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ABSTRACT 
Physical system models that consist of thousands of ordinary 
differential equations can be synthesized to field-programmable 
gate arrays (FPGAs) for highly-parallelized, real-time physical 
system emulation. Previous work introduced synthesis of custom 
networks of homogeneous processing elements, consisting of 
processing elements that are either all general differential 
equation solvers or are all custom solvers tailored to solve 
specific equations. However, a complex physical system model 
may contain different types of equations such that using only 
general solvers or only custom solvers does not provide all of the 
possible speedup. We introduce methods to synthesize a custom 
network of heterogeneous processing elements for emulating 
physical systems, where each element is either a general or 
custom differential equation solver. We show average speedups of 
45x over a 3 GHz single-core desktop processor, and of 11x and 
20x over a 3 GHz four-core desktop and a 763 MHz NVIDIA 
graphical processing unit, respectively. Compared to a 
commercial high-level synthesis tool including regularity 
extraction, the networks of heterogeneous processing elements 
were on average 10.8x faster. Compared to homogeneous 
networks of general and single-type custom processing elements, 
heterogeneous networks were on average 7x and 6x faster, 
respectively.  

Categories and Subject Descriptors 
B.5.2 [Design Aids]: Automatic synthesis;  
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 
SYSTEMS]: Real-time and embedded systems  
General Terms 
Design, Performance, Experimentation 

Keywords 
Real-time emulation, field-programmable gate array (FPGA), 
ordinary differential equation (ODE) solving, physical models, 
cyber-physical systems, differential equation synthesis, high-level 
synthesis, system-level synthesis, processing elements.  
1. INTRODUCTION 
Fast accurate digital emulation of physical systems is useful in 
various cyber-physical systems [11]. For instance, a complicated 
patient simulator that emulates a human’s circulatory, respiratory, 
and nervous system can be used for training clinicians [15]. 

Compared to mechanical systems used for emulation purposes, 
the parameters of a digital model can be easily modified. For 
instance, a digital lung model’s parameters can be changed for 
capturing varied lung pathologies, which is more flexible than 
typical lung emulation approaches using mechanical balloons. 
Most physical systems can be modeled with ordinary differential 
equations (ODEs). A heterogeneous physical system may contain 
thousands of ODEs. Because ODEs for real physical systems 
typically cannot be solved exactly, simulations/emulations 
typically step forward using small time steps and estimate the 
next values of all variables using the current variable values and 
the slope of the variables’ function at that time (the slope coming 
from the derivative terms). Such iterative solvers typically solve 
1000 times per second or faster to achieve sufficient accuracy, 
thus real-time emulation of a physical system can be 
computationally intensive. A modern multi-core desktop 
computer may not satisfy the real-time constraint, because of the 
mostly-sequential computation of a CPU (centralized processing 
unit). GPU (graphical processing unit) platforms perform better 
than CPUs in emulating a physical system because of more 
parallel computation resources. However, we have found that the 
memory architecture of a GPU may not match the communication 
pattern of a physical system model, thus greatly limiting the 
performance of a GPU.  
We previously [7][8] proposed a network of homogeneous 
processing-elements on FPGAs approach for even faster 
emulation of a physical system. A set of lightweight custom 
processors each solve a subset of ODEs in the physical system. 
The structure of the network and interconnections of the PEs is 
based on ODE interdependencies. Models with widely-varying 
structures can be efficiently implemented on FPGAs due to FPGA 
configurability. Initially, we used a custom network of general 
PEs [7], with each general PE able to solve any ODEs, yielding 
10x-20x speedups over a single-core Intel I7 desktop processor 
running at 3.07 GHz. Later, we introduced a custom network of 
custom PEs [8], where a single custom PE was first created to best 
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Fig. 1. Synthesizing a hemodynamic model into a network of 
heterogeneous PEs on an FPGA. Each shape type in the model 
represents a different type of ODE. Two simplified ODEs are 

shown for illustration purpose 
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match the needs of the model’s ODEs and then a network of those 
custom PEs was used to achieve 5x-10x speedups over the 
network of general PEs.  
In this paper, we propose to create a custom network of 
heterogeneous PEs consisting of general PEs and multiple custom 
PEs together, as shown in Fig. 1. The proposed method greatly 
expands the exploration problem associated with mapping model 
equations to the correct type of PE, but can yield substantial 
speedups of model emulation. A simplified hemodynamic model 
[25] for modeling a human circulatory system is shown in the 
figure, containing six ODE types for modeling different sub-
systems; each type is represented as a different shape in the figure. 
Each ODE type is unique, and requires a particular ordered set of 
operations that differ from the operations of other ODE types (e.g., 
ODE 1 and ODE 2 in the figure are different types). There can be 
different numbers of ODEs per type. For example, the left four 
sub-systems in Fig. 1 consist of unique ODE types with a single 
ODE per type, while the two sub-systems on the right have four 
ODEs per type. We can build a custom network of 5 PEs that 
contains two custom PEs for the types with four ODEs, and three 
general PEs for the left four ODEs (one of the PEs solves 2 
ODEs). Note the custom network of PEs has a similar circular 
connection structure as the circulation model as the 
communication between model sub-systems remains unchanged. 
Heterogeneous PEs substantially changes the synthesis problem 
due to introducing an enormous design space, involving not just 
the number of PEs and mapping of ODEs to PEs, but also 
instantiation of different types of PEs, numbers of each types, and 
mappings of ODEs to different types. We propose an allocation 
and binding heuristic for this problem and build an HDL 
(hardware description language) code generation tool to generate 
synthesizable VHDL code from the obtained solution.  
This paper is organized as follows. Sections 2 reviews related 
works. Section 3 reviews a processing element network approach. 
Section 4 introduces an allocation and binding heuristic for a 
network of heterogeneous PEs and HDL code generation. Section 
5 summarizes experimental results, and Section 6 concludes. 

2. RELATED WORK 
Simulation of physical system models has been studied 
extensively in the past decades. Tools have been developed to 
facilitate physical system simulation, such as Matlab [13], JSim 
[9], LabView [18], etc. These tools usually aim at producing 
accurate results rather than real-time emulation, commonly 
executing models much slower than real time.  

Researchers have sought methods to speed up simulation by using 
multi-core processors and GPUs (Graphic Processing Units). For 
example, a 768-core SGI super-computer executed a 2-billion 
equation heart model, simulating 0.4 ms in 2 hours [14]. A Flaim 
heart model was executed on an Nvidia [19] GTX 295 GPU, 
running 30x faster than OpenMP running on an Intel I7 quad-core 
processor at 2.93 GHz, but still much slower than real-time, with 
execution of one heartbeat (300 ms) requiring 7.7 minutes. 
Amorim [1] used an Nvidia GTX 285 GPU to solve cardiac 
membrane dynamics, claiming 22-86x speedups over an Intel I7 
quad-core processor at 2.8 GHz, though still running >100x 
slower than real-time. 

FPGAs have been used for emulating physical systems. Yoshimi 
[29] obtained 100x speedups using an FPGA for fine-grained 
biological emulation compared to a single-core processor. 

Salwinski and Eisenberg [22] used an FPGA to speedup fine-
grained intra-cellular simulation, showing that an FPGA could 
hold 500 reactions related to gene expression. However, these 
implementations are mostly manually designed and optimized, 
which requires significant design time. High-level synthesis (HLS) 
tools are another way to implement physical system solvers on an 
FPGA. Various tools have evolved that perform synthesis from C 
code, such as Stream-C [6], AutoESL [3], ROCCC [26], 
SynphonyC [23], etc. We compare our approach to a commercial 
HLS tool. Due to the regularity of most physical systems, we 
incorporate the idea of regularity extraction [21] in the design for 
a more fair comparison.  

We previously [7][8] proposed a homogeneous processing 
element network approach for physical system emulation, and 
built a compiler to convert a model specification to synthesizable 
VHDL code. The previous custom PE networks contained 
homogenous processing elements, either general PEs, or custom 
PEs, but not both. The work in this paper allows different PE 
types in the network, greatly expanding the solution space and 
thus requiring additional exploration heuristics, but yielding 
substantial speedups. 

3. PHYSICAL SYSTEM EMULATION 
WITH A CUSTOM NETWORK OF 
PROCESSING ELEMENTS 
3.1 Modeling physical systems using ODEs 
Fig. 2 shows the structure of a four generation Weibel lung model 
with basic gas exchange at the leaf branches. The Weibel lung has 
a binary tree structure. The first generation represents the airway 
(or trachea) between the mouth and lung. The 2nd and 3rd 
generations represent two bronchi and smaller bronchioles, and 
the fourth generation represents alveoli that handle gas transfer 
between lung and capillary cells. 

The Weibel lung can be captured as RLC circuits [7], where each 
branch contains two state variables (flow and volume). The ODEs 
of each branch can be written in a general format (for simplicity, 
we use Ci to represent constant parameters): 
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Equation (1) and Equation (2) show that the derivative of Vi and 
Fi are linear functions of the volume and flow of branch i and 
neighboring branches. The ODE that governs the model gas 
exchange is: 
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The derivative of O2’s pressure is a linear function of the pressure 

 
 
 
 
 
 
 
 
 
 

Fig. 2. A four generation Weibel lung with gas exchange model  
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of CO2, volume of the alveoli, and the pressure of current O2. The 
Weibel lung with gas exchange model contains three types of 
ODEs, because equations (1) (2) (3) each have a uniquely ordered 
set of operations. 

To calculate the value of a state variable at a given time, the 
ODEs can be solved using iterative solvers such as Euler [2] or 
Runge-Kutta [4]. Starting from time 0, iterative solvers move 
forward in time by a given time step such as 1 ms. At each time 
step, two major tasks are performed by the Euler method: 

Evaluate: Calculate each state variable’s derivative value, e.g., 

iiparenti FCVCFV +⋅+⋅= 21'  

Update: Estimate the value of each state variable for the next time 
step using the current values and the derivatives calculated above, 
e.g., Vi = Vi + d(Vi) / dt * h, where h is the time step. 

3.2 Physical system ODE properties 
The ODEs of a physical system often exhibit spatial locality 
similar to the system’s physical counterparts. For instance, the 
volume of each branch in the Weibel lung is determined only by 
itself and the neighboring branches.  

An ODE data-dependency graph [8] captures data-dependencies 
among the state variables. Each node represents one state variable 
(or a set of variables), while each edge represents the data 
dependency between two nodes. For instance, Fig. 3 shows the 
ODE data-dependency graph of the four-generation Weibel lung. 
Each node represents a branch which contains two state variables 
(volume and flow). Note the ODE data-dependency graph has a 
similar binary tree structure as the Weibel lung model. Since a 
state variable in a physical system only depends on the variable’s 
neighboring variables, the ODE data dependency graph of a 
physical system is often very sparse. The number of edges 
increases linearly with the number of nodes. 

3.3 Custom network of processing elements 
To increase the speed of physical system emulation, we 
previously [7][8] proposed an approach to map the ODEs of a 
physical system to a homogeneous network of processing 
elements. For example, Fig. 3 maps the ODEs of the four-
generation Weibel lung to a custom network of 5 PEs. The state 
variables in each of the dotted rectangles are mapped to one PE. 
The custom network of PEs uses a point-to-point communication 
scheme between PEs. The structure of a PE network is determined 
by the ODE-to-PE mapping and the ODE data-dependency graph, 
as in Fig. 3. The state variables and their relevant parameters 
persist in each PE’s local memory. Such distributed data storage 
eliminates the bottleneck of a centralized memory.  

At each time step, a PE performs the “evaluate” and “update” 
tasks for the state variables mapped to the PE, which are known 
as the PE’s resident variables. In order to evaluate each resident 
variable, the PE may need the state variables that reside in other 
PEs. For instance, PE1 needs the latest value of V4 and V5 in 
order to calculate F2’ according to Equation (2). We call such 
state variables dependent variables. At the end of every time step, 
each PE outputs the latest values of the PE’s resident variables, 
and stores local copies of the PE’s dependent variables from other 
PEs. We call this additional task data transfer.  

The ODE solving process of a network of PEs is illustrated in Fig. 
4. The system has three PEs. The “evaluate” and “update” tasks 
can be done independently in each PE. All PEs are synchronized 
at the point when the slowest PE has finished updating the PE’s 
resident variables (PE2 in this example), to ensure that every state 
variable is updated. Then communications between PEs are 
performed according to a static schedule built from the ODE data 
dependency graph. When all the data-transfer tasks have finished, 
all PEs are synchronized again for the next time step. 

3.4 Processing element architecture 
Two types of processing elements were proposed in the previous 
works that trade off performance and flexibility. A general PE [7] 
can solve any type of ODE. The architecture of the general PE is 
illustrated in Fig. 5. An instruction is directly mapped to a control 
word that controls an input mux, a data-ram and a general purpose 
arithmetic logic unit (ALU). The PE contains a few input ports 
and one output port for communication purposes. The data ram 
stores state variables and parameters mapped to the PE. The ALU 
calculates the equations by the “compute” and “store” operations. 
The general PE can handle different types of ODEs by parsing the 
equations into basic compute operations like ADD, MUL, etc.; 
thus the general PE is flexible. 

Since a physical system often exhibits homogenous properties 
(only contains a few types of ODEs and each type appears many 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Mapping a four generation Weibel lung model to a custom 
network of 5 PEs. 

 
 
 
 
 
 
 
 

Fig. 4. ODE solving process in a network of 3 PEs  

 
 
 
 
 
 
 
 
 
 

 
Fig. 5. General PE architecture. 
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times), a custom PE that captures the unique structure of a certain 
ODE type can provide significant speedup (>10x) over a general 
PE [8]. A custom PE for equation (1) is illustrated in Fig. 6. Note 
that the custom PE has a similar architecture compared to the 
general PE, except the ALU components is replaced with a 
custom ODE datapath. The custom ODE datapath is customized 
for one type of ODE. With the fully-pipelined design, the 
maximal throughput of the custom PE is one ODE per cycle. 
However, the custom PE is not flexible and can only solve a 
certain type of ODE. The custom PE also consumes more FPGA 
resources (1.5-3x) compared to the general PE due the ODE 
datapath and wider data ram.  

Both the general and custom PE use fixed point computation, 
because a floating point core in an FPGA is inefficient in size and 
latency. Floating point physicals models are manually converted 
into fixed point using the method described by Kum [10]. The 
fixed-point results are nearly identical compared to a double 
precision floating point implementation (the relative error is 
usually within 0.5%) [7]. Automated conversion from floating 
point numbers to fixed point numbers is desired in the future. 

4. NETWORK OF HETEROGENEOUS PES  
The custom network of custom PEs is 5-10x faster than the 
custom network of general PEs and consumes fewer FPGA 
resources (due to fewer number of PE instances). However, the 
models examined in previous work were all homogenous models 
that contained only 1 or 2 types of ODEs. 

A heterogeneous physical system model contains many types of 
ODEs, such as the hemodynamic model in Fig. 1, where each 
ODE type can have different numbers of ODEs. Using custom 
PEs where possible can yield performance improvements, 
however if the number of ODEs of a certain type is small, than 
using general PEs to solve those ODEs is likely more efficient in 
terms of size because multiple ODE types can use the same 
general PE. Thus, a custom network of heterogeneous processing 
elements, both general and custom, can provide improvements in 
performance and area due to more fine-grained control over the 
network implementation. 

4.1 Different PE types 
A custom network of heterogeneous PEs may contain different 
types of processing elements. A general PE can solve any type of 
ODE, but performance is slow. A custom PE can only solve one 

type of ODE, but performance is 10x faster than a general PE. 
However, in a real physical system, two or more types of ODEs 
might be tightly coupled. For instance, the Weibel lung model 
described in Section 3.1 contains two types of ODEs, for volume 
and for flow, for each branch, and the volume and flow have data 
dependencies with each other as shown in Equations (1) and (2). 
If the system only has custom PEs for flow and volume 
respectively, there will be excessive communication overhead. 
We thus extend the custom PE to support multiple ODE types, 
called multi-type custom PEs. 

The idea is to put multiple ODE datapaths of different ODE types 
into one custom PE. To fully utilize those components, these 
ODE datapaths can execute in parallel, thus the theoretical 
throughput of a multi-type custom PE can be >= 2 ODEs / cycle. 
The idea is similar to VLIW (very long instruction word) 
architectures. The multi-type custom PE is larger than the single 
type custom PE, because of extra ODE datapaths and wider data 
ram. With the multi-type custom PE, different types of ODEs that 
are tightly coupled may be mapped to one custom PE to reduce 
communication overhead. 

4.2 Problem definition 
Given the ODEs of a physical system and different PE options, 
the question is how to select the number of each PE type and how 
to map the ODEs to the PEs in order to build a custom network of 
PEs that efficiently emulates the physical system. We formally 
define an allocation and binding problem as follows. Given are: 

 A set of ODEs in the physical system: O = {o1, o2, …, on}. 
 A set of ODE types of the physical system: T = {t1, t2,.., tn}. 
 A mapping function from O to T: ode2Type, e.g., 

ode2Type(oi) returns the ODE type of oi. 
 An ODE data-dependency graph of the physical system: G, 

where G(i, j) = 1 stands for oj depends on oi. 
 A set of all possible PE types, PT = {pt1, pt2, …, ptn}, 

which includes general PE, single type custom PEs, and all 
possible multi-type custom PEs. 

 A Boolean function determines if an ODE to PE mapping is 
valid: Valid(pt, t). E.g., Valid(pti, tj) = true means tj (ODE 
type j) can be mapped to pti (PE type i). 

 A FPGA resource consumption function for each PE type: 
RES, e.g., RES(pti) returns the FPGA resource consumption 
for PE type i. (Current we developed a function to estimate 
the resource consumption of a custom PE based on the ODE 
types the PE can solve. More accurate result can be obtained 
by actually synthesis each PE type) 

 The total available FPGA resource: T_RES. 
 A computation cost function: CompCost(pti, set<ODE>), 

which returns the number of cycles to evaluate and update a 
set of ODEs with PE type i. (For a general PE, the 
computation cost is obtained by parsing the ODEs into basic 
computation operations. For a custom PE, the computation 
cost is depends on the number of ODEs of each type) 

 A communication cost function: CommCost, the total 
communication cycles of the network of PEs. The 
communication cost depends on G and the mapping 
function pe2Ode defined below. 

The solution is: 
 A set of allocated PEs: PE = {pe1, pe2, …, pe3}. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Custom PE architecture. 
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 A mapping function from PE to PT: pe2Type, e.g., 
pe2Type(pei) returns for the PE type of pei.  

 The ODEs mapped to each PE: pe2Ode, where pe2Ode(pei) 
return a set of ODEs mapped to pei . 

Constraints are: 

 FPGA resource constraint: 

∑ <=
i

RESTpeiTypepeRES _)))(2((
  

 ODE Binding constraint:  )(2 peiOdepeoi∈∀   

 trueoiTypeodepeiTypepevalid =))(2),(2(   
 Each ODE has been mapped to one PE. 

The objective is (minimize cycles per step):  

Min {max (CompCost(pe2Type(pei), pe2Ode(pei))) + CommCost} 

In other words, the objective is to allocate a valid set of PEs 
(satisfy the FPGA resource constraint), and to find a valid 
mapping from ODEs to PEs (satisfy the ODE binding constraint) 
such that the throughput of the system is maximized.  

The throughput of the network of PEs is equal to the number of 
ODEs divided by the time to emulate one step. Since the number 
of ODEs is a constant, maximizing the throughput is equivalent to 
minimizing the time to emulate one step. Assuming the clock 
frequency is a constant, the time per step is determined by the 
cycles per step. According to the ODE solving process illustrated 
in Fig. 4, the total cycles per step is equal to the maximal 
computation cost of the PEs plus the communication cost, or the 
objective function. 

4.3 Allocation and binding heuristic 
4.3.1 Choosing PE types 
Since a multi-type custom PE can be built for any subset of the 
ODE types of a physical system, the number of all possible 
custom PE types increases exponentially with the number of ODE 
types. To consider all possible custom PEs might be too 
expensive in terms of algorithm runtime. However, not all ODE 
types need a custom PE. For instance, if an ODE type contains 
only a few ODEs (e.g., <5 ODEs), using a general PE is more size 
efficient. We thus define a custom PE threshold, such that we 
only build a custom PE for the ODE types with more ODEs than 
the custom PE threshold.  
The multi-type custom PE is only needed when two or more 
ODEs are tightly coupled, which is reflected by the number of 
connections between 2 ODE types in the ODE dependency graph. 
Our solution is to keep merging the ODE types that pass the 
custom PE threshold, using a custom PE merge criteria.  
The criteria is that two sets of ODE types can be merged only if 
the number of connections between the two sets is greater than (or 
equal to) the number of ODEs of any type in the two sets. Fig. 7 

shows an example of merging 5 ODE types (Ta, Tb, … Te), the 
number below each ODE type is the number of ODEs of that type. 
The line between two types shows the number of connections 
between two ODE types. After the merge process, two multi-type 
custom PE can be built ({Ta, Tb, Tc}, {Td, Te}). Note {Ta, Tb, Tc} 
can not merge with {Td, Te} because the number of connections 
between these two sets (5) do not satisfy the merge criteria. With 
the custom PE threshold and the merge criteria, the custom PE 
types are chosen based on the ODE data-dependency graph of the 
target physical system. 

4.3.2 Allocation and binding heuristic overview 
Once the PE types have been chosen, we allocate a number of 
each PE type, and map the ODEs to each PE. The overall 
structure of the allocation and binding heuristic is illustrated in 
Fig. 8. The allocation and binding heuristic includes two major 
components: an ODE-to-PE mapper and a PE allocator. The 
ODE-to-PE mapper tries to find the best ODE-to-PE mapping for 
the current PE allocation based on the objective function defined 
in Section 4.2. The PE allocator adjusts the PE allocation based 
on the feedback from the ODE-to-PE mapper. 
The heuristic first generates a random PE allocation, which 
includes at least one instance for each PE type. Then the ODE-to-
PE mapper will try to find the best mapping based on current PE 
allocation, and return the number of computation cycles for each 
PE to the PE allocator. The PE allocator will adjust the number of 
each PE type based on the mapper’s feedback, and generate a new 
PE allocation. This iterative improvement process will terminate 
when the mapper cannot find a better solution. 

4.3.3 ODE-to-PE mapper 
The ODE-to-PE mapping algorithm is based on the mapping 
algorithm for the network of general PEs [7], with the objective as 
the cost function. The basic idea of the mapping algorithm is to 
move one ODE from one PE to another PE, which is called a 
neighbor mapping. To speedup the mapping algorithm, two types 
of neighbor functions are developed to generate neighbor 
mapping that has higher changes of improving the solution. 
The “performance neighbor function” tries to balance the load (or 
total number of cycles) among PEs by moving ODEs from a 
heavily loaded PE to a light loaded PE. The “size neighbor 
function” tries to utilize the spatial locality of the ODEs, and 
group ODEs nearby to one PE. Thus the total number of 
connections and communications among the PEs would be 
reduced.  
To adapt the original mapping algorithm to networks of 
heterogeneous PEs, we added constraints when generating the 

 
 
 
 
 
 
 
 
Fig. 7. Merging tightly coupled ODE types  

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Overall structure of the allocation and binding heuristic 
for the network of heterogeneous PEs 

Ta 
(20)        

Tb 
(20)        

Tc    
(20)        

Td 
(30)        

Te 
(30)        

20         20         

30         

5         

PE allocator      

ODE-to-PE 
mapper            

New PE 
allocation    

Cycles of each PE 

Initial random allocation     

Better solution Best solution 
N 

Y 

219



neighbor mappings such that the neighbor mapping still satisfies 
the ODE binding constraint (custom PEs can only solve a sub-set 
of ODE types) defined in Section 4.2. The ODE-to-PE mapper 
will output the number of cycles for each PE for the best mapping 
has been found. 

4.3.4 PE allocator 
The PE allocator adjusts the number of PEs for each PE type 
based on the feedback from the ODE-to-PE mapper. The PE 
adjustment algorithm is shown as follows: 
Step 1:  Choose top K% PEs with most loads (#cycles). 
Step 2: Allocate a new PE (same PE type) for each PE chosen in 

step 1, move half of the ODEs mapped to the original PE 
to the new PE. 

Step 3: Remove the PE with least loads (#cycles), and randomly 
redistribute the ODEs mapped to the removed PE to other 
PEs (satisfying the ODE binding constraint). 

Step 4: Repeat step 3 until the resource constraint is satisfied. 
The basic idea is to look at the number of cycles for each PE, and 
duplicate the most heavily loaded PEs. The allocator allocates 
new PEs for top 10% loaded PEs in this work. We notice two 
possibilities why a PE is heavily loaded. The first possibility is 
that this PE type doesn’t have enough instances because some 
ODEs can only be mapped to this PE type. The second possibility 
is that this PE type is very efficient in solving the ODEs, thus 
many ODEs are mapped to it. Either possibility means that more 
instances of this PE type are required. However, adding new PEs 
may violate the FPGA resource constraint, thus we remove the 
least loaded PEs until the resource constraint is satisfied.  
Since the PE adjustment algorithm depends on the ODE-to-PE 
mapping results, the quality of the mapping algorithm is critical 
for the entire allocation and binding heuristic. We let the ODE-to-
PE mapper run long enough (200K-500K iterations) in order to 
produce a good solution. The overall time complexity of our 
approach is: O(#allocator iterations * #mapper iterations * C), 
where C is the cost of generating a new mapping and re-
computing the cost. C is mainly determined by the average 
number of edges of an ODE (not by the total number of ODEs), 
because the neighbor function and the incremental cost function 
only modifies one ODE and the neighbors. 

4.4 HDL code generation 
Once the processing elements have been allocated, and the ODEs 
are mapped to the PEs, the next task is to generate HDL code for 
the entire network. The code generation includes two steps:  
1. Generate PE components for each PE type. 
2. Generate and inject instructions for each PE instance, and 

connect them at top level. 

4.4.1 PE components generation 
Since the general PEs only differ in the data-ram size, instruction 
ram size, and input ports number [7], we developed a script to 
generate PE components with all possible combinations of the 
three parameters. 

A custom PE contains unique ODE datapaths designed for the 
ODE types that the PE can solve. Thus we cannot pre-generate all 
possible custom PE components. Instead, we developed an 
automatic ODE datapath generator to facilitate custom PE 
generation. The ODE datapath generator reads an ODE string, and 
outputs a fully pipelined ODE datapath component for calculating 
this ODE. The datapath generator parses the input ODE into an 

expression tree, and uses an ASAP (as-soon-as-possible) 
scheduling algorithm [20] to schedule the operations. The 
generator adds pipeline registers for each stage. An ODE datapath 
usually contains 5-15 stages (or delays), depending on the ODE. 
The datapath generation task can be done with a high-level 
synthesis tool.  

We also developed a custom data-ram generator to generate data-
ram components with different number of ports and depth, 
because different ODE datapath may require different custom 
data ram. With the ODE datapath generator and the custom data-
ram generator, a custom PE component of any type can be 
generated on the fly. 

4.4.2 PE instruction generation and top level 
network generation 
The PE instructions can be divided into two parts: (1) “evaluate 
and update” instructions, and (2) “data transfer” instructions, as 
shown in Fig. 4. The “evaluation and update” instructions are 
scheduled independently on each PE instance based on the ODEs 
mapped to the PE, while the “data transfer” instructions are 
scheduled globally.   
The general PE handles the “evaluate and update” instructions by 
parsing the ODEs into basic instructions for the general purpose 
ALU component. The general instructions are then converted into 
the control word by a general instruction assembler [7]. The 
custom PE schedules the “evaluate and update” instructions by an 
instruction scheduler, and converts the instructions into control 
words by a custom instruction assembler [8]. 
The general PE and the custom PE have the same input/output 
interface. At each clock cycle, one PE can output a variable and 
store a variable concurrently. Thus the “data transfer” instructions 
are handled globally with a communication scheduler. The inputs 
to the communication scheduler are the ODE data-dependency 
graph (G) and the each PE’s ODE set (pe2Ode). The scheduler 
tries to schedule as many “data transfer” instructions as possible if 
those instructions do not conflict with each other (each PE can 
only output one variable and store one variable at one cycle). The 
“data transfer” instructions are appended to the back of the 
“evaluate and update” instructions for each PE. The complete 
instructions are then injected into each PE from the generic 
interface for the instruction ram.  
The structure of the top level network is determined by the ODE 
data-dependency graph and the ODE-to-PE mapping. The code 
generation tool will finally connect all PE instances according to 
the network structure, and output synthesizable VHDL files. 

5. EXPERIMENTAL RESULTS 
This section describes experimental results using five physical 
system models as benchmarks. The section compares our network 
of heterogeneous PEs with a high-level-synthesis approach 
including regularity extraction, networks of general/custom PEs, a 
GPU implementation, and a modern desktop processor.  

Performance numbers are in milliseconds (ms) and represent the 
time for an implementation to execute one second of simulated 
time. Throughout this section, we execute the physical system 
using an Euler solver with a 0.01 ms step.  

All FPGA based approaches targeted a Xilinx XC6VLX240T-2 
FPGA, having 150,720 LUTs (lookup tables), 768 DSP units 
(built-in hardcore multipliers), and 416 BRAMs (built-in 32Kb 
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hardcore block RAMs). We used the Xilinx ISE 12.3 tool [28] for 
synthesis. Note that this work is not limited to a particular FPGA 
or synthesis tool. 

5.1 Physical system models 
The five physical system models are all physiology models, and 
each contains more than one type of ODE. The five models have 
different connection structures such as binary trees, 2-dimensional 
meshes, rings, etc. 

1. Weibel lung: 11 generation Weibel lung model that contains 
4094 ODEs and calculates internal lung states. The Weibel 
lung has two types of ODEs (flow and volume) as discussed 
in Section 3.1. The Weibel lung has a binary tree structure. 

2. Neuron network:  a neuron network model [24] contains a 
number of neuron cells for modeling a neuron system in the 
brain. The neuron network contains three types of ODEs for 
membrane potentials, channel gating and synaptics. We use 
a 40 x 40 2-dimensional neuron network, which contain 
1600 neurons or 4800 ODEs. The neurons are connected in 
a 2-dimensional mesh network. 

3. Weibel lung with gas exchange: 11 generation Weibel lung 
model with 500 capillary cells connected to leaf branches. 
The model contains 3 types of ODEs as discussed in Section 
3.1, and contains 4594 ODEs and has a binary tree structure. 

4. Hemodynamic: the hemodynamic model [25] is a system 
circulation model which contains pulmonary tissues, 
systemic tissues and left/right ventricles. The model 
contains 36 types of ODEs for modeling different types of 
organs/cells. Within the 36 types of ODEs, 12 ODE types 
each with more than 100 ODEs. The remaining 24 ODE 
types each with only 1 ODE. The hemodynamic model 
contains 4800 ODEs, and has a circular connection structure. 

5. Weibel lung with hemodynamic model: We combine the 
Weibel lung model with the hemodynamic model, because 
the pressure of the lung is an input to the hemodynamic 
model.  We use a 10 generation Weibel lung with the 
hemodynamic model. The entire model contains 4266 ODEs, 
and 38 types of ODEs. The model has a hybrid connection 
structure with a binary tree connected with a ring.  

5.2 Heterogenous networks vs. HLS and 
homogeneous networks 
We implemented the ODE solver for each model using a 
commercial high-level synthesis tool 1 . Since physical systems 
exhibit many commonly recurring patterns we incorporate the 
idea of regularity extraction [21] into the design. Each ODE type 
represents a sub-pattern in the system, thus we generate a fully 
pipelined ODE data-path to compute each ODE type with the 
HLS tool. 
We first attempted to input the entire PE network design into the 
HLS tool, however the tool used a centralized block ram to store 
all the data and the created design was not efficient. To eliminate 
the memory bottleneck of the system, we manually optimized the 
communication structure of the HLS approach (Fig. 9) to provide 
a better comparison to our custom network approach. The state 
                                                                 
1 The tool name is not included due to the licensing agreement. The tool is 

commercially available and used by dozens of companies and 
universities, including the U.S. Dept. of Defense. Reproduction of our 
experiments using other HLS tools is highly encouraged; we will 
provide our models for such purposes upon request. 

variables of a physical system are placed into distributed registers 
throughout the design. Each ODE datapath is mapped with a 
subset of ODEs of the physical system, thus each ODE datapath is 
responsible of updating multiple registers as shown in the figure. 
To utilize the spatial locality of the ODEs, one input mux is 
shared by all ports of the ODE datapath (shown in the figure) 
using a time multiplexing scheme. Using time multiplexing 
decreases the performance, however using the shared input mux 
significantly reduces the number of wires and results in 
synthesizable designs (one mux per port cannot be fully 
synthesized due to a large number of wires). We use the same 
allocate and binding heuristic in Section 4.3 to allocate the ODE 
datapath, and balance the number of ODEs in each ODE datapath. 
Since each ODE datapath is mapped with multiple ODEs 
(usually >50 ODEs), the shared input mux is often very large (64-
256 inputs).  
The networks of heterogeneous PEs are generated by the PE 
allocation and binding heuristic, and the code generation tool 
discussed in Section 4. The total algorithm runtime to generate the 
VHDL code for each model is about 5-10 minutes. For 
comparison purpose, we implemented the 5 models using 
networks of general PEs. We also included the results for 
networks of single-type custom PEs. All FPGA results are fully 
synthesized and implemented on the target FPGA.  
The summary of the results is shown in Table I. We recorded the 
resource utilization of each approach. For easy comparison 
purposes via a single number, we define an equivalent LUTs term 
as is commonly done for FPGA designs [16]. By implementing of 
equivalent DSP and BRAM components using LUTs, we assign a 
DSP unit a value of 250 LUTs and a BRAM of 360 LUTs. The 
bottleneck of each design is highlighted with underlines. 

5.2.1 Bottleneck of each approach 
We tried to implement the fastest circuit for each design. We 
notice that performance each design may be constrained by one of 
the FPGA resource (LUTs, DSPs, BRAMs), or by the clock 
frequency.  
For instance, the HLS designs are constrained by the available 
LUTs (the FPGA has 150,720 LUTs), because each ODE 
datapath requires a large input mux as shown in Fig. 9, requiring 
many LUTs. The networks of general PEs are mainly constrained 
by BRAMs (the FPGA has 406 BRAMs), because each general 
PE requires a BRAM instance. The networks of single-type 
custom PEs are mainly constrained by the clock frequency (or the 
number of wires in the system). Putting more single-type custom 
PEs into the network will result in long routing time and lower 
clock frequency (the reason will be discussed in Section 5.2.3). 

 
 
 
 
 
 
 
 
 
 

 
Fig. 9.  The overall architecture of the ODE solver using 

an HLS tool with regularity extraction. 
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Thus adding PEs, while achieving more parallelism, yields overall 
performance decrease due to the slower clock frequency.  
The networks of heterogeneous PEs are mainly constrained by 
DSPs (the FPGA has 768), because the custom ODE datapath 
(especially multi-type custom PEs) requires more DSPs than a 
general PE. Since the custom ODE datapaths are fully pipelined, 
these DSPs are highly utilized in the design. Thus the networks of 
heterogeneous PEs have the best performance. Note that the 
FPGA resource utilization of each design may not be close to the 
upper-bound of the total FPGA resource, because we also 
consider the clock frequency. Increasing the size of each design 
will decrease the clock frequency, thus the overall performance 
will decrease.  

5.2.2 Comparison with high level synthesis 
Compared to the HLS approach, the network of heterogeneous 
PEs uses around 40% fewer LUTs, a comparable number of 
BRAMs, and 2x more DSPs. In terms of equivalent LUTs, the 
network of heterogeneous PEs uses on average 10% more FPGA 
resources than the HLS approach.  
The performance of the network of heterogeneous PEs approach 
is on average 10.8x (9x-14x) faster than the HLS approach 
because the network of heterogeneous PEs makes better usage of 
memories and computational components like DSPs. Since a large 
input mux consumes many LUTs in the HLS design, the HLS 
approach can only place a limited number of ODE datapaths, 
which limits the performance of the HLS approach. The time 
multiplexing of the shared input mux further decreases the 
performance of the HLS approach. Our approach using 
encapsulated processing elements better utilizes the spatial 
locality of a physical system. The network of heterogeneous PEs 
also obtained higher clock frequencies and shorter synthesis times 
due to fewer wires in the design. 

5.2.3 Comparison with networks of general/single-
type custom PEs 
The network of general PEs consumes on average 15% more 
equivalent LUTs compared to networks of heterogeneous PEs due 
to having more PE instances. The performance of the network of 
heterogeneous PEs is on average 7x (6x~8.8x) faster than the 
network of general PEs, because the former contains custom PEs 
that solve certain types of ODEs faster than the general PEs. The 
networks of heterogeneous PEs also obtained 50% faster clock 
frequency, due to containing fewer PE instances and fewer wires 
in the network. 
The networks of single-type custom PEs consumed on average 
30% fewer equivalent LUTs than the networks of heterogeneous 
PEs because the former contained fewer PE instances. The reason 
is that all five models contain tightly coupled ODEs of different 
types, and the tightly coupled ODEs are split into different single-
type custom PEs as discussed in Section 4.1. Thus the network 
requires more connections and communications. The wire 
congestion problem limits the clock frequency and the number of 
single-type custom PEs in the network.  
The networks of heterogeneous PEs contain multi-type custom 
PEs, which reduce the number of connections and communication 
in the network. The network of heterogeneous PEs may also 
contain general PEs in case the number of ODEs of a type is too 
small. For instance, the hemodynamic model has 24 ODE types 
with only one ODE. Assigning the 24 individual ODEs to a few 
general PEs instead of creating a custom PE for each type is 
reasonable. With the multi-type custom PEs and general PE 
options, the network of heterogeneous PEs is on average 6x (1.5x-
9.4x) faster than the network of single-type custom PEs. Note the 
performance of single-type custom PE networks depends heavily 
on the model; certain models may have faster performance when 
implemented as general PE networks (e.g., Nueron). 

Table I. Synthesis results of custom networks of heterogeneous PEs, HLS, and general/single-type custom PEs. PEs: the 
number of PE or ODE datapath in the design.  Cycles: total clock cycles to compute one time step. Freq: Maximum clock 

frequency after place and route. Syn. time: total synthesis time (including place and route) of a design. The underlined entries 
show the FPGA resource bottleneck of a design, i.e., the issue that prevents further improvement via more PEs.  

HLS LUTs BRAMs DSPs Equiv. LUTs PEs. Cycle Freq (Mhz) Perf. (ms) Syn. Time (min) 
Weibel 101,031  131  245  209,441 67 296 112 264  752 
Neuron 139,118  156  190  242,778 80 370 102 363  664 
Weibel_gas 106,008  144  225  214,098 72 332 110 301  746 
Hemodynamics 82,007  145  246  195,707 69 420 131 321  356 
Weibel_hemo 79,735  143  230  188,715 75 340 115 295  520 
General PEs          
Weibel 89,761  396  396  331,321 396 184 130 142  230 
Neuron 74,632  294  294  253,972 294 290 150 193  147 
Weibel_gas 78,178  281  281  249,588 281 302 105 288  123 
Hemodynamics 75,311  281  281  246,721 281 364 190 192  107 
Weibel_hemo 74,956  281  281  246,366 281 326 165 198  106 
Custom PEs          
Weibel 48,579  56  205  119,989 56 221 129 171  72 
Neuron 49,762  71  129  107,572 53 397 123 323  114 
Weibel_gas 50,491  62  202  123,311 61 253 123 206  78 
Hemodynamics 50,743  111  386  187,203 111 185 143 129  90 
Weibel_hemo 72,828  154  553  266,518 175 84 167 50  146 
Heterogeneous PEs          
Weibel 65,036  160  560  262,636 80 52 219 24  174 
Neuron 63,458  133  462  226,838 67 69 204 34  185 
Weibel_gas 58,800  141  494  233,060 86 72 222 32  122 
Hemodynamics 48,652  118  444  202,132 142 56 250 22  69 
Weibel_hemo 58,795  141  494  233,055 86 71 213 33  130 
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5.3 Heterogeneous network vs. CPU and GPU 
We compared the custom network of heterogeneous PEs with a 
modern desktop processor and a GPU. The configurations of the 
processor and the GPU are listed as follows: 

1. PC: C code on a 3.06 GHz Intel I7-950 quad-core processor 
with 16G DDR3 RAM, compiled with Microsoft VS2010 
with –O3 flag 

2. GPU: CUDA C code on a 763 MHz NVIDIA GTX460 
Fermi GPU with 336 CUDA cores, compiled using nvcc 
with –O3 flag. 

A fixed-point implementation was used for all test cases for a fair 
comparison. The C code on the desktop was manually optimized. 
The time to optimize each model is around 1-3 hours, which is 
comparable to the synthesis time of the network of heterogeneous 
PEs. We first obtained the single threaded performance (PC(1)) 
for the PC, and calculated an optimistic performance bound for 
multi-cores (PC(4)) by dividing the single threaded result by the 
number of cores.  

We implemented a GPU kernel function for calculating the ODEs 
for each model. The kernel function may contain multiple 
branches for different ODE types as illustrated in Fig. 11(a). 
Another approach is to implement different GPU functions for 
each ODE type, shown in Fig. 11(b). However, the second 
approach executes each function sequentially, which is slower 
than the first approach. We use the first approach that better 
utilizes the resource on the GPU. 

The ODE kernel function is executed on multiple GPU blocks, 
and each block contains multiple threads. We tuned the number of 
blocks and the number of threads to obtain the best performance. 
We also considered the coalesced access pattern when reading the 
global memory on the GPU. Since global memory access is more 
expensive than accessing the shared memory within each GPU 
block. We utilized the spatial locality of each model by mapping 
related ODEs to one GPU block. Thus nearby state variables are 
loaded to shared memory to reduce global memory accesses. The 
total GPU implementation time for each model is around 2-4 
hours, which is comparable to the synthesis time of the custom 
network of heterogeneous PEs. To ensure that our GPU 
implementations are of high quality, we asked an experienced 
GPU programmer to optimize our CUDA code. Runtime was 
reduced an additional 5-15%, mainly by utilizing coalesced global 
memory accesses. 

The performance of each approach is illustrated in Fig. 10. The 
single threaded PC failed the real-time constraint for four models, 
while the optimal multi-threaded version runs each model 2-4x 
faster than real-time. The average speed of the network of 
heterogeneous PEs is 45.3X (36x-60x) faster than PC(1), and 
11.3x (9x-15x) faster than PC(4). Note the performance is the 
pure execution time of each model. Further monitoring and 
debugging logic will cause extra overhead. The network of 
heterogeneous PEs gives more slack than the C implementation 

on the PC, which provides opportunity for real-time tracing of 
model state variables. The network of heterogeneous PEs is also 
more preferable in case fast-forward emulation is needed. 

The GPU performs comparably to the multi-threaded PC 
approach when the number of ODE types is small (e.g., Weibel 
lung and Neuron models). The model with larger number of ODE 
types requires more branches in the kernel function, which 
decreases the performance. The network of heterogeneous PEs is 
on average 20.7X (13.7X~29X) faster than the GPU 
implementation. The major advantage of our approach is the 
custom communication network. For the target GPU, the only 
method to synchronize the GPU blocks is through a new function 
invocation, according to the CUDA programming guide [5]. Thus 
the frequent function invocation (105 times per second) greatly 
impacts the GPU’s performance. According to profiling of the 
GPU-accelerated program, the pure function invocation overhead 
consumes 30% - 60% of the total execution time. 

We included some approximate cost comparison for different 
approaches, in particular to acknowledge that FPGA platforms are 
costlier than PCs and GPUs. We consider the minimal required 
components for each platform in order to performance the 
emulation. The approximate cost of each platform is as follows: 

1. CPU (I7-950 + Intel X58 board):                                  $ 480 
2. GPU (NV GTX460 + I3-540 processor + H55 board)  $ 380 
3. FPGA (Xilinx Virtex6 240T-2 board):                         $1800 
We consider a normalized speedup term, namely: (speedup over 
real-time) / cost. The normalized speedup of each approach is 
shown in Fig. 12. The network of heterogeneous PEs obtained the 
best normalized speedup (3x over the I7-950 CPU and 4.4x over 
the GTX460 GPU), because of much higher emulation speed. The 
FPGA based solution has other advantages, such as smaller device 

 
 
 
 
 
 
 
 
 
 
 
Fig. 10. The performance for each approach. 1000 ms is the real-
time constraint and some PC(1) numbers extend off the chart top. 

 
 
 
 
 
 
 
Fig. 11. GPU kernel function implementation options   
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Fig. 12. The normalized speedup for each approach   

For each step 
  ODE_kernel() {  

 branch1:  type1 
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     branch3:  type3 
  …  } 

For each step 
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size and the flexibility to build custom interfaces to the physical 
world [17]. 

6. CONCLUSION 
We introduced a custom network of heterogeneous (both general 
and custom) processing-elements for real-time emulation of 
complex physical systems. We developed an automated tool to 
generate a custom PE network for a given set of ODEs. We 
developed an automatic allocation and binding heuristic for 
allocating different types of PEs, and mapping the ODEs of the 
target physical system to the PEs. We created a tool to generate 
synthesizable VHDL code from the allocation and binding results. 
Comparing to a commercial high-level synthesis tool with 
regularity extraction, the custom networks of heterogeneous PEs 
were on average 10.8x faster and of comparable size. Compared 
to the custom networks of general and single-type custom PEs, 
the networks of heterogeneous PEs were on average 7x and 6x 
faster. The network of heterogeneous PEs was also on average 
45x faster than a single threaded 3GHz I7-950 processor, and 20x 
faster than a 763 MHz NVIDIA GTX460 GPU given comparable 
implementation time. The speedups are due to the custom 
communication structure and also due to the custom datapath for 
each type of ODE.  
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