision
afterwards.

This optimistic locking solution does not impact reliability, because RO-
MAIN will still compare replica states at externalization events. This

Figure 4.15: Breakdown of benchmark over-
head sources with CPU placement and fast
synchronization optimizations turned on.

88 BIJORN DOBEL

Replica
pthr.
rep

Replica Replica
pthr. pthr.

1 1

] 1

1 I

I I

1 I

I I

| rep i rep
I B I B
I I

I 1

] 1

| 1

i 1

i ROMAIN Master

| CPUO

1 1
] 1

|: |CPU1| :| CPU2|
1 1

Figure 4.16: Cooperative Determinism: Ap-

plications

are linked with a replication-aware

thread library. This library uses a lock info
page shared among all replicas to establish
lock ordering.

CI

Listing 4.

struct LIP {

unsigned num_replicas;

struct {
unsigned spinlock;
Address owner;
unsigned acg_count;
unsigned epoch;

} locks[MAX_LOCKS];

17: Lock Info Page data structure

approach only reduces the number of such events in order to save execu-
tion time overhead. Even optimistic locking however needs to properly
synchronize lock operations whenever more than one thread group tries to
acquire a lock.

To address these issues, I designed a replication aware libpthread li-
brary, which I call libpthread_rep. Replicas no longer reflect their lock
operations to the master process but instead cooperate internally to achieve
deterministic lock ordering. This solution —which I call cooperative determin-
ism —avoids mirroring lock operations in the master (problem #1), eliminates
the need for CPU traps in lock operations (problem #2), and reduces the
amount of inter-replica synchronization to those cases where it is really nec-
essary (problem #3).

Architecture for Cooperative Determinism ROMAIN provides an infras-
tructure for cooperative determinism using two building blocks shown in
Figure 4.16. First, replicated applications use libpthread_rep as a drop-in
replacement for libpthread. Second, libpthread_rep establishes order-
ing of lock operations using a lock info page (LIP) that is shared among all
replicas. The master process is only involved in this architecture in the setup
phase: it loads libpthread_rep into the replicas, creates the LIP and makes
sure that this LIP is mapped into each replica’s address space at a pre-defined
address.

The Lock Info Page libpthread_rep uses the LIP to share information
about the state of lock acquisitions between replicas without requiring ex-
pensive synchronization messages. The LIP contains information about the
number of replicas as well as information about all locks that are used by
the replicated application. Listing 4.17 shows the LIP data structure. In my
current prototype, the LIP is dimensioned to support 2,048 unique locks. This
number suffices for the benchmarks I present in this thesis and may be adapted
at compile time if necessary.

For each lock in the application, the LIP stores a spinlock field that
protects access to the LIP’s lock information from concurrent access by the
replicas. The owner field keeps track of the ID of the thread that currently
possesses the lock. acg_count is used internally by libpthread_rep to
count the number of replica threads that already entered a critical section.
Finally, the epoch field serves as a logical progress indicator for threads and
is incremented whenever a thread calls a lock or unlock function.

Using the LIP to Enforce Lock Ordering As with enforced determin-
ism (explained in Section 4.3.3) libpthread_rep adjusts four functions
from libpthread: pthread_mutex_lock(), pthread_mutex_unlock(),
__mutex_lock(), and __mutex_unlock(). I modified both of the lock
functions to call lock_rep(), which I show as a control flow graph in
Figure 4.18 on the facing page.

When a thread tries to acquire a lock, it consults the shared LIP to inspect
the lock’s global state. If the lock is currently marked as free, the thread stores
its own thread ID and epoch counter in the global state and continues. At this

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 89

Yield CPU
lock_rep(mtx)
No
—_—

Yes Yes

|

No

Yes

return

<
<€

Figure 4.18: lock_rep(): a replication-
aware lock function

unlock_rep(mtx)

spinlock decrement
(mtx.spinlock) acg_count

.4 return spinunlock

Set owner
= (mtx.spinlock; to FREE

)

Figure 4.19: unlock_rep(): a replication-
aware unlock function

point the thread has acquired the lock and can continue its operation without
having to wait for the other threads in its thread group.

If the acquiring thread finds the lock to be taken, it checks the owner’s
thread ID. If the owner ID matches the calling thread’s ID, this means that
another thread from the same thread group already acquired the lock and the
calling thread can continue operation. However, if the owner ID does not
match the calling thread, we found a situation where a different thread group
owns the lock. This means, the calling thread has to wait until the lock either
becomes free or changes ownership to the caller’s ID.

Inconsistencies may arise if a thread releases a lock and then tries to
reacquire it before all other threads of the thread group released the lock. The
epoch counter is used to detect such a situation and prevent this thread from
overtaking the rest of its thread group.

Figure 4.19 shows a flow chart for the unlock operation. The acq_count
counter tracks how many threads of a thread group need to release the lock be-
fore a new owner can be established. Each thread releasing a lock decrements
this counter. Only the last thread to leave a critical section has to additionally
reset the owner field.

90 BJORN DOBEL

[2 B]

Execution time in seconds
=

13.5;
T-
o EOm

Single DMR TMR

N b

[Unoptimized
[] CPU Placement
[Fast Synchronization

Figure 4.20: Execution times measured for
the multithreading microbenchmark running
with different optimization levels and coop-
erative determinism

3 Maurice Herlihy. A methodology for im-
plementing highly concurrent data objects.
ACM Transactions on Programming Lan-
guages and Systems, 15(5):745-770, Novem-
ber 1993

Cooperative Determinism Runtime Overhead To evaluate the efficiency of
cooperative determinism, I repeated the worst-case microbenchmark that I
used to evaluate enforced determinism in Section 4.3.4 on page 83. Again, I
ran this microbenchmark (native execution time: 0.286 s) with no optimiza-
tions, with optimized CPU placement, as well as with fast synchronization
and show the results in Figure 4.20. At first glance we see that the worst case
overhead for the optimized version of cooperative determinism is about six
times lower than for the similarly optimized version of enforced determinism
(TMR: 30.3x vs. 192x).

Once again, triple-modular redundant execution benefits significantly from
optimizing replica placement. Even though cooperatively deterministic repli-
cas do not use explicit synchronization upon every lock operation, the replicas
still use the shared-memory LIP, which needs to be kept consistent by the
CPU’s cache coherency implementation. Hardware cache coherency again
requires cross-CPU messaging, which is less expensive on a single CPU
socket. Hence, we see better performance if all replicas run on a single socket.

As alast point, the cooperatively deterministic benchmark causes only 136
externalization events compared to more than 20,000,000 events the master
needs to handle in the enforced deterministic case. The master process is
therefore seldom involved and as a consequence, the fast synchronization
optimization that speeds up master-level event handling has nearly no effect
on this benchmark.

SUMMARY: I designed a replication-aware thread library that
uses a lock info page shared among all replicas to establish determin-
istic ordering of lock acquisitions. This solution avoids expensive
externalization events and inter-replica synchronization wherever pos-
sible and thereby achieves six times lower execution time overheads
compared to enforced determinism.

4.3.6 Limitations of Lock-Based Determinism

The solution for deterministic replication I presented in this chapter assumes
the application to solely use the synchronization operations provided by the
libpthread library. Otherwise, the application must be free of data races.
This requirement limits ROMAIN’s applicability for those programs that use
ad-hoc synchronization (spinlocks) or lock-free data structures.>® This prob-
lem can be solved by adapting the respective libraries to be replication-aware
similar to my adaptation of libpthread. As an alternative solution, fully
deterministic execution may resolve or at least detect data races in non-locked
accesses while merging thread-local data back into the globally consistent
view. I explain how my solution would be extended to full determinism in the
next section.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 91

4.3.7 Fully Deterministic Execution

In Section 4.3.2 I based my decision to only support weakly deterministic
multithreading in ROMAIN on the resource overheads that would be required
to implement strongly deterministic multithreading. Especially, I pointed out
that having to maintain per-thread copies of all shared memory regions limits
the practical applicability of DTHREADS-like strong determinism on 32-bit
processor architectures.

While I developed ROMAIN focussing on the x86/32 architecture, modern
64-bit systems allow processes to address much larger amounts of physical
memory. Hence, these resource limitations will become less of a problem in
the future.>® Therefore, I will now discuss the required changes to support
strong determinism in ROMAIN similar to DTHREADS.

Adjusting the Execution Model The execution model I described in Sec-
tion 4.3.1 also applies to strong determinism. The ROMAIN master process
still monitors replica execution and each thread group’s externalization events
need to be handled independently. In contrast to my implementation, each
replica thread would execute within a dedicated address space. These address
spaces would be allocated by the master process whenever an application
executes pthread_create() and then remain fixed for the whole lifetime of
each replica thread.

Memory Management As strongly deterministic multithreading requires
more than one address space per replica, ROMAIN’s memory management
needs to be aligned with these new requirements. To implement workspace
consistency, ROMAIN needs to maintain one reference copy of all memory
regions plus one additional copy for every replica thread.

Whenever a thread group raises a page fault, the ROMAIN master needs
to serve it by mapping the respective duplicate memory regions into each
replica thread’s address space. For this purpose, the master needs to maintain
a mapping between these copies and the respective replica threads.

The page fault handler can use a lazy memory allocation strategy, so that
per-replica memory copies are only created for those replicas that actually
access a region. This will help to reduce the amount of memory required for
strong determinism.

Workspace Consistency At synchronization points replica threads need to
merge their local updates into the reference view and vice versa. Similar to
DTHREADS we can do so by instrumenting well-known libpthread func-
tions and reflecting them to the ROMAIN master for performing deterministic
memory updates.

To reduce merge effort, we can use the same optimization that was pro-
posed by DTHREADS’s authors: The ROMAIN master can map reference
memory regions read-only to the replica threads, so that they share read-only
data to reduce resource overhead. As discussed in Section 3.5 this still re-
quires one copied region for every distinct replica if we want to avoid relying
on ECC-protected memory.

¥ Porting ROMAIN to x86/64 is work in
progress at the time of this writing.

92 BJORN DOBEL

40 0On Fiasco.OC, we can halt threads by set-
ting their priority to 0.

SUMMARY: Itis possible to extend ROMAIN to support strongly
deterministic multithreading. This approach allows replication of
multithreaded applications with data races, but its feasibility is limited
due to resource constraints on 32-bit architectures. I propose to
provide strong determinism using workspace consistency, which
requires adapting ROMAIN’s memory manager and the replication-
aware thread library.

4.4 Reliability Implications of Multithreaded Replication

So far I focussed this chapter on implementing deterministic multithreaded
replication with a low execution time overhead. However, the aim of the
ROMAIN operating system service is to detect and correct errors. While error
detection is equivalent to the single-threaded case described in Chapter 3,
recovery requires additional care in a multithreaded environment.

4.4.1 Error Detection and Recovery

The architecture I presented in this chapter allows to deterministically repli-
cate multithreaded applications on top of ROMAIN. ROMAIN’s architecture
makes sure that replicas perceive identical inputs. The deterministic multi-
threading extensions described in the previous section make sure that threads
process these inputs in the same order and hence deterministically generate
identical outputs.

Hardware-induced errors may modify a replica’s state and may therefore
cause a replica thread to behave differently. Similar to the single-threaded case,
the ROMAIN master process will detect such a deviation by comparing the
thread’s state with the other threads within its thread group while processing
externalization events. Once the ROMAIN master process detects a state
mismatch, it starts an error recovery routine. In line with related work I
assume a single-fault model here, which means hardware faults are rare
enough so that we can assume only one fault to be active at a given point in
time.

In contrast to single-threaded recovery we face an additional layer of
complexity, though: before a faulty replica thread triggers error detection, it
may have written arbitrary data to memory. As ROMAIN executes all threads
of a replica in the same address space, all other threads in this replica may
have read these faulty values. Hence, all threads of a faulting replica must
be assumed faulty, even if they did not yet trigger their next externalization
event. Given the single-fault assumption we can however assume that all
other replicas are still correct.

To return the replicated application into a correct state, the ROMAIN
master first halts all replica threads.*® As threads execute independently, they
will be stopped at an arbitrary point within their execution. Even threads in
the same thread group will most certainly be interrupted at different points in
their execution because they execute independently.

ROMAIN selects one of the correct replicas R, to be the recovery template.
Then, the master brings all other replicas into the state of the template:

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 93

1. The recovery template’s address space and memory layout is copied to all
other replicas.

2. Eachreplica thread T; ; (where i is the replica number and j is the respective
thread group number) has its architectural state set to the state of the
corresponding recovery template thread 7. ; from its thread group.

Returning all replicas —even the correct ones—to the exact state of the
recovery template allows us to handle the fact that we potentially halted other
replica threads from the same thread group at different points within their
computation. Eventually, all replica threads will be returned to an identical
and correct state. The replicas can then resume execution.

4.4.2 Recovery Limitations

The recovery approach I presented in this section assumes that we can always
return all replicas into a consistent and correct state. This assumption is true as
long as replicas work on isolated resources, because then we can simply copy
the state of a correct resource over the state of a faulty one. However, this
assumption no longer holds if we have resources shared among all replicas
for two reasons:

1. Faulty data may propagate through the shared resource to other replicas
and thereby forgo fault isolation.

2. If no replicated copies of a shared resource exist, we cannot return the
resource to a correct state.

This problem applies to the lock info page that ROMAIN uses to implement
cooperative determinism: the respective memory area is shared among all
replicas. Corrupting the LIP may affect other replicas’ behavior (problem #1),
for instance by blocking threads that would otherwise be able to acquire a
lock. Furthermore, as the LIP only exists as a single copy, we cannot return it
to a consistent state during recovery (problem #2).

To work around these issues, we need to have a closer look at what errors
the LIP may suffer from. As we deal with hardware faults, we do not need
to protect ourselves against targeted attacks of a single replica on the LIP.
Instead, the LIP may be affected by hardware errors that I roughly classified
into two categories:

1. Corruption of the LIP: LIP data is part of an application’s address space.
As the result of a fault, this data may become corrupted:

A fault affecting the target pointer of a write operation may change this
pointer to point into the LIP. The write operation will then overwrite
arbitrary data within the LIP.

* A fault affecting the size of a write operation (e.g., the size parameter
of amemcpy () operation) may cause a valid write operation to overflow
its target buffer. If this buffer is located before the LIP in the replica’s
address space, the overflow may affect LIP content.

* Last, an SEU in memory or during a computation may affect the LIP
directly.

94 BJORN DOBEL

Lock entry #3
Lock entry #2

Replica Address Space — >

Lock entry #1
Lock entry #0

<——— Lock Info Page ——

Figure 4.21: Protecting the LIP within the
replica’s address space: Guard pages prevent
overflow writes from different sources, ca-
naries aim to detect faulty writes within the
LIP.

4 C. Cowan, P. Wagle, C. Pu, S. Beattie, and
J. Walpole. Buffer Overflows: Attacks and
Defenses for the Vulnerability of the Decade.
In DARPA Information Survivability Confer-
ence and Exposition, volume 2, pages 119—
129 vol.2, 2000

2 The guard page behind the LIP is neces-
sary as some memcpy implementations copy
backwards.

43 Christoph Borchert, Horst Schirmeier, and
Olaf Spinczyk. Generative Software-Based
Memory Error Detection and Correction for
Operating System Data Structures. In Inter-
national Conference on Dependable Systems
and Networks, DSN’13. IEEE Computer So-
ciety Press, June 2013

2. Inconsistent lock acquisition: Even if the LIP is correctly modified with
respect to the cooperative determinism protocol, its content may be incon-
sistent for recovery purposes:

* A replica may decide to acquire a lock based on a previous error. In
this case, the replica will correctly acquire the lock, but none of the
correct threads in the same thread group will ever do so. Given that
we only reset lock ownership once all threads of a thread group have
called rep_unlock(), this lock will remain locked infinitely and other
threads trying to correctly acquire the lock will block.

» [explained above that ROMAIN halts all threads during recovery and
that we may stop threads at different points in their execution. As a
result, we may encounter situations, where one correct thread already
acquired a lock, while a second correct thread did not reach the point of
acquisition yet. During recovery, we need to bring all threads into the
same state. Consequentially, we need to either release or acquire the
lock for everyone, depending on which replica we select as the recovery
template.

Detecting Corruption using Guards and Canaries In order to reduce the
chance of LIP corruption, I modified the way ROMAIN attaches the LIP to
each replica’s address space as shown in Figure 4.21. This modification is
inspired by Cowan and colleagues’ work on protecting memory against buffer
overflow attacks.*!

To prevent buffer overflows in application data from corrupting the LIP,
ROMAIN places an inaccessible guard page before and behind the LIP.
Thereby, any overflowing write sequence will cause a page fault exception
before modifying LIP state.*

To increase the likelihood of detecting corruptions within the LIP, all lock
entries are separated by a canary value. The canary is a fixed bit pattern
that will never be modified by normal operation. Whenever a thread tries to
acquire a lock, it first validates the correctness of the respective lock entry’s
canary value. If the canary is found to be corrupt, the thread notifies the master
of an unrecoverable error. As the LIP is shared across all replicas, the only
suitable reaction to such an event is for the master to terminate the replicated
application. However, this approach at least makes sure that replicas generate
no incorrect output.

An alternative solution to increase the chance of successful recovery would
be to replicate the LIP itself similar to Borchert’s replication of kernel data
structures.*3 However, I did not implement this alternative.

Consistent LIP Recovery using Acquisition Bitmaps 1 addressed the problem
of consistent LIP recovery by adding a mechanism that tracks which replica
thread already acquired a lock. For this purpose I added an acq_bitmap field
to each LIP lock entry. When a thread 7; ; from thread group j acquires a
lock, it sets the i-th bit in this field to 1. Upon lock release, the thread resets
this bit to 0.

Using this mechanism, we can address the two inconsistent lock acquisition
subproblems as follows:

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 95

1. If a thread erroneously acquired a lock while the correct threads did not,
the acqg_bitmap will have this thread’s bit set to 1, while all other bits are
0. During recovery, ROMAIN can set this bit to 0 and thereby return the
respective lock entry to a consistent and correct state.

2. If correct threads are stopped during recovery and some threads halt before
acquiring a lock and others halt afterwards, the respective lock entry will
have both 0 and 1 entries in its acq_bitmap. To correct this consistently,
ROMAIN sets all bits in the bitmap to the value of the recovery template’s
bit. Hence, only if the recovery template thread already acquired the lock,
all other threads will acquire it during recovery.

While the above enhancements increase LIP reliability, they also increase
resource and execution time overhead. I chose to use 16-bit canaries, so
that the LIP size grows by 2,048 2 = 4,096 bytes. Furthermore, I repeated
the microbenchmark that I used in the previous sections with cooperative
determinism and the enhancements described above. DMR runtime increases
about 10%, TMR runtime increases about 15%.

SUMMARY: Detecting errors in multithreaded replicas works simi-
lar to error detection for single-threaded ones. Error recovery needs
additional care, because all replicas and their threads need to be
returned to the same consistent state.

Cooperative determinism suffers from the problem that the LIP is
shared among all replicas. Corrupt LIP entries may therefore con-
stitute unrecoverable errors. I combined guard pages, lock entry
canaries, and fine-grained ownership tracking to reduce the chance
that such a situation arises.

The above analysis shows that there is another dimension when evaluating
different reliability mechanisms: While cooperative determinism provides a
low execution time overhead, it is harder to protect against corruption from
a faulty replica. In contrast, enforced determinism does not need to care for
shared data, but suffers from higher execution time overheads.

In Chapter 6 I will show that this difference between enforced and cooper-
ative determinism is only one particular instance of a more general problem:
every software-implemented fault tolerance mechanism relies on specific (but
different) software and hardware features to function correctly. We need
to identify and specially protect these components to achieve full-system
reliability.

5

Evaluation

In the previous two chapters I described the design of ROMAIN and used
microbenchmarks to motivate my design decisions. In this chapter I present
a larger-scale evaluation of how well ROMAIN achieves its goal of pro-
viding fault-tolerant execution to binary-only user applications on top of
F1ASco0.OC. For this purpose I analyze ROMAIN’s error detection capabili-
ties (error coverage and detection latency), the accompanying resource and
execution time overheads, as well as ROMAIN’s implementation complexity.

I show that ROMAIN detects 100% of all errors within a replicated appli-
cation and recovers from more than 99.6% of them. ROMAIN’s best-case
execution time overhead for replicating single-threaded applications is about
13% for triple-modular redundant execution. Multithreaded replication is
more costly and implies up to 65% overhead when running three replicas
of an application with four worker threads. By providing majority voting,
ROMAIN allows for fast error recovery.

Parts of the experiments presented in this chapter were published in
SOBRES 2013! and EMSOFT 2014.2

5.1 Methodology

Wilken identified five properties that can be analyzed to assess a fault-tolerant
system.> T apply his taxonomy to analyze ROMAIN and evaluate these
properties:

1. Error Coverage measures the fraction of errors that a fault tolerance mech-

anism is able to detect and recover from.

2. Error Detection Latency determines how long a fault resides in the system
before it is detected.

3. Replicated execution incurs execution time overhead because the ROMAIN
master process spends additional time waiting for replicas, inspecting their
states, and performing replicated resource management.

4. Replicated execution furthermore induces a resource overhead by main-
taining resource copies to facilitate independent execution of replicas.

5. ROMAIN adds code complexity to the L4 Runtime Environment by adding
the master process component.

! Bjorn Dobel and Hermann Hirtig. Where
Have all the Cycles Gone? — Investigating
Runtime Overheads of OS-Assisted Repli-
cation. In Workshop on Software-Based
Methods for Robust Embedded Systems, SO-
BRES’13, Koblenz, Germany, 2013

2 Bjorn Dobel and Hermann Hirtig. Can We
Put Concurrency Back Into Redundant Multi-
threading? In /4th International Conference
on Embedded Software, EMSOFT’ 14, New
Delhi, India, 2014

3 Kent D. Wilken and John Paul Shen. Con-
tinuous Signature Monitoring: Low-Cost
Concurrent Detection of Processor Control
Errors. IEEE Transactions on CAD of Inte-
grated Circuits and Systems, 9(6):629—-641,
1990

98 BJORN DOBEL

4Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’ 10, Vienna, Austria, 2010
>V. B. Kleeberger, C. Gimmler-Dumont,
C. Weis, A. Herkersdorf, D. Mueller-
Gritschneder, S. R. Nassif, U. Schlichtmann,
and N. Wehn. A Cross-Layer Technology-
Based Study of how Memory Errors Impact
System Resilience. IEEE Micro, 33(4):46—
55,2013

®Fred B. Schneider. Implementing Fault-
Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Sur-
veys, 22(4):299-319, December 1990

I evaluate error coverage and detection latency using fault injection experi-
ments in Section 5.2. Thereafter, I evaluate ROMAIN’s execution time and
resource overhead using application benchmarks in Section 5.3. I analyze
the master process’ code complexity in Section 5.4. Finally, I compare the
achieved results to related work in Section 5.5.

In line with related work*®3 I assume my fault model to be single-event
upsets in memory and registers. In this fault model, we can detect errors by
running two replicas (double-modular redundancy — DMR) and we can correct
detected errors by majority voting when running three replicas (triple-modular
redundancy — TMR). I therefore only investigate DMR and TMR setups and
leave the analysis of multi-error fault models and ROMAIN running more
than three replicas for future work.

5.2 Error Coverage and Detection Latency

The main goal of every fault tolerance mechanism is to detect and recover
from errors before they cause system failure. Given a fault model and a
workload, the mechanism’s error coverage measures the ratio of faults of this
specific type that are detected and corrected:

N, detected

Coverage =
Niotal

In addition to error coverage, we can measure the error detection latency as
the time between the activation of an error and its detection by the respective
fault tolerance mechanism.

As I explained in Chapter 2, redundant multithreading (RMT) techniques —
such as ROMAIN —aim to maintain best possible error coverage while reduc-
ing the mechanism’s execution time overheads as much as possible. For this
purpose, RMT often trades higher detection latencies for lower overhead by
reducing state validation. This trade-off does not affect error coverage as long
as two properties hold:

1. A fault must never lead to a visible application failure.

2. The error detection latency must not exceed the minimum expected inter-
arrival time of hardware faults. Otherwise, the number of replicas in the
system might no longer suffice to detect and recover from these faults.

Similar to other RMT techniques, ROMAIN ensures the first property by
performing state validation whenever application state is about to become
visible to an external observer. In Chapter 3 I showed the techniques the
ROMAIN master uses to intercept all possible externalization events for this
purpose.

As RMT techniques only validate state at externalization points, ROMAIN
may suffer from problems related to the second property. This will be the case
if a replicated application performs long stretches of computation without
performing any interceptable externalization event in between. However,
ROMAIN implements two mechanisms that allow to cope with such situations:

1. The user can tune the number of replicas to the number of expected
concurrent faults using Schneider’s 2N + 1 rule® and thereby create a setup

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 99

that can handle multiple concurrent faults. This number is a startup option
passed to the ROMAIN master.

2. AsIexplained in Section 3.8.2, Martin Kriegel extended ROMAIN with a
mechanism to bound error detection latencies by enforcing checks after
a fixed number of retired instructions.” The application can thereby be
forced into state validation in periods shorter than the expected inter-arrival
time of faults.

5.2.1 Vulnerability Analysis Using Fault Injection

Fault injection (FI)8 is a standard technique to evaluate the behavior of a
system in the presence of faults. In contrast to waiting for errors to manifest
in physical hardware, these experiments allow us to insert these errors in a
controlled environment. Given a fault model, such a controlled environment
also allows us to inject every possible error and thereby assess the error
coverage of a given fault tolerance method.

Fault-injection methods can be implemented at the hardware and software
levels. Hardware-level injectors work on implementations of the hardware
in question and often augment this hardware with specific points to inject
faults. These approaches can perform fine-grained instrumentation of the
hardware and inject faults down to the transistor level. Sterpone used an
extended FPGA implementation of a microprocessor for this purpose.” In
contrast, Heinig and colleagues performed fault injection on an embedded
ARM processor and used an attached hardware debugger to inject faults.'?
The downside of these approaches is that they require dedicated hardware and
labor-intensive manual setup.

Software-level fault injection tools try to inject faults without requiring
direct access to the underlying hardware. For example, Gu performed fault
injection experiments for Linux on x86 hardware using a debugging kernel
module and hardware breakpoints, but without access to an expensive x86

T Other researchers —such as Yalcin'2 — proposed to use

hardware debugger.
hardware simulators instead of real hardware for fault injection. Simulator-
based fault injection restricts reliability assessment to the level of detail
provided by the underlying simulator. Cho pointed out that these inaccuracies
make it hard to use simulator-based FI to draw any conclusions about the
vulnerability properties of physical hardware.!3

In this section I am not interested in hardware properties, but in the reaction
of ROMAIN to misbehaving hardware. For this purpose, software-level FI still
works: we can select a representative fault model (such as SEUs in memory),
apply this fault model in a simulator and observe if ROMAIN detects and
corrects these errors. While the resulting error distributions may not always be
representative of physical hardware behavior, we can still make an apples-to-
apples comparison between the same experiment running without replication
and protected by ROMAIN.

Under these circumstances we can benefit from another property of
simulation-based fault injection: we can now run many such simulators in
parallel and thereby drastically reduce the time needed to perform large-scale

fault injection experiments.

7 Martin Kriegel. Bounding Error Detection
Latencies for Replicated Execution. Bache-
lor’s thesis, TU Dresden, 2013

8 Mei-Chen Hsueh, Timothy K. Tsai, and
Ravishankar K. Iyer. Fault Injection Tech-
niques and Tools. IEEE Computer, 30(4):75—
82, Apr 1997

° Luca Sterpone and Massimo Violante. An
Analysis of SEU Effects in Embedded Op-
erating Systems for Real-Time Applications.
In International Symposium on Industrial
Electronics, pages 3345-3349, June 2007

10 Andreas Heinig, Ingo Korb, Florian
Schmoll, Peter Marwedel, and Michael En-
gel. Fast and Low-Cost Instruction-Aware
Fault Injection. In GI Workshop on Software-
Based Methods for Robust Embedded Sys-
tems (SOBRES ’13),2013

! Weining Gu, Z. Kalbarczyk, and R K. Iyer.
Error Sensitivity of the Linux Kernel Exe-
cuting on PowerPC G4 and Pentium 4 Pro-
cessors. In Conference on Dependable Sys-
tems and Networks, DSN’04, pages 887-896,
June 2004

2G. Yalcin, O.S. Unsal, A. Cristal, and
M. Valero. FIMSIM: A Fault Injection Infras-
tructure for Microarchitectural Simulators.
In International Conference on Computer
Design, ICCD’11, 2011

13 Hyungmin Cho, Shahrzad Mirkhani, Chen-
Yong Cher, Jacob A. Abraham, and Subha-
sish Mitra. Quantitative Evaluation of Soft
Error Injection Techniques for Robust Sys-
tem Design. In Design Automation Confer-
ence (DAC), 2013 50th ACM / EDAC / IEEE,
pages 1-10, 2013

100 BJORN DOBEL

Memory
Bits

(CHONONORONCGNO)
(ONONONORONONG)
(ONONONONONONG)
(O ONONORONONE)
(CHONONORONCGNO)
(ONONONORONONG)
(ONONONORONONG)
(ONONONORONONE)

Discrete Time
(Instructions)

Figure 5.1: Fault Space for Single-Event Up-
sets in Memory

14 Jean Arlat, Jean-Charles Fabre, Manuel

Rodriguez, and Frédéric Salles. Depend-
ability of COTS Microkernel-Based Systems.
IEEE Transactions on Computing, 51(2):138—
163, February 2002

15 Siva Kumar Sastry Hari, Sarita V. Adve,
Helia Naeimi, and Pradeep Ramachandran.
Relyzer: Exploiting Application-Level Fault
Equivalence to Analyze Application Re-
siliency to Transient Faults. In International
Conference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, ASPLOS XVII, pages 123—-134, New
York, NY, USA, 2012. ACM

16 Horst Schirmeier, Martin Hoffmann, Riidi-
ger Kapitza, Daniel Lohmann, and Olaf
Spinczyk. FAIL*: Towards a Versatile Fault-
Injection Experiment Framework. In Gero
Miihl, Jan Richling, and Andreas Herkers-
dorf, editors, International Conference on
Architecture of Computing Systems, volume
200 of ARCS’12, pages 201-210. German
Society of Informatics, March 2012

"http://bochs.sourceforge.net

In order to determine the coverage of a fault tolerance mechanism using
fault injection, we need to inject all faults that might affect the given system
and compute the ratio between detected and injected faults. This fault space
often grows very large. As an example, Figure 5.1 shows the required set of
experiments if we assume single-event upsets in memory as the fault model.
In this example we need to perform one experiment for every discrete time
instant and every bit in memory.

For most applications, this fault space is too large to fully enumerate even
with fast FI mechanisms. Therefore, two techniques are applied to obtain
practical results in a timely manner:

1. Fault Space Sampling: Instead of performing all necessary experiments,
sampling approaches select a subset of these experiments and try to approx-
imate the global result by performing only the experiments in this sample.
The accuracy of the obtained results varies depending on the sample size
and the method with which the sample was chosen.

Random sampling selects a random subset of experiments. This approach
works if the selected sample is large enough and we are only interested in
high-level questions, such as “What fraction of faults is going to crash the
application?” Gu’s Linux study used this approach.!! Random sampling
fails if we are interested in the vulnerability of specific data structures or
functions, because the random sample may misrepresent them.

An alternative — which I call workload reduction —focuses fault injection
on interesting subsections of a larger workload and fully enumerates these.
This approach was for instance applied by Arlat and colleagues to analyze
the reliability of kernel subsystems in LynxOS.

2. Fault Space Pruning: If we take a closer look at the fault space we find

groups of experiments that will produce identical results. As an example,
consider a scenario where a memory word W is read at time instants 0 and
10. Any fault in instants 1 through 10 will have the same consequence:
the wrong value will be read at instant 10 and impact program behavior
thereafter. Hence, we can speed up experimentation by only performing a
single one of these experiments and apply its result to all others.

Modern fault injection frameworks, such as Relyzer'® and FAIL*!6
analyze the fault space to identify such groups. They thereby reduce the
number of required experiments without reducing fault injection accuracy.

I use the FAIL* fault injection framework to analyze ROMAIN’s error
coverage and detection latencies. FAIL* uses the Bochs!” emulator to inject
faults and monitor program behavior. Bochs performs instruction-level emu-
lation of the underlying platform and can therefore only model faults that are
visible at this granularity. I specifically look at two fault models that FAIL*
supports out of the box: SEUs in (1) memory and (2) general-purpose CPU
registers.

http://bochs.sourceforge.net

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 101

The current version of FAIL* does not distinguish between different ad-
dress spaces on top of a modern operating system. As I want to inject faults
into a specific replica address space, I therefore use an extension to FAIL* that
was originally developed by Martin Unzner in a thesis I advised.'® With this
extension we can distinguish between code executing within one dedicated
address space (i.e., the faulty replica) and code executing outside this address
space.

As FAIL* executes all experiments in the Bochs emulator, it has no notion
of wall-clock time. Instead, FAIL* discretizes time in terms of instructions
retired by the observed platform. Hence, time (i.e., error detection latency) in
this subsection is measured in retired instructions.

FAIL* provides a campaign server that sends experiments to concurrent
instances of the FAIL* fault injection client and collects the results. This
allows to parallelize fault injection runs and I had the opportunity to do so
on the Taurus HPC Cluster at the Center for Information Services and High
Performance Computing (ZIH) at TU Dresden. The FI experiments I describe
below consumed a total of 66,000 CPU hours on this cluster.

5.2.2 Benchmark Setup

I selected four applications as benchmarks to evaluate ROMAIN’s fault tol-
erance capabilities. To keep fault injection manageable, I focus on small
benchmarks. I will use longer-running examples to validate ROMAIN’s
computational overhead in the next section.

1. Bitcount is a simple, compute-bound benchmark from the MiBench bench-
mark suite.1? It compares different implementations of bit counter algo-
rithms. This property makes its results susceptible to bit flip effects.

2. Dijkstra is another benchmark from the MiBench suite. It represents an
implementation of Dijkstra’s path finding algorithm?® that is used for
instance in network routing.

3. IPC is an example for F1ASC0.0OC'’s inter-process communication mech-
anism. Two threads run inside the same address space and exchange a
message. This benchmark therefore focuses on faults that happen directly
before or after invoking a system call on FIASC0.OC.

4. CRC32 uses the Boost?! C++ implementation of the CRC32 checksum
to compute a checksum over a chunk of data in memory. CRC32 is a

commonly used checksum algorithm in network applications.>?

I prepared the experiments by creating boot images of the application
setups that can be run by FAIL*. For every setup I created one image that runs
the benchmark natively on L4Re and a second image that runs the benchmark
in ROMAIN with TMR. Table 5.1 shows the dimension of my fault injection

campaigns. While previous works2324

used random sampling with a sample
size of up to 10,000 experiments, my study covers the whole fault space of
these four applications and thereby represents several million experiments for
every benchmark and fault model.

To reduce fault injection time, I reduced the workloads to their interesting
parts —i.e. the main work loop of the benchmarks —leaving out application
startup and teardown. The table shows the number of instructions executed in

the injection phase of each benchmark.

'8 Martin Unzner. Implementation of a Fault
Injection Framework for L4Re. Belegarbeit,
TU Dresden, 2013

M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite. In Inter-
national Workshop on Workload Characteri-
zation, pages 3—14, Austin, TX, USA, 2001.
IEEE Computer Society

20 Edsger. W. Dijkstra. A Note on Two
Problems in Connexion With Graphs. Nu-
merische Mathematik, 1:269-271, 1959

2l http://www.boost.org

22 Philip Koopman. 32bit Cyclic Redundancy
Codes for Internet Applications. In Confer-
ence on Dependable Systems and Networks,
DSN ’02, pages 459-472, Washington, DC,
USA, 2002. IEEE Computer Society

2 Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’ 10, Vienna, Austria, 2010
24 Weining Gu, Z. Kalbarczyk, and R K. Iyer.
Error Sensitivity of the Linux Kernel Exe-
cuting on PowerPC G4 and Pentium 4 Pro-
cessors. In Conference on Dependable Sys-
tems and Networks, DSN’04, pages 887-896,
June 2004

http://www.boost.org

102 BJORN DOBEL

I furthermore benefit from FAIL*’s fault space pruning to reduce the
number of required experiments while still covering the whole fault space.
The table therefore shows the total number of experiments covered by each
fault injection campaign as well as the pruned number of experiments, i.e.,
the runs that I actually had to perform.

Benchmark | Fault Model | # of Instructions | Total Experiments | Experiments after Pruning
Register SE 100,824 1
Bitcount egister SEU 54.866 9,100,8 ,635,808
Memory SEU 405,710,740 374,865
Register SEU 16,990,912 3,694,177
Dijkstra ceisier 108,171
Memory SEU 2,399,115,368 1,221,705
Register SEU 1,567,088 341,049
IPC 10,800
Memory SEU 46,656,894 116,881
Register SEU 23,976,128 2,408,329
CRC32 108,089
Memory SEU 510,278,440 288,881

Table 5.1: Overview of Fault Injection Ex-
periments
For each FI experiment I collected the following information for later
processing of the results:

» Experiment Information: For every experiment I keep track of what kind
of fault (e.g., a bit flip in which bit of which register) was injected at which
discrete point in time.

» Experiment Outcome and Output: A fault injection experiment is executed
until the program reaches a predefined terminating instruction (successful
completion) or a timeout expires. I set this timeout to 4,000,000 instruc-
tions, which is 40 times larger than the longest of the benchmarks in
question. This long timeout is necessary to give ROMAIN sufficient time
for error detection and correction in the failure case.

Depending on the result type I classify the experiment outcome:

1. No Effect: The experiment reached the terminating instruction and the
experiments’ output matches the output of an initial fault-free run. In
case of an injected fault this means that the fault did not alter visible
program behavior.

2. Silent Data Corruption (SDC): The program successfully terminated,
but the output differs from the initial fault-free run. This happens if
a hardware fault modifies the program’s output but does not lead to a
visible crash.

3. Crash: The experiment terminated, but the terminating instruction
pointer or the logged output indicate that the program crashed, for
instance by accessing an invalid memory address.

4. Timeout: The program did not reach its final instruction and the output
does not indicate a user-visible crash. This happens for instance if a
hardware fault makes the program get stuck in an infinite loop.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

5. Corrected Error: When injecting faults while running in ROMAIN, the
replication service detected and corrected an error. In the discussion
below I furthermore distinguish between two sources of error detection:

(a) Detection By State Comparison: All replicas reached their next
externalization event and ROMAIN detected a state mismatch.

(b) Detection By Timeout: At least one of the replicas did not reach the
next externalization event before the first replica’s event watchdog
timeout expired.

 Faulty Execution Time: 1log the number of instructions the faulty replica
executes before an error is detected. As we will see in Section 5.2.4, this
data is the closest information we can get about error detection latency in
a FAIL* setup.

5.2.3 Coverage Results

I executed one fault injection campaign for every benchmark and every fault
model. In every campaign I first injected faults into the benchmark with-
out protection to get a base distribution of fault outcomes. Thereafter I
injected faults into the same benchmark running with ROMAIN in TMR
mode. Figure 5.2 shows the distribution of fault types when injecting SEUs
into general-purpose registers during the runtime of the benchmarks. Fig-
ure 5.3 shows the same distribution when injecting bit flips into application
memory. (Single benchmark names represent the native runs. Replicated
benchmark results are suffixed with TMR.)

We see crash, timeout, and SDC failures in native execution across all
benchmarks. Register SEUs are more likely to lead to crashes, because
registers are often used for dereferencing pointers. A bit flip in such a pointer
may modify the target address to point into an invalid memory area, leading
to an unhandled page fault. A closer look at the native benchmark outcomes
confirms that in all campaigns more than 80% of the crashes can be attributed
to page faults.

When looking at native memory errors, the CRC32 benchmark stands out
as it shows an SDC rate of 97%. This can be explained by the fact that most
memory accesses performed by this benchmark target the memory region that
a CRC checksum is computed from, because the program does not access any
other memory. Hence, bit flips in this area will lead to a diverging checksum
and show up as SDC errors.

Comparing the native experiments to the TMR experiments we see that
ROMAIN detects and corrects all memory errors and close to all register
SEUs. This confirms that ROMAIN works as intended and provides fault
tolerant execution to the applications it protects.

I had a closer look at the CRASH errors that appear when injecting faults
into the Bitcount, IPC, and Dijkstra benchmarks. In all of these cases, an error
is detected by ROMAIN but recovery does not succeed within the bounds of
the fault injection experiment. While these experiments are a small fraction
of all injections, they still number in the thousands. I manually repeated
several of those experiments and in all cases recovery succeeded during my
repeated experiments. I conclude that these crashes were only identified as

103

ORN DOBEL

104 BJ

[No Effect [Crash [SDC [] Timeout @ Recovered (Compare) [Z1 Recovered (Timeout)

Bitcount

1 0.25%

Timeout:

Bitcount/TMR

IPC

IPC/TMR

Dijkstra

Dijkstra/TMR

CRC32

o
=
=
q
®
[&]
o
[&]

20 30 40 50 60 70 80 90 100
Ratio of Total Faults in %

10

ROMAIN Error Coverage, Fault
SEUs in General-Purpose Registers

Figure 5.2
Model

Recovered (Timeout)

©
©
Q
£
Q
e
e
1<
o
3
®
o
B
3
(4]
£
[
0
O
[a)]
0
0
<
O
0
O
2
w
o
=z
0

Bitcount

Timeout: 0.17%

Bitcount/TMR

IPC

IPC/TMR

Dijkstra

Dijkstra/TMR

CRC32

o
s
S
13
o
S

20 30 40 50 60 70 80 90 100
Ratio of Total Faults in %

10

ROMAIN Error Coverage, Fault

Figure 5.3
Model

i d by the

1n Memory accesse:

SEUs

application

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 105

such because the experiments did not run to completion before the timeout of
my fault injection experiments triggered.

Nevertheless I show these experiments as crashes in my experiment results,
because I did not revalidate all of the experiments. From the results we see
that ROMAIN’s error detection rate is 100%. Recovery succeeds in at least
99.6% of the injected register errors and in 100% of the injected memory
errors.

The largest fraction of errors are detected by state comparison. Only few
errors (less than 10% of the faults in Bitcount, IPC, and CRC32) are found as
the result of ROMAIN’s event watchdog expiring. This is contrasted by the
Dijkstra benchmark, where most errors are found as the result of a timeout.

In contrast to the other benchmarks, the distance between externalization
events in Dijkstra is high, because the program executes the whole path
finding algorithm before performing another system call. Hence, the correct
replicas execute for a long time before reaching this call. If we now inject a
fault and the affected replica fails fast, e.g., by raising a page fault, the replica
will then enter the ROMAIN master and wait for the remaining replicas to
raise an event. As these replicas still execute for a long time, the faulty
replica’s watchdog expires before the correct ones arrive for state comparison.
Recovery then finds that no majority of replicas is available, waits for all other
replicas and then succeeds in returning the program to a correct state. Hence,
these errors are actually corrected by state comparison, but my automated
outcome classification tool marked them as “detected by timeout” due to their
output.

I repeated the Dijkstra memory experiment with the event watchdog pro-
grammed to a timeout three times as high as before. In this case, the correct
replicas reach their next externalization event before the faulty replica’s time-
out expires. In turn, 93% of the detected errors are then classified as “detected
by state comparison.”

All in all 100% error detection and close to 100% correction rates show
that ROMAIN achieves its goal of protecting applications against the effects
of hardware faults. Note however that these coverages are computed only
for code running inside the protected application. While this is in line with
all other SWIFT mechanisms I am aware of, it ignores the fact that there
are other software components that remain unprotected by ROMAIN. These
components include the operating system kernel as well as the ROMAIN
master process and I will return to this problem in Chapter 6.

5.2.4 Error Detection Latency

As I explained previously, redundant multithreading trades higher error detec-
tion latencies for reduced execution time overhead. We saw in the previous
experiments that ROMAIN achieves fault tolerance and we will see in Sec-
tion 5.3 that the respective execution time overheads are indeed lower than
for other non-RMT methods. In this section I now try to estimate ROMAIN’s
error detection latency.

One main assumption I make in this thesis is that modern hardware pro-
vides a sufficient number of physical processors and that ROMAIN can
therefore execute every replica on a dedicated CPU as shown in Figure 5.4.

Injection

Replica R1
!

Replica R2
1

Replica R3
:

Master : El

|
| |
‘(,‘ Time

Detection Latency

Figure 5.4: Error Detection Latency in a RO-
MAIN TMR setup on real hardware

106 BJORN DOBEL

Figure 5.5: Possible replica schedules in a
single-CPU ROMAIN TMR setup.

Three replicas execute concurrently and the ROMAIN master validates their
states whenever they execute an externalization event.

Let us now assume that we inject a fault into Replica 1 as indicated in
the figure. The replicas will run until their next externalization event, the
ROMAIN master will compare their states and flag an error. On a physical
computer we can therefore measure the error detection latency as the wall
clock time difference between the injection and detection times.

In contrast to physical hardware, FAIL* executes all replicas on a single
emulated CPU. Therefore, replicas share this CPU and their execution order
will be determined by FIASC0.OC’s scheduler. Depending on the actual
situation, replicas may be scheduled in arbitrary order, such as one of the
orderings shown in Figure 5.5. As we see in the figure, the measured wall
clock time may vary depending on the chosen schedule and it is therefore
difficult to draw any conclusions about error detection latency.

Injection

Replica R2

I o Time
Wall Clock De-
Injection tection Latency

Replica R2
T

T .
) , Time

<
<€

A

\/

Wall Clock Detection Latency

However, my instrumentation in FAIL* allows me to measure the number
of instructions the faulty replica executes before ROMAIN detects an error
and corrects it. Figure 5.6 plots the cumulative distribution function for
this faulty execution time for each of my fault injection campaigns. Each
plot distinguishes between the results for memory and register SEUs. I
furthermore show separate plots for errors that were detected by comparing
replica states (=) and errors that were detected due to ROMAIN’s event
watchdog ().

The distributions differ across applications. Every application has a specific
offset at which all errors that will be detected by state comparison are found.
Bitcount, which performs several system calls during the fault injection
experiment, has this offset at around 50,000 instructions. The fairly short IPC
benchmark reaches it at 10,000 instructions. In contrast, Dijkstra and CRC32
perform long stretches of computation and therefore only reach this point
later (2 million instructions for Dijkstra, 150,000 instructions for CRC32).

The results furthermore show ROMAIN’s event watchdog in action. In
the Bitcount, IPC, and CRC32 benchmarks, the rate of errors detected by
watchdog timeout jumps from close to zero to 100% at around 500,000
instructions after the injection. This corresponds to the timeout value that I
configured for these experiments. We also see that this is not the case for the
Dijkstra benchmark. Again, this is caused by the fact that Dijkstra computes
for several million cycles before reaching its next externalization event and the
timeouts we see in Dijkstra are caused by the faulty replica whose watchdog
expires before the correct replicas reach an externalization event.

CDF: Exec time after FI (%) CDF: Exec time after FI (%)

CDF: Exec time after FI (%)

CDF: Exec time after Fl (%)

100
90
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

100
920
80
70
60
50
40
30
20
10

100
90
80
70
60
50
40
30
20
10

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 107

Register Detected
Memory Detected

Register Timeout
Memory Timeout

Bitcount

T T T
: : : : : - - - - I =
50 100 200 500 1k 2k 5k 10k 50k 200k 500k

Number of instructions
IPC

T T]

50 100 200 500 1k 2k 5k 10k 50k 200k 500k

Number of instructions

Figure 5.6: Number of instructions the faulty

Dijkstra

T T
— | | | | | | | | | =
50 100 200 500 1k 2k 5k 10k 50k 200k 500k 2M

Number of instructions

CRC32

T T
50 100 200 500 1k 2k 5k 10k 50k 200k 500k

Number of instructions

replica executed before ROMAIN detected
an error (CDF over all FI experiments)

108 BJORN DOBEL

Injection

IR1

Replica R1

Replica R2

Replica R3
IMaster

Master

Can we Compute Error Detection Latency?

If we reconsider concurrently

executing replicas as in Figure 5.7, we see that the faulty replica’s execution

time is not identical to the error detection latency:

Detection Latency

Figure 5.7: Computing error detection la-
tency

2 Reinhard Wilhelm, Jakob Engblom, An-
dreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat,
Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter Puschner, Jan Staschulat, and Per Sten-
strom. The Worst-Case Execution-Time
Problem — Overview of Methods and Survey
of Tools. ACM Transactions on Embedded
Computing Systems, 7(3):36:1-36:53, May
2008

26 Philip Axer, Moritz Neukirchner, Sophie
Quinton, Rolf Ernst, Bjorn Dobel, and Her-
mann Hirtig. Response-Time Analysis
of Parallel Fork-Join Workloads with Real-
Time Constraints. In Euromicro Conference
on Real-Time Systems, ECRTS’13, Jul 2013

Time

ROMAIN performs state comparison once all replicas reach their next ex-
ternalization event. As replicas execute in parallel and do not access shared
resources in this time, their wall clock execution time is the maximum of
the single replica execution times:

[rmux = max(tRl >IR2, tRS)

The error detection latency needs to additionally incorporate the time
tMaster that the master process requires to perform replica state comparison
as well as the time tg,,,,.; that is spent inside FIASC0.OC for processing
scheduling interrupts as well as delivering replica events to the master
process.

The error detection latency can therefore be expressed as
tdetect = tr,mx + tMaster 1 tKernel

Calculating this latency requires proper measurements or analysis of the

respective components. Such an analysis is out of scope of my thesis, but

appears to be an interesting direction for future research. I would like to

provide two starting points for this research here:

1.

In order to determine ¢, we need to measure the maximum time it may
take a correct replica to execute before reaching its next externalization
event. This time provides a lower bound for when the next replica state
comparison will set in. As replicas execute independently on different
cores and do not access any shared state between these events, such an
analysis will be similar to traditional worst case execution time (WCET)

analysis.?

In addition to ¢, we furthermore need to incorporate fy/4sier and fxerner-
These components can first be determined using separate WCET analyses
of the respective components. The replicas, the master, and the operating
system kernel can then be modeled as a sequence of fork-join parallel tasks.
Axer showed that it is possible to perform a response time analysis for this
class of tasks. 0

SUMMARY:
ROMAIN’s error coverage. Injecting SEUS into memory and general-

I performed fault injection experiments to analyze

purpose registers I found that ROMAIN detects 100% of the errors in
a replicated application and is able to recover from more than 99.6%
of these errors.

I furthermore explored opportunities to analyze error detection la-
tency. My fault injection experiments show that replicas, depending

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 109

on the actual application, execute several thousands up to several
millions of instructions before an error is detected. Actual determi-
nation of error detection latencies bears similarities with worst-case
execution time analysis and is left as an open issue for future work.

5.3 Runtime and Resource Overhead

Having shown that ROMAIN achieves its goal of detecting and correcting
hardware errors before they lead to application failure, I now investigate the
runtime characteristics of the replication service. I use the SPEC CPU 2006
and SPLASH?2 benchmark suites to evaluate replication overhead. Thereafter
I measure the slowdown ROMAIN introduces when replicating a shared-
memory application and show that the time needed for error recovery is
dominated by the replica’s memory footprint.

5.3.1 Test Machine and Setup

All experiments in this section are executed on a machine with 12 physcial
Intel Xeon X5650 CPU cores running at 2.67 GHz. The cores are distributed
across two sockets with six cores each. Each socket has a 12 MiB L3 cache
shared among all cores. Each core has 256 KiB local L2 cache. I turned
off Hyperthreading, TurboBoost, and dynamic frequency scaling in order to
obtain reproducible results.

On the test machine I run 32-bit versions of the FIASC0.OC microkernel,
L4Re, ROMAIN, and the respective benchmarks. Therefore, the available
memory for my experiments is limited to 3 GiB. All software was compiled
with a recent version of GCC (Debian 4.8.3).

I assume a single-fault model, where at most one erroneous replica exists at
a single point in time. As I explained before, we need two replicas to detect an
error, and three replicas to also provide error correction in such a scenario.?’
I therefore measure execution times for ROMAIN running two and three
replicas of an application. I compare these results to native execution of the
same application on top of L4Re. In addition to that, I also measure the
execution time of ROMAIN running a single replica. While this does not give
any benefit in terms of fault tolerance, this benchmark allows us to estimate
the overhead of ROMAIN’s mechanism to intercept externalization events.

I configured all runs (native and replicated) so that every thread executes
on a dedicated physical CPU. No background workload interfered with the
experiment runs. The results therefore represent the best possible execution
time we can achieve on top of ROMAIN.

5.3.2 Single-Threaded Replication: SPEC CPU 2006

I analyze ROMAIN’s execution time overhead for replicating single-threaded
applications using the SPEC CPU 2006 benchmark suite. SPEC CPU is
a computation-heavy suite that does not intensively communicate with the
operating system or other applications. The programs are nevertheless rep-
resentative for common use cases, such as video decoding, spam filtering,
image processing, and computer gaming.

" Fred B. Schneider. Implementing Fault-
Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Sur-
veys, 22(4):299-319, December 1990

110 BJORN DOBEL

28 Hadi Esmaeilzadeh, Emily Blem, Renee
St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark Silicon and the End
of Multicore Scaling. In Annual Interna-
tional Symposium on Computer Architecture,
ISCA’11, pages 365-376, San Jose, Califor-
nia, USA, 2011. ACM

Benchmark Coverage and Methodology SPEC CPU 2006 consists of
29 benchmark programs. ROMAIN is able to replicate 19 of them. The
remaining benchmarks either do not work on L4Re at all (2 benchmarks) or
acquire too many resources so that replicating them is infeasible on a 32-bit
system (8 benchmarks):

* The 453. povray benchmark requires a working UNIX system providing
the fork() and system() functions. These are not available on L4Re.

* The 483.xalancbmk uses a deprecated feature of the C++ Standard Tem-
plate Library (std: : strstream), which is not provided by L4Re’s version
of this library.

* As explained in the previous section, the setup I used for my benchmarks
is only able to address 3 GiB of memory. This memory needs to suffice for
the microkernel, the L4Re resource managers, the ROMAIN master, and
the respective benchmarks. While this is enough to run a single instance of
each benchmark, some SPEC CPU programs allocate so much memory that
there is not enough left to run a second or third replica of this application.

Under these circumstances, the 410 . bwaves, 434.zeusmp, and 450.s0-
plex benchmarks were only able to run as a single replica on top of
ROMAIN. The 403.gcc, 436.cactusADM, 447 .dealll, 459.GemsFDTD,
and 481.wrf benchmarks were only able to run up to two replicas and
failed to allocate sufficient memory for a third instance.

I executed each benchmark in four modes: natively, and with ROMAIN
running one, two, and three replicas. In each mode I executed five iterations
of each benchmark and computed the average benchmark execution time
over these runs. The standard deviation across all modes was below 1%,
except for 433.milc (8.24%), 454 .calculix (5.65%), 465.tonto (1.8%),
481.wrf (6.64%), and 482.sphinx3 (1.1%).

Benchmark Results Figure 5.8 shows the execution time overheads for
those benchmarks that ROMAIN was completely able to replicate. The
results are normalized to native execution of the benchmark on L4Re and
constitute averages over five benchmark runs each. For these 19 benchmarks
the geometric mean overhead for running a single replica in ROMAIN is 0.3%.
The overhead for double-modular redundancy is 6.4%, and the overhead for
triple-modular redundancy is 13.4%.

Remember that these results represent the best-case overhead: all replica
threads run on dedicated CPUs with no background load. While the results
therefore might appear overly optimistic for real-world deployments, I argue
that future hardware platforms are likely to come with an abundant amount of
CPUs and therefore running replicas on their own CPUs is feasible. However,
computer architects have suggested that such platforms might not be able to
power all CPUs at the same time.?® Therefore, consolidating replicas onto
fewer processors while maintaining acceptable overheads is an interesting
area for future research.

Figure 5.9 on the next page shows the benchmark results for those bench-
marks that were only able to run one or two replicas. If we incorporate these
additional results into the overhead calculation, running a single replica in
ROMAIN increases execution time by 1.8%. Running two replicas adds 7.3%

1.60
1.50
1.40
1.30
1.20
1.10

Runtime normalized vs. native

1.00
0.90

1.60
1.50
1.40
1.30
1.20
1.10
1.00

Runtime normalized vs. native

0.90

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 111

lDI anl mml IDI WIS WEN IDI WON WOE IDI

400.perl 401.bzip2 ~ 416.gamess 429.mcf 433.milc 435.gromacs 437.leslie3d 444.namd 445.gobmk 454 .calculix

aon mom moll mom m |H| |HI i |HI o[l

456.hmmer 458.sjeng 462.libquant 464.h264ref 465.tonto 470.lbm 471.omnet++ 473.astar 482.sphinx3 GEOMEAN

[Single Replica [] Two Replicas [Three Replicas

Figure 5.8: SPEC CPU 2006: Normalized
execution time overhead for replication

1.50

1.40

1.20

1.10

I omm ol W m
0.90 — — — — — — —

410.bwaves 434.zeusmp 450.soplex 403.gcc 436.cactusADM 447 .dealll 459.GemsFDTD 481.wrf
[Single Replica [] Two Replicas [Three Replicas

Runtime normalized vs. native

Figure 5.9: SPEC CPU: Overhead for incom-

pletely replicated benchmarks
execution time, whereas triple-modular redundancy remains at a normalized
overhead of 13.4%.

Is There a Connection Between Overhead and Master Invocations? In the
experiment results we see that some SPEC CPU benchmarks have close to no
overhead even when we replicate them, whereas other benchmarks show high
overheads. My first intuition to explain the cause of overheads was to look
at ROMAIN’s internals: the master process is invoked whenever a replica
raises an externalization event. Hence, benchmarks with more externalization
events should have higher overheads.

To validate this intuition I counted the externalization events (system calls
and page faults) for each benchmark and normalized these counts to the
benchmarks’ native execution time. Figure 5.10 on the following page plots
replication overhead as a function of this normalized event rate. I highlight
the eight benchmarks with the largest replication-induced execution time
overheads. There appears to be a general trend that higher event rates also
lead to higher execution time overheads. However, there are also exceptions,
which require further investigation.

112 BJORN DOBEL

Single Replica Two Replicas Three Replicas
1.60 1.60 1.60
A 437 leslie3d
T 470.lbm
?:‘’ 429.mcf
g 1.40 1.40 1.40 471.0mnet++
2 = m 482.5phinx3
o
.?J 433.milc
3 400.perl
3 1.20 1.20 120 [A 465.tonto
N .
£ = O Other Benchmarks
g 0
S A
z
1.00 |- &« u 1.00 O Q0 00C 1.00
1 10 100 1,000 1 10 100 1,000 1 10 100 1,000
Events per second Events per second Events per second

Figure 5.10: Relation between externaliza-

tion event rate and replication overhead (log-

arithmic x axis)

465.tonto and 400.perl are the benchmarks with the highest exter-

nalization event rates. Nevertheless, 400.perl shows significantly lower
execution time overhead due to replication. Closer investigation into these
two benchmarks reveals that they differ in the types of externalization events
they raise. 400.perl performs a large amount of IPC calls to an external
log server as it writes data to the standard output. In contrast, 465.tonto
dominantly allocates and deallocates memory regions. As I explained in
Section 3.4.1, IPC messages are simply proxied by the ROMAIN master.
Unlike IPC messages, memory management requires more work at the mas-
ter’s side, because the master needs to maintain per-replica memory copies
as I described in Section 3.5.2. Therefore, replicating 465.tonto is more
expensive than replicating 400 . perl.

The Effect of Caches on Replication Overhead The second interesting result
from Figure 5.10 is that the 429.mcf, 437.1leslie3d and 470. lbm bench-
marks have relatively high replication overheads even though their rate of
externalization events is low. My first suspicion was that these benchmarks
perform special system calls that require costly handling in the master process.
To substantiate this suspicion I measured the time these applications spent in
user and master code during replicated execution.

Figure 5.11 on the facing page compares the normalized execution times
of the eight SPEC benchmarks with the highest execution time overheads.
The figure also shows the ratio of user code execution ([]) versus master
execution ([). We see that different classes of benchmarks exist:

1. The 400.perl and 465.tonto benchmarks have nearly constant user
execution time while their master execution time increases with increasing
number of replicas. Their overhead is therefore explained by additional
execution within the master process and these benchmarks confirm the
initial intuition.

2. 429.mcf, 437.1leslie3d, 470.1bm, 473.omnet++, and 482.sphinx3
spend nearly all their time executing application code. Their execution

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

time increases with increasing number of replicas, but this increase cannot

be attributed to master execution. My initial intuition is not true for these

benchmarks.

3. 433.milc shows signs of both effects. Its user execution time increases

with increasing replicas, but most of the replication overhead still comes

from increased time spent executing ROMAIN master code.

[] Application [Master

113

437 leslie3d/TMR 1 482.sphinx3/TMR 1

437 leslie3d/DMR] 482.sphinx3/DMR]

437 leslie3d/Single | 482.sphinx3/Single |
433.milc/TMR [473.omnet++TMR |
433.milc/DMR [473.omnet++/DMR |
433.milc/Single [473.omnet++/Single |
429.mct/TMR 1 470.Ibm/TMR
429.mct/DMR 1 470.Iom/DMR |
429.mcf/Single 1 470.lbm/Single |
400.perl/TMR [465.tonto/TMR [
400.per/DMR = 465.tonto/DMR [
400.perl/Single I 465 tonto/Single [

0 20 40 60 8 100 120 140 160 0 40 60 80 100 120 140 160

Execution time relative to single replica execution in %

The fact that replication-induced execution time overheads mainly appear
in user code indicates that these overheads may have hardware-level causes. |
used hardware performance counters available in the test machine to analyze
the last-level cache miss rate of each benchmark. Table 5.2 shows the total
number of last-level cache misses when running one, two, and three replicas
as well as the relative increase of cache misses in comparison to single-replica
execution. We see that the cache miss rates increase manifold when running
multiple replicas.

For the 433.milc and 465.tonto benchmarks this increase in cache
misses is a result of master interaction. Whenever the applications raise an
externalization event, we switch to the ROMAIN master process. As the
master’s address space is disjoint from the replica address space, caches need
to be flushed during this context switch. This leads to increased last-level
cache misses, because after switching back to the benchmark previously
cached data needs to be read from main memory again.

The increased cache miss rates also explain increased overheads for the
other SPEC benchmarks. Here, the miss rates rise because multiple instances
of the same application compete for the L3 cache, which can only fit 12 MiB
of data. Hence, where a single replica can still use all of this cache, three
replicas need to share the cache. In the best case this leaves only 4 MiB of L3
cache for each replica.

Execution time relative to single replica execution in %

Figure 5.11: SPEC CPU: Breakdown of user
vs. master ratio of overhead

114 BJORN DOBEL

Table 5.2: Last-Level (L3) Cache Miss Rates
(Misses per second of execution time) for
eight SPEC CPU benchmarks. Miss rates are
normalized to single-replica execution time.

2 Tim Harris, Martin Maas, and Virendra J.
Marathe. Callisto: Co-Scheduling Parallel
Runtime Systems. In European Conference
on Computer Systems, EuroSys 14, Amster-
dam, The Netherlands, 2014. ACM

1
@@ Socket 1
@ Socket 0
T T

Figure 5.12: Assigning replicas to available
CPUs in order to optimize L3 cache utiliza-
tion

Benchmark Single Replica Two Replicas Three Replicas
(vs. single replica) | (vs. single replica)

400.perl 0.5 x 10° 2.9x10° 4.6x 10°
(x5.3) (x 8.44)

429.mcf 9.87 x 10° 15.6 x 10° 19.44 x 10°
(x 1.6) (x 1.99)

433.milc 14.14 x 10° 14.77 x 10° 19.1 x 10°
(x 1.04) (x 1.35)

437.leslie3d 5.49 % 10° 7.34 % 10° 8.46 x 10°
(x 1.34) (x 1.54)

465 . tonto 0.07 x 10° 0.58 x 10° 0.96 x 10°
(x 7.99) (x 13.28)

470.1bm 3.11 x 100 6.9 x 10° 11.48 x 10°
(x 2.22) (x 3.69)

471.omnet++ 5.2 10° 7.97 x 10° 8.59 x 10°
(x 1.53) (x 1.65)

482.sphinx3 0.19 x 10° 4.93 % 10° 9.42 % 10°
(x 26.51) (x 50.65)

Given my observations I hypothesize that the SPEC benchmarks in ques-
tion are cache-bound. Replicating them reduces the available cache per replica
and thereby impacts execution time even for benchmarks that do not heav-
ily interact with the ROMAIN master. Apart from my measurements, this

hypothesis is supported by a similar analysis by Harris and colleagues.?”

Better Performance Using Reduced Cache Miss Rates 1 demonstrated in
Section 4.3.4 that replication overhead can be reduced by placing replica
threads on the same CPU socket. This happened because this way of placing
replicas reduced the cost of synchronization messages that are sent between
replicas for every externalization event. It turns out that this optimization only
benefits communication-intensive applications, such as the microbenchmark
I used to evaluate multithreaded replication. In contrast, my analysis in
this section indicates that this strategy might not be ideal for cache-bound
applications, such as at least some of the SPEC CPU benchmarks.

Given the test machine described in Section 5.3.1, forcing all replicas to
run on the first socket and share an L3 cache leaves the second socket with
an additional 12 MiB of cache completely unused. If my hypothesis is true,
distributing replicas across all sockets should reduce replication overhead by
doubling the amount of available L3 cache. To confirm this theory, I adapted
ROMAIN’s replica placement algorithm as shown in Figure 5.12: I now place
the first and third replica of an application on socket 0, whereas the second
replica always runs on socket 1.

Using this adjusted setup, I repeated my experiments for the eight SPEC
benchmarks in question and show the improved execution time overheads in
Figure 5.13 on the next page. The numbers in the figure show the relative
improvement for the given setup compared to the execution times shown in
Figure 5.8 on page 111.

We see that cache-aware CPU assignment reduces replication overhead
for five of the eight benchmarks. Running two replicas is nearly as cheap as
running a single one, because the second replica uses a dedicated L3 cache
and does not interfere with the first replica. The exceptions to this observation
are once again 433.milc and 465.tonto, whose overheads do not differ
from the previous runs. This confirms the assumption that these benchmarks

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 115

1.50

(o]

=

£ 140

c

£ 130

©

[0}

N

© 1.20

£

o

2 110

(o)

E

o
0.90

429.mcf 433.milc 437 leslie3d 465.tonto 470.lbm

IDI IDI IDI

473.omnet++ 482.sphinx3

[Single Replica [] Two Replicas [Three Replicas

are dominated by interactions with the ROMAIN master instead of suffering
from cache thrashing.

SUMMARY:
threaded applications. Based on measurements using the SPEC

ROMAIN provides efficient replication for single-

CPU 2006 benchmark suite, the geometric mean overhead for run-
ning two replicas is 7.3%. Three replica instances lead to an overhead
of 13.4%.

In addition to interaction with the ROMAIN master process, cache
utilization has a major impact on replication performance. While
a single application instance may fit its data into the local cache,
running multiple instances may exceed the available caches. This
problem may be mitigated by cache-aware placement of replicas on
CPUs.

5.3.3 Multithreaded Replication: SPLASH?2

The SPEC CPU benchmarks I used in the previous section are all single-
threaded and hence do not leverage ROMAIN’s support for replicating multi-
threaded applications that I introduced in Chapter 4. To cover such programs
with my evaluation, I evaluate ROMAIN’s overhead using the SPLASH?2
benchmark suite.3? As previous research found, these benchmarks contain
data races3! and thereby violate my requirement that multithreaded applica-
tions need to be race-free in order to replicate them. I therefore analyzed these
benchmarks using Valgrind’s data race detector3? and removed data races
from the Barnes, FMM, Ocean and Radiosity benchmarks.33

I compiled the benchmarks using cooperative determinism provided by
the replication-aware libpthread_rep library I introduced in Section 4.3.5.
Figure 5.14 shows the execution time overheads for these benchmarks run-
ning with two application threads normalized to native execution without
ROMAIN. The geometric mean overheads are 13% for double-modular
redundant execution and 24% for triple-modular redundant execution.

These overheads become higher if we run four application threads in
each benchmark. The overheads, shown in Figure 5.15, are 22% for DMR
execution and 65% for TMR execution.

Investigating the sources of overhead I found similar causes as for single-

threaded replication. FMM, Ocean, FFT, and Radix allocate a significant

Figure 5.13: SPEC CPU: Execution time
overhead with improved replica placement

3 Steven Cameron Woo, Moriyoshi Ohara,
Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Character-
ization and Methodological Considerations.
SIGARCH Comput. Archit. News, 23(2):24—
36, May 1995

31 Adrian Nistor, Darko Marinov, and Josep
Torrellas. Light64: lightweight hardware sup-
port for data race detection during systematic
testing of parallel programs. In International
Symposium on Microarchitecture, MICRO
42, pages 541-552, New York, NY, USA,
2009. ACM

32 Konstantin ~ Serebryany and Timur
Iskhodzhanov. ThreadSanitizer: Data Race
Detection in Practice. In Workshop on
Binary Instrumentation and Applications,
WBIA’09, pages 62-71, New York, NY,
USA, 2009. ACM

331 make the respective patches available at
http://tudos.org/~doebel/emsoftl4.

http://tudos.org/~doebel/emsoft14

116 BJORN DOBEL

1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90

Runtime normalized vs. native

Radiosity Barnes

Figure 5.14: SPLASH2: Replication over-
head for two application threads

1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
0.90

Runtime normalized vs. native

amount of memory and the measurements show that most of their over-
head comes from the initialization phase where these memory resources are
allocated. These benchmarks also measure their compute times without ini-
tialization. For these measurements the data shows TMR overheads of less
than 5% with two worker threads and less than 10% with four worker threads.

IDI mrll IHI IDI I aillm IDI mm ol IDI

Raytrace Water Volrend Ocean Radix GEOMEAN

[Single Replica [[] Two Replicas [l Three Replicas

3 93 2. 94 2. 02 2.02
I o
MM Raytrace Water Volrend Ocean Radix GEOMEAN

Radiosity Barnes

Figure 5.15: SPLASH2: Replication over-
head for four application threads

Benchmark | Lock Opera-
tions per second
Radiosity 13,800,000
Barnes 1,455,000
FMM 1,040,000
‘Water 850,000
Raytrace 451,000
Volrend 169,000
Ocean 7,100
FFT 141
LU 75
Radix 7

Table 5.3: Rate of lock operations for the
SPLASH?2 benchmarks executing natively
with two worker threads

[Single Replica [] Two Replicas [Three Replicas

The Barnes benchmark is interesting because it has fairly low overhead
when replicating the version using two worker threads, but shows drastic
increases in overhead when running four workers. Throughout its execution,
the benchmark touches nearly 900 MiB of memory and therefore three replicas
use most of the available RAM in the test computer. I measured the L3 cache
miss rates of each benchmark run and found that the total number of L3 misses
across all cores and replica threads is identical when running a single replica
of the two-worker and the four-worker versions. However, when running
three replicas, the two-worker version doubles its L3 miss rate whereas the
four-worker version’s L3 miss rate multiplies by five. This effect explains
part of the huge overhead of the Barnes benchmark with four worker threads.

The same findings can however not be applied to the Radiosity,
Raytrace, and Water benchmarks. They show high replication-induced
overheads even though their memory footprint is low — they use only around
40 MiB of memory. I suspected concurrency to be the replication bottleneck
here and therefore measured the rate of lock/unlock operations all benchmarks
perform when executing natively with two threads. I show these rates in
Table 5.3.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 117

We see that the benchmarks in question are among the ones with the
highest rates of lock operations. I therefore attribute the overheads of these
benchmarks to their lock ratio. Note that the Barnes and FMM benchmarks
are also in the group with high lock rates, but in their case locking-induced
overheads and memory-related overheads overlap.

Figure 5.16 shows the reason lock operations imply overhead. We see
three replicas with two threads each that compete for access to a lock L. In
the example R 1 executes the lock acquistion first and therefore becomes the
lock owner as explained in Section 4.3.5. This lock ownership ensures that
replicas Ry and R3 1 from the same thread group will also acquire the lock
even though from the perspective of timing replicas R, and R3 > reach the
respective lock operation first.

Ry O O
e @
Ry O O
Ryn @
Rz O O
Rs» e @
_—

Time
@ ‘lock(L); (O unlock(L);

Using this approach, ROMAIN ensures deterministic execution of mul-
tithreaded replicas. However, the example shows that this mechanism also
reduces concurrency, because replicas Ry > and R3 > have to wait even though
they could enter their critical section in the native case. This situation may
occur at any replicated lock operation and is more likely to happen if the
replica performs more lock operations. Hence, lock-intensive applications
show higher replication-induced overheads and these overheads increase with
more replicated threads.

For completeness, I also show the execution time overheads when running
the benchmarks using enforced determinism, which I introduced in Sec-
tion 4.3.3 and which reflects every lock operation as an externalization event
to the master. Figure 5.17 shows the execution time overheads when running
SPLASH?2 with two worker threads. We see that this approach enlarges the
overheads we observed for cooperative determinism.

Figure 5.16: Multithreaded replication: The
first replica to obtain a lock slows down all
other replicas if their threads have different
timing behavior.

118 BJORN DOBEL

Single: 12.71x
DMR: 16.27x

TMR: 17.89x

[—>

W
8.20
7.80
7.40
7.00
2 660
§ 620
- 580
Z 540
e 5.00
T 460
E 420
2 3.0
2 340
£ 3.00
Z 260
2.20
1.80
1.40
1.00

0.60 -
Radiosity

Barnes FMM

Figure 5.17: SPLASH2: Replication over-
head for two application threads using en-

forced determinism

o write 400 MiB .

Sender

- Shared Memory Region

o— —1

read

Receiver

Figure 5.18: SHMC Application Benchmark

| lDI NON mol =0 lDl nom mol IHI

Raytrace ~ Water Volrend Ocean Radix GEOMEAN

[Single Replica [[] Two Replicas [l Three Replicas

SUMMARY: The execution time overhead of ROMAIN for replicat-
ing multithreaded applications is higher than for single-threaded ones.
Using the SPLASH?2 benchmark suite as a case study I showed that in
addition to the previously measured overhead sources (system calls
and memory effects), multithreaded applications also suffer from
replication overhead due to their lock density. High lock densities
are known to be a scalability bottleneck in concurrent applications
and replication magnifies this effect as replicas have to wait for each
other in order to deterministically acquire locks.

5.3.4 Application Benchmark: SHMC

In Section 3.6 I showed that ROMAIN also supports replicating applications
that require access to memory regions shared with other processes. In contrast
to replica-private memory, these accesses must be intercepted by the master
process as these operations constitute externalization events as well as input
to the replicas.

I evaluate shared-memory performance overhead using a worst-case sce-
nario depicted in Figure 5.18. Two applications, a sender and a receiver, share
a 512 KiB shared memory channel. The sender uses L4Re’s packet-based
shared memory ring buffer protocol, SHMC, to send 400 MiB of payload data
to the receiver. The receiver only reads the data and does no processing on it.
The scenario therefore evaluates the best possible throughput we can achieve
in such a scenario.

I executed the benchmark natively on L4Re and varied the packet size used
by the SHMC protocol from 32 bytes up to 2,048 bytes. Every packet going
through the channel requires additional work by the protocol implementation.
Hence, increasing the packet size will also increase SHMC channel throughput
because the implementation needs to perform less management work.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 119

I then replicated the sender application using ROMAIN and performed
the same variation in packet size as in the native case. Figure 5.19 shows
the obtained throughputs, distinguishes between the two shared memory
interception solutions (trap & emulate and copy & execute) I presented in
Section 3.6 and relates them to the results for native execution.

Trap & emulate

Copy & execute

1000 1000
100 100
[S]
(]
o
@
=
3 10 10
£
[=2]
=)
o
£
=
1 1
0.1 0.1
Vad o a X o V2 (o
R U N \& (\Pv LU

Packet Size / Bytes

Native Single Replica
Two Replicas Three Replicas

The results show that replicating shared-memory accesses is costly. While
native execution achieves throughputs between 55 MiB/s (32 byte packets)
and 1.7 GiB/s (2,048 byte packets), replicated shared memory accesses are 2
orders of magnitude slower. Trap & emulate replication achieves throughputs
between 110 KiB/s (32 byte packets) and 14,7 MiB/s (2,048 byte packets) for
three replicas. Copy & execute —which avoids using an instruction emulator
to perform memory accesses —performs significantly better and achieves
520 KiB/s for 32 byte packets and 33,5 MiB/s for 2,048 byte packets.

In both native and replicated execution increasing the packet size also
increases throughput. I inspected the protocol closer and found that for
every packet, SHMC performs 23 shared-memory accesses. One of these
accesses is a rep movs instruction for which we saw in Section 3.6 that its
overhead is negligible. The remaining 22 memory accesses are however
random accesses to SHMC’s management data structures. Handling such
instructions is expensive and explains why the replication-induced overhead
for small packets is higher (factor 100 for copy & execute TMR) than for
larger packets (factor 50 for copy & execute TMR).

SUMMARY: While ROMAIN is capable of replicating applications
that use shared memory, replication will significantly slow down
these applications.

PN

™
v
3 oS

Packet Size / Bytes

Figure 5.19: Throughput achieved when
replicating an application transmitting data
through a shared-memory channel. (Note the
logarithmic y axis.)

120 BJORN DOBEL

oM %

500k

£

200k

CPU Cycles for Recovery

100k

50k ‘—}‘

Bitcount CRC32 Dijkstra IPC

Figure 5.20: Average time (CPU cycles) to
recover from a detected error in the fault in-
jection benchmarks (Logarithmic Y axis, er-
ror bars represent standard deviation across
10 experiments.)

5.3.5 The Cost of Recovery

As a next experiment [investigated the cost of recovering from a detected
error. For this purpose I executed those benchmarks on my test machine that
I used for fault injection experiments in Section 5.2. I randomly selected
ten injections into general purpose registers that lead to a detected error in
my previous experiments and injected those errors manually during native
execution using a special ROMAIN fault injection observer. I injected one
such error into every benchmark run and repeated each injection ten times to
compute an average of the time it took ROMAIN to perform recovery after
the error had been detected. Figure 5.20 shows the averages I observed.

Recovering from an error in ROMAIN consists of bringing the register
states and memory content of all replicas into an identical state. This process
is dominated by the cost of memory recovery. Returning architectural registers
into the same state cost around 700 CPU cycles in every experiment and I do
not show this in the plot. The remaining thousands to millions of cycles are
spent correcting memory content. As I described in Section 3.5, the ROMAIN
master process has access to all memory of the replicas. Hence, this part of
the recovery process maps to a set of memcpy operations from a correct into a
faulty replica.

I suspected that the difference in recovery times we see across the bench-
marks is related to the amount of memory these benchmarks consume. Two
facts support this hypothesis:

1. In my setup, Bitcount consumes 192 KiB of memory, CRC32 consumes
434 KiB, Dijkstra uses 1.3 MiB and the IPC benchmark allocates 3.4 MiB.
This is reflected by the respective recovery times.

2. The Dijkstra and IPC benchmarks show a large standard deviation. This

is due to the fact that in each of those two experiments, one out of the ten
injections constantly showed much lower recovery times (60,000 cycles vs.
350,000 cycles (Dijkstra) and 1.8 million cycles (IPC)) than the remaining
9 runs. In both cases, the fast recovery runs stem from faults that were
injected early within the benchmark’s main () functions, that is before the
benchmarks allocate all their memory. Hence, recovery does not need to
copy as much data as in the remaining runs.

To further validate that recovery time is dominated by copying memory
content, I created another microbenchmark: An application allocates a mem-
ory buffer and touches all data in this buffer once, so that the ROMAIN master
has to map the memory pages into all replicas of the program. Thereafter, I
flip a bit in the first replica, which is detected and corrected by the ROMAIN
master.

I varied the buffer size from 1 MiB to 500 MiB, executed ten fault injection
runs for each size, and plot the average recovery times and the resulting
recovery throughput in Figure 5.21. The standard deviations in this experiment
were below 0.1% and are therefore not plotted. We see that recovery time
grows linearly with the replicated application’s memory footprint and even
recovering a replicated application with 500 MiB of memory is done within
130 ms. This forward recovery mechanism is extremely fast compared to
traditional checkpoint/rollback mechanisms. For instance, DMTCP reports

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 121

a restart overhead between one and four seconds for a set of application Jason Ansel, Kapil Arya, and Gene Coop-

benchmarks.3* Note that this advantage in recovery speed is not a special erman. DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop.
) In 23rd IEEE International Parallel and Dis-
prOVIde forward recovery. tributed Processing Symposium, Rome, Italy,

Recovery throughput — that is the amount of memory recovered per second — May 2009

feature of ROMAIN, but is inherent to all replication-based approaches that

is high for buffer sizes below 4 MiB. Remember, my test machine has 12 MiB
of last-level cache per socket. When running three replicas with a memory
footprint of up to 4 MiB, this data fits into the L3 cache and in fact it is
prefetched into this cache because the benchmark touches all memory before
injecting a fault. For larger footprints, recovery becomes memory-bound. The
larger the footprint becomes, the closer recovery throughput gets to around
3.8 GiB/second. I measured the theoretical optimum for memcpy () on my test
machine to be 4.5 GiB/second. The difference to recovery throughput comes
from the fact that ROMAIN’s recovery does not copy a single continuous
space of memory, but several smaller ones.

125
) 6
@
2 100 2 s
£ ‘g_
[0
E 5 ¢
g 2
= e
g 50 g
o 3 2
O
Q
25 o 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Application Memory Use / MiB Application Memory Use / MiB

Figure 5.21: Recovery time depending on
application memory footprint

SUMMARY: ROMAIN provides forward recovery by majority vot-
ing. Recovery times relate linearly to the replicated application’s
memory footprint. Forward recovery takes place in few milliseconds
whereas state-of-the-art backward recovery may take an order of
magnitude more time.

5.4 Implementation Complexity

ROMAIN adds complexity in terms of source code to FIASC0.0OC’s L4
Runtime Environment. I measure this complexity by giving the source lines of
code (SLOC) required to implement the features described in this thesis. T used
David A. Wheeler’s sloccount3’ to evaluate these numbers for ROMAIN 3 http://www.dwheeler.com/
and show the results in Table 5.4. sloccount
The two components required to implement replication as an OS service
are the ROMAIN master process (7,124 SLOC) and the replication-aware
libpthread library (756 SLOC). I furthermore categorized the master pro-
cess’ code into five categories to gain more insight into where implementation
complexity originates from:

http://www.dwheeler.com/sloccount
http://www.dwheeler.com/sloccount

122 BJORN DOBEL

Table 5.4: ROMAIN: Source Lines of Code

1. Replica Infrastructure subsumes code for loading an application binary
during startup, creating the respective number of replicas and maintaining
each replica’s memory layout.

2. Fault Observers lists the implementation complexity of the specific event

observers I introduced in Section 3.3. While most observers are fairly
small and comprehensible, system call handling and the implementation
of deterministic locking are substantially more complex. Observers for
debugging replicas are available as well but can be disabled at compile
time to reduce complexity.

3. Event Handling includes all code to intercept replicas’ externalization

events and perform error detection and recovery using majority voting.

4. Shared Memory Interception comprises the implementations of replicated

shared memory access I described in Section 3.6. The table shows that
the source code complexity for implementing each interception method
(trap & emulate and copy & execute) in ROMAIN is about the same. Note
however, that the trap & emulate approach requires an additional x86
disassembler library. For this purpose I used the 1ibudis86 disassembler,
which adds another 2,187 lines of code to the implementation.

5. Runtime Support includes all remaining code, such as master startup and

logging. This runtime support furthermore includes Martin Kriegel’s
implementation of a hardware watchdog to bound error detection latencies
as described in Section 3.8.2.

RoMAIN Component | SLOC ROMAIN Component | SLOC
Master 7,124 Master (ctd.)
Replica Infrastructure | 2,652 Event Handling 511
Binary Loading 385 Shared Memory Int. 950
Replica Management 1,484 Common 378
Memory Management 783 Trap & emulate 262
Fault Observers 1,962 Copy & execute 310
Observer Infrastructure 190 Runtime Support 1,049
Time Input 112 Startup, Logging 562
Trap Handling 82 Hardware Watchdog 487
Debugging 438
Page Fault Handling 186
Locking 430
System Calls 524 libpthread_rep 756

5.5 Comparison with Related Work

With the experiments in this chapter I demonstrated that ROMAIN provides an
operating system service that efficiently detects and recovers from hardware-
induced errors in binary-only user applications. I now compare ROMAIN
to other software-implemented fault tolerance techniques. I do not compare
against hardware-level techniques as a major point in software-based fault
tolerance methods is to avoid custom hardware features and solely work

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

using software primitives. For the comparison I selected ROMAIN and five

additional mechanisms that provide this property:

1.

Software-Implemented Fault Tolerance (SWIFT) is a compiler technique
that duplicates operations using different hardware resources (such as
registers) and compares the results of these operations to detect errors.30

Encoding Compiler—ANB (EC-ANB) is a compiler that arithmetically
encodes operands and control flow of an instrumented program.3” This

approach provides higher error coverage than SWIFT.

. Process-Level Redundancy (PLR) pioneered the idea of using operating

system processes as the sphere of replication, which ROMAIN builds
upon.8

Efficient Software-Based Fault Tolerance on Multicore Platforms (EFTMP)
provides applications with a set of system call wrappers and a replication-
aware deterministic thread library to support replication of multithreaded

applications.®

. Runtime Asynchronous Fault Tolerance (RAFT) improves the speed of PLR

by speculatively executing system calls instead of waiting for all replicas

to reach their next system call for state comparison.40

Table 5.5 summarizes the comparison between ROMAIN and these other

mechanisms. The numbers and properties shown in the table are taken from

the scientific papers and this thesis respectively. I explain the different points

in more detail below.

123

% George A. Reis, Jonathan Chang, Neil
Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault
Tolerance. In International Symposium on
Code Generation and Optimization, CGO
’05, pages 243-254, 2005

3 Ute Schiffel, André Schmitt, Martin
SiuiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’10, Vienna, Austria, 2010

3 A. Shye, J. Blomstedt, T. Moseley, V.J.
Reddi, and D.A. Connors. PLR: A Soft-
ware Approach to Transient Fault Tolerance
for Multicore Architectures. IEEE Transac-
tions on Dependable and Secure Computing,
6(2):135 -148, 2009

% Hamid Mushtaq, Zaid Al-Ars, and Koen
L. M. Bertels. Efficient Software Based Fault
Tolerance Approach on Multicore Platforms.
In Design, Automation & Test in Europe Con-
ference, Grenoble, France, March 2013

“Yun Zhang, Soumyadeep Ghosh, Jialu
Huang, Jae W. Lee, Scott A. Mahlke, and
David I. August. Runtime Asynchronous
Fault Tolerance via Speculation. In Inter-
national Symposium on Code Generation
and Optimization, CGO ’12, pages 145-154,
2012

Compiler-Based Replication-Based

Approaches Approaches

SWIFT EC-ANB PLR EFTMP RAFT ROMAIN
Covers Memory No Yes Yes No Yes Yes
Errors
Covers Processor || Yes Yes Yes Yes Yes Yes
SEUs
Error Coverage >92% >99% 100% Unknown | 100% 100%
Recovery Built In || No No Yes No No Yes
Memory 1x 2x Nx 2x 2x Nx
Overhead
Exec. Overhead, 41% 2x - 75x 17% (detection) | Unknown | 5-10% 7% (detection)
Single 41% (recovery) 13% (recovery)
Support for Unknown | Unknown No Yes No Yes
Multithreading
Exec. Overhead, Unknown | Unknown Not supported < 18% Not 22% (detection)
Multithreading supported 65% (recovery)
Source Code Yes Yes No No No No
Required

Table 5.5: Comparison of ROMAIN and
other software fault tolerance methods

124 BJORN DOBEL

! Florian Pester. ELK Herder: Replicat-
ing Linux Processes with Virtual Machines.
Diploma thesis, TU Dresden, 2014

Note that a direct comparison of overhead numbers and coverage rates is
not always possible: SWIFT was for instance implemented on the Itanium
architecture whereas all other tools were implemented for x86. Error coverage
rates were computed from different kinds of experiments: SWIFT, PLR,
and RAFT used a similar random sampling approach and injected several
thousands of bit flips into application memory, general purpose and control
registers. EC-ANB used a custom fault injector that modified computations,
operators, and memory operations at runtime. ROMAIN’s was tested by
injecting errors into memory and general purpose registers using the FAIL*
framework.

Error Coverage and Recovery All mechanisms in this comparison support
detection of SEUs in the processor, such as incorrect computations, register
SEUs, and control flow errors. With the exception of SWIFT and EFTMP,
all mechanisms furthermore support detection of memory errors. SWIFT
explicitly rules out memory errors and requires ECC-protected RAM. EFTMP
simply ignores the fact that it is not safe against memory errors as I explained
in Section 4.2.

In contrast to all other mechanisms, PLR and ROMAIN support recovery
from errors using majority voting as a built-in feature. This feature is paid for
with a higher memory overhead, because at least three instances of a replica
need to be maintained to allow voting. All other mechanisms rely on orthog-
onal methods for recovery, such as a working checkpointing mechanism, to
be available. Using such recovery methods will lead to additional overheads
(e.g., for taking checkpoints and re-executing from the last checkpoint during
recovery) that are not included in the overhead numbers provided by the
respective authors.

Overheads SWIFT is the only mechanism in this analysis that does not
require additional memory. As explained before, PLR and ROMAIN multiply
memory consumption by the number of replicas they are running. EC-ANB
doubles the amount of memory because it transforms all 32-bit data words into
64-bit encoded data. EFTMP and RAFT run two replicas of an application
and hence require double the amount of memory.

All mechanisms except EC-ANB have execution time overheads between
5% and 41% when running single-threaded benchmarks. ROMAIN’s 13%
overhead for running three replicas is competitive and has the advantage of
providing forward recovery.

ROMAIN was evaluated on top of FIASC0.0OC whereas the other mech-
anisms were analyzed on Linux. These systems differ in the type of exter-
nalization events that need to be handled, which may impact execution time
overheads. However, Florian Pester’s Linux version of ROMAIN, which 1
mentioned in Section 3.3, shows similar overheads (16.3% for TMR execu-
tion) for the same benchmarks (SPEC CPU 2006) on the same test machine

that I used for my evaluation.*!

Supported Applications Only EFTMP and ROMAIN support protection of
multithreaded applications. SWIFT and EC-ANB do not discuss this problem
and have not been evaluated using multithreaded benchmarks. PLR and RAFT

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

explicitly rule out replication of multithreaded programs for their prototypes.
EFTMP provides lower runtime overheads than ROMAIN. However, as I
pointed out above, ROMAIN covers a wider range of hardware errors and
provides forward recovery.

As a last point of comparison, compiler-based solutions, such as SWIFT
and EC-ANB, require the whole source code of the protected application
to be recompiled. External binary code, such as the standard C library,
remains unprotected by these mechanisms. In contrast, PLR and RAFT
use binary recompilation to protect complete application binaries. EFTMP
protects applications by requiring them to use a custom-designed libpthread
library. ROMAIN avoids expensive recompilation by running at the operating
system level and leveraging FIASC0.OC’s virtualization support to intercept
externalization events.

SUMMARY: ROMAIN combines the advantages of other software-
implemented fault tolerance mechanisms and addresses their deficien-

cies:

* ROMAIN protects binary-only applications and does not require
source code availability in contrast to compiler-based solutions.

* ROMAIN protects both single-threaded and multithreaded ap-
plications against CPU and memory errors, whereas most other
mechanisms were only tested using single-threaded workloads.

* ROMAIN provides built-in forward recovery using majority vot-
ing, while most other techniques only allow for error detection.
As a matter of flexibility, ROMAIN can however also be executed
in error detection mode, which reduces its overhead, but in turn re-
quires the combination with an external error recovery mechanism,
such as application-level checkpointing.

While ROMAIN provides efficient and flexible error detection and recovery
for unmodified user-level applications, there is a remaining drawback that my
solution shares with most other software fault tolerance mechanisms: They
only protect application code and do not detect and recover from errors in
the fault-tolerant runtime or the underlying operating system kernel. This
is a serious problem, because those components are crucial for the correct
functioning of the whole system. I will therefore continue my thesis with an
investigation of this Reliable Computing Base.

125

6
Who Watches the Watchmen?

At several points in the previous chapters we realized that ROMAIN relies
on specific hardware and software features to function correctly. Protecting
this Reliable Computing Base (RCB) remains an open issue. In this chapter
I argue that every software-implemented fault tolerance mechanism has a
specific RCB and investigate what constitutes ROMAIN’s RCB. After having
a closer look at what constitutes the RCB, I present three case studies which
future work may extend in order to achieve full system protection.

1. As the OS kernel is the largest part of ROMAIN’s RCB, I first study the
vulnerability of the FIASC0.OC microkernel to understand how RCB
code reacts to hardware faults and give ideas about how the kernel can be
better protected.

2. Thereafter, I investigate how current hardware trends can lead to an archi-
tecture providing a mixture of reliable and less reliable CPU cores and
how the ASTEROID OS architecture can benefit from such a platform.

3. Lastly, I point out that ASTEROID’s software-level RCB is purely open-
source software and therefore allows the application of compiler-based
fault tolerance mechanisms. Lacking a suitable compiler, I use simulation
experiments to estimate the performance impact applying such mechanisms
could have on ASTEROID as a whole.

I developed the concept of the Reliable Computing base together with
Michael Engel.!
previously published in HotDep 20122 (mixed-reliability hardware) and SO-
BRES 20133 (estimating the effect of compiler-based RCB protection).

Two of the case studies I present in this chapter were

6.1 The Reliable Computing Base

Computer systems security is often evaluated with respect to the Trusted
Computing Base (TCB). The US Department of Defense’s “Trusted Computer
Systems Evaluation Criteria™* define the TCB as

“[...] all of the elements of the system responsible for supporting the security
policy and supporting the isolation of objects (code and data) on which the
protection is based. [...] the TCB includes hardware, firmware, and software
critical to protection and must be designed and implemented such that system
elements excluded from it need not be trusted to maintain protection.”

Hence, the TCB comprises those hardware and software components that
need to be trusted in order to obtain a secure service from a computer system.

! Michael Engel and Bjorn Dobel. The
Reliable Computing Base: A Paradigm for
Software-Based Reliability. In Workshop on
Software-Based Methods for Robust Embed-
ded Systems, 2012

2Bjorn Dobel and Hermann Hirtig. Who
Watches the Watchmen? — Protecting Oper-
ating System Reliability Mechanisms. In
Workshop on Hot Topics in System Depend-
ability, HotDep’12, Hollywood, CA, 2012

3 Bjorn Dobel and Hermann Hirtig. Where
Have all the Cycles Gone? — Investigating
Runtime Overheads of OS-Assisted Repli-
cation. In Workshop on Software-Based
Methods for Robust Embedded Systems, SO-
BRES’13, Koblenz, Germany, 2013

* Department of Defense. Trusted Computer
System Evaluation Criteria, December 1985.
DOD 5200.28-STD (supersedes CSC-STD-
001-83)

128 BJORN DOBEL

3 Cristian Florian. Report: Most Vulnerable
Operating Systems and Applications in
2013. GFI Blog, accessed on July 29th 2014,
http://www.gfi.com/blog/report-
most-vulnerable-operating-systems-
and-applications-in-2013/

¢ Steve McConnell. Code Complete: A Prac-
tical Handbook of Software Construction.
Microsoft Press, Redmond, WA, 2 edition,
2004

7Lenin Singaravelu, Calton Pu, Hermann
Hirtig, and Christian Helmuth. Reducing
TCB Complexity for Security-Sensitive Ap-
plications: Three Case Studies. In Euro-
pean Conference on Computer Systems, Eu-
roSys’06, pages 161-174, 2006

Industry experts estimate that the main source of security vulnerabilities
in modern system are programming or configuration errors at the software

level.®> As the number of software errors correlates with code size,6

security
research focuses on minimizing the amount of code within the TCB in order
to improve system security.’

When implementing software-level fault tolerance mechanisms —such as
ROMAIN —we face a similar problem: we rely on the correct functioning of
hardware and software components in order to implement fault tolerance. In

the case of ROMAIN these components are:

* Memory Management Hardware: ROMAIN provides fault isolation be-
tween replicas by running them in different address spaces. This isolation
relies on the hardware responsible for enforcing address space isolation
(i.e., the MMU) to work properly.

* Hardware Exception Delivery: ROMAIN intercepts the externalization
events generated by a replicated application. For this purpose it configures
the replicas in a way that all these exceptions get reflected to the master
process for state comparison and event processing. Using the watchdog
mechanism I described in Section 3.8.2, ROMAIN can already cope with
missing hardware exceptions. However, the master still relies on the fact
that exception state is written to the right memory location within the
master and does not accidentally overwrite important master state.

* Operating System Kernel: The FIAsCc0.OC kernel is crucial for RO-
MAIN because it configures the hardware properties I mentioned above
and ROMAIN needs to rely on this configuration to work properly. Fur-
thermore, the kernel schedules replicas and delivers hardware exceptions
to the master process.

* ROMAIN Master Process: The master process manages replicas and their
resources and furthermore handles externalization events. While running
in user mode on top of F1IASC0.OC, the master is still unreplicated and
therefore unable to detect and recover from the effects of a hardware fault.

Inspired by the term TCB, in our paper we opted to call those components
that are unprotected by a software fault tolerance mechanism and still need to
work in order for the whole system to tolerate hardware faults, the Reliable
Computing Base (RCB):!

“The Reliable Computing Base (RCB) is a subset of software and hardware
components that ensures the operation of software-based fault-tolerance meth-
ods and that we distinguish from a much larger amount of components that can
be affected by faults without affecting the program’s desired results.”

6.1.1 Minimizing the RCB

As the RCB is unprotected by our software fault tolerance mechanisms, any
code that runs within the RCB remains vulnerable to hardware faults. In order
to reduce the probability of an error striking during unprotected execution,
we argue that similar to the TCB, the RCB should be minimized. This raises
the question, how we can accomplish this minimization.

http://www.gfi.com/blog/report-most-vulnerable-operating-systems-and-applications-in-2013/
http://www.gfi.com/blog/report-most-vulnerable-operating-systems-and-applications-in-2013/
http://www.gfi.com/blog/report-most-vulnerable-operating-systems-and-applications-in-2013/

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 129

Minimizing Code Size As mentioned above, minimizing the TCB is achieved
by reducing the amount of code inside the TCB because there is a direct
relation between code size and security vulnerabilities. This is not the case
for dependability: A program can—but does not need to—actually become
more dependable using more code, for instance when this code is used to
implement fault-tolerant algorithms or data validation.

Minimizing RCB Execution Time As hardware faults are often modeled as
being uniformly distributed over time,® reducing the time spent executing
RCB code will reduce the probability of an error occurring within the RCB.
Two design decisions I presented in this thesis provide a reduction of RCB
execution time:

1. By running on top of a microkernel, I limit the amount of time spent
executing unprotected kernel code. Code that would traditionally run
inside a monolithic OS kernel —such as a file system —runs as a user-level
application and can therefore be replicated and protected using ROMAIN.

2. I presented several performance optimizations that reduce the time spent
executing in the ROMAIN master:

* In Section 3.5 I described how ROMAIN’s memory manager maps
multiple pages at once during page fault handling.

* The fast synchronization mechanism I introduced in Section 4.3.4 re-
duces the time replicas spend in synchronization operations.

While these optimizations were mainly implemented to decrease RO-
MAIN’s performance overhead, a useful side effect is that they also reduce
the time spent executing unprotected kernel and master code.

Minimizing Software/Hardware Vulnerability The previous examples seem
to indicate that anything that speeds up kernel execution will also reduce the
RCB’s vulnerability. As an example, when comparing replica states we could
chose to perform a hardware-assisted SSE4 memcmp () instead of using a pure
C implementation.”

However, computer architecture researchers pointed out that different
functional units of a CPU!? or different types of instructions of an instruction
set architecture!! have different levels of vulnerability against hardware
errors. Hence, using a more complex functional unit to reduce RCB execution
time may lead to an increase in total vulnerability as more functional units

participate in execution of this RCB code.

Future Research 'The most promising approach to reducing the vulnera-
bility of the RCB against hardware faults is to consider both software-level
and hardware-level vulnerability metrics. I argue that Sridharan’s Program
Vulnerability Factor (PVF) may be a good starting point for such analysis.!?

As a side project of this thesis, I implemented a PVF analysis tool for x86
binary code!3 and showed that

* PVF analysis is a fast alternative to traditional fault injection analysis and
can predict the impact of a hardware error on sequences of instructions,
and

8 Shubhendu Mukherjee. Architecture De-
sign for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008

9 Richard T. Saunders. A Study in Memcmp.
Python Developer List, 2011

10 Shubhendu S. Mukherjee, Christopher
Weaver, Joel Emer, Steven K. Reinhardt, and
Todd Austin. A Systematic Methodology to
Compute the Architectural Vulnerability Fac-
tors for a High-Performance Microprocessor.
In International Symposium on Microarchi-
tecture, MICRO 36, Washington, DC, USA,
2003. IEEE Computer Society

' Semeen Rehman, Muhammad Shafique,
Florian Kriebel, and Jorg Henkel. Reliable
Software for Unreliable Hardware: Embed-
ded Code Generation Aiming at Reliability.
In International Conference on Hardware/-
Software Codesign and System Synthesis,
CODES+ISSS 11, pages 237-246, Taipei,
Taiwan, 2011. ACM

12 Vilas Sridharan and David R. Kaeli. Quan-
tifying Software Vulnerability. In Workshop
on Radiation effects and fault tolerance in
nanometer technologies, WREFT *08, pages
323-328, Ischia, Italy, 2008. ACM

3Bjorn Débel, Horst Schirmeier, and
Michael Engel. Investigating the Limitations
of PVF for Realistic Program Vulnerability
Assessment. In Workshop on Design For
Reliability (DFR), 2013

130 BJORN DOBEL

!4 George A. Reis, Jonathan Chang, Neil
Vachharajani, Ram Rangan, and David I. Au-
gust. SWIFT: Software Implemented Fault
Tolerance. In International Symposium on
Code Generation and Optimization, CGO
’05, pages 243-254, 2005

15 Namsuk Oh, Philip P. Shirvani, and Ed-
ward J. McCluskey. Control-Flow Checking
by Software Signatures. IEEE Transactions
on Reliability, 51(1):111 =122, March 2002
16 Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’10, Vienna, Austria, 2010
7 Yun Zhang, Jae W. Lee, Nick P. Johnson,
and David I. August. DAFT: Decoupled
Acyclic Fault Tolerance. In International
Conference on Parallel Architectures and
Compilation Techniques, PACT 10, pages
87-98, Vienna, Austria, 2010. ACM

18 Christoph Borchert, Horst Schirmeier, and
Olaf Spinczyk. Generative Software-Based
Memory Error Detection and Correction for
Operating System Data Structures. In Inter-
national Conference on Dependable Systems
and Networks, DSN’13. IEEE Computer So-
ciety Press, June 2013

* In its current state, PVF is limited to predicting whether an error will be
benign or lead to a program failure. PVF analysis does not incorporate
quality information that could indicate whether a wrong result is still “good
enough” given a specific application scenario.

By incorporating PVF analysis tools into the software development pro-
cess, modifications to RCB components can be evaluated for their impact
on the component’s vulnerability in addition to traditional correctness and
performance analysis.

6.1.2 The RCB in Software Fault Tolerance Mechanisms

ROMAIN is not the only software-implemented fault tolerance mechanism
that relies on RCB components. I will now have a look at other mechanisms
that implement fault tolerance using compiler-level or infrastructure-level
techniques and show that most of these solutions have an RCB specific to the
respective mechanism.

The RCB and Compiler-Based Fault Tolerance Compiler-based fault tol-
erance mechanisms should be able to compile the complete software stack
including all RCB components if their source code is available. However, in
some cases additionally inserted code —such as SWIFT’s result validation!* —
remains unprotected from hardware faults and hence forms the RCB of these
mechanisms.

Furthermore, to the best of my knowledge none of the compiler-based
mechanisms available has been applied to an operating system kernel so far.
As none of these tools are openly available for download, it is impossible to
try this with FIASCc0.OC. I argue that fault tolerant compilation of an OS
kernel will have to solve three problems:

1. Asynchronous Execution arises from the necessity to run interrupt handling
code whenever a hardware interrupt needs to be serviced. This may result
in random jumps that confuse signature-based control-flow checking!3 or

arithmetic protection of the instruction pointer.16

2. Interaction with Hardware requires accessing specific I/O memory regions

or using I/O-specific instructions. These accesses work on concrete values
dictated by the hardware specification. I/O values cannot be arithmetically
encoded or otherwise replicated. Hence, additional code to convert be-
tween encoded and concrete values is required, which may in turn prove
to be a single point of failure for the respective solution.

3. Thread-based replication!” relies on a runtime that implements thread-

ing and mechanisms to communicate results among these threads. Such
mechanisms are usually implemented by the OS kernel. Therefore, the
threading implementation would require additional protection.

These problems can be solved. For instance, Borchert presented an aspect-
oriented compiler that is able to protect important kernel data structures in the

long term!8

using checksums and data replication. However, his work does
not protect those data structures during modification and it does not apply to

short-term storage like the stack, so that parts of the kernel still remain in the

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 131

RCB. For now I therefore assume that the OS kernel remains a less-protected
part of the RCB for compiler-based fault tolerance mechanisms.

The RCB and Fault Tolerant Infrastructure In contrast to methods that
generate fault-tolerant code, other approaches integrate a fault-tolerant infras-
tructure into a system. Replication-based methods add such infrastructure in
the form of a replica manager. I already explained that in the case of ROMAIN
this manager as well as the underlying OS kernel remain unprotected. This is
in line with other such work: The authors of PLR!® and RAFT?? explicitly
state that their mechanisms do not support protecting the underlying OS.

Other infrastructure approaches rework the operating system to be inher-
ently more fault tolerant. For example, the Tandem NonStop system aimed
to structure all kernel and application code to use transactions and thereby
guarantee that a consistent state can be reached in the case of any error.?!
Lenharth and colleagues implemented a similar idea in Linux: their Recovery
Domains restructure kernel code paths to allow rollback.??

However, Gray acknowledges that Tandem’s transactions rely on a transac-
tion manager to correctly implement rollback recovery. Lenharth’s solution
does not cover important kernel parts, such as scheduling, interrupt handling,
and memory allocation. We therefore see that even those mechanisms have
an RCB that remains vulnerable to the effects of hardware faults.

As a notable exception, Lovelette’s software fault tolerance mechanism
for the ARGOS space project actually aimed at protecting the whole RCB.
ARGOS sent commercial-off-the-shelf processors into space and tried to
protect them using software-only methods. As a result of the high rate
of memory errors they saw in flight, they implemented a software-level
ECC that scrubbed all important code and data—including their OS kernel —
periodically to detect and recover from these errors before they led to system
malfunction.?> Furthermore, they duplicated the ECC scrubber in order to
avoid malfunctions in this area.

SUMMARY: Although software-implemented fault tolerance mech-
anisms protect user applications, they still rely on a set of hardware
and software components — the Reliable Computing Base — to func-
tion correctly. In most cases the RCB includes the OS kernel as well
as additional infrastructure leveraged by the respective mechanisms.
These RCB components are the Achilles’ Heel of any such mech-
anism and require additional effort in order to achieve full-system
fault tolerance.

6.2 Case Study #1: How Vulnerable is the Operating System?

The examples in the previous section showed that the operating system kernel
is part of the Reliable Computing Base for all software-implemented fault
tolerance mechanisms. For the case of ROMAIN, this kernel is F1Asc0.OC.
I therefore conducted a series of fault injection (FI) campaigns to understand
how FIASC0.OC behaves in the presence of hardware-induced errors and
gain ideas about what mechanisms are suitable to protect ROMAIN’s RCB.

Y A. Shye, J. Blomstedt, T. Moseley, V.J.
Reddi, and D.A. Connors. PLR: A Soft-
ware Approach to Transient Fault Tolerance
for Multicore Architectures. IEEE Transac-
tions on Dependable and Secure Computing,
6(2):135 -148, 2009

2 Yun Zhang, Soumyadeep Ghosh, Jialu
Huang, Jae W. Lee, Scott A. Mahlke, and
David 1. August. Runtime Asynchronous
Fault Tolerance via Speculation. In Inter-
national Symposium on Code Generation
and Optimization, CGO ’12, pages 145-154,
2012

2! Jim Gray. Why Do Computers Stop and
What Can Be Done About It? In Symposium
on Reliability in Distributed Software and
Database Systems, pages 3—12, 1986

22 Andrew Lenharth, Vikram S. Adve, and
Samuel T. King. Recovery Domains: An
Organizing Principle for Recoverable Oper-
ating Systems. In /4th International Confer-
ence on Architectural Support for Program-
ming Languages and Operating Systems, AS-
PLOS XIV, pages 49-60, New York, NY,
USA, 2009. ACM

23 M.N. Lovellette, K.S. Wood, D. L. Wood,
J.H. Beall, P.P. Shirvani, N. Oh, and E.J.
McCluskey. Strategies for Fault-Tolerant,
Space-Based Computing: Lessons Learned
from the ARGOS Testbed. In Aerospace
Conference Proceedings, 2002. IEEE, vol-
ume 5, pages 5-2109-5-2119 vol.5, 2002

132 BJORN DOBEL

2 Jean Arlat, Jean-Charles Fabre, Manuel
Rodriguez, and Frédéric Salles. Depend-
ability of COTS Microkernel-Based Systems.
IEEE Transactions on Computing, 51(2):138—
163, February 2002

2 Weining Gu, Z. Kalbarczyk, and R.K. Iyer.
Error Sensitivity of the Linux Kernel Exe-
cuting on PowerPC G4 and Pentium 4 Pro-
cessors. In Conference on Dependable Sys-
tems and Networks, DSN’04, pages 887-896,
June 2004

% Luca Sterpone and Massimo Violante. An
Analysis of SEU Effects in Embedded Op-
erating Systems for Real-Time Applications.
In International Symposium on Industrial
Electronics, pages 3345-3349, June 2007

%7 Jochen Liedtke. Improving IPC by Kernel
Design. In ACM Symposium on Operating
Systems Principles, SOSP *93, pages 175—
188, Asheville, North Carolina, USA, 1993.
ACM

My analysis is similar to an older study performed by Arlat and colleagues
that investigated the Chorus and LynxOS microkernels.?* Their study used
microbenchmarks to drive execution towards interesting kernel components.
They then injected transient memory faults into regions used by the kernel
and observed the outcome. Gu® and SterponeZ® also used benchmarks to
drive fault injection experiments on the Linux kernel.

In contrast to these previous studies, which resorted to random sampling
the fault space, I perform fault injection for all potential faults in the fault
space. As in Section 5.2 T use the FAIL* fault injection framework to run these
experiments in parallel and use fault space pruning to eliminate experiments
whose outcome is already known.

6.2.1 Benchmarks and Setup

I selected four microbenchmarks to trigger commonly used mechanisms
within FTASC0.OC for fault injection purposes. In the selection process I
focussed on triggering important kernel mechanisms. My experiments may
therefore over-represent these paths in the kernel while they do not cover
rarely used paths, such as error handling code.

1. Inter-Process Communication (IPC4, IPC252): Microkernel-based sys-
tems are built from small software components that run isolated for the
purpose of safety and security. These components exchange data and dele-
gate access rights through IPC channels implemented by the kernel. IPC is
often considered the most important mechanism in a microkernel-based

system.?’

This microbenchmark consists of two threads running in the same
address space. The first thread sends a message to the second one, which
sends a reply in return. I inject faults into both phases of the IPC operation
and consider the experiment correct if the first thread successfully prints
the reply message.

I ran this benchmark in two versions: IPC4 sends a minimum [PC mes-
sage with a payload of 4 bytes. IPC252 extends this size to the maximum
possible payload size of 252 bytes.

2. ThreadCreate: As 1 explained previously, F1AsC0.OC manages kernel
objects, such as address spaces, threads, and communication channels as
basic building blocks for user applications. The correct functioning of the
system therefore depends on the proper creation of such objects.

The second microbenchmark creates a user thread and lets this thread
print a message. This involves kernel activity to allocate a new kernel
data structure, register the thread with the kernel’s scheduler, and run the
creator as well as the newly created thread appropriately. I inject faults
into each of the system calls required to start up a thread.

3. MapPage: Microkernels implement resource management in user-level
applications. The kernel facilitates this management by providing a mech-
anism to delegate resources from one program to another. In FIASc0.0C
terms this mechanism is called resource mapping.

This third microbenchmark exemplifies resource mappings using a
virtual memory page. I run two threads in different address spaces. The
first thread requests a memory resource from the second one, which then

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 133

selects a virtual memory page from its address space and delegates it to the
requestor. I inject faults into the map operation and validate benchmark
success by inspecting the content of the mapped page on the receiver side.

4. vCPU: In Section 3.3 I explained that ROMAIN leverages FIASC0.0C’s
virtual CPU (vCPU) mechanism to monitor all externalization events
generated by replicas. This event delivery mechanism is therefore crucial
for the correctness of ROMAIN.

In this benchmark I launch a new vCPU, which executes a couple of
mov instructions to bring its registers into a dedicated state. Then the vCPU
raises an event that is intercepted by the vCPU master. I inject faults into
the kernel’s mechanism for exception delivery.

I compiled 32bit versions of FIASC0.0C, the L4 Runtime Environment,
and the benchmarks with GCC (version Debian 4.8.1-10). I then used FAIL*
to select and perform FI experiments. I inject bit flips into memory and
general-purpose registers. My experiments focus on execution in privileged
kernel mode, while I assume that user-level code is protected by ROMAIN
for which I already showed that it detects all such errors that manifest during
user-level execution in Section 5.2.

Table 6.1 shows the number of instructions each benchmark executed
inside the kernel, the number of register and memory bit flips that make up
the whole fault space, and the number of experiments I actually had to carry
out after FAIL* successfully pruned known-outcome experiments.

Benchmark | Fault Model | # of Instructions | Total Experiments | Experiments after Pruning
Register SEU 326,632 70,857

1PC4 2,193
Memory SEU 9,553,400 21,865
Register SEU 341,992 74,697

1PC252 caIster 2313
Memory SEU 13,542,904 25,705
Register SEU 5,095,840 891,481

ThreadCreat 26,893
rEACTEE ! Memory SEU 175,464,208 57,905
Register SEU 1,048,040 223,074

MapP: 6,956
aprage Memory SEU 40,377,232 67,074
Register SEU 73,456 16,330

CPU 535
Y Memory SEU 591,384 4,530

6.2.2 Experiment Results

I executed the fault injection campaigns for every microbenchmark and as a
first step classified the experiment outcomes similar to my classification in
Section 5.2:

1. OK means the experiment terminated and produced exactly the same
output as an unmodified run.

2. CRASH indicates that the experiment terminated with a visible error mes-
sage either in the kernel or user space.

3. TIMEOUT indicates that the experiment did not terminate within a pre-
defined period of time. I set this timeout to 200,000 instructions, which —

Table 6.1: Overview of F1Asc0.OC Fault

Injection Experiments

134 BJORN DOBEL

Register Faults

, 100
2
8
o 80
o
=
o 60
2
£ 40
k]
o
= 20
i

0

u N S
Q;b Qer’ S
\ $
@(b
NN
Memory Faults

, 100
2
8
8 80
o
=
o 60
2
£ 40
ks
o
= 20
i

0

,z,'b beq (§? @@'Z’
6
/*‘@ ¥

E soc

O mimeouT
E craAsH
Hok

Figure 6.1: Distribution of FI Results target-
ting the FIASCc0.OC kernel

28 Christoph Borchert, Horst Schirmeier, and
Olaf Spinczyk. Generative Software-Based
Memory Error Detection and Correction for
Operating System Data Structures. In Inter-
national Conference on Dependable Systems
and Networks, DSN”13. IEEE Computer So-
ciety Press, June 2013

2 Siva K. S. Hari, Sarita V. Adve, and Helia
Naeimi. Low-Cost Program-Level Detectors
for Reducing Silent Data Corruptions. In
42nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Net-
works (DSN), pages 1-12, 2012

depending on the workload — means the benchmark executed 10 to 100
times as long as the initial run at this point.

b

Silent Data Corruption (SDC) means that an experiment terminated and
did not raise an error. However, the experiment’s output differed from the
initial, fault-free run.

Figure 6.1 shows the distributions of experiment results for all benchmarks
and distinguishes between register and memory SEUs. On average, 43% of
the register faults and 56% of the memory faults did not lead to a change in
system behavior. This observation confirms other studies that also found that
many SEUs have no influence on the outcome of an application run, such
as Arlat’s study?* and my user-level fault injection experiments discussed in
Chapter 5.

Note, that my experiments focus on the execution of a single microbench-
mark. They therefore only cover the short-term effects of an injected fault.
Experiments that are classified OK after my experiments may still corrupt
kernel state in a way that affects the execution of a different system call at a
later point in time. Future work needs to investigate for which experiments
this would be the case and which kernel data structures are prone to such long-
term corruption issues. These data structures will then be likely candidates
for Borchert’s aspect-oriented data protection.?®

Those injection runs leading to a visible deviation of application behavior
are dominated by CRASH errors: an average of 44% of all register faults
and 26% of all memory faults led to crashes, whereas for both fault models
about 10% of the experiments timed out. In contrast, only 2% of the register
faults and 8% of the memory faults led to SDC errors. The SDC numbers are
significantly smaller than Hari’s previously reported error rates for user-level

applications.?’

Understanding Silent Data Corruption 1 attribute the difference in SDC
behavior to the fact that my experiments focus on kernel-level code. Hari’s
study pointed out that SDC errors are often the result of long-running com-
putations on large chunks of data. Such computations rarely occur in kernel
mode. Instead, the kernel touches vital data structures, such as the scheduler’s
run queue or hardware page tables. These structures have a direct impact on
the behavior of the system and corrupting them is therefore more likely to
lead to a crash.

There is an outlier in my measurements that confirms this hypothesis:
When injecting memory errors into the IPC252 benchmark we see an SDC
rate of 28%. Closer inspection of this result reveals that nearly all SDC
errors here happen within two distinct memory regions: the IPC sender’s
and receiver’s user-level thread control blocks (UTCBs). As I explained in
Section 3.4, the UTCB contains a program’s system call parameters when
entering the kernel. In the case of IPC this is the message payload to be
transmitted. As the kernel only copies UTCB content without performing any
processing, errors within the UTCB show up as silent data corruption.

As F1ASC0.0C is a microkernel, the amount of memory accessed during
these microbenchmarks benchmark is fairly low. For the IPC4 and IPC252
benchmarks, which only differ in the amount of bytes transferred through the

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 135

IPC mechanism, the kernel touches about 1 KiB (IPC4) and 1.5 KiB (IPC252)
of memory respectively. The increase in IPC252’s memory footprint is directly
explained by the increased message payload: 248 more bytes in the sender
UTCB plus 248 more bytes in receiver UTCB lead to an increase of 496 bytes.
Consequentially, the increase in SDC errors we observe is caused by these
additional bytes and underlines the fact that user-level data passing through
the UTCB is more prone to undetected data corruption than errors in internal
kernel data structures.

Investigating CRASH Errors As CRASH errors are the most dominant
misbehavior seen in the previous experiments, I had a closer look on what
kind of crashes we are seeing as a result of injecting faults into the kernel.
I inspected the output and termination information of those experiments
labeled as CRASH in the previous result distribution and further distinguished
between three types of crashes:

1. MEMORY failures are those where the error caused the kernel to access an
invalid memory address, i.e., an address that is not part of any valid virtual
memory region. These crashes trigger kernel-level page fault or double
fault handler functions.

2. PROTECTION failures indicate those runs where the injected fault caused
the kernel to raise hardware protection faults (e.g., by writing to a read-only
memory page) or access invalid kernel objects (e.g., because a capability
index was corrupted).

3. USER failures classify experiments where control returned an error con-
dition to a user-level application. This happens in one of two ways: first,

the kernel may return from the current system call with an error that is Memory Faults

then detected by the user application. Second, an injected fault may lead 2 R v O v O e e

to an exception that FIASC0.OC deems to originate from the user (e.g, § 80

because of a page fault in user-addressable memory). This exception is g 60 |]

then delivered to a user-level exception handler. 5__2 a0 1L |

Figure 6.2 breaks down the CRASH errors from the previous fault injection § 20 B H D H
campaigns into these three categories. We see that slightly more than half of all 0 o D S
crashes are reflected to user space (register faults: 57%, memory faults: 54%). ¢ \Q&Qp O L
An average of 37% of the register faults and 27% of the memory faults led to <
memory-related exceptions within the kernel. Protection failures make up the Register Faults
smallest fraction of results with 18% of the injected memory faults and 6% of RO i T e I O e I e W
the injected register faults. g 80

E 60 7
6.2.3 Directions for Future Research g 40 = H — B
The distributions I showed above allow us to understand what impact SEUs § 20
have on kernel execution. Based on these results we can draw conclusions 0 Qo"‘i & &° o CS\T S
about what kinds of kernel errors we can detect and recover from. A @1&&" & N
<

Handling Silent Data Corruption Detecting and correcting SDC failures [user
depends on the actual workload. If these errors happen within the payload g '\PAFE‘?ATOE:J'ON

of an IPC message, FIASC0.OC’s execution is not affected at all. User-
Figure 6.2: Distribution of CRASH failure

level programs can instead detect those errors using message checksums. To types

136 BJORN DOBEL

¥Intel Corp. Intel64 and IA-32 Ar-
chitectures Software Developer’s Man-
ual. Technical Documentation at http://
www.intel.com, 2013

demonstrate this, I modified the IPC252 benchmark so that the sender adds
a CRC32 checksum of the message payload and the receiver validates this
checksum. With this approach I was able to detect 94.6% of all SDCs in the
IPC252 benchmark.

Incorporating checksums and making IPC protocols retry failed message
transfers requires a substantial amount of work, because every application
needs to be adapted for this purpose. Future research should therefore investi-
gate whether and how this step can be automated.

SDCs in other parts of the kernel may not be as easy to detect, as they for
instance they rely on the correctness of hardware mechanisms. As an example,
the vCPU benchmark relies on correct delivery of the exception state to the
vCPU master. This involves the CPU’s exception mechanism to dump the

k.39 No software mechanism will be

proper register state onto the kernel stac
able to detect a data corruption happening in this step, because software will
only get called after the exception state is copied to the stack. The respective
window of vulnerability could be reduced by a hardware extension that adds
a checksum to the exception state on the stack. However, this modification
would require customized hardware instead of relying on COTS hardware
features. As SDCs only constitute a tiny fraction of the kernel failures we are

seeing, we should rather focus on detecting more prominent failure types.

Kernel Crashes are Detected Errors Given my breakdown of crash errors
above, we saw that hardware faults may trigger unhandled page faults or
protection faults inside the FIASC0.OC kernel. FIASC0.OC itself is de-
signed in a way that these events will never happen during normal kernel
execution: kernel memory is always mapped and accesses never lead to page
faults. Protection faults will also only happen in the case of a programming
error or a hardware fault.

If we assume FIASC0.OC to be thoroughly tested before going to pro-
duction, a software error leading to a kernel crash will be extremely rare.
Therefore, if we encounter a page fault or protection fault hardware exception
at runtime, we can assume this to be the result of a hardware fault and start
error recovery. Hence, all MEMORY and PROTECTION failures we saw,
actually constitute detected errors.

Crashes Reflected to User Space are Detected Errors In addition to kernel
crashes we saw that more than half of all CRASH errors are reflected to
user space. If we assume that programs at the user level are replicated using
ROMAIN, then these exceptions will get sent to the ROMAIN master, which
will then detect a deviation from other non-faulty replicas and initiate error
recovery. Unfortunately, this only covers the rare case if a kernel error occurs
while a replica is executing, for instance because the kernel’s timer interrupt
handler was triggered for scheduling reasons.

In contrast, replication does not protect us from kernel errors that arise
during system call handling. As I explained in Chapter 3, the ROMAIN
master executes all system calls on behalf of the replicas. As the master is not
replicated, a failing system call cannot be handled using replication.

http://www.intel.com
http://www.intel.com

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Nevertheless, these errors are noticed by user-level code:

« If the error gets reflected to user space in the form of an exception message,
the ROMAIN master’s exception handler will detect this issue. Again, by
design we can expect no exceptions to occur during normal execution of
a system call. Therefore, these exceptions constitute detected hardware
errors.

* If the error becomes visible as an error code returned by the system call,
ROMAIN will deliver it to the replicated application just as in the case
of any other system call return error. The program is then responsible to
handle the error code properly.

Can We Recover from Those Crashes? While the previous analysis showed
that CRASH failures can be detected, they require recovery procedures at
three different levels: kernel failures need to be handled inside FIASC0.0C,
visible exceptions require handling by the ROMAIN master, and system call
errors need to be recovered from by the application.

As an experiment I implemented a mechanism to bridge the gap between
those layers by turning all CRASH failures into system call errors. I modified
F1Asc0.0OC and ROMAIN so that in the case of an unhandled exception
during kernel execution they turn this exception into a system call error visible
to the application:

¢ F1ASC0.0C’s double fault, page fault, and protection fault handler func-
tions return an error value to the currently active thread instead of stopping
execution as they do by default.

* I'modified ROMAIN’s exception handler so that in the case of an exception
during a system call, the replica currently executing this system call is
resumed with an error return value.

With this mechanism, no recovery needs to be implemented in the lower
levels and only application code has to deal with these issues. Unfortunately,
this places the burden of recovery on each application developer. To relieve
developers, I implemented a generic recovery mechanism, which is part of
F1Aasco0.0C’s system call bindings, so that application code is completely
oblivious of error handling and recovery:

* Before issuing a system call, the user-level thread pushes its current register
state and system call parameters from the UTCB to the stack.

¢ The thread then issues its system call.

* If the call returns an error value, the original state is retrieved from the
stack and the system call is issued again.

This approach allowed me to recover from a set of manually crafted kernel
crashes. However, when I evaluated this approach with fault injection ex-
periments on a larger scale, I discovered that there are many cases where
generic recovery fails either by crashing the kernel again or by getting stuck
inside one of the next system calls. The experiment therefore was a failure
and requires future work to investigate the following three problems:

137

138 BJORN DOBEL

1. Non-idempotent system calls: Assuming a user application receives a
system call error indicating a kernel crash, the application does not know
at what point during the system call the crash happened. The kernel may
at this point already have modified kernel state by creating new kernel
objects or deleting old ones.

Generic recovery only works if system calls are idempotent—such as
F1Asco0.0C’s IPC send operation) —and requires additional care if kernel
state might have been modified.

2. Thread Dependencies: Inter-Process Communication— FIASC0.0C’s

most heavily used system call —involves the synchronization between a
sender and a receiver thread. The IPC path is therefore a series of updates
to the state of two complex state machines. If the sender of a message
crashes, my modifications were successful in returning an error to the
sender. However, depending on which part of the IPC protocol is affected
by the crash, we may also have to return an error on the receiver side of the
IPC. Implementing this feature was not completed in time for this thesis.

3. Recovery for multithreaded programs on multicore platforms: My experi-

ment only worked for recovering single-threaded programs running on a
single-core CPU. I did not yet consider potential race conditions and other
side effects that may arise when trying to recover on a system that runs
other threads concurrently.

Timeouts are Difficult In addition to SDC and CRASH errors, my fault
injection campaigns show that a non-negligible amount of hardware-induced
errors lead to TIMEOUTSs. The reasons for these errors are manifold. In the
simplest case the kernel skips delivering an IPC message because of a bit
flip, and immediately returns to the sender. This scenario can be handled
by a fault-aware user application that retries requests if no proper answer is
received within a certain time interval.

Other TIMEOUT errors are harder to detect: I noticed that most timeouts
occur due to corruption of the kernel’s scheduling data structures. In these
cases the kernel may lose track of a thread and never schedule it again even
though it would be ready to run. Unfortunately, detecting these errors is
often impossible because we cannot distinguish between a system that simply
has no work to do and a system that lost a thread due to a hardware error.
I conclude from this observation that scheduling data structures need to be
additionally protected using redundancy in order to avoid timeouts.

SUMMARY: I conducted a series of fault injection campaigns
to analyse the FIASC0.OC kernel’s reaction to SEUs in memory
and general-purpose registers. I found that detectable crash failures
constitute the largest source of hardware-induced misbehavior for the
kernel. However, implementing recovery in such situations remains
an open issue.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 139

Silent data corruption rarely occurs during kernel execution. Most of
the SDC errors happened within the message payload of an IPC mes-
sage. Error detection and recovery may be achieved using message
checksums and failure-aware communication protocols.

Corruption of scheduling-related data may furthermore lead to TIME-
OUT errors where execution of an active thread does not resume
properly. These errors are hard to detect and the affected data struc-
tures therefore require additional protection.

6.3 Case Study #2: Mixed-Reliability Hardware Platforms

In Chapter 2 I argued that ROMAIN should run on commercial-off-the-
shelf (COTS) hardware because COTS components make up a majority of
modern embedded, workspace, and high-performance computers. In con-
trast, hardware that is custom-tailored for reliability is often very expensive.
Reliability features are therefore seldom added to COTS hardware. On the
other hand, we are currently seeing an increase in hardware diversity due to
the advent of heterogeneous manycore platforms provided by major CPU
vendors. It is likely that these heterogeneous CPUs are also heterogeneous
with respect to their vulnerability against hardware faults.

While heterogeneous compute platforms are currently optimized for their
compute throughput and their energy consumption, I argue that we are likely
to see platforms combining specially reliable CPUs with cheap, but vulnerable
non-reliable cores in the future. The ASTEROID OS architecture I developed
in this thesis suits such an architecture, because it allows protecting RCB
components by running them on reliable processors while executing replicas
on less reliable CPUs.

6.3.1 Heterogeneous Hardware Platforms

Some of the most widely available heterogeneous platforms today come as I/O
board extensions to desktop and data center computers. These platforms, such
as Intel’s Xeon Phi3! and Nvidia’s Kepler platform32 are derived from previ-
ous generations of graphics accelerators. The main features provided by these
general-purpose graphics processing units (GPGPUs) are additional com-
pute cores and specialized vector processing units. With these properties they
extend their predecessors’ focus on graphics processing to general-purpose
compute-intensive and parallel applications. As a side effect, these systems
also often perform the same computation at a lower energy consumption,*?
which makes them additionally attractive for large-scale use.

ARM pioneered a slightly different architecture with its big. LITTLE plat-
form.33 This architecture is motivated by the observation that while a com-
puter might need a fast processor for some applications, a lot of the remaining
work can be done on a slower, more energy-efficient CPU. big. LITTLE there-
fore combines four energy-efficient, in-order ARM Cortex A7 CPUs with
four fast, super-scalar, and more power-hungry Cortex A15 processors. The
operating system can dynamically assign applications to the CPU that suits
their needs and switch off the remaining cores to save energy in the meantime.

31 James Jeffers and James Reinders. Intel
Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition,
2013

2 Nvidia Corp. Kepler: The World’s
Fastest, Most Efficient HPC Architec-
ture. http://www.nvidia.com/object/
nvidia-kepler.html, accessed August
1st, 2014, 2014

3 ARM Ltd. Big.LITTLE processing with
ARM Cortex-A15. Whitepaper, 2011

http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html

140 BJORN DOBEL

*L. Leem, Hyungmin Cho, J. Bau, Q.A.
Jacobson, and S Mitra. ERSA: Error Re-
silient System Architecture for Probabilistic
Applications. In Design, Automation Test
in Europe Conference Exhibition, DATE’10,
pages 1560-1565, 2010

35 Boris Motruk, Jonas Diemer, Rainer
Buchty, Rolf Ernst, and Mladen Berekovic.
IDAMC: A Many-Core Platform with Run-
Time Monitoring for Mixed-Criticality. In
International Symposium on High-Assurance
Systems Engineering, HASE’ 12, pages 24—
31, Oct 2012

% International Organization for Standardiza-
tion. ISO 26262: Road Vehicles — Functional
Safety, 2011

Figure 6.3: Mixed-Reliability Manycore Ar-
chitecture (RRC = Relaxed Reliability Core)

When looking at hardware reliability, we see that big.LITTLE already
combines two types of processors with different reliability characteristics.
The Cortex A7 has fewer features and requires less chip area. This makes
the processor less vulnerable to the effects of cosmic radiation than the larger
Cortex AlS.

While the previously mentioned platforms are used in production today,
other research platforms investigated the idea of using hardware heterogeneity
explicitly to separate between CPU cores that are heavily protected against
hardware faults and smaller, less protected ones. Leem proposed the Error-
Resilient System Architecture (ERSA) that consists of a small set of Super-
Reliable Cores (SRCs) whereas the majority of the chip area is spent for
smaller, faster, and less reliable Relaxed Reliability Cores (RRCs).34 Leem
intended these RRCs to execute stochastic compute workloads. These pro-
grams have the specific property that few errors during computation will not
have a dramatic influence on the correctness of a program run. In contrast,
he proposed to use SRCs to execute software that must never fail due to the
effects of hardware errors, such as the operating system.

In a different work, Motruk and colleagues presented IDAMC, a reconfig-
urable manycore platform that allows to safely isolate programs in space (by
enforcing hardware resource partitioning between groups of CPUs) and time
(by partitioning access to the network-on-chip (NoC)).3> IDAMC thereby
allows to run mixed-criticality workloads concurrently on the same chip while
still fulfilling automotive safety regulations.3¢ In this architecture we also find
worker cores that are solely intended to perform computations at the applica-
tion level combined with monitor cores that implement special monitoring
and configuration tasks. Only monitor cores are allowed to reconfigure the
system-wide isolation setup and assign resources to workers cores. Therefore,
monitors need to be designed to be less vulnerable to hardware faults than the
workers.

The observations discussed above indicate that we are likely to see hetero-
geneous multicore systems integrating cores of different levels of hardware
vulnerability in the future. These systems will consist of at least two kinds
of processors as shown in Figure 6.3. Borrowing Leem’s naming I call these
processor types Super-Reliable Cores and Relaxed Reliability Cores.

* Super-Reliable Cores (SRCs) are processors that are specially protected
against hardware faults. This protection may be implemented by repli-
cating hardware units. Alternatively, SRCs might be produced with a
larger structure size to be less vulnerable against production- as well as
temperature- and radation-induced errors. To reduce vulnerability against
variation in signal runtime, they may furthermore be clocked at a lower
rate than other CPUs.

* Relaxed Reliability Cores (RRCs) will be produced at the smallest possible
structure size to integrate more cores and accelerators onto the chip. These
can then run at the highest possible clock rate to achieve best performance.
As a consequence, these cores are more likely to suffer from the error
effects I explained in Chapter 2.

If such platforms become COTS hardware, their inherent properties may
allow to protect ASTEROID’s Reliable Computing Base by running the

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 141

F1Asco.OC kernel and the ROMAIN master process on SRCs, while replicas
may be executed on RRCs respectively. Such a system will protect RCB
components in hardware and concurrently use ROMAIN to protect application
software using replication. In contrast to statically replicated setups, this
architecture benefits from ASTEROID’s additional flexibility: the system
designer can decide, whether he wants to replicate an important application
or rather run it on an SRC. Furthermore, less important applications may run
unreplicated on RRCs.

There is one open problem that we need to solve in order to run ROMAIN
on top of a mixed-reliability manycore architecture. The mechanisms I
presented in this thesis so far execute replicas concurrently until they raise
an externalization event. At this point, the replicas wait for each other and
then one of the replicas switches to master execution and performs the actual
event handling. This handling is executed on any CPU the replica is currently
running on and does not switch to another more reliable core for this purpose.

To fit a mixed-reliability platform, ROMAIN has to move execution of
master code to an SRC. This requires interaction between RRC and SRC code.
I investigate three ways to do so in the following section. I compare those
alternatives to ROMAIN’s original event handling mechanism, which I will
refer to as local event handling.

6.3.2 Communication Across Resilience Levels

Based on the previous discussion of a mixed-reliability architecture I now
make the following assumptions:

 The platform consists of SRCs and RRCs.

* SRCs and RRCs can communicate over the network-on-chip (NoC).
Rambo and colleagues pointed out that the NoC also requires protection
against the effects of hardware faults.”

* Hardware enforces resource isolation between RRCs. This isolation is
configured by software running on an SRC as it was demonstrated by
Motruk’s IDAMC.

* The operating system and the ROMAIN master run on an SRC and schedule
replica execution on RRCs.

Given these assumptions, we need efficient and reliable communication
between RCB and non-RCB components. For this purpose I implemented
and evaluated three inter-core communication mechanisms, which I describe
below: (1) thread migration, (2) synchronous messaging, and (3) shared-
memory polling.

Thread Migration The first option to reliably handle replica events is to
migrate a replica thread from an RRC to the master SRC in the case of an
event. I show this in Figure 6.4. After this migration, event handling proceeds
as in the local fault handling scenario, but benefits from hardware protection
mechanisms provided by the SRC. Once event handling is complete, the
replica threads are migrated back to their RRCs.

37 Eberle A. Rambo, Alexander Tschiene,
Jonas Diemer, Leonie Ahrendts, and Rolf
Ernst. Failure Analysis of a Network-on-
chip for Real-Time Mixed-Critical Systems.
In Design, Automation Test in Europe Con-
ference Exhibition, DATE’ 14, 2014

142 BJORN DOBEL

Figure 6.4: Switching to an SRC by thread
migration

¥ Rob F. van der Wijngaart, Timothy G.
Mattson, and Werner Haas. Light-weight
Communications on Intel’s Single-Chip
Cloud Computer Processor. SIGOPS Operat-
ing Systems Review, 45(1):73-83, February
2011

Figure 6.5: Triggering SRC execution using
synchronous IPC

¥ Livio Soares and Michael Stumm. FlexSC:
Flexible System Call Scheduling with
Exception-Less System Calls. In Conference
on Operating Systems Design and Implemen-
tation, OSDI’ 10, pages 1-8, 2010

This mechanism requires that the underlying operating system supports
migration of threads between cores. This feature is provided by F1Asc0.0C,
but it remains to be investigated whether migration will still be able on a
hardware platform consisting of isolated SRC and RRC processors.

handle

- migrate >

Replica Execution Master Execution

Synchronous Messaging (Sync IPC) 1 implemented a second technique that
avoids migrating all threads to an SRC. Instead, I start a helper thread HT on
the SRC, which waits for event notifications. Replicas send these notifications
through a dedicated messaging mechanism, such as FIASc0.0OC’s IPC
channels. Alternatively, this communication could also be implemented using
specially protected hardware mechanisms similar to the message passing
extensions Intel proposed in their Single Chip Cloud Computer (SCC).38

As I show in Figure 6.5, once all replicas have sent their state to the helper
thread on the master side, the helper validates their correctness and performs
event handling. In the meantime, the replicas block waiting for a reply. After
the helper completes event processing, it replies to the replicas with an update
to their states. The replicas then resume concurrent execution on their RRCs.

handle

mos) = = (g
ool =11} = iR

Replica Execution Master Execution

Shared-Memory Polling (SHM Poll) Finally, my third mechanism avoids
relying on a dedicated messaging mechanism and instead uses shared memory
between RRCs and SRCs to transfer notifications and replica states. This
mechanism was motivated by FlexSC, which observed that asynchronous
messaging primitives may lead to better system call throughput and laten-
cies.3? T therefore implemented a variant of the previous mechanism where
the SRC helper thread and the RRC replicas poll on a shared-memory region
for updates as depicted in Figure 6.6.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 143

handl
pO" andle
: Rep : .

|
Lj,
! !

Replica Execution Master Execution

6.3.3 Evaluation

As I implemented ROMAIN for the 32bit x86 architecture, there is no cur-
rent platform available that provides mixed-reliability hardware. I therefore
evaluate my communication mechanisms on the test machine described in
Section 5.3.1. I simulate SRCs and RRCs the following way:

¢ | assume one of the twelve available cores to be an SRC, while all other
cores are RRCs.

* I modified the ROMAIN master process to perform all event handling on
the SRC. For this purpose I integrated the three communication mech-
anisms explained above into ROMAIN and adjusted the master’s event
handling accordingly.

* As explained before, the SRC might be protected from signal fluctuations
by running at a lower clock speed than the remaining cores. I simulate
this fact by artificially slowing down master event handling: whenever the
ROMAIN master handles a replica event, I measure the time required to
handle this event. Thereafter, I introduce a wait phase, which is a multiple
of the event handling time to simulate the SRC being slower than an RRC.

In the subsequent experiments I show three different speed ratios between
SRCs and RRCs: I measure overhead for both processors running at the
same speed (ratio 1:1), as well as for the SRC being five times (ratio 1:5)
and ten times (ratio 1:10) slower than an RRC.

I selected four benchmarks from the MiBench benchmark suite for this

evaluation:*0

1. Bitcount is a purely computation-bound benchmark that does not perform
expensive system calls. The benchmark spends a large fraction of its
time executing user code and is therefore likely to not suffer from RCB
slowdown.

2. Susan and Lame both memory-map an input file and then perform image
processing and audio decoding respectively. They therefore represent a
mix of kernel interaction and intensive compute work.

3. CRC32 memory-maps 30 files to its address space and then computes a
checksum of their content. Checksum computation is relatively cheap
so that the benchmark is dominated by the cost of loading the data files.
CRC32 therefore heavily interacts with the kernel and the ROMAIN master
and I expect it to suffer most from RCB-induced slowdown.

Figure 6.6: Notifying the SRC using shared-
memory polling

40M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Represen-
tative Embedded Benchmark Suite. In Inter-
national Workshop on Workload Characteri-
zation, pages 3—14, Austin, TX, USA, 2001.
IEEE Computer Society

144 BJORN DOBEL

As in previous experiments, I execute these benchmarks natively on L4Re

and then in ROMAIN running one, two, and three replicas. In Figures 6.7 —

6.10 I plot the experiment results for each of the four benchmarks. I group the

results by the replica slowdown ratios (1:1 1:5 1:10) Within each group I

order the results by the communication mechanism used. I furthermore show

the overhead for ROMAIN’s original local fault handling for reference.

Slowdown Ratio 1:1 Slowdown Ratio 1:5 Slowdown Ratio 1:10

1.12

1.10

1.08

1.06

1.04

Runtime normalized
vs. native

1.02

1.00
mrl | u |

Local Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll

[Single Replica [] Two Replicas [l Three Replicas

Figure 6.7: Bitcount: Replication Overhead
when running RCB code on a Super-Reliable
Core with different cross-core communica-
tion mechanisms and SRC slowdowns

Slowdown Ratio 1:1 Slowdown Ratio 1:5 Slowdown Ratio 1:10
1.50
- 1.45
& 140
‘é’g 1.35
5% 1.30
o = 125
£ 9 120
B 1.15
i 1.10
1.05
" mOl

Local Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll
[Single Replica [[] Two Replicas [Three Replicas

Figure 6.8: Susan: Replication Overhead
when running RCB code on a Super-Reliable
Core with different cross-core communica-
tion mechanisms and SRC slowdowns

Slowdown Ratio 1:1 Slowdown Ratio 1:5 Slowdown Ratio 1:10

Runtime normalized
vs. native

AAAAAAAAAAA_
QoL iviwe s sk
Suvuouocuocuocuou

[m

Local Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll
[Single Replica [] Two Replicas [Three Replicas

Figure 6.9: Lame: Replication Overhead
when running RCB code on a Super-Reliable
Core with different cross-core communica-
tion mechanisms and SRC slowdowns

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 145

Slowdown Ratio 1:1 Slowdown Ratio 1:5

N
o
S

Runtime normalized
vs. native
n
a
o

-
u
o

-
o
o

Slowdown Ratio 1:10

I T |I |I

Local Migration Sync IPC SHM Poll Migration Sync IPC SHM Poll

Migration Sync IPC SHM Poll

[Single Replica [] Two Replicas [Three Replicas

As expected, we see that overheads rise when we slow down execution of
RCB code on the SRC. We also see that slowing down RCB execution has
a higher impact on system-call heavy workloads. Replicating CRC32 with
three replicas multiplies exectuion time by a factor of 3.5 when the RCB is
executed ten times slower. In contrast, the overhead for Bitcount in the same
setup is merely 11%.

While there are small fluctuations across the different communication
mechanisms, the main trend is that their impact on replication appears to
be nearly identical. This is not surprising: I measured the cost for handling
externalization events and handling a page fault for example costs an average
of 10,000 CPU cycles in the ROMAIN master. Redirecting [PC messages and
other system calls is even more costly: The Bitcount benchmark spends an
average of 1.3 million cycles on every system call it performs. Most of this
time is spent for processing these calls at the other end, such as writing data
to a serial terminal or allocating memory dataspaces. In contrast, delivering
events to the ROMAIN master contributes between a few 100 and 1,000 CPU
cycles to these handling times depending on the selected delivery method.
Hence, the impact of the messaging mechanism on overall processing is
low. This impact becomes even lower when we slow down the RCB as this
increases processing times even more.

As the choice of cross-core communication mechanism does not influence
replication performance, we should focus on the reliability properties of a
mechanism in order to best protect the Reliable Computing Base. A thorough
analysis of this issue is left for future work because it requires a functioning
mixed-reliability hardware platform. However, for the following reasons
I anticipate that synchronous messaging may be a useful communication
mechanism from an RCB perspective:

* Thread migration requires kernel and hardware support. Migrating threads
between mixed-reliable cores could be disallowed by the hardware plat-
form for the purpose of isolating the resources of SRCs and RRCs.

* For a similar reason, shared-memory polling might not work on such
platforms. Relaxed Reliability Cores might encounter hardware errors that
cause them to overwrite arbitrary memory regions. A simple hardware
solution to prevent those errors to affect SRCs is to disallow sharing of
memory regions across reliability zones. If this is implemented in hardware,
sharing memory is impossible

Figure 6.10: CRC32: Replication Overhead
when running RCB code on a Super-Reliable
Core with different cross-core communica-
tion mechanisms and SRC slowdowns

146 BJORN DOBEL

41 Ute Schiffel, André Schmitt, Martin
SiiBkraut, and Christof Fetzer. ANB- and
ANBDmem-Encoding: Detecting Hardware
Errors in Software. In International Confer-
ence on Computer Safety, Reliability and Se-
curity, Safecomp’ 10, Vienna, Austria, 2010

* In contrast, synchronous IPC can be implemented using a specially pro-
tected hardware message channel. The feasibility of such hardware mech-
anisms in multicore platforms was already demonstrated by Motruk’s
IDAMC and the Intel SCC.

SUMMARY: Trends towards heterogeneous manycore platforms
indicate that future manycore systems will comprise processors
with different levels of reliability. Researchers already proposed
hardware that is built from many cheap and fast Relaxed Relia-
bility Cores (RRCs) and few, specially protected Super-Reliable
Cores (SRCs).

The ASTEROID operating system architecture I developed in this
thesis fits well onto such an architecture. Components of the Reliable
Computing Base —such as the F1ASCc0.OC kernel and the ROMAIN
master process —can run on an SRC while user applications can be
protected by running them on RRCs in a replicated fashion.

6.4 Case Study #3: Compiler-Assisted RCB Protection

The motivation for implementing ROMAIN as an OS service was the need to
support arbitrary binary-only applications without requiring a recompilation
from source code. When we think of protecting the Reliable Computing Base
against hardware faults, we may reconsider this argument. All components
that are within ROMAIN’s RCB —the F1IASC0.0OC kernel, services of the L4
Runtime Environment, as well as the ROMAIN master process —are available
as open source software. In this case it is certainly possible to protect those
components using compiler-assisted reliable code transformations, such as
the ones I discussed in Section 2.4.2.

Unfortunately, to the best of my knowledge none of the commonly refer-
enced fault-tolerant compilers is freely available for download. Furthermore,
as I explained in Section 6.1.2, none of these solutions were previously ap-
plied to operating system kernels. Hence, implementing such a compiler and
applying it to RCB components is out of the scope of this thesis.

The Cost of Compiler-Assisted RCB Protection Nevertheless, we can try
to estimate what impact such a compiler-based solution would have on RO-
MAIN’s performance, resource usage and reliability. In ASTEROID, user-
level applications are protected against hardware faults using replicated exe-
cution provided by ROMAIN. We can improve the reliability of the whole
system by compiling its RCB components using a fault-tolerant compiler.
Using state-of-the-art approaches, such as encoded processing,*! this will
allow us to detect close to 100% of commonly visible hardware errors that
affect the RCB.

Applying compiler-assisted fault tolerance to the RCB will also lead to
resource and execution time overheads. Encoded processing for instance
adds redundancy to data by transforming 32bit data words into 64bit encoded
values. This means, the RCB’s memory footprint is likely to double from
applying such techniques. Neither the FTASC0.OC kernel nor the ROMAIN

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 147

master process require more then a few megabytes of data for their man-
agement needs. The largest fraction of data in a system usually belongs to
user-level applications. These programs are protected by replication and as |
explained in Chapter 3, ROMAIN maintains copies of their memory for every
replica. Therefore, while compiler-assisted fault tolerance will increase the
memory footprint of the RCB, its impact will be negligible in comparison to
the impact of replication-induced memory overhead for user applications.

Execution Time Overhead 1 performed a simulation experiment to estimate
the performance impact of compiler-based fault tolerance methods on the
RCB. For this purpose I executed the integer subset of the SPEC CPU 2006
benchmarks on top of ROMAIN using triple-modular redundancy. Similar to
the experiment in the previous section I executed the benchmarks on the test
machine described in Section 5.3.1 and slowed down all master execution by
a given factor. In contrast to the previous experiment, I did not distinguish
between reliable and non-reliable CPUs, because in this setup the RCB is
protected using pure software methods. For the slowdown I selected three
factors that represent widely cited compiler-assisted fault tolerance methods:

1. SWIFT represents Reis and colleagues’ Software-Implemented Fault Tol-
erance,*? a low-overhead mechanism that duplicates instructions and com-
pares their results. SWIFT has a reported mean overhead of 9.5%.

2. EC-ANBD represents Schiffel and colleagues’s AN-encoding compiler.*!
ANBD improves on SWIFT’s error coverage, but reports a significantly
larger execution time overhead of about 289%.

3. SRMT refers to Wang and colleagues’ implementation of redundant multi-
threading in software.*> The authors report an overhead of 900% when
running their replicated threads on different CPU sockets. While other
RMT approaches have reported lower overheads, I selected this mechanism
explicitly to show the impact of high slowdowns on RCB execution.

Figure 6.11 shows the resulting overheads, which include slowing down
all inter-replica synchronization as well as handling of page faults in the
ROMAIN master and any system calls the master performs on behalf of the
replicas. As was to be expected, we see that SWIFT’s 9.5% overhead does
not matter at all and execution overheads are identical to execution with an
unprotected RCB.

445 .gobmk, 458.sjeng and 473.astar are purely compute-bound bench-
marks and slowing down the RCB does not increase their execution time.
Similarly, the overhead of 429.mcf and 471.omnet++ results mainly from
cache-related effects that I explained in Section 5.3.2. These benchmarks also
do not spend a lot of time executing RCB code and therefore do not suffer
from slowing down the RCB.

In contrast, the remaining benchmarks (400.perl, 401.bzip2, 456.hmmer,
462.libquant, 464.h264ref) perform system calls and interact with the
memory manager. Here we see that for a system-call intensive workload, such
as 400. perl, slowing down the kernel and the replication master significantly
increases replication overhead.

Nevertheless, the total overheads for combining replication with an RCB
protected by fault-tolerant code transformations are significantly lower than

42 George A. Reis, Jonathan Chang, Neil
Vachharajani, Ram Rangan, and David 1. Au-
gust. SWIFT: Software Implemented Fault
Tolerance. In International Symposium on
Code Generation and Optimization, CGO
’05, pages 243-254, 2005

4 Cheng Wang, Ho-seop Kim, Youfeng
Wu, and Victor Ying. Compiler-managed
Software-based Redundant Multithreading
for Transient Fault Detection. In Inter-
national Symposium on Code Generation
and Optimization, CGO ’07, pages 244-258,
2007

148 BJORN DOBEL

1.35
1.30
1.25
1.20
1.15

Runtime normal-
ized vs. native

[l 2.04x

" yosl woun N0 IHII I II IH|| ID'I nuil lDlI il

445.gobmk 458.sjeng 473.astar 429.mcf 471.omnet++ 400.perl 401.bzip2 456.hmmer 462.libquant 464.h264ref

Figure 6.11: Estimating the cost of compiler-
assisted RCB protected for the SPEC
INT 2006 benchmarks running in triple-
modular redundancy within ROMAIN

I ROMAIN [] SWIFT [EC-ANBD [SRMT

those slowdowns the authors reported for protecting user applications solely
using compiler-assisted fault tolerance. This is because my proposed com-
bination of user-level replication and compiler-protected RCB code retains
the advantages of ROMAIN (low execution time overheads) for user-level
code and only applies expensive compiler-level safeguards to those parts of
the system that ROMAIN is unable to protect.

I conclude from this experiment that a combination of replication and com-
piler techniques to protect RCB code appears to be a promising path towards
achieving full-system protection against hardware errors on commercial-off-
the-shelf platforms. To further investigate this idea, future work will first
have to solve the remaining problems for applying fault-tolerant compiler
transformations to kernel code as I explained in Section 6.1.

SUMMARY: As all software parts of ROMAIN’s RCB are available
as open source software, we can protect them against hardware errors
using compiler-based fault tolerance methods. Based on a simulation
of potential RCB slowdowns, the approach of combining replication
at the user-level and potentially expensive compiler-level protection at
the RCB level appears to be a promising solution for fully protecting
the software stack while achieving low execution time overheads.

7

Conclusions and Future Work

In this thesis I developed the ASTEROID operating system architecture to
protect user applications against the effects of hardware errors. In this chapter
I summarize the contributions of my thesis. Thereafter I outline ideas for
future work, which mainly focus on reducing ASTEROID’s resource footprint.

7.1 Operating-System Assisted Replication of Multithreaded
Binary-Only Applications

The ASTEROID operating system architecture protects user-level applica-
tions against the effects of hardware errors arising in commercial-off-the-
shelf (COTS) hardware. ASTEROID’s main component is ROMAIN, an op-
erating system service that replicates unmodified binary-only multi-threaded
applications. ASTEROID meets the design goals that I identified in Sec-
tion 2.5:

1. COTS Hardware Support and Hardware-Level Concurrency: 1 designed
ASTEROID to work on COTS hardware. ROMAIN replicates applications
for error detection and correction. To make replication efficient, I leverage
the availability of parallel processors.

2. Use of a Componentized System: 1 implemented ASTEROID on top of the
F1AsC0.0C microkernel. Using a microkernel design allows ASTEROID
to benefit from a system that is split into small, isolated components that
can independently be recovered in the case of a failure. Furthermore, as
microkernels run most of the traditional OS services —such as file systems
and network stacks —in user space, these applications can be transparently
protected against hardware errors using replication.

3. Binary Application Support: ROMAIN does not make any assumptions
about applications with respect to the development model, programming
language, libraries, or tools used for their implementation. My solution
therefore allows to replicate any binary application that is able to run on
top of FIAsC0.0C’s L4 Runtime Environment.

There are still two exceptions that limit ROMAIN’s applicability:

(a) As explained in Chapter 4, ROMAIN requires multithreaded applica-
tions to be race-free and use a standard lock implementation in order
to be replicated. In Section 4.3.7 I showed how this limitation can be
removed using strongly deterministic multithreading.

150 BJORN DOBEL

! Martin Kriegel. Bounding Error Detection
Latencies for Replicated Execution. Bache-
lor’s thesis, TU Dresden, 2013

(b) Device drivers make accesses to input/output resources that may have
side effects, such as sending a network packet or writing data to a
hard disk. Due to this fact, such accesses cannot easily be replicated
and ROMAIN therefore is unable to replicate device drivers yet. This
limitation needs to be addressed in future work.

4. Efficient Error Detection, Correction, and Replication of Multi-threaded

Programs: My evaluation in Chapter 5 showed that ROMAIN is able
to efficiently replicate single- and multithreaded application software.
In my fault injection experiments I demonstrated that ROMAIN detects
100% of all injected single-event upsets in memory and general-purpose
registers. ROMAIN furthermore provides error recovery using majority
voting, which succeeded in at least 99.6% of my experiments.

Throughout this thesis I discussed how ROMAIN manages replicated
applications as well as their resources. I evaluated design alternatives to
select those mechanisms that make ROMAIN efficient:

* By replicating applications via redundant multithreading, ROMAIN
achieves low replication overheads because it limits the number of state
validation operations to those locations where application state becomes
visible outside the sphere of replication. While this strategy reduces
validation and recovery overhead, we saw in Section 5.2 that it may in
turn lead to replicas executing several thousand instructions before an
error is detected. For this reason ROMAIN also includes a mechanism
to artificially force long-running applications to trigger state validation
from time to time. This mechanism was developed by Martin Kriegel!
and I explained it in Section 3.8.2.

¢ In Section 3.5.2 I advocated to use hardware-supported large page
mappings and proactive handling of page faults to reduce the memory
overhead that replicated execution implies.

* In Section 4.3 I compared two strategies to achieve deterministic replica-
tion of multithreaded, race-free applications by enforcing deterministic
lock ordering across replicas. I showed that we can reduce the overhead
of intercepting lock acquisition and release operations by leveraging a
replication-aware libpthread library.

* In Section 3.6 I showed that replicated access to shared memory has a
large impact on performance and designed a copy & execute strategy
for emulating shared memory accesses that is faster than traditional trap
& emulate mechanisms.

5. Protection of the Reliable Computing Base: In Chapter 6 I explained that

software-level fault tolerance mechanisms always require a correctly func-
tioning set of software and hardware components, the Reliable Computing
Base (RCB). I explained what comprises ASTEROID’s RCB and dis-
cussed ideas towards protecting the RCB. While my thesis shows that these
ideas —such as making kernel failures visible to user applications, lever-
aging mixed-criticality hardware, and protecting the RCB using compiler-
assisted protection mechanisms — are feasible, I left their implementation
and thorough evaluation for future work.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 151

7.2 Directions for Future Research

ROMAIN replicates applications with low execution time overhead. I now
outline ideas for future research to reduce this execution time overhead and
improve ROMAIN’s error coverage for multi-error scenarios. For this purpose
I distinguish between ideas to reduce replica resource consumption and other
promising optimizations.

7.2.1 Reducing Replication-Induced Resource Consumption

Resource overhead is a major problem for any mechanism that uses replication
to provide fault tolerance. Running N replicas will usually require N times the
amount of resources of a single application instance. This leads to problems in
systems, such as embedded computers, that need to constrain resource avail-
ability to reduce energy consumption and production cost. We furthermore
saw in Section 5.3.2 that resource replication may lead to secondary problems,
such as performance reduction due to an increase of last-level cache misses.
I believe that in order to reduce the resource consumption of replicated
systems we have to investigate how we can reduce the number of running
replicas while maintaining the fault tolerance properties ROMAIN provides.

Dynamically Adapting the Number of Replicas Replication systems, such
as ROMAIN, usually fix the number of active replicas to cope with given
static assumptions about the expected rate of faults. Real-world systems
may however experience dynamically changing fault rates depending on
environmental and software-level conditions:

* Systems become more vulnerable to soft errors when they experience
higher temperatures or are located at a higher altitude above the sea level >
In such situations it may be beneficial to increase the number of running
replicas when environmental conditions —reported by external sensors —
change.

* Different parts of a program may have different vulnerabilities to soft
errors. Program Vulnerability Factor (PVF) analysis allows to detect these
variations.> Some software functionality may therefore require increased
protection while other sequences of code may run less protected.

Both observations open up the potential for reducing the number of replicas
and hence the amount of replicated resources for periods of lower vulnerability.
Robert Muschner extended ROMAIN to support the dynamic adjustment of
replicas in his Diploma Thesis, which I co-advised with Michael Roitzsch.*
The general idea of his thesis was to increase or decrease replica count
when triggered by an external sensor. To increase the number of replicas,
new replica vCPUs are started and brought into the same state as existing
vCPUs by copying the state from a previously validated replica. This process
is similar to how error recovery works in ROMAIN. The difference here is
that new memory needs to be allocated for the newly spawned replica. In
order to decrease the number of replicas, we simply halt an existing replica at
its next externalization event and release the accompanying resources.
Muschner’s thesis shows the feasibility of this approach. He also pointed
out that dynamic replicas do not come for free: the adjustment requires

2 Ziegler, James F. and Curtis, Huntington W.
et al. IBM Experiments in Soft Fails in Com-
puter Electronics (1978-1994). IBM Journal
of Research and Development, 40(1):3-18,
1996

3 Vilas Sridharan and David R. Kaeli. Quan-
tifying Software Vulnerability. In Workshop
on Radiation effects and fault tolerance in
nanometer technologies, WREFT *08, pages
323-328, Ischia, Italy, 2008. ACM

4 Robert Muschner. Resource Optimization
for Replicated Applications. Diploma thesis,
TU Dresden, 2013

152 BJORN DOBEL

5 Shubhendu Mukherjee. Architecture De-
sign for Soft Errors. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2008

¢ Konrad Miller, Fabian Franz, Marc Ritting-
haus, Marius Hillenbrand, and Frank Bellosa.
XLH: More Effective Memory Deduplica-
tion Scanners Through Cross-Layer Hints.
In USENIX Annual Technical Conference,
USENIX ATC’13, San Jose, CA, USA, 2013
7 Neal H. Walfield. Viengoos: A Framework
For Stakeholder-Directed Resource Alloca-
tion. Technical report, 2009

8 Thomas M. Mitchell. Machine Learning.
McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997

additional execution time for acquiring and releasing resources. This overhead
limits the frequency at which we can adjust the number of running replicas.
To hide these latencies, Muschner proposed to perform resource releases in
the background while the active replicas commence operation. Furthermore,
he devised a copy-on-write scheme for allocating resources to a newly added
replica. This latter scheme limits error coverage as replicas sharing data
copy-on-write will suffer from undetected errors affecting these regions. The
approach therefore requires combination with a hardware-level error detection
mechanism, such as Error-Correcting Codes (ECC).5

Reducing Resource Consumption by Leveraging ECC Memory In Sec-
tion 3.5.3 I already pointed out that ROMAIN can benefit from a combination
with ECC hardware, because then we can avoid creating copies of read-only
memory regions and share them across all replicas. Future work can extend
this approach by leveraging application-specific memory access patterns:
memory is often written once and later only accessed in a read-only fashion.
To save replica resources, ROMAIN could duplicate such memory regions
during the write phases and later remove all copies except one, which would
then be mapped read-only to all replicas. This idea is closely related to the
field of memory deduplication for virtual machines, where such regions are
searched for in order to reduce memory consumption in data centers.®

ECC-protected read-only memory furthermore relates to Walfield’s idea
of discardable memory:’ here applications can allocate and use memory to
cache data as long as there is no memory pressure. In the case of memory
scarcity, the OS drops discardable data and notifies the application, which in
turn may re-obtain the data once it is needed at a later point in time. ROMAIN
could maintain read-only copies of such cached objects. In the case of a
detected ECC failure, it would then drop all discardable memory regions and
let the application take care of recovering this cached data from its previous
source.

Heuristics for Error Recovery 1described in this thesis that ROMAIN uses
majority voting to determine which replicas are faulty and need to be corrected.
I argue that the existence of a majority is not always required to perform
recovery. If a fault causes a replica to crash, for instance by accessing an
invalid memory region, two replicas suffice for correction: the faulting replica
will raise a page fault in a region that is either unknown to the ROMAIN
memory manager or a region where ROMAIN knows that a valid mapping
was previously established. In this case, a second replica, raising a valid
externalization event, can be assumed to be correct and serve as the origin for
recovery.

The situation becomes more difficult for the correction of silent data cor-
ruption (SDC) errors. If we only have two replicas running in this case, we
will see two valid system calls that differ in their system call arguments. I
believe that many applications have a specific set of valid system call argu-
ments and that we can use machine learning techniques? to train a classifier
to distinguish between valid and invalid arguments.

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Once trained, the classifier will be able to decide which of two replicas
is the faulty one in the case of SDC. Future work will have to evaluate for
what kinds of applications such heuristics work and what kind of probabilistic
recovery guarantees this enables.

7.2.2 Optimizations Using Application-Level Knowledge and Hard-
ware Extensions

Besides the previously described experiments towards reducing the number
of running replicas, future work should also investigate performance and
error coverage optimizations that may be enabled by incorporating more
application-level knowledge into the process of replication or by leveraging
hardware extensions.

Application-Defined State Validation ~As I explained in Section 3.8, RO-
MAIN currently checks the replicas’ architectural register states and user-level
thread control blocks in order to detect errors. For performance reasons I do
not perform a complete comparison of all replica memory, arguing that as
long as erroneous data remains internal to the replica, it does not hurt system
correctness. However, such erroneous data may remain stored for a long time
and if this time frame exceeds the expected inter-arrival rate of hardware
errors, an independent second error may affect another replica and finally lead
to a situation where the number of running replicas does no longer suffice for
error correction by majority voting.

One way to address this problem would be to make replication-aware
applications that report important in-memory state to the ROMAIN master.
The master can then incorporate this state into validation in order to improve
error coverage.

ROMAIN furthermore assumes that any system call is equally important
for the outcome of a program and constitutes a point where data leaves the
sphere of replication. There may be situations, where this is not necessarily
the case:

* Applications might occasionally write debug or reporting output. Errors
in such messages may affect program analysis or debugging. However,
depending on the actual application they may not necessarily constitute
bugs from the perspective of a user of the affected service.

* Applications might store temporary data in files on a file system. Writes to
these files will therefore be considered data leaving the sphere or replica-
tion. However, if this file is never read by an external observer, it will once
again not affect the service obtained by an outside observer.

If an application was replication-aware, it could mark such system calls as
less important. ROMAIN could then decide to forgo state validation and the
accompanying replica synchronization overhead and just execute a system
call unchecked. Alternatively, ROMAIN would only check a fraction of these
system calls to maintain error coverage, but avoid checking all of them.

153

154 BJORN DOBEL

° Julian Stecklina. Shrinking the Hypervi-
sor one Subsystem at a Time: A Userspace
Packet Switch for Virtual Machines. In Con-
ference on Virtual Execution Environments,
VEE’ 14, pages 189-200, 2014

10 Jared C. Smolens, Brian T. Gold, Jangwoo
Kim, Babak Falsafi, James C. Hoe, and An-
dreas G. Nowatzyk. Fingerprinting: Bound-
ing Soft-Error Detection Latency and Band-
width. In Conference on Architectural Sup-
port for Programming Languages and Oper-
ating Systems, ASPLOS XI, pages 224-234,
Boston, MA, USA, 2004

! Philip Axer, Rolf Ernst, Bjorn Dobel, and
Hermann Hirtig. Designing an Analyzable
and Resilient Embedded Operating System.
In Workshop on Software-Based Methods
for Robust Embedded Systems, SOBRES’12,
Braunschweig, Germany, 2012

12 Christian Menard. Improving replication
performance and error coverage using in-
struction and data signatures. Study thesis,
TU Dresden, 2014

Leveraging Application Knowledge to Improve Shared Memory Replication
My analysis in Section 5.3.4 showed that while ROMAIN supports the repli-
cation of shared-memory applications, intercepting those shared-memory
accesses incurs a significant execution time cost. The main problem here
is that ROMAIN conservatively needs to assume every such access to suf-
fer from potential inconsistencies. Depending on the specific applications
involved in a shared-memory scenario, ROMAIN may improve replication
performance by leveraging application knowledge.

Consider for example a shared-memory scenario where a producer appli-
cation uses shared memory to send a large amount of data to a consumer as
it is often the case in zero-copy data transmission scenarios.’ In this case
the producer knows exactly when data is ready to be sent to the consumer
and the consumer will never read or modify data before this point in time.
If a replication-aware consumer is able to convey information about data
being ready to ROMAIN, we can implement the following optimization for
shared-memory replication:

1. The ROMAIN master maps a private copy of the shared-memory region to
each replica of a replicated producer. The replicas then treat this memory
as private memory and can directly read and write it.

2. Once data is ready, the producer notifies ROMAIN about data being up-

dated. ROMAIN can also try to infer this information by inspecting the
producer’s system calls as such notifications are often sent through dedi-
cated software interrupt system calls in FIAsco.OC.

3. If the notification is seen by the ROMAIN master, it first compares the

replicas’ private memory regions. Upon success, the content of one such
region is merged back into the original shared memory region that is seen
by the consumer.

4. Finally, ROMAIN delivers the data update notification to the consumer,

which then reads the data.

Hardware-Level Execution Fingerprinting to Improve Error Coverage My
previous optimization suggestions focused on reducing the number of state
comparisons and the amount of resources required for replicated execution. If
we are willing to accept specialized hardware instead of running ROMAIN
on COTS components, replication can furthermore benefit from hardware
extensions aiming at improving the fault tolerance of software.

Smolens proposed an extension to the CPU pipeline that computes hash
sums of the instructions and data accessed by the different pipeline stages.!?
Philip Axer implemented a similar extension in hardware for the SPARC
LEONS3 processor.!! Both works showed that implementing such finger-
printing is cheap in terms of chip area and energy consumption. I had the
opportunity to supervise Christian Menard’s implementation of such fin-
gerprinting in a simulated, in-order x86 processor in the GEMS5 hardware
simulator.'2 Menard also showed the feasibility of integrating this mechanism
into ROMAIN for fast state comparison.

The benefit of the fingerprinting approach is twofold: First, instead of
comparing registers and memory areas, the ROMAIN master only needs

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

to compare two registers per replica (the instruction and memory footprint
registers). This speeds up comparison. Second, fingerprint comparison covers
all data that influenced application behavior and this approach is therefore
also able to detect erroneous data in memory that ROMAIN otherwise would
not find or only find at a later point in time.

The remaining problem with pipeline fingerprinting is that all existing
implementations (including Menard’s x86 one) were only done for in-order
processors. Modern CPUs however use sophisticated speculation and prefetch-
ing techniques that make it hard to exactly determine when an instruction or
a datum from memory should be incorporated into the checksum and which
data should be discarded for hash computation. This problem needs to be
overcome in order to make a fingerprinting extension viable for real-world
high-performance processors.

155

Acknowledgements

The process of research and writing a dissertation is a long and winding road.
By intent we move off the beaten track to discover new and interesting things.
But it is easy to get lost in this jungle and more often than we would like
to admit, we need a helping hand that leads us back to the path. I had the
pleasure to work with bright people that lended me this hand whenever I
needed it.

First of all, I would like to thank my advisor Professor Hermann Hértig for
giving me the opportunity to join his group and for giving me the freedom
to explore the topics that interested me most. My colleagues in the TU
Dresden Operating Systems Group supported my research with curiosity,
encouragement, criticism — whichever was necessary at a given point in time.
Carsten Weinhold and Michael Roitzsch had an open ear for the problems
that were haunting me and often pointed out details or shortcuts that I was
too blind to see. Adam Lackorzynski and Alexander Warg developed the
L4 Runtime Environment, which this work is based on and patiently explained
its intricacies to me over and over again. Martin Pohlack and Ronald Aigner
were the first persons to introduce me to research and scientific writing and
I hope that this thesis meets their expectations. Benjamin Engel, Bernhard
Kauer, Julian Stecklina, and Tobias Stumpf gave valuable feedback and ideas
for the development of ROMAIN. Thomas Knauth and Stephan Diestelhorst
burdened themselves with commenting on many early versions of research
papers I wrote. Angela Spehr was always there to help me deal with the
bureaucratic tribulations of a German university.

At TU Dresden I also was in the lucky position to advise some extraordinar-
ily bright students during their Master’s Thesises. This dissertation benefited
from the accompanying discussions, their questions, and their results. I would
therefore like to thank Dirk Vogt, Martin Unzner, Martin Kriegel, Robert
Muschner, Florian Pester, and Christian Menard.

ROMAIN and the ASTEROID OS architecture were designed within the
DFG-funded project ASTEROID. Philip Axer was my partner in this project
and it was a pleasure to work and collaborate with him. Horst Schirmeier
developed the FAIL* fault injection framework and went out of his way to
help me with my fault injection encounters. Additionally, I enjoyed my work
with Michael Engel on the Reliable Computing Base concept and any other
discussions we had on our research interests.

I furthermore had the opportunity to get to know industrial research and
kernel development during two internships at Microsoft Research, Cam-
bridge (UK), and at VMWare in Palo Alto, CA. During these months I learned

158 BJORN DOBEL

a lot about research and problem solving from Eno Thereska, Daniel Arai,
Bernhard Poess, and Bharath Chandramohan.

Attending conferences and visiting other universities allowed me to get
early feedback on my work from colleagues. I enjoyed fruitful discussions
with Gernot Heiser, Olaf Spinczyk, Riidiger Kapitza, Frank Miiller, Frank
Bellosa, Jan Stoess, and Marius Hillenbrand.

Last but not least I would like to thank my family. My parents supported
me in the endeavor of becoming a researcher. My wife Christiane shared the
highs and lows of life with me and I would not want to miss any minute of it.

To summarize: Thank you! You guys rock!

List of Figures

1.1 ASTEROID Resilient OS Architecture 10
1.2 Replicated Application 11

2.1 MOSFET Transistor 15

2.2 Switching MOSFET 15

2.3 Chain of errors 18

2.4 Temporal Reliability Metrics 19

2.5 Saggese’s Fault Manifestation Study 23
2.6 Triple modular redundancy (TMR) 26
2.7 DIVA Architecture 27

3.1 ASTEROID System Architecture 40

3.2 ROMAIN Architecture 41

3.3 F1Asco0.0C Exception Handling 43

3.4 Handling Externalization Events 44

3.5 Event Handling Loop 45

3.6 F1Asco0.0C Object Capabilities 45

3.7 Replicated and Unreplicated Interaction 47
3.8 Translating Replica Capability Selectors 47
3.9 Partitioned Capability Tables 48

3.10 F1Asc0.0OC Region Management 50

3.11 Per-Replica Memory Regions 51

3.12 Replication Meets ECC 52

3.13 Memory management microbenchmark 53
3.14 Memory Management Overhead 53

3.15 The Mapping-Alignment Problem 55

3.16 Adjusting Alignment for Large Page Mappings
3.17 Reduced Page Fault Handling Overhead 56
3.18 Optimized Memory Management Results 56
3.19 Trap & emulate Runtime Overhead 59
3.20 Trap & emulate Emulation Cost 60

3.21 Copy & Execute Overhead 61

3.22 Copy & Execute Emulation Cost 62

3.23 Error Detection Latencies 68

4.1 Blocking Synchronization 72

4.2 Thread Pool Example 73

4.3 Worker thread implementation 73
4.4 Example Schedules 73

55

160 BJORN DOBEL

4.5 Terminology overview 79

4.6 Multithreaded event handling in ROMAIN 79
4.7 Externalizing Lock Operations 82

4.8 Thread microbenchmark 83

4.9 Worst-Case Multithreading Overhead 83
4.10 Sequential CPU Assignment 84

4.11 Optimized CPU Assignment 84

4.12 Execution phases of a single replica 85
4.13 Multithreaded Execution Breakdown 85
4.14 Optimized Multithreading Benchmark 86
4.15 Optimized Multithreading Breakdown 87
4.16 Lock Info Page Architecture 88

4.17 Lock Info Page Structure 88

4.18 Replication-Aware Lock Function 89
4.19 Replication-Aware Unlock Function 89
4.20 Cooperative Determinism Overhead 90
4.21 LIP Protection 94

5.1 Fault Space for Single-Event Upsets in Memory 100
5.2 Error Coverage: Register SEUs 104

5.3 Error Coverage: Memory SEUs 104

5.4 Error Detection Latency 105

5.5 Single-CPU Replica Schedules 106

5.6 Replica Execution after Fault Injection 107

5.7 Computing error detection latency 108

5.8 SPEC CPU Overhead 111

5.9 SPEC CPU Overhead (Incomplete) 111

5.10 Overhead by externalization event ratio 112

5.11 SPEC CPU Breakdown 113

5.12 Cache-Aware CPU Assignment 114

5.13 SPEC CPU Overhead (Improved) 115

5.14 SPLASH2: Replication overhead for two application threads
5.15 SPLASH2: Replication overhead for four application threads
5.16 Multithreaded Replication Problems 117

5.17 SPLASH2 Overhead with Enforced Determinism 118
5.18 SHMC Application Benchmark 118

5.19 Shared Memory Throughput 119

5.20 Microbenchmarks: Recovery Time 120

5.21 Recovery Time and Memory Footprint 121

6.1 FI1Asco.OC Fault Injection Results 134

6.2 Distribution of CRASH failure types 135

6.3 Mixed Reliability Hardware Platform 140

6.4 Switching to an SRC by thread migration 142

6.5 Triggering SRC execution using synchronous IPC 142
6.6 Notifying the SRC using shared-memory polling 143
6.7 Bitcount overhead on SRC 144

6.8 Susan overhead on SRC 144

6.9 Lame overhead on SRC 144

116
116

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING 161

6.10 CRC32 overhead on SRC 145
6.11 Estimation of Compiler-Based RCB Protection Overhead 148

8
Bibliography

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A New Kernel Foundation for UNIX Development. In USENIX
Technical Conference, pages 93-112, 1986.

Ronald Aigner. Communication in Microkernel-Based Systems. Dissertation, TU Dresden,
2011.

Muhammad Ashraful Alam, Haldun Kufluoglu, D. Varghese, and S. Mahapatra. A Compre-
hensive Model for PMOS NBTI Degradation: Recent Progress. Microelectronics Reliability,
47(6):853-862, 2007.

Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent Checkpointing for
Cluster Computations and the Desktop. In 23rd IEEE International Parallel and Distributed
Processing Symposium, Rome, Italy, May 2009.

Jean Arlat, Jean-Charles Fabre, Manuel Rodriguez, and Frédéric Salles. Dependability of COTS
Microkernel-Based Systems. IEEE Transactions on Computing, 51(2):138-163, February
2002.

ARM Ltd. Big.LITTLE processing with ARM Cortex-A15. Whitepaper, 2011.

Mohit Aron, Luke Deller, Kevin Elphinstone, Trent Jaeger, Jochen Liedtke, and Yoonho Park.
The SawMill Framework for Virtual Memory Diversity. In Asia-Pacific Computer Systems
Architecture Conference, Bond University, Gold Coast, QLD, Australia, January 29—-February 2
2001.

Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design.
In International Symposium on Microarchitecture, MICRO’32, pages 196-207, Haifa, Israel,
1999. IEEE Computer Society.

J.-L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, and J. Borel.
Altitude and Underground Real-Time SER Characterization of CMOS 65nm SRAM. In
European Conference on Radiation and Its Effects on Components and Systems, RADECS’08,
pages 519-524, 2008.

Anmittai Aviram and Bryan Ford. Deterministic OpenMP for Race-Free Parallelism. In Confer-
ence on Hot Topics in Parallelism, HotPar’11, Berkeley, CA, 2011. USENIX Association.

Anmittai Aviram, Bryan Ford, and Yu Zhang. Workspace Consistency: A Programming Model
for Shared Memory Parallelism. In Workshop on Determinism and Correctness in Parallel
Programming, WoDet’ 11, Newport Beach, CA, 2011.

Anmittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient System-enforced Deter-
ministic Parallelism. pages 193-206, Vancouver, BC, Canada, 2010. USENIX Association.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11-33, 2004.

Philip Axer, Rolf Ernst, Bjorn Dobel, and Hermann Hirtig. Designing an Analyzable and
Resilient Embedded Operating System. In Workshop on Software-Based Methods for Robust
Embedded Systems, SOBRES’ 12, Braunschweig, Germany, 2012.

Philip Axer, Moritz Neukirchner, Sophie Quinton, Rolf Ernst, Bjorn Dobel, and Hermann
Hirtig. Response-Time Analysis of Parallel Fork-Join Workloads with Real-Time Constraints.
In Euromicro Conference on Real-Time Systems, ECRTS 13, Jul 2013.

Claudio Basile, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Active Replication of Mul-
tithreaded Applications. Transactions on Parallel Distributed Systems, 17(5):448—465, May
2006.

164 BJORN DOBEL

Robert Baumann. Soft Errors in Advanced Computer Systems. IEEE Design Test of Computers,
22(3):258-266, 2005.

Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. CoreDet: A
Compiler and Runtime System for Deterministic Multithreaded Execution. In Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XV,
pages 53—64, Pittsburgh, Pennsylvania, USA, 2010. ACM.

Tom Bergan, Nicholas Hunt, Luis Ceze, and Steve Gribble. Deterministic Process Groups
in dOS. In Symposium on Operating Systems Design & Implementation, OSDI’ 10, pages
177-192, Vancouver, BC, Canada, 2010. USENIX Association.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe Multithreaded
Programming for C/C++. In Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA °09, pages 81-96, Orlando, Florida, USA, 2009. ACM.

David Bernick, Bill Bruckert, Paul del Vigna, David Garcia, Robert Jardine, Jim Klecka, and
Jim Smullen. NonStop: Advanced Architecture. In International Conference on Dependable
Systems and Networks, pages 12-21, June 2005.

James R. Black. Electromigration — A Brief Survey and Some Recent Results. IEEE Transac-
tions on Electron Devices, 16(4):338-347, 1969.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A Type and Effect System for Deterministic Parallel Java. In Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’09, pages 97-116, Orlando,
Florida, USA, 2009. ACM.

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Protecting the dynamic dispatch
in C++ by dependability aspects. In GI Workshop on Software-Based Methods for Robust
Embedded Systems (SOBRES ’12), Lecture Notes in Informatics, pages 521-535. German
Society of Informatics, September 2012.

Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative Software-Based Mem-
ory Error Detection and Correction for Operating System Data Structures. In International
Conference on Dependable Systems and Networks, DSN’13. IEEE Computer Society Press,
June 2013.

Sherkar Borkar. Designing Reliable Systems From Unreliable Components: The Challenges of
Transistor Variability and Degradation. IEEE Micro, 25(6):10 — 16, 2005.

Francisco V. Brasileiro, Paul D. Ezhilchelvan, Santosh K. Shrivastava, Neil A. Speirs, and
S. Tao. Implementing Fail-Silent Nodes for Distributed Systems. Computers, IEEE Transac-
tions on, 45(11):1226-1238, 1996.

Thomas C. Bressoud and Fred B. Schneider. Hypervisor-Based Fault Tolerance. ACM
Transactions on Computing Systems, 14:80-107, February 1996.

W. G. Brown, J. Tierney, and R. Wasserman. Improvement of Electronic-Computer Reliability
Through the Use of Redundancy. IRE Transactions on Electronic Computers, EC-10(3):407—
416, 1961.

Derek Bruening and Qin Zhao. Practical Memory Checking with Dr. Memory. In Symposium
on Code Generation and Optimization, CGO 11, pages 213-223, 2011.

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox. Mi-
croreboot: A Technique For Cheap Recovery. In Symposium on Operating Systems Design &
Implementation, OSDI’04, Berkeley, CA, USA, 2004. USENIX Association.

Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A. Abraham, and Subhasish
Mitra. Quantitative Evaluation of Soft Error Injection Techniques for Robust System Design.
In Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, pages 1-10, 2013.

Intel Corp. Intel Digital Random Number Generator (DRNG) — Software Implementation
Guide. Technical Documentation at http://www.intel.com, 2012.

Intel Corp. Intel64 and IA-32 Architectures Software Developer’s Manual. Technical Docu-
mentation at http://www.intel.com, 2013.

Intel Corp. Software Guard Extensions — Programming Reference. Technical Documentation
athttp://www.intel.com, 2013.

C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks and Defenses
for the Vulnerability of the Decade. In DARPA Information Survivability Conference and
Exposition, volume 2, pages 119-129 vol.2, 2000.

Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang, Garth A.
Gibson, and Randal E. Bryant. Parrot: A Practical Runtime for Deterministic, Stable, and
Reliable Threads. In ACM Symposium on Operating Systems Principles, SOSP’13, pages
388-405, Farminton, Pennsylvania, 2013. ACM.

http://www.intel.com
http://www.intel.com
http://www.intel.com

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable Deterministic Multi-
threading Through Schedule Memoization. In Conference on Operating Systems Design and
Implementation, OSDI’ 10, pages 1-13, Vancouver, BC, Canada, 2010. USENIX Association.

L. Dagum and R. Menon. OpenMP: An Industry Standard API for Shared-Memory Program-
ming. Computational Science Engineering, IEEE, 5(1):46-55, Jan 1998.

Matt Davis. Creating a vDSO: The Colonel’s Other Chicken. Linux Journal, mirror: http:
//tudos.org/~doebel/phd/vds02012/, February 2012.

Julian Delange and Laurent Lec. POK, an ARINC653-compliant operating system released
under the BSD license. In Realtime Linux Workshop, RTLWS’11, 2011.

Timothy J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory. IBM Whitepaper, 1997.

Department of Defense. Trusted Computer System Evaluation Criteria, December 1985. DOD
5200.28-STD (supersedes CSC-STD-001-83).

Alex Depoutovitch and Michael Stumm. Otherworld: Giving Applications a Chance to Survive
OS Kernel Crashes. In European Conference on Computer Systems, EuroSys °10, pages
181-194, Paris, France, 2010. ACM.

Edsger. W. Dijkstra. A Note on Two Problems in Connexion With Graphs. Numerische
Mathematik, 1:269-271, 1959.

Artem Dinaburg. Bitsquatting: DNS Hijacking Without Exploitation. BlackHat Conference,
2011.

A. Dixit and Alan Wood. The Impact of new Technology on Soft Error Rates. In /IEEE
Reliability Physics Symposium, IRPS’11, pages 5B.4.1-5B.4.7, 2011.

Bjorn Dobel and Hermann Hirtig. Who Watches the Watchmen? — Protecting Operating Sys-
tem Reliability Mechanisms. In Workshop on Hot Topics in System Dependability, HotDep’12,
Hollywood, CA, 2012.

Bjorn Dobel and Hermann Hértig. Where Have all the Cycles Gone? — Investigating Runtime
Overheads of OS-Assisted Replication. In Workshop on Software-Based Methods for Robust
Embedded Systems, SOBRES’13, Koblenz, Germany, 2013.

Bjorn Dobel and Hermann Hértig. Can We Put Concurrency Back Into Redundant Multithread-
ing? In 14th International Conference on Embedded Software, EMSOFT’ 14, New Delhi, India,
2014.

Bjorn Dobel, Hermann Hirtig, and Michael Engel. Operating System Support for Redundant
Multithreading. In 12th International Conference on Embedded Software, EMSOFT 12,
Tampere, Finland, 2012.

Bjorn Dobel, Horst Schirmeier, and Michael Engel. Investigating the Limitations of PVF for
Realistic Program Vulnerability Assessment. In Workshop on Design For Reliability (DFR),
2013.

Nelson Elhage. Attack of the Cosmic Rays! KSPlice Blog, 2010, https://
blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_raysl, accessed on April
22nd 2013.

Kevin Elphinstone and Gernot Heiser. From L3 to seL4: What Have We Learnt in 20 Years of
L4 Microkernels? In Symposium on Operating Systems Principles, SOSP’13, pages 133-150,
Farminton, Pennsylvania, 2013. ACM.

Michael Engel and Bjorn Dobel. The Reliable Computing Base: A Paradigm for Software-
Based Reliability. In Workshop on Software-Based Methods for Robust Embedded Systems,
2012.

Dawson Engler and David Yu et al. Chen. Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code. In Symposium on Operating Systems Principles, SOSP’01,
pages 57-72, Banff, Alberta, Canada, 2001. ACM.

Ernst, Dan and Nam Sung Kim et al. Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation. In International Symposium on Microarchitecture, MICRO’36, pages
7-18, 2003.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark Silicon and the End of Multicore Scaling. In Annual International Symposium on
Computer Architecture, ISCA’11, pages 365-376, San Jose, California, USA, 2011. ACM.

Dae Hyun Kim et al. 3D-MAPS: 3D Massively Parallel Processor With Stacked Memory. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International,
pages 188-190, 2012.

165

http://tudos.org/~doebel/phd/vdso2012/
http://tudos.org/~doebel/phd/vdso2012/
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1
https://blogs.oracle.com/ksplice/entry/attack_of_the_cosmic_rays1

166 BJORN DOBEL

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron
Brightwell. Detection and Correction of Silent Data Corruption for Large-Scale High-
Performance Computing. In International Conference on High Performance Computing,
Networking, Storage and Analysis, SC *12, pages 78:1-78:12, Salt Lake City, Utah, 2012. IEEE
Computer Society Press.

Cristian Florian. Report: Most Vulnerable Operating Systems and Applications in 2013. GFI
Blog, accessed on July 29th 2014, http://www.gfi.com/blog/report-most-vulnerable-
operating-systems-and-applications-in-2013/.

International Organization for Standardization. ISO 26262: Road Vehicles — Functional Safety,
2011.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5
Multithreaded Language. In Conference on Programming Language Design and Implementa-
tion, PLDI’98, pages 212-223, Montreal, Quebec, Canada, June 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

Narayanan Ganapathy and Curt Schimmel. General Purpose Operating System Support for
Multiple Page Sizes. In USENIX Annual Technical Conference, ATC *98, Berkeley, CA, USA,
1998. USENIX Association.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Multi-
processors. In International Symposium on Computer Architecture, ISCA *90, pages 15-26,
Seattle, Washington, USA, 1990. ACM.

Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. We Crashed, Now What?
In Workshop on Hot Topics in System Dependability, HotDep’ 10, Vancouver, BC, Canada,
2010. USENIX Association.

James Glanz. Power, Pollution and the Internet. The New York Times, accessed
on July 1st 2013, mirror: http://o0s.inf.tu-dresden.de/~doebel/phd/nyt2012util/
article.html, September 2012.

Jim Gray. Why Do Computers Stop and What Can Be Done About It? In Symposium on
Reliability in Distributed Software and Database Systems, pages 3—12, 1986.

Weining Gu, Z. Kalbarczyk, and R.K. Iyer. Error Sensitivity of the Linux Kernel Executing on
PowerPC G4 and Pentium 4 Processors. In Conference on Dependable Systems and Networks,
DSN’04, pages 887-896, June 2004.

Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang. Rex:
Replication at the Speed of Multi-core. In European Conference on Computer Systems, EuroSys
14, Amsterdam, The Netherlands, 2014. ACM.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. MiBench:
A Free, Commercially Representative Embedded Benchmark Suite. In International Workshop
on Workload Characterization, pages 3—14, Austin, TX, USA, 2001. IEEE Computer Society.

Tom R. Halfhill. Processor Watch: DRAM+CPU Hybrid Breaks Barriers. Linley Group, 2011,
accessed on July 26th 2013, mirror: http://tudos.org/~doebel/phd/linleyllcore/.

Richard W. Hamming. Error Detecting And Error Correcting Codes. Bell System Technical
Journal, 29:147-160, 1950.

Siva K. S. Hari, Sarita V. Adve, and Helia Naeimi. Low-Cost Program-Level Detectors for
Reducing Silent Data Corruptions. In 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 1-12, 2012.

Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachandran. Relyzer:
Exploiting Application-Level Fault Equivalence to Analyze Application Resiliency to Transient
Faults. In International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 123—134, New York, NY, USA, 2012. ACM.

Tim Harris, Martin Maas, and Virendra J. Marathe. Callisto: Co-Scheduling Parallel Runtime
Systems. In European Conference on Computer Systems, EuroSys ’14, Amsterdam, The
Netherlands, 2014. ACM.

Andreas Heinig, Ingo Korb, Florian Schmoll, Peter Marwedel, and Michael Engel. Fast and
Low-Cost Instruction-Aware Fault Injection. In GI Workshop on Software-Based Methods for
Robust Embedded Systems (SOBRES ’13), 2013.

Daniel Henderson and Jim Mitchell. POWER7 System RAS — Key Aspects of Power Systems
Reliability, Availability, and Servicability. IBM Whitepaper, 2012.

http://www.gfi.com/blog/report-most-vulnerable-operating-systems-and-applications-in-2013/
http://www.gfi.com/blog/report-most-vulnerable-operating-systems-and-applications-in-2013/
http://os.inf.tu-dresden.de/~doebel/phd/nyt2012util/article.html
http://os.inf.tu-dresden.de/~doebel/phd/nyt2012util/article.html
http://tudos.org/~doebel/phd/linley11core/

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Jorg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad Shafique, Mehdi
Tahoori, and Norbert Wehn. Reliable On-chip Systems in the Nano-Era: Lessons Learnt and
Future Trends. In Annual Design Automation Conference, DAC *13, pages 99:1-99:10, Austin,
Texas, 2013. ACM.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2003.

Jorrit N. Herder. Building a Dependable Operating System: Fault Tolerance in MINIX3.
Dissertation, Vrije Universiteit Amsterdam, 2010.

Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745-770, November 1993.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers, 2008.

Tomas Hruby, Dirk Vogt, Herbert Bos, and Andrew S. Tanenbaum. Keep Net Working - On a
Dependable and Fast Networking Stack. In Conference on Dependable Systems and Networks,
Boston, MA, June 2012.

Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault Injection Techniques and
Tools. IEEE Computer, 30(4):75-82, Apr 1997.

Kuang-Hua Huang and Jacob A. Abraham. Algorithm-Based Fault Tolerance for Matrix
Operations. IEEE Transactions on Computers, C-33(6):518-528, 1984.

Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic Rays Don’t Strike
Twice: Understanding the Nature of DRAM Errors and the Implications for System Design. In
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 111-122, London, England, UK, 2012. ACM.

IBM. PowerPC 750GX lockstep facility. IBM Application Note, 2008.

James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance Program-
ming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

Dawon Kahng. Electrified Field-Controlled Semiconductor Device. US Patent No. 3,102,230,
http://www.freepatentsonline.com/3102230.html, 1963.

Riidiger Kapitza, Matthias Schunter, Christian Cachin, Klaus Stengel, and Tobias Distler.
Storyboard: Optimistic Deterministic Multithreading. In Workshop on Hot Topics in System
Dependability, HotDep’ 10, pages 1-8, Vancouver, BC, Canada, 2010. USENIX Association.

M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin. EVE: Execute-
Verify Replication for Multi-Core Servers. In Symposium on Opearting Systems Design &
Implementation, OSDI’12, Oct 2012.

John Keane and Chris H. Kim. An Odomoeter for CPUs. IEEE Spectrum, 48(5):28-33, 2011.

Piyus Kedia and Sorav Bansal. Fast Dynamic Binary Translation for the Kernel. In Symposium
on Operating Systems Principles, SOSP ’13, pages 101-115, Farminton, Pennsylvania, 2013.
ACM.

Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor, Zilin Chen, Leonid Ryzhyk,
Gerwin Klein, and Gernot Heiser. File Systems Deserve Verification Too! In Workshop
on Programming Languages and Operating Systems, PLOS *13, pages 1:1-1:7, Farmington,
Pennsylvania, 2013. ACM.

Avi Kivity. KVM: The Linux Virtual Machine Monitor. In The Ottawa Linux Symposium,
pages 225-230, July 2007.

V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf, D. Mueller-Gritschneder,
S. R. Nassif, U. Schlichtmann, and N. Wehn. A Cross-Layer Technology-Based Study of how
Memory Errors Impact System Resilience. IEEE Micro, 33(4):46-55, 2013.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal Verification of an OS Kernel. In Symposium
on Operating Systems Principles, SOSP’09, pages 207-220, Big Sky, MT, USA, October 2009.
ACM.

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

Philip Koopman. 32bit Cyclic Redundancy Codes for Internet Applications. In Conference on
Dependable Systems and Networks, DSN 02, pages 459472, Washington, DC, USA, 2002.
IEEE Computer Society.

Martin Kriegel. Bounding Error Detection Latencies for Replicated Execution. Bachelor’s
thesis, TU Dresden, 2013.

Adam Lackorzynski. L*Linux Porting Optimizations. Diploma thesis, TU Dresden, 2004

167

http://www.freepatentsonline.com/3102230.html

168 BJORN DOBEL

Adam Lackorzynski and Alexander Warg. Taming Subsystems: Capabilities as Universal
Resource Access Control in L4. In Workshop on Isolation and Integration in Embedded
Systems, IIES’09, pages 25-30, Nuremburg, Germany, 2009. ACM.

Adam Lackorzynski, Alexander Warg, and Michael Peter. Generic Virtualization with Virtual
Processors. In Proceedings of Twelfth Real-Time Linux Workshop, Nairobi, Kenya, October
2010.

Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, 28(9):690-691, September 1979.

Doug Lea. Concurrent Programming In Java. Design Principles and Patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish Narayanasamy, Peter M.
Chen, and Jason Flinn. Respec: Efficient Online Multiprocessor Replay via Speculation and
External Determinism. In Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, pages 77-90, Pittsburgh, Pennsylvania, USA, 2010.
ACM.

Edward A. Lee. The Problem with Threads. Computer, 39(5):33-42, May 2006.

L. Leem, Hyungmin Cho, J. Bau, Q.A. Jacobson, and S Mitra. ERSA: Error Resilient System
Architecture for Probabilistic Applications. In Design, Automation Test in Europe Conference
Exhibition, DATE’ 10, pages 1560-1565, 2010.

Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery Domains: An Organizing
Principle for Recoverable Operating Systems. In /4th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIV, pages 49-60,
New York, NY, USA, 2009. ACM.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Unmodified Device Driver
Reuse and Improved System Dependability via Virtual Machines. In Symposium on Operating
Systems Design and Implementation, SOSP’04, San Francisco, CA, December 2004.

John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, Ist edition, 1999.

David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500
Processors. Technical report, Intep Corp., 2009. https://software.intel.com/sites/
products/collateral/hpc/vtune/performance_analysis_guide.pdf.

Dong Li, Zizhong Chen, Panruo Wu, and Jeffrey S. Vetter. Rethinking Algorithm-Based Fault
Tolerance with a Cooperative Software-Hardware Approach. In International Conference for
High Performance Computing, Networking, Storage and Analysis, SC’ 13, pages 44:1-44:12,
Denver, Colorado, 2013. ACM.

Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S. Adve,
and Yuanyuan Zhou. Understanding the Propagation of Hard Errors to Software and Implica-
tions for Resilient System Design. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, pages 265-276, Seattle, WA,
USA, 2008. ACM.

Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A Memory Soft Error Measurement
on Production Systems. In USENIX Annual Technical Conference, ATC 07, pages 275-280,
June 2007.

Jochen Liedtke. Improving IPC by Kernel Design. In ACM Symposium on Operating Systems
Principles, SOSP 93, pages 175-188, Asheville, North Carolina, USA, 1993. ACM.

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Efficient Deterministic
Multithreading. In Symposium on Operating Systems Principles, SOSP *11, pages 327-336,
Cascais, Portugal, 2011. ACM.

Jork Loser, Lars Reuther, and Hermann Hirtig. A Streaming Interface for Real-Time In-
terprocess Communication. Technical report, TU Dresden, August 2001. URL: http:
//0s.inf.tu-dresden.de/papers_ps/dsi_tech_report.pdf.

M.N. Lovellette, K.S. Wood, D. L. Wood, J.H. Beall, P.P. Shirvani, N. Oh, and E.J. McCluskey.
Strategies for Fault-Tolerant, Space-Based Computing: Lessons Learned from the ARGOS
Testbed. In Aerospace Conference Proceedings, 2002. IEEE, volume 5, pages 5-2109-5-2119
vol.5, 2002.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized Program
Analysis Tools With Dynamic Instrumentation. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI *05, pages 190-200, New York, NY, USA, 2005.
ACM.

Daniel Lyons. Sun Screen. Forbes Magazine, November 2000, accessed on April 22nd 2013,
mirror: http://tudos.org/~doebel/phd/forbes2000sun.

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://os.inf.tu-dresden.de/papers_ps/dsi_tech_report.pdf
http://os.inf.tu-dresden.de/papers_ps/dsi_tech_report.pdf
http://tudos.org/~doebel/phd/forbes2000sun

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Henrique Madeira, Raphael R. Some, Francisco Moreira, Diamantino Costa, and David
Rennels. Experimental Evaluation of a COTS System for Space Applications. In International
Conference on Dependable Systems and Networks, DSN 2002, pages 325-330, 2002.

Aamer Mahmood, Dorothy M. Andrews, and Edward J. McClusky. Executable Assertions
and Flight Software. Center for Reliable Computing, Computer Systems Laboratory, Dept. of
Electrical Engineering and Computer Science, Stanford University, 1984.

Jose Maiz, Scott Hareland, Kevin Zhang, and Patrick Armstrong. Characterization of Multi-Bit
Soft Error Events in Advanced SRAMs. In IEEE International Electron Devices Meeting,
pages 21.4.1-21.4.4, 2003.

Steve McConnell. Code Complete: A Practical Handbook of Software Construction. Microsoft
Press, Redmond, WA, 2 edition, 2004.

Albert Meixner and Daniel J. Sorin. Detouring: Translating Software to Circumvent Hard
Faults in Simple Cores. In International Conference on Dependable Systems and Networks
(DSN), pages 80-89, 2008.

Christian Menard. Improving replication performance and error coverage using instruction and
data signatures. Study thesis, TU Dresden, 2014.

Timothy Merrifield and Jakob Eriksson. Conversion: Multi-Version Concurrency Control for
Main Memory Segments. In European Conference on Computer Systems, EuroSys 13, pages
127-139, Prague, Czech Republic, 2013. ACM.

Microsoft Corp. Symbol Stores and Symbol Servers. Microsoft Developer Network, ac-
cessed on July 12th 2014, http://msdn.microsoft.com/library/windows/hardware/
558840 (v=vs.85).aspx.

Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and Frank Bellosa. XLH:
More Effective Memory Deduplication Scanners Through Cross-Layer Hints. In USENIX
Annual Technical Conference, USENIX ATC’13, San Jose, CA, USA, 2013.

Mark Miller, Ka-Ping Yee, Jonathan Shapiro, and Combex Inc. Capability Myths Demolished.
Technical report, Johns Hopkins University, 2003.

Miguel Miranda. When Every Atom Counts. IEEE Spectrum, 49(7):32-32, 2012.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

Gordon E. Moore. Cramming More Components Onto Integrated Circuits. Electronics, 38(8),
1965.

Boris Motruk, Jonas Diemer, Rainer Buchty, Rolf Ernst, and Mladen Berekovic. IDAMC:
A Many-Core Platform with Run-Time Monitoring for Mixed-Criticality. In International
Symposium on High-Assurance Systems Engineering, HASE’12, pages 24-31, Oct 2012.

Shubhendu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and Steven K. Reinhardt. Cache
Scrubbing in Microprocessors: Myth or Necessity? In Pacific Rim International Symposium
on Dependable Computing, PRDC ’04, pages 37-42, Washington, DC, USA, 2004. IEEE
Computer Society.

Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd
Austin. A Systematic Methodology to Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor. In International Symposium on Microarchitecture, MICRO
36, Washington, DC, USA, 2003. IEEE Computer Society.

Robert Muschner. Resource Optimization for Replicated Applications. Diploma thesis, TU
Dresden, 2013.

Hamid Mushtaq, Zaid Al-Ars, and Koen L. M. Bertels. Efficient Software Based Fault Toler-
ance Approach on Multicore Platforms. In Design, Automation & Test in Europe Conference,
Grenoble, France, March 2013.

Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. In ACM SIGPLAN conference on Programming Language Design and
Implementation, PLDI *07, pages 89-100, New York, NY, USA, 2007. ACM.

Adrian Nistor, Darko Marinov, and Josep Torrellas. Light64: lightweight hardware support for
data race detection during systematic testing of parallel programs. In International Symposium
on Microarchitecture, MICRO 42, pages 541-552, New York, NY, USA, 2009. ACM.

Nvidia Corp. Kepler: The World’s Fastest, Most Efficient HPC Architecture. http://
www.nvidia.com/object/nvidia-kepler.html, accessed August 1st, 2014, 2014.

Namsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-Flow Checking by Software
Signatures. IEEE Transactions on Reliability, 51(1):111 —122, March 2002.

169

http://msdn.microsoft.com/library/windows/hardware/ff558840(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/hardware/ff558840(v=vs.85).aspx
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html

170 BJORN DOBEL

Namsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error Detection by Duplicated
Instructions in Super-Scalar Processors. IEEE Transactions on Reliability, 51(1):63-75, 2002.

Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient Deterministic Mul-
tithreading in Software. In Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XIV, pages 97-108, Washington, DC, USA, 2009. ACM.

Krishna V. Palem, Lakshmi N.B. Chakrapani, Zvi M. Kedem, Avinash Lingamneni, and
Kirthi Krishna Muntimadugu. Sustaining Moore’s Law in Embedded Computing Through
Probabilistic and Approximate Design: Retrospects and Prospects. In International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 09, pages 1-10,
Grenoble, France, 2009. ACM.

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles Muller.
Faults in Linux: Ten Years Later. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 11, pages 305-318, Newport
Beach, California, USA, 2011. ACM.

Florian Pester. ELK Herder: Replicating Linux Processes with Virtual Machines. Diploma
thesis, TU Dresden, 2014.

Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable Third Genera-
tion Architectures. Communications of the ACM, 17(7):412-421, July 1974.

J. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981. Updated by
RFCs 1122, 3168, 6093.

Eberle A. Rambo, Alexander Tschiene, Jonas Diemer, Leonie Ahrendts, and Rolf Ernst. Failure
Analysis of a Network-on-chip for Real-Time Mixed-Critical Systems. In Design, Automation
Test in Europe Conference Exhibition, DATE’ 14, 2014.

Brian Randell, Peter A. Lee, and Philip C. Treleaven. Reliability Issues in Computing System
Design. ACM Computing Surveys, 10(2):123-165, June 1978.

Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan. Towards Understanding The
Effects Of Intermittent Hardware Faults on Programs. In Workshops on Dependable Systems
and Networks, pages 101-106, June 2010.

David Ratter. FPGAs on Mars. Xilinx Xcell Journal, 2004.

Semeen Rehman, Muhammad Shafique, and J6rg Henkel. Instruction Scheduling for Reliability-
Aware Compilation. In Annual Design Automation Conference, DAC *12, pages 1292-1300,
San Francisco, California, 2012. ACM.

Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jorg Henkel. Reliable Software
for Unreliable Hardware: Embedded Code Generation Aiming at Reliability. In International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’11, pages
237-246, Taipei, Taiwan, 2011. ACM.

Dave Reid, Campbell Millar, Gareth Roy, Scott Roy, and Asen Asenov. Analysis of Threshold
Voltage Distribution Due to Random Dopants: A 100,000-Sample 3-D Simulation Study. /[EEE
Transactions on Electron Devices, 56(10):2255-2263, 2009.

Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault Detection via Simultaneous
Multithreading. SIGARCH Comput. Archit. News, 28:25-36, May 2000.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. August. SWIFT:
Software Implemented Fault Tolerance. In International Symposium on Code Generation and
Optimization, CGO °05, pages 243-254, 2005.

John Rhea. BAE Systems Moves Into Third Generation RAD-hard Processors. Military &
Aerospace Electronics, 2002, accessed on April 22nd 2013, mirror: http://tudos.org/
~doebel/phd/bae2002/.

Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage Current
Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits.
Proceedings of the IEEE, 91(2):305-327, 2003.

Leonid Ryzhyk, Peter Chubb, Thor Kuz, and Gernot Heiser. Dingo: Taming Device Drivers. In
ACM European Conference on Computer Systems, EuroSys 09, pages 275-288, Nuremberg,
Germany, 2009. ACM.

Leonid Ryzhyk, Peter Chubb, Thor Kuz, Etienne Le Sueur, and Gernot Heiser. Automatic
Device Driver Synthesis with Termite. In Symposium on Operating Systems Principles, SOSP
’09, pages 73-86, Big Sky, Montana, USA, 2009. ACM.

Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, Sanjay J. Patel, and Rav-
ishankar K. Iyer. An Experimental Study of Soft Errors in Microprocessors. IEEE Micro,
25:30-39, November 2005.

Richard T. Saunders. A Study in Memcmp. Python Developer List, 2011.

http://tudos.org/~doebel/phd/bae2002/
http://tudos.org/~doebel/phd/bae2002/

OPERATING SYSTEM SUPPORT FOR REDUNDANT MULTITHREADING

Ute Schiffel, André Schmitt, Martin SiiBkraut, and Christof Fetzer. ANB- and ANBDmem-
Encoding: Detecting Hardware Errors in Software. In International Conference on Computer
Safety, Reliability and Security, Safecomp’10, Vienna, Austria, 2010.

Ute Schiffel, André Schmitt, Martin SiiSkraut, and Christof Fetzer. Software-Implemented
Hardware Error Detection: Costs and Gains. In Third International Conference on Dependabil-
ity, DEPEND’ 10, pages 51-57, 2010.

Horst Schirmeier, Martin Hoffmann, Rudiger Kapitza, Daniel Lohmann, and Olaf Spinczyk.
FAIL*: Towards a Versatile Fault-Injection Experiment Framework. In Gero Miihl, Jan
Richling, and Andreas Herkersdorf, editors, International Conference on Architecture of
Computing Systems, volume 200 of ARCS’12, pages 201-210. German Society of Informatics,
March 2012.

Richard D. Schlichting and Fred B. Schneider. Fail-Stop Processors: An Approach to Designing
Fault-tolerant Computing Systems. ACM Transactions on Computer Systems, 1:222-238, 1983.

Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach:
A Tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM Errors in the Wild:
A Large-Scale Field Study. In International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS’09, 2009.

Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: Data Race Detection in
Practice. In Workshop on Binary Instrumentation and Applications, WBIA’09, pages 62-71,
New York, NY, USA, 2009. ACM.

A. Shye, J. Blomstedt, T. Moseley, V.J. Reddi, and D.A. Connors. PLR: A Software Approach
to Transient Fault Tolerance for Multicore Architectures. IEEE Transactions on Dependable
and Secure Computing, 6(2):135 —148, 2009.

Lenin Singaravelu, Calton Pu, Hermann Hértig, and Christian Helmuth. Reducing TCB
Complexity for Security-Sensitive Applications: Three Case Studies. In European Conference
on Computer Systems, EuroSys’06, pages 161-174, 2006.

Timothy J. Slegel, Robert M. Averill ITI, Mark A. Check, Bruce C. Giamei, Barry W. Krumm,
Christopher A. Krygowski, Wen H. Li, John S. Liptay, John D. MacDougall, Thomas J.
McPherson, Jennifer A. Navarro, Eric M. Schwarz, Kevin Shum, and Charles F. Webb. IBM’s
S/390 G5 Microprocessor Design. IEEE Micro, 19(2):12-23, 1999.

Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G.
Nowatzyk. Fingerprinting: Bounding Soft-Error Detection Latency and Bandwidth. In
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XI, pages 224-234, Boston, MA, USA, 2004.

Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling with Exception-
Less System Calls. In Conference on Operating Systems Design and Implementation, OSDI’ 10,
pages 1-8, 2010.

Vilas Sridharan and David R. Kaeli. Quantifying Software Vulnerability. In Workshop on
Radiation effects and fault tolerance in nanometer technologies, WREFT ’08, pages 323-328,
Ischia, Italy, 2008. ACM.

Vilas Sridharan and Dean Liberty. A Study of DRAM Failures in the Field. In International
Conference on High Performance Computing, Networking, Storage and Analysis, SC 12, pages
76:1-76:11, Salt Lake City, Utah, 2012. IEEE Computer Society Press.

Julian Stecklina. Shrinking the Hypervisor one Subsystem at a Time: A Userspace Packet
Switch for Virtual Machines. In Conference on Virtual Execution Environments, VEE’14,
pages 189-200, 2014.

Luca Sterpone and Massimo Violante. An Analysis of SEU Effects in Embedded Operating
Systems for Real-Time Applications. In International Symposium on Industrial Electronics,
pages 3345-3349, June 2007.

Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy. Recov-
ering Device Drivers. ACM Transactions on Computing Systems, 24(4):333-360, November
2006.

Yuan Taur. The Incredible Shrinking Transistor. IEEE Spectrum, 36(7):25-29, 1999.

The IEEE and The Open Group. POSIX Thread Extensions 1003.1¢c-1995. http://
pubs.opengroup.org, 2013.

The IEEE and The Open Group. The Open Group Base Specifications — Issue 7. http:
//pubs.opengroup.org, 2013.

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithreading: Max-
imizing on-chip Parallelism. In International Symposium on Computer Architecture, pages
392-403, 1995.

171

http://pubs.opengroup.org
http://pubs.opengroup.org
http://pubs.opengroup.org
http://pubs.opengroup.org

172 BJORN DOBEL

Andrew M. Tyrrell. Recovery Blocks and Algorithm-Based Fault Tolerance. In EUROMICRO
96. Beyond 2000: Hardware and Software Design Strategies, pages 292-299, 1996.

Martin Unzner. Implementation of a Fault Injection Framework for L4Re. Belegarbeit, TU
Dresden, 2013.

Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-weight Communica-
tions on Intel’s Single-Chip Cloud Computer Processor. SIGOPS Operating Systems Review,
45(1):73-83, February 2011.

Dirk Vogt, Bjorn Débel, and Adam Lackorzynski. Stay Strong, Stay Safe: Enhancing Reliability
of a Secure Operating System. In Workshop on Isolation and Integration for Dependable
Systems, IIDS’ 10, Paris, France, 2010. ACM.

Neal H. Walfield. Viengoos: A Framework For Stakeholder-Directed Resource Allocation.
Technical report, 2009.

Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-managed Software-based
Redundant Multithreading for Transient Fault Detection. In International Symposium on Code
Generation and Optimization, CGO ’07, pages 244-258, 2007.

Nicholas Wang, Michael Fertig, and Sanjay Patel. Y-Branches: When You Come to a Fork
in the Road, Take it. In International Conference on Parallel Architectures and Compilation
Techniques, PACT 03, pages 56—, Washington, DC, USA, 2003. IEEE Computer Society.

Lucas Wanner, Charwak Apte, Rahul Balani, Puneet Gupta, and Mani Srivastava. Hardware
Variability-Aware Duty Cycling for Embedded Sensors. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 21(6):1000-1012, 2013.

Carsten Weinhold and Hermann Hirtig. jVPES: Adding Robustness to a Secure Stacked File
System with Untrusted Local Storage Components. In USENIX Annual Technical Conference,
ATC’11, pages 32-32, Portland, OR, 2011. USENIX Association.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom. The Worst-Case
Execution-Time Problem — Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems, 7(3):36:1-36:53, May 2008.

Kent D. Wilken and John Paul Shen. Continuous Signature Monitoring: Low-Cost Concurrent
Detection of Processor Control Errors. IEEE Transactions on CAD of Integrated Circuits and
Systems, 9(6):629-641, 1990.

Waisum Wong, Ali Icel, and J.J. Liou. A Model for MOS Failure Prediction due to Hot-Carriers
Injection. In Electron Devices Meeting, 1996., IEEE Hong Kong, pages 72—76, 1996.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta.
The SPLASH-2 Programs: Characterization and Methodological Considerations. SIGARCH
Comput. Archit. News, 23(2):24-36, May 1995.

G. Yalcin, O.S. Unsal, A. Cristal, and M. Valero. FIMSIM: A Fault Injection Infrastructure for
Microarchitectural Simulators. In International Conference on Computer Design, ICCD’11,
2011.

Ying-Chin Yeh. Triple-Triple Redundant 777 Primary Flight Computer. In Aerospace Applica-
tions Conference, volume 1, pages 293-307, 1996.

Takeshi Yoshimura, Hiroshi Yamada, and Kenji Kono. Is Linux Kernel Oops Useful or Not?
In Workshop on Hot Topics in System Dependability, HotDep’ 12, pages 2-2, Hollywood, CA,
2012. USENIX Association.

Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W. Lee, Scott A. Mahlke, and David I.
August. Runtime Asynchronous Fault Tolerance via Speculation. In International Symposium
on Code Generation and Optimization, CGO ’12, pages 145-154, 2012.

Yun Zhang, Jae W. Lee, Nick P. Johnson, and David I. August. DAFT: Decoupled Acyclic Fault
Tolerance. In International Conference on Parallel Architectures and Compilation Techniques,
PACT ’ 10, pages 87-98, Vienna, Austria, 2010. ACM.

James F. Ziegler and William A. Lanford. Effect of Cosmic Rays on Computer Memories.
Science, 206(4420):776-788, 1979.

Ziegler, James F. and Curtis, Huntington W. et al. IBM Experiments in Soft Fails in Computer
Electronics (1978-1994). IBM Journal of Research and Development, 40(1):3-18, 1996.

	Introduction
	Hardware meets Soft Errors
	An Operating System for Tolerating Soft Errors
	Whom can you Rely on?

	Why Do Transistors Fail And What Can Be Done About It?
	Hardware Faults at the Transistor Level
	Faults, Errors, and Failures – A Taxonomy
	Manifestation of Hardware Faults
	Existing Approaches to Tolerating Faults
	Thesis Goals and Design Decisions

	Redundant Multithreading as an Operating System Service
	Architectural Overview
	Process Replication
	Tracking Externalization Events
	Handling Replica System Calls
	Managing Replica Memory
	Managing Memory Shared with External Applications
	Hardware-Induced Non-Determinism
	Error Detection and Recovery

	Can We Put the Concurrency Back Into Redundant Multithreading?
	What is the Problem with Multithreaded Replication?
	Can we make Multithreading Deterministic?
	Replication Using Lock-Based Determinism
	Reliability Implications of Multithreaded Replication

	Evaluation
	Methodology
	Error Coverage and Detection Latency
	Runtime and Resource Overhead
	Implementation Complexity
	Comparison with Related Work

	Who Watches the Watchmen?
	The Reliable Computing Base
	Case Study #1: How Vulnerable is the Operating System?
	Case Study #2: Mixed-Reliability Hardware Platforms
	Case Study #3: Compiler-Assisted RCB Protection

	Conclusions and Future Work
	OS-Assisted Replication
	Directions for Future Research

	Bibliography

