
Synthesis of Custom Networks of Heterogeneous Processing
Elements for Complex Physical System Emulation

Chen Huang1, Bailey Miller1, Frank Vahid1, 3, Tony Givargis2
1 Department of Computer Science and Engineering – University of California, Riverside

{chuang, bmiller, vahid}@cs.ucr.edu
2 Center for Embedded Computer Systems – University of California, Irvine; givargis@uci.edu

3 Also with the Center for Embedded Computer Systems – University of California, Irvine

ABSTRACT
Physical system models that consist of thousands of ordinary
differential equations can be synthesized to field-programmable
gate arrays (FPGAs) for highly-parallelized, real-time physical
system emulation. Previous work introduced synthesis of custom
networks of homogeneous processing elements, consisting of
processing elements that are either all general differential
equation solvers or are all custom solvers tailored to solve
specific equations. However, a complex physical system model
may contain different types of equations such that using only
general solvers or only custom solvers does not provide all of the
possible speedup. We introduce methods to synthesize a custom
network of heterogeneous processing elements for emulating
physical systems, where each element is either a general or
custom differential equation solver. We show average speedups of
45x over a 3 GHz single-core desktop processor, and of 11x and
20x over a 3 GHz four-core desktop and a 763 MHz NVIDIA
graphical processing unit, respectively. Compared to a
commercial high-level synthesis tool including regularity
extraction, the networks of heterogeneous processing elements
were on average 10.8x faster. Compared to homogeneous
networks of general and single-type custom processing elements,
heterogeneous networks were on average 7x and 6x faster,
respectively.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic synthesis;
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]: Real-time and embedded systems
General Terms
Design, Performance, Experimentation

Keywords
Real-time emulation, field-programmable gate array (FPGA),
ordinary differential equation (ODE) solving, physical models,
cyber-physical systems, differential equation synthesis, high-level
synthesis, system-level synthesis, processing elements.
1. INTRODUCTION
Fast accurate digital emulation of physical systems is useful in
various cyber-physical systems [11]. For instance, a complicated
patient simulator that emulates a human’s circulatory, respiratory,
and nervous system can be used for training clinicians [15].

Compared to mechanical systems used for emulation purposes,
the parameters of a digital model can be easily modified. For
instance, a digital lung model’s parameters can be changed for
capturing varied lung pathologies, which is more flexible than
typical lung emulation approaches using mechanical balloons.
Most physical systems can be modeled with ordinary differential
equations (ODEs). A heterogeneous physical system may contain
thousands of ODEs. Because ODEs for real physical systems
typically cannot be solved exactly, simulations/emulations
typically step forward using small time steps and estimate the
next values of all variables using the current variable values and
the slope of the variables’ function at that time (the slope coming
from the derivative terms). Such iterative solvers typically solve
1000 times per second or faster to achieve sufficient accuracy,
thus real-time emulation of a physical system can be
computationally intensive. A modern multi-core desktop
computer may not satisfy the real-time constraint, because of the
mostly-sequential computation of a CPU (centralized processing
unit). GPU (graphical processing unit) platforms perform better
than CPUs in emulating a physical system because of more
parallel computation resources. However, we have found that the
memory architecture of a GPU may not match the communication
pattern of a physical system model, thus greatly limiting the
performance of a GPU.
We previously [7][8] proposed a network of homogeneous
processing-elements on FPGAs approach for even faster
emulation of a physical system. A set of lightweight custom
processors each solve a subset of ODEs in the physical system.
The structure of the network and interconnections of the PEs is
based on ODE interdependencies. Models with widely-varying
structures can be efficiently implemented on FPGAs due to FPGA
configurability. Initially, we used a custom network of general
PEs [7], with each general PE able to solve any ODEs, yielding
10x-20x speedups over a single-core Intel I7 desktop processor
running at 3.07 GHz. Later, we introduced a custom network of
custom PEs [8], where a single custom PE was first created to best

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09...$15.00.

Fig. 1. Synthesizing a hemodynamic model into a network of
heterogeneous PEs on an FPGA. Each shape type in the model
represents a different type of ODE. Two simplified ODEs are

shown for illustration purpose

Hemodynamic model

ODE-to-PE
Mapping

General
PEs

Custom
PEs

ODE 1: a’ = a + b * (c + d)

A network of heterogeneous PEs

ODE 2: c’ = b * c + d * e

215

match the needs of the model’s ODEs and then a network of those
custom PEs was used to achieve 5x-10x speedups over the
network of general PEs.
In this paper, we propose to create a custom network of
heterogeneous PEs consisting of general PEs and multiple custom
PEs together, as shown in Fig. 1. The proposed method greatly
expands the exploration problem associated with mapping model
equations to the correct type of PE, but can yield substantial
speedups of model emulation. A simplified hemodynamic model
[25] for modeling a human circulatory system is shown in the
figure, containing six ODE types for modeling different sub-
systems; each type is represented as a different shape in the figure.
Each ODE type is unique, and requires a particular ordered set of
operations that differ from the operations of other ODE types (e.g.,
ODE 1 and ODE 2 in the figure are different types). There can be
different numbers of ODEs per type. For example, the left four
sub-systems in Fig. 1 consist of unique ODE types with a single
ODE per type, while the two sub-systems on the right have four
ODEs per type. We can build a custom network of 5 PEs that
contains two custom PEs for the types with four ODEs, and three
general PEs for the left four ODEs (one of the PEs solves 2
ODEs). Note the custom network of PEs has a similar circular
connection structure as the circulation model as the
communication between model sub-systems remains unchanged.
Heterogeneous PEs substantially changes the synthesis problem
due to introducing an enormous design space, involving not just
the number of PEs and mapping of ODEs to PEs, but also
instantiation of different types of PEs, numbers of each types, and
mappings of ODEs to different types. We propose an allocation
and binding heuristic for this problem and build an HDL
(hardware description language) code generation tool to generate
synthesizable VHDL code from the obtained solution.
This paper is organized as follows. Sections 2 reviews related
works. Section 3 reviews a processing element network approach.
Section 4 introduces an allocation and binding heuristic for a
network of heterogeneous PEs and HDL code generation. Section
5 summarizes experimental results, and Section 6 concludes.

2. RELATED WORK
Simulation of physical system models has been studied
extensively in the past decades. Tools have been developed to
facilitate physical system simulation, such as Matlab [13], JSim
[9], LabView [18], etc. These tools usually aim at producing
accurate results rather than real-time emulation, commonly
executing models much slower than real time.

Researchers have sought methods to speed up simulation by using
multi-core processors and GPUs (Graphic Processing Units). For
example, a 768-core SGI super-computer executed a 2-billion
equation heart model, simulating 0.4 ms in 2 hours [14]. A Flaim
heart model was executed on an Nvidia [19] GTX 295 GPU,
running 30x faster than OpenMP running on an Intel I7 quad-core
processor at 2.93 GHz, but still much slower than real-time, with
execution of one heartbeat (300 ms) requiring 7.7 minutes.
Amorim [1] used an Nvidia GTX 285 GPU to solve cardiac
membrane dynamics, claiming 22-86x speedups over an Intel I7
quad-core processor at 2.8 GHz, though still running >100x
slower than real-time.

FPGAs have been used for emulating physical systems. Yoshimi
[29] obtained 100x speedups using an FPGA for fine-grained
biological emulation compared to a single-core processor.

Salwinski and Eisenberg [22] used an FPGA to speedup fine-
grained intra-cellular simulation, showing that an FPGA could
hold 500 reactions related to gene expression. However, these
implementations are mostly manually designed and optimized,
which requires significant design time. High-level synthesis (HLS)
tools are another way to implement physical system solvers on an
FPGA. Various tools have evolved that perform synthesis from C
code, such as Stream-C [6], AutoESL [3], ROCCC [26],
SynphonyC [23], etc. We compare our approach to a commercial
HLS tool. Due to the regularity of most physical systems, we
incorporate the idea of regularity extraction [21] in the design for
a more fair comparison.

We previously [7][8] proposed a homogeneous processing
element network approach for physical system emulation, and
built a compiler to convert a model specification to synthesizable
VHDL code. The previous custom PE networks contained
homogenous processing elements, either general PEs, or custom
PEs, but not both. The work in this paper allows different PE
types in the network, greatly expanding the solution space and
thus requiring additional exploration heuristics, but yielding
substantial speedups.

3. PHYSICAL SYSTEM EMULATION
WITH A CUSTOM NETWORK OF
PROCESSING ELEMENTS
3.1 Modeling physical systems using ODEs
Fig. 2 shows the structure of a four generation Weibel lung model
with basic gas exchange at the leaf branches. The Weibel lung has
a binary tree structure. The first generation represents the airway
(or trachea) between the mouth and lung. The 2nd and 3rd
generations represent two bronchi and smaller bronchioles, and
the fourth generation represents alveoli that handle gas transfer
between lung and capillary cells.

The Weibel lung can be captured as RLC circuits [7], where each
branch contains two state variables (flow and volume). The ODEs
of each branch can be written in a general format (for simplicity,
we use Ci to represent constant parameters):

)2(.'
)1('

6_5_43

21
CVCVCFCVF

FCVCFV
childLchildRiii

iiparenti
⋅−−⋅−⋅=

+⋅+⋅=

Equation (1) and Equation (2) show that the derivative of Vi and
Fi are linear functions of the volume and flow of branch i and
neighboring branches. The ODE that governs the model gas
exchange is:

)3()2()22('2 321 iiiii PoCVCPoPcoCPo −⋅⋅+−⋅=
The derivative of O2’s pressure is a linear function of the pressure

Fig. 2. A four generation Weibel lung with gas exchange model

Generation

1 trachea

2 bronchi

3

4 alveoli

bronchioli

Capillary cells

216

of CO2, volume of the alveoli, and the pressure of current O2. The
Weibel lung with gas exchange model contains three types of
ODEs, because equations (1) (2) (3) each have a uniquely ordered
set of operations.

To calculate the value of a state variable at a given time, the
ODEs can be solved using iterative solvers such as Euler [2] or
Runge-Kutta [4]. Starting from time 0, iterative solvers move
forward in time by a given time step such as 1 ms. At each time
step, two major tasks are performed by the Euler method:

Evaluate: Calculate each state variable’s derivative value, e.g.,

iiparenti FCVCFV +⋅+⋅= 21'

Update: Estimate the value of each state variable for the next time
step using the current values and the derivatives calculated above,
e.g., Vi = Vi + d(Vi) / dt * h, where h is the time step.

3.2 Physical system ODE properties
The ODEs of a physical system often exhibit spatial locality
similar to the system’s physical counterparts. For instance, the
volume of each branch in the Weibel lung is determined only by
itself and the neighboring branches.

An ODE data-dependency graph [8] captures data-dependencies
among the state variables. Each node represents one state variable
(or a set of variables), while each edge represents the data
dependency between two nodes. For instance, Fig. 3 shows the
ODE data-dependency graph of the four-generation Weibel lung.
Each node represents a branch which contains two state variables
(volume and flow). Note the ODE data-dependency graph has a
similar binary tree structure as the Weibel lung model. Since a
state variable in a physical system only depends on the variable’s
neighboring variables, the ODE data dependency graph of a
physical system is often very sparse. The number of edges
increases linearly with the number of nodes.

3.3 Custom network of processing elements
To increase the speed of physical system emulation, we
previously [7][8] proposed an approach to map the ODEs of a
physical system to a homogeneous network of processing
elements. For example, Fig. 3 maps the ODEs of the four-
generation Weibel lung to a custom network of 5 PEs. The state
variables in each of the dotted rectangles are mapped to one PE.
The custom network of PEs uses a point-to-point communication
scheme between PEs. The structure of a PE network is determined
by the ODE-to-PE mapping and the ODE data-dependency graph,
as in Fig. 3. The state variables and their relevant parameters
persist in each PE’s local memory. Such distributed data storage
eliminates the bottleneck of a centralized memory.

At each time step, a PE performs the “evaluate” and “update”
tasks for the state variables mapped to the PE, which are known
as the PE’s resident variables. In order to evaluate each resident
variable, the PE may need the state variables that reside in other
PEs. For instance, PE1 needs the latest value of V4 and V5 in
order to calculate F2’ according to Equation (2). We call such
state variables dependent variables. At the end of every time step,
each PE outputs the latest values of the PE’s resident variables,
and stores local copies of the PE’s dependent variables from other
PEs. We call this additional task data transfer.

The ODE solving process of a network of PEs is illustrated in Fig.
4. The system has three PEs. The “evaluate” and “update” tasks
can be done independently in each PE. All PEs are synchronized
at the point when the slowest PE has finished updating the PE’s
resident variables (PE2 in this example), to ensure that every state
variable is updated. Then communications between PEs are
performed according to a static schedule built from the ODE data
dependency graph. When all the data-transfer tasks have finished,
all PEs are synchronized again for the next time step.

3.4 Processing element architecture
Two types of processing elements were proposed in the previous
works that trade off performance and flexibility. A general PE [7]
can solve any type of ODE. The architecture of the general PE is
illustrated in Fig. 5. An instruction is directly mapped to a control
word that controls an input mux, a data-ram and a general purpose
arithmetic logic unit (ALU). The PE contains a few input ports
and one output port for communication purposes. The data ram
stores state variables and parameters mapped to the PE. The ALU
calculates the equations by the “compute” and “store” operations.
The general PE can handle different types of ODEs by parsing the
equations into basic compute operations like ADD, MUL, etc.;
thus the general PE is flexible.

Since a physical system often exhibits homogenous properties
(only contains a few types of ODEs and each type appears many

Fig. 3. Mapping a four generation Weibel lung model to a custom
network of 5 PEs.

Fig. 4. ODE solving process in a network of 3 PEs

Fig. 5. General PE architecture.

Sync Sync

Data transfer

PE1

PE3

Next step

Evaluate
Update

PE2

Time

V4, F4

(a) ODE data-dependency graph
(b) custom network of PEs

V2, F2
PE1

PE2 PE3

V5, F5

PE4 PE5

Inputs (external or from other PEs)

Inst RAM

Data RAM

ALU

d0

d1 d2 d3

Input_sel

We
Addr_w

Op_sel

Output (external or to other PEs)

CLK

PC

Control word

Addr_r

Controller

217

times), a custom PE that captures the unique structure of a certain
ODE type can provide significant speedup (>10x) over a general
PE [8]. A custom PE for equation (1) is illustrated in Fig. 6. Note
that the custom PE has a similar architecture compared to the
general PE, except the ALU components is replaced with a
custom ODE datapath. The custom ODE datapath is customized
for one type of ODE. With the fully-pipelined design, the
maximal throughput of the custom PE is one ODE per cycle.
However, the custom PE is not flexible and can only solve a
certain type of ODE. The custom PE also consumes more FPGA
resources (1.5-3x) compared to the general PE due the ODE
datapath and wider data ram.

Both the general and custom PE use fixed point computation,
because a floating point core in an FPGA is inefficient in size and
latency. Floating point physicals models are manually converted
into fixed point using the method described by Kum [10]. The
fixed-point results are nearly identical compared to a double
precision floating point implementation (the relative error is
usually within 0.5%) [7]. Automated conversion from floating
point numbers to fixed point numbers is desired in the future.

4. NETWORK OF HETEROGENEOUS PES
The custom network of custom PEs is 5-10x faster than the
custom network of general PEs and consumes fewer FPGA
resources (due to fewer number of PE instances). However, the
models examined in previous work were all homogenous models
that contained only 1 or 2 types of ODEs.

A heterogeneous physical system model contains many types of
ODEs, such as the hemodynamic model in Fig. 1, where each
ODE type can have different numbers of ODEs. Using custom
PEs where possible can yield performance improvements,
however if the number of ODEs of a certain type is small, than
using general PEs to solve those ODEs is likely more efficient in
terms of size because multiple ODE types can use the same
general PE. Thus, a custom network of heterogeneous processing
elements, both general and custom, can provide improvements in
performance and area due to more fine-grained control over the
network implementation.

4.1 Different PE types
A custom network of heterogeneous PEs may contain different
types of processing elements. A general PE can solve any type of
ODE, but performance is slow. A custom PE can only solve one

type of ODE, but performance is 10x faster than a general PE.
However, in a real physical system, two or more types of ODEs
might be tightly coupled. For instance, the Weibel lung model
described in Section 3.1 contains two types of ODEs, for volume
and for flow, for each branch, and the volume and flow have data
dependencies with each other as shown in Equations (1) and (2).
If the system only has custom PEs for flow and volume
respectively, there will be excessive communication overhead.
We thus extend the custom PE to support multiple ODE types,
called multi-type custom PEs.

The idea is to put multiple ODE datapaths of different ODE types
into one custom PE. To fully utilize those components, these
ODE datapaths can execute in parallel, thus the theoretical
throughput of a multi-type custom PE can be >= 2 ODEs / cycle.
The idea is similar to VLIW (very long instruction word)
architectures. The multi-type custom PE is larger than the single
type custom PE, because of extra ODE datapaths and wider data
ram. With the multi-type custom PE, different types of ODEs that
are tightly coupled may be mapped to one custom PE to reduce
communication overhead.

4.2 Problem definition
Given the ODEs of a physical system and different PE options,
the question is how to select the number of each PE type and how
to map the ODEs to the PEs in order to build a custom network of
PEs that efficiently emulates the physical system. We formally
define an allocation and binding problem as follows. Given are:

 A set of ODEs in the physical system: O = {o1, o2, …, on}.
 A set of ODE types of the physical system: T = {t1, t2,.., tn}.
 A mapping function from O to T: ode2Type, e.g.,

ode2Type(oi) returns the ODE type of oi.
 An ODE data-dependency graph of the physical system: G,

where G(i, j) = 1 stands for oj depends on oi.
 A set of all possible PE types, PT = {pt1, pt2, …, ptn},

which includes general PE, single type custom PEs, and all
possible multi-type custom PEs.

 A Boolean function determines if an ODE to PE mapping is
valid: Valid(pt, t). E.g., Valid(pti, tj) = true means tj (ODE
type j) can be mapped to pti (PE type i).

 A FPGA resource consumption function for each PE type:
RES, e.g., RES(pti) returns the FPGA resource consumption
for PE type i. (Current we developed a function to estimate
the resource consumption of a custom PE based on the ODE
types the PE can solve. More accurate result can be obtained
by actually synthesis each PE type)

 The total available FPGA resource: T_RES.
 A computation cost function: CompCost(pti, set<ODE>),

which returns the number of cycles to evaluate and update a
set of ODEs with PE type i. (For a general PE, the
computation cost is obtained by parsing the ODEs into basic
computation operations. For a custom PE, the computation
cost is depends on the number of ODEs of each type)

 A communication cost function: CommCost, the total
communication cycles of the network of PEs. The
communication cost depends on G and the mapping
function pe2Ode defined below.

The solution is:
 A set of allocated PEs: PE = {pe1, pe2, …, pe3}.

Fig. 6. Custom PE architecture.

MUL MUL

ADD

ADD

Const
ROM

Address
Input_sel

Address

Inputs

Output

C
ontroller

We Data RAM

C
ontroller

PE

ODE datapath

218

 A mapping function from PE to PT: pe2Type, e.g.,
pe2Type(pei) returns for the PE type of pei.

 The ODEs mapped to each PE: pe2Ode, where pe2Ode(pei)
return a set of ODEs mapped to pei .

Constraints are:

 FPGA resource constraint:

∑ <=
i

RESTpeiTypepeRES _)))(2((

 ODE Binding constraint:)(2 peiOdepeoi∈∀

 trueoiTypeodepeiTypepevalid =))(2),(2(
 Each ODE has been mapped to one PE.

The objective is (minimize cycles per step):

Min {max (CompCost(pe2Type(pei), pe2Ode(pei))) + CommCost}

In other words, the objective is to allocate a valid set of PEs
(satisfy the FPGA resource constraint), and to find a valid
mapping from ODEs to PEs (satisfy the ODE binding constraint)
such that the throughput of the system is maximized.

The throughput of the network of PEs is equal to the number of
ODEs divided by the time to emulate one step. Since the number
of ODEs is a constant, maximizing the throughput is equivalent to
minimizing the time to emulate one step. Assuming the clock
frequency is a constant, the time per step is determined by the
cycles per step. According to the ODE solving process illustrated
in Fig. 4, the total cycles per step is equal to the maximal
computation cost of the PEs plus the communication cost, or the
objective function.

4.3 Allocation and binding heuristic
4.3.1 Choosing PE types
Since a multi-type custom PE can be built for any subset of the
ODE types of a physical system, the number of all possible
custom PE types increases exponentially with the number of ODE
types. To consider all possible custom PEs might be too
expensive in terms of algorithm runtime. However, not all ODE
types need a custom PE. For instance, if an ODE type contains
only a few ODEs (e.g., <5 ODEs), using a general PE is more size
efficient. We thus define a custom PE threshold, such that we
only build a custom PE for the ODE types with more ODEs than
the custom PE threshold.
The multi-type custom PE is only needed when two or more
ODEs are tightly coupled, which is reflected by the number of
connections between 2 ODE types in the ODE dependency graph.
Our solution is to keep merging the ODE types that pass the
custom PE threshold, using a custom PE merge criteria.
The criteria is that two sets of ODE types can be merged only if
the number of connections between the two sets is greater than (or
equal to) the number of ODEs of any type in the two sets. Fig. 7

shows an example of merging 5 ODE types (Ta, Tb, … Te), the
number below each ODE type is the number of ODEs of that type.
The line between two types shows the number of connections
between two ODE types. After the merge process, two multi-type
custom PE can be built ({Ta, Tb, Tc}, {Td, Te}). Note {Ta, Tb, Tc}
can not merge with {Td, Te} because the number of connections
between these two sets (5) do not satisfy the merge criteria. With
the custom PE threshold and the merge criteria, the custom PE
types are chosen based on the ODE data-dependency graph of the
target physical system.

4.3.2 Allocation and binding heuristic overview
Once the PE types have been chosen, we allocate a number of
each PE type, and map the ODEs to each PE. The overall
structure of the allocation and binding heuristic is illustrated in
Fig. 8. The allocation and binding heuristic includes two major
components: an ODE-to-PE mapper and a PE allocator. The
ODE-to-PE mapper tries to find the best ODE-to-PE mapping for
the current PE allocation based on the objective function defined
in Section 4.2. The PE allocator adjusts the PE allocation based
on the feedback from the ODE-to-PE mapper.
The heuristic first generates a random PE allocation, which
includes at least one instance for each PE type. Then the ODE-to-
PE mapper will try to find the best mapping based on current PE
allocation, and return the number of computation cycles for each
PE to the PE allocator. The PE allocator will adjust the number of
each PE type based on the mapper’s feedback, and generate a new
PE allocation. This iterative improvement process will terminate
when the mapper cannot find a better solution.

4.3.3 ODE-to-PE mapper
The ODE-to-PE mapping algorithm is based on the mapping
algorithm for the network of general PEs [7], with the objective as
the cost function. The basic idea of the mapping algorithm is to
move one ODE from one PE to another PE, which is called a
neighbor mapping. To speedup the mapping algorithm, two types
of neighbor functions are developed to generate neighbor
mapping that has higher changes of improving the solution.
The “performance neighbor function” tries to balance the load (or
total number of cycles) among PEs by moving ODEs from a
heavily loaded PE to a light loaded PE. The “size neighbor
function” tries to utilize the spatial locality of the ODEs, and
group ODEs nearby to one PE. Thus the total number of
connections and communications among the PEs would be
reduced.
To adapt the original mapping algorithm to networks of
heterogeneous PEs, we added constraints when generating the

Fig. 7. Merging tightly coupled ODE types

Fig. 8. Overall structure of the allocation and binding heuristic
for the network of heterogeneous PEs

Ta
(20)

Tb
(20)

Tc
(20)

Td
(30)

Te
(30)

20 20

30

5

PE allocator

ODE-to-PE
mapper

New PE
allocation

Cycles of each PE

Initial random allocation

Better solution Best solution
N

Y

219

neighbor mappings such that the neighbor mapping still satisfies
the ODE binding constraint (custom PEs can only solve a sub-set
of ODE types) defined in Section 4.2. The ODE-to-PE mapper
will output the number of cycles for each PE for the best mapping
has been found.

4.3.4 PE allocator
The PE allocator adjusts the number of PEs for each PE type
based on the feedback from the ODE-to-PE mapper. The PE
adjustment algorithm is shown as follows:
Step 1: Choose top K% PEs with most loads (#cycles).
Step 2: Allocate a new PE (same PE type) for each PE chosen in

step 1, move half of the ODEs mapped to the original PE
to the new PE.

Step 3: Remove the PE with least loads (#cycles), and randomly
redistribute the ODEs mapped to the removed PE to other
PEs (satisfying the ODE binding constraint).

Step 4: Repeat step 3 until the resource constraint is satisfied.
The basic idea is to look at the number of cycles for each PE, and
duplicate the most heavily loaded PEs. The allocator allocates
new PEs for top 10% loaded PEs in this work. We notice two
possibilities why a PE is heavily loaded. The first possibility is
that this PE type doesn’t have enough instances because some
ODEs can only be mapped to this PE type. The second possibility
is that this PE type is very efficient in solving the ODEs, thus
many ODEs are mapped to it. Either possibility means that more
instances of this PE type are required. However, adding new PEs
may violate the FPGA resource constraint, thus we remove the
least loaded PEs until the resource constraint is satisfied.
Since the PE adjustment algorithm depends on the ODE-to-PE
mapping results, the quality of the mapping algorithm is critical
for the entire allocation and binding heuristic. We let the ODE-to-
PE mapper run long enough (200K-500K iterations) in order to
produce a good solution. The overall time complexity of our
approach is: O(#allocator iterations * #mapper iterations * C),
where C is the cost of generating a new mapping and re-
computing the cost. C is mainly determined by the average
number of edges of an ODE (not by the total number of ODEs),
because the neighbor function and the incremental cost function
only modifies one ODE and the neighbors.

4.4 HDL code generation
Once the processing elements have been allocated, and the ODEs
are mapped to the PEs, the next task is to generate HDL code for
the entire network. The code generation includes two steps:
1. Generate PE components for each PE type.
2. Generate and inject instructions for each PE instance, and

connect them at top level.

4.4.1 PE components generation
Since the general PEs only differ in the data-ram size, instruction
ram size, and input ports number [7], we developed a script to
generate PE components with all possible combinations of the
three parameters.

A custom PE contains unique ODE datapaths designed for the
ODE types that the PE can solve. Thus we cannot pre-generate all
possible custom PE components. Instead, we developed an
automatic ODE datapath generator to facilitate custom PE
generation. The ODE datapath generator reads an ODE string, and
outputs a fully pipelined ODE datapath component for calculating
this ODE. The datapath generator parses the input ODE into an

expression tree, and uses an ASAP (as-soon-as-possible)
scheduling algorithm [20] to schedule the operations. The
generator adds pipeline registers for each stage. An ODE datapath
usually contains 5-15 stages (or delays), depending on the ODE.
The datapath generation task can be done with a high-level
synthesis tool.

We also developed a custom data-ram generator to generate data-
ram components with different number of ports and depth,
because different ODE datapath may require different custom
data ram. With the ODE datapath generator and the custom data-
ram generator, a custom PE component of any type can be
generated on the fly.

4.4.2 PE instruction generation and top level
network generation
The PE instructions can be divided into two parts: (1) “evaluate
and update” instructions, and (2) “data transfer” instructions, as
shown in Fig. 4. The “evaluation and update” instructions are
scheduled independently on each PE instance based on the ODEs
mapped to the PE, while the “data transfer” instructions are
scheduled globally.
The general PE handles the “evaluate and update” instructions by
parsing the ODEs into basic instructions for the general purpose
ALU component. The general instructions are then converted into
the control word by a general instruction assembler [7]. The
custom PE schedules the “evaluate and update” instructions by an
instruction scheduler, and converts the instructions into control
words by a custom instruction assembler [8].
The general PE and the custom PE have the same input/output
interface. At each clock cycle, one PE can output a variable and
store a variable concurrently. Thus the “data transfer” instructions
are handled globally with a communication scheduler. The inputs
to the communication scheduler are the ODE data-dependency
graph (G) and the each PE’s ODE set (pe2Ode). The scheduler
tries to schedule as many “data transfer” instructions as possible if
those instructions do not conflict with each other (each PE can
only output one variable and store one variable at one cycle). The
“data transfer” instructions are appended to the back of the
“evaluate and update” instructions for each PE. The complete
instructions are then injected into each PE from the generic
interface for the instruction ram.
The structure of the top level network is determined by the ODE
data-dependency graph and the ODE-to-PE mapping. The code
generation tool will finally connect all PE instances according to
the network structure, and output synthesizable VHDL files.

5. EXPERIMENTAL RESULTS
This section describes experimental results using five physical
system models as benchmarks. The section compares our network
of heterogeneous PEs with a high-level-synthesis approach
including regularity extraction, networks of general/custom PEs, a
GPU implementation, and a modern desktop processor.

Performance numbers are in milliseconds (ms) and represent the
time for an implementation to execute one second of simulated
time. Throughout this section, we execute the physical system
using an Euler solver with a 0.01 ms step.

All FPGA based approaches targeted a Xilinx XC6VLX240T-2
FPGA, having 150,720 LUTs (lookup tables), 768 DSP units
(built-in hardcore multipliers), and 416 BRAMs (built-in 32Kb

220

hardcore block RAMs). We used the Xilinx ISE 12.3 tool [28] for
synthesis. Note that this work is not limited to a particular FPGA
or synthesis tool.

5.1 Physical system models
The five physical system models are all physiology models, and
each contains more than one type of ODE. The five models have
different connection structures such as binary trees, 2-dimensional
meshes, rings, etc.

1. Weibel lung: 11 generation Weibel lung model that contains
4094 ODEs and calculates internal lung states. The Weibel
lung has two types of ODEs (flow and volume) as discussed
in Section 3.1. The Weibel lung has a binary tree structure.

2. Neuron network: a neuron network model [24] contains a
number of neuron cells for modeling a neuron system in the
brain. The neuron network contains three types of ODEs for
membrane potentials, channel gating and synaptics. We use
a 40 x 40 2-dimensional neuron network, which contain
1600 neurons or 4800 ODEs. The neurons are connected in
a 2-dimensional mesh network.

3. Weibel lung with gas exchange: 11 generation Weibel lung
model with 500 capillary cells connected to leaf branches.
The model contains 3 types of ODEs as discussed in Section
3.1, and contains 4594 ODEs and has a binary tree structure.

4. Hemodynamic: the hemodynamic model [25] is a system
circulation model which contains pulmonary tissues,
systemic tissues and left/right ventricles. The model
contains 36 types of ODEs for modeling different types of
organs/cells. Within the 36 types of ODEs, 12 ODE types
each with more than 100 ODEs. The remaining 24 ODE
types each with only 1 ODE. The hemodynamic model
contains 4800 ODEs, and has a circular connection structure.

5. Weibel lung with hemodynamic model: We combine the
Weibel lung model with the hemodynamic model, because
the pressure of the lung is an input to the hemodynamic
model. We use a 10 generation Weibel lung with the
hemodynamic model. The entire model contains 4266 ODEs,
and 38 types of ODEs. The model has a hybrid connection
structure with a binary tree connected with a ring.

5.2 Heterogenous networks vs. HLS and
homogeneous networks
We implemented the ODE solver for each model using a
commercial high-level synthesis tool 1 . Since physical systems
exhibit many commonly recurring patterns we incorporate the
idea of regularity extraction [21] into the design. Each ODE type
represents a sub-pattern in the system, thus we generate a fully
pipelined ODE data-path to compute each ODE type with the
HLS tool.
We first attempted to input the entire PE network design into the
HLS tool, however the tool used a centralized block ram to store
all the data and the created design was not efficient. To eliminate
the memory bottleneck of the system, we manually optimized the
communication structure of the HLS approach (Fig. 9) to provide
a better comparison to our custom network approach. The state

1 The tool name is not included due to the licensing agreement. The tool is

commercially available and used by dozens of companies and
universities, including the U.S. Dept. of Defense. Reproduction of our
experiments using other HLS tools is highly encouraged; we will
provide our models for such purposes upon request.

variables of a physical system are placed into distributed registers
throughout the design. Each ODE datapath is mapped with a
subset of ODEs of the physical system, thus each ODE datapath is
responsible of updating multiple registers as shown in the figure.
To utilize the spatial locality of the ODEs, one input mux is
shared by all ports of the ODE datapath (shown in the figure)
using a time multiplexing scheme. Using time multiplexing
decreases the performance, however using the shared input mux
significantly reduces the number of wires and results in
synthesizable designs (one mux per port cannot be fully
synthesized due to a large number of wires). We use the same
allocate and binding heuristic in Section 4.3 to allocate the ODE
datapath, and balance the number of ODEs in each ODE datapath.
Since each ODE datapath is mapped with multiple ODEs
(usually >50 ODEs), the shared input mux is often very large (64-
256 inputs).
The networks of heterogeneous PEs are generated by the PE
allocation and binding heuristic, and the code generation tool
discussed in Section 4. The total algorithm runtime to generate the
VHDL code for each model is about 5-10 minutes. For
comparison purpose, we implemented the 5 models using
networks of general PEs. We also included the results for
networks of single-type custom PEs. All FPGA results are fully
synthesized and implemented on the target FPGA.
The summary of the results is shown in Table I. We recorded the
resource utilization of each approach. For easy comparison
purposes via a single number, we define an equivalent LUTs term
as is commonly done for FPGA designs [16]. By implementing of
equivalent DSP and BRAM components using LUTs, we assign a
DSP unit a value of 250 LUTs and a BRAM of 360 LUTs. The
bottleneck of each design is highlighted with underlines.

5.2.1 Bottleneck of each approach
We tried to implement the fastest circuit for each design. We
notice that performance each design may be constrained by one of
the FPGA resource (LUTs, DSPs, BRAMs), or by the clock
frequency.
For instance, the HLS designs are constrained by the available
LUTs (the FPGA has 150,720 LUTs), because each ODE
datapath requires a large input mux as shown in Fig. 9, requiring
many LUTs. The networks of general PEs are mainly constrained
by BRAMs (the FPGA has 406 BRAMs), because each general
PE requires a BRAM instance. The networks of single-type
custom PEs are mainly constrained by the clock frequency (or the
number of wires in the system). Putting more single-type custom
PEs into the network will result in long routing time and lower
clock frequency (the reason will be discussed in Section 5.2.3).

Fig. 9. The overall architecture of the ODE solver using

an HLS tool with regularity extraction.

…

…… ODE
Datapath 2

ODE
Datapath 1

Distributed
registers

Input
mux

221

Thus adding PEs, while achieving more parallelism, yields overall
performance decrease due to the slower clock frequency.
The networks of heterogeneous PEs are mainly constrained by
DSPs (the FPGA has 768), because the custom ODE datapath
(especially multi-type custom PEs) requires more DSPs than a
general PE. Since the custom ODE datapaths are fully pipelined,
these DSPs are highly utilized in the design. Thus the networks of
heterogeneous PEs have the best performance. Note that the
FPGA resource utilization of each design may not be close to the
upper-bound of the total FPGA resource, because we also
consider the clock frequency. Increasing the size of each design
will decrease the clock frequency, thus the overall performance
will decrease.

5.2.2 Comparison with high level synthesis
Compared to the HLS approach, the network of heterogeneous
PEs uses around 40% fewer LUTs, a comparable number of
BRAMs, and 2x more DSPs. In terms of equivalent LUTs, the
network of heterogeneous PEs uses on average 10% more FPGA
resources than the HLS approach.
The performance of the network of heterogeneous PEs approach
is on average 10.8x (9x-14x) faster than the HLS approach
because the network of heterogeneous PEs makes better usage of
memories and computational components like DSPs. Since a large
input mux consumes many LUTs in the HLS design, the HLS
approach can only place a limited number of ODE datapaths,
which limits the performance of the HLS approach. The time
multiplexing of the shared input mux further decreases the
performance of the HLS approach. Our approach using
encapsulated processing elements better utilizes the spatial
locality of a physical system. The network of heterogeneous PEs
also obtained higher clock frequencies and shorter synthesis times
due to fewer wires in the design.

5.2.3 Comparison with networks of general/single-
type custom PEs
The network of general PEs consumes on average 15% more
equivalent LUTs compared to networks of heterogeneous PEs due
to having more PE instances. The performance of the network of
heterogeneous PEs is on average 7x (6x~8.8x) faster than the
network of general PEs, because the former contains custom PEs
that solve certain types of ODEs faster than the general PEs. The
networks of heterogeneous PEs also obtained 50% faster clock
frequency, due to containing fewer PE instances and fewer wires
in the network.
The networks of single-type custom PEs consumed on average
30% fewer equivalent LUTs than the networks of heterogeneous
PEs because the former contained fewer PE instances. The reason
is that all five models contain tightly coupled ODEs of different
types, and the tightly coupled ODEs are split into different single-
type custom PEs as discussed in Section 4.1. Thus the network
requires more connections and communications. The wire
congestion problem limits the clock frequency and the number of
single-type custom PEs in the network.
The networks of heterogeneous PEs contain multi-type custom
PEs, which reduce the number of connections and communication
in the network. The network of heterogeneous PEs may also
contain general PEs in case the number of ODEs of a type is too
small. For instance, the hemodynamic model has 24 ODE types
with only one ODE. Assigning the 24 individual ODEs to a few
general PEs instead of creating a custom PE for each type is
reasonable. With the multi-type custom PEs and general PE
options, the network of heterogeneous PEs is on average 6x (1.5x-
9.4x) faster than the network of single-type custom PEs. Note the
performance of single-type custom PE networks depends heavily
on the model; certain models may have faster performance when
implemented as general PE networks (e.g., Nueron).

Table I. Synthesis results of custom networks of heterogeneous PEs, HLS, and general/single-type custom PEs. PEs: the
number of PE or ODE datapath in the design. Cycles: total clock cycles to compute one time step. Freq: Maximum clock

frequency after place and route. Syn. time: total synthesis time (including place and route) of a design. The underlined entries
show the FPGA resource bottleneck of a design, i.e., the issue that prevents further improvement via more PEs.

HLS LUTs BRAMs DSPs Equiv. LUTs PEs. Cycle Freq (Mhz) Perf. (ms) Syn. Time (min)
Weibel 101,031 131 245 209,441 67 296 112 264 752
Neuron 139,118 156 190 242,778 80 370 102 363 664
Weibel_gas 106,008 144 225 214,098 72 332 110 301 746
Hemodynamics 82,007 145 246 195,707 69 420 131 321 356
Weibel_hemo 79,735 143 230 188,715 75 340 115 295 520
General PEs
Weibel 89,761 396 396 331,321 396 184 130 142 230
Neuron 74,632 294 294 253,972 294 290 150 193 147
Weibel_gas 78,178 281 281 249,588 281 302 105 288 123
Hemodynamics 75,311 281 281 246,721 281 364 190 192 107
Weibel_hemo 74,956 281 281 246,366 281 326 165 198 106
Custom PEs
Weibel 48,579 56 205 119,989 56 221 129 171 72
Neuron 49,762 71 129 107,572 53 397 123 323 114
Weibel_gas 50,491 62 202 123,311 61 253 123 206 78
Hemodynamics 50,743 111 386 187,203 111 185 143 129 90
Weibel_hemo 72,828 154 553 266,518 175 84 167 50 146
Heterogeneous PEs
Weibel 65,036 160 560 262,636 80 52 219 24 174
Neuron 63,458 133 462 226,838 67 69 204 34 185
Weibel_gas 58,800 141 494 233,060 86 72 222 32 122
Hemodynamics 48,652 118 444 202,132 142 56 250 22 69
Weibel_hemo 58,795 141 494 233,055 86 71 213 33 130

222

0
100
200
300
400
500
600
700
800
900

1000

Weibel

Neuro
n

Weibel
+ ga

s

Hemody
nam

ic

weibe
l +

 he
mo

Pe
rfo

rm
an

ce
 (m

s)

PC(1)
PC(4)
GPU
HLS
General PEs
Custom PEs
Heterogeneous PEs

5.3 Heterogeneous network vs. CPU and GPU
We compared the custom network of heterogeneous PEs with a
modern desktop processor and a GPU. The configurations of the
processor and the GPU are listed as follows:

1. PC: C code on a 3.06 GHz Intel I7-950 quad-core processor
with 16G DDR3 RAM, compiled with Microsoft VS2010
with –O3 flag

2. GPU: CUDA C code on a 763 MHz NVIDIA GTX460
Fermi GPU with 336 CUDA cores, compiled using nvcc
with –O3 flag.

A fixed-point implementation was used for all test cases for a fair
comparison. The C code on the desktop was manually optimized.
The time to optimize each model is around 1-3 hours, which is
comparable to the synthesis time of the network of heterogeneous
PEs. We first obtained the single threaded performance (PC(1))
for the PC, and calculated an optimistic performance bound for
multi-cores (PC(4)) by dividing the single threaded result by the
number of cores.

We implemented a GPU kernel function for calculating the ODEs
for each model. The kernel function may contain multiple
branches for different ODE types as illustrated in Fig. 11(a).
Another approach is to implement different GPU functions for
each ODE type, shown in Fig. 11(b). However, the second
approach executes each function sequentially, which is slower
than the first approach. We use the first approach that better
utilizes the resource on the GPU.

The ODE kernel function is executed on multiple GPU blocks,
and each block contains multiple threads. We tuned the number of
blocks and the number of threads to obtain the best performance.
We also considered the coalesced access pattern when reading the
global memory on the GPU. Since global memory access is more
expensive than accessing the shared memory within each GPU
block. We utilized the spatial locality of each model by mapping
related ODEs to one GPU block. Thus nearby state variables are
loaded to shared memory to reduce global memory accesses. The
total GPU implementation time for each model is around 2-4
hours, which is comparable to the synthesis time of the custom
network of heterogeneous PEs. To ensure that our GPU
implementations are of high quality, we asked an experienced
GPU programmer to optimize our CUDA code. Runtime was
reduced an additional 5-15%, mainly by utilizing coalesced global
memory accesses.

The performance of each approach is illustrated in Fig. 10. The
single threaded PC failed the real-time constraint for four models,
while the optimal multi-threaded version runs each model 2-4x
faster than real-time. The average speed of the network of
heterogeneous PEs is 45.3X (36x-60x) faster than PC(1), and
11.3x (9x-15x) faster than PC(4). Note the performance is the
pure execution time of each model. Further monitoring and
debugging logic will cause extra overhead. The network of
heterogeneous PEs gives more slack than the C implementation

on the PC, which provides opportunity for real-time tracing of
model state variables. The network of heterogeneous PEs is also
more preferable in case fast-forward emulation is needed.

The GPU performs comparably to the multi-threaded PC
approach when the number of ODE types is small (e.g., Weibel
lung and Neuron models). The model with larger number of ODE
types requires more branches in the kernel function, which
decreases the performance. The network of heterogeneous PEs is
on average 20.7X (13.7X~29X) faster than the GPU
implementation. The major advantage of our approach is the
custom communication network. For the target GPU, the only
method to synchronize the GPU blocks is through a new function
invocation, according to the CUDA programming guide [5]. Thus
the frequent function invocation (105 times per second) greatly
impacts the GPU’s performance. According to profiling of the
GPU-accelerated program, the pure function invocation overhead
consumes 30% - 60% of the total execution time.

We included some approximate cost comparison for different
approaches, in particular to acknowledge that FPGA platforms are
costlier than PCs and GPUs. We consider the minimal required
components for each platform in order to performance the
emulation. The approximate cost of each platform is as follows:

1. CPU (I7-950 + Intel X58 board): $ 480
2. GPU (NV GTX460 + I3-540 processor + H55 board) $ 380
3. FPGA (Xilinx Virtex6 240T-2 board): $1800
We consider a normalized speedup term, namely: (speedup over
real-time) / cost. The normalized speedup of each approach is
shown in Fig. 12. The network of heterogeneous PEs obtained the
best normalized speedup (3x over the I7-950 CPU and 4.4x over
the GTX460 GPU), because of much higher emulation speed. The
FPGA based solution has other advantages, such as smaller device

Fig. 10. The performance for each approach. 1000 ms is the real-
time constraint and some PC(1) numbers extend off the chart top.

Fig. 11. GPU kernel function implementation options

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0.03000

W
eib

el

Neu
ron

W
eib

el
+ g

as

Hem
od

yn
am

ic

weib
el

+ h
em

o

N
or

m
al

iz
ed

 s
pe

ed
up

 (s
pe

ed
up

 /
do

lla
r)

PC(1)
PC(4)
GPU
Heterogeneous PEs

Fig. 12. The normalized speedup for each approach

For each step
 ODE_kernel() {

 branch1: type1
 branch2: type2

 branch3: type3
 … }

For each step
 ODE_kernel1() {type1}
 ODE_kernel2() {type2}
 ODE_kernel3() {type3}
 ...

(a) (b)

1430 1490 1522 1184

223

size and the flexibility to build custom interfaces to the physical
world [17].

6. CONCLUSION
We introduced a custom network of heterogeneous (both general
and custom) processing-elements for real-time emulation of
complex physical systems. We developed an automated tool to
generate a custom PE network for a given set of ODEs. We
developed an automatic allocation and binding heuristic for
allocating different types of PEs, and mapping the ODEs of the
target physical system to the PEs. We created a tool to generate
synthesizable VHDL code from the allocation and binding results.
Comparing to a commercial high-level synthesis tool with
regularity extraction, the custom networks of heterogeneous PEs
were on average 10.8x faster and of comparable size. Compared
to the custom networks of general and single-type custom PEs,
the networks of heterogeneous PEs were on average 7x and 6x
faster. The network of heterogeneous PEs was also on average
45x faster than a single threaded 3GHz I7-950 processor, and 20x
faster than a 763 MHz NVIDIA GTX460 GPU given comparable
implementation time. The speedups are due to the custom
communication structure and also due to the custom datapath for
each type of ODE.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation (CNS1016792, CPS1136146), the Semiconductor
Research Corporation (GRC 2143.001), and a U.S. Department of
Education GAANN fellowship.

8. REFERENCES
[1] Amorim, R.M., Rocha, B.M., Campos, F.O., dos Santos,

R.W. 2010. Automatic code generation for solvers of
cardiac cellular membrane dynamics in GPUs, EMBC.

[2] Atkinson, K. 1993. Elementary. Numerical Analysis, 2nd
Edition, John Wiley & Sons, Inc. New York, New York.

[3] AutoESL 2012. http://www.xilinx.com/tools/autoesl.htm
[4] Butcher, J.C. 2003. Numerical methods for ordinary

differential equations, ISBN 0471967580.
[5] CUDA programming guide 2011.

http://developer.download.nvidia.com/compute/cuda/4_0-
/toolkit/docs/CUDA_C_Programming_Guide.pdf

[6] Gokhale, M. B., Stone, J.M., Arnold, J., and Lalinowski, M.
2000. Stream-oriented FPGA computing in the Streams-C
high level language. FCCM.

[7] Huang, C., Vahid, F., Givargis, T., 2011. Automatic
synthesis of physical system differential equation models to
a processing element network on FPGAs. Under submission.

[8] Huang, C., Miller, B., Vahid, F., Givargis, T., 2012.
Synthesis of networks of custom processing-elements for
real-time physical system emulation. Under submission.

[9] JSIM. 2012. http://nsr.bioeng.washington.edu/jsim/
[10] Kum, K., Kang, J., Sung, W. 2000. AUTOSCALER for C:

an optimizing floating-point to integer C program converter
for fixed-point digital signal processors. IEEE Transactions
on Analog and Digital Signal Processing, vol. 47, no. 9, pp.
840-848, September 2000.

[11] Lee, E. A. 2008 Cyber Physical Systems: Design Challenges.
Technical Report UCB/EECS-2008-8, University of
California, EECS Department, 2008.

[12] Lionetti, F. 2010. http://cseweb.ucsd.edu/groups/ -
hpcl/scg/papers/2010/Europ10-src-src-GPU.pdf

[13] Mathworks 2012. Matlab and Simulink.
http://www.mathworks.com/.

[14] MedGadget,2008. Supercomputer Creates Most Advanced
Heart Model, Internet Journal of Emerging Medical
Technologies.

[15] METIman. 2012 available online:
http://www.meti.com/products_ps_metiman.htm

[16] Meyer, J., Kocan, F. 2007. Sharing of SRAM Tables Among
NPN-Equivalent LUTs in SRAM-Based FPGAs, Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
vol.15, no.2, pp.182-195, Feb. 2007
doi: 10.1109/TVLSI.2007.893581

[17] Miller, B., Givargis, T., Vahid, F. 2011. Application-Specific
Codesign Platform Generation for Digital Mockups in
Cyber-Physical Systems IEEE Electronic System Level
Synthesis Conf. (ESLsyn)

[18] National Instruments. 2011. LabView FPGA Module.
http://www.ni.com/fpga/

[19] Nvidia Corporation. 2011.
http://www.nvidia.com/object/gpu.html.

[20] Paulin, P.G., Knight, J.P., and Girczyc, E.F. 1986. HAL: a
multi-paradigm approach to automatic data path synthesis.
In Proceedings of the 23rd ACM/IEEE Design Automation
Conference (DAC '86).

[21] Rao, D.S., Kurdahi, F.J. 1993. On clustering for maximal
regularity extraction, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol.12, no.8,
pp.1198-1208, Aug 1993

[22] Salwinski, L., and Eisenberg, D. 2004. In silico simulation of
biological network dynamics. Nature. Nature Publishing
Group. pp 1017-1019.

[23] SynphonyC. 2011.
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/
SynphonyC-Compiler.aspx

[24] Terman, D., Ahn, S., Wang, X., Just, W. 2008. Reducing
neuronal networks to discrete dynamics, Physica D:
Nonlinear Phenomena, Volume 237, Issue 3, March 2008.

[25] Van Meurs, WL. 2011. Modeling and Simulation in
Biomedical Engineering: Applications in Cardiorespiratory
Physiology. McGraw-Hill Professional

[26] Villarreal, J., Park, A., Najjar, W., and Halstead, R. 2010
Designing modular hardware accelerators in C with ROCCC
2.0, FCCM, 2010.

[27] Weibel, E.R, Morphometry of the Human Lung. Berlin,
Germany: Springer-Verlag, 1963

[28] Xilinx ISE. 2011. http://www.xilinx.com/
[29] Yoshimi, M., Osana, Y., Fukushima, T., and Amano, H.

2004. Stochastic Simulation for Biochemical Reactions on
FPGA. FPL. pp 105-114.

224

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

