A Case of System-level Hardware/Software Co-design and
Co-verification of a Commodity Multi-Processor System
with Custom Hardware

Sungpack Hong*
Oracle Labs
sungpack.hong@oracle.com

Nathan Bronson*
Facebook, Inc.
nbronson@stanford.edu

ABSTRACT

This paper presents an interesting system-level co-design
and co-verification case study for a non-trivial design where
multiple high-performing x86 processors and custom hard-
ware were connected through a coherent interconnection fab-
ric. In functional verification of such a system, we used a
processor bus functional model (BFM) to combine native
software execution with a cycle-accurate interconnect simu-
lator and an HDL simulator. However, we found that signif-
icant extensions need to be made to the conventional BFM
methodology in order to capture various data-race cases
in simulation, which eventually happen in modern multi-
processor systems. Especially essential were faithful im-
plementations of the memory consistency model and cache
coherence protocol, as well as timing randomization. We
demonstrate how such a co-simulation environment can be
constructed from existing tools and software. Lessons from
our study can similarly be applied to design and verification
of other tightly-coupled systems.

Categories and Subject Descriptors

B.4.4 [Performance Analysis and Design Aids]: Simu-
lation, Verification

Keywords

Co-Verification, Co-Simulation, Bus Functional Model, FPGA

Prototyping, Transactional Memory

1. INTRODUCTION

Modern digital systems are moving increasingly towards
heterogeneity. Today, many digital systems feature multiple

*This work was done when the authors were at Stanford

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’12, October 7-12, 2012, Tampere, Finland.

Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

Tayo Oguntebi

Stanford University
tayo@stanford.edu

Christos Kozyrakis
Stanford University
kozyraki@stanford.edu

Jared Casper
Stanford University

jaredc@stanford.edu

Kunle Olukotun
Stanford University
kunle@stanford.edu

(heterogeneous) processors, advanced interconnect topolo-
gies beyond simple buses, and often specialized hardware to
improve the performance-per-watt for specific tasks [5].

Development of such heterogeneous systems, however, re-
quires intensive system-level verification. System-wide co-
design and co-verification of hardware and software compo-
nents [16] is especially essential for systems where multiple
heterogeneous components are executing a single task in a
tightly-coupled manner, orchestrated by the software. In
such systems, for example, data races between multiple com-
putational components should be thoroughly verified since
they can induce various unexpected system behaviors.

In this paper, we present our experiences designing and
verifying a tightly-coupled heterogeneous system in which
multiple x86 processors are accompanied by specialized hard-
ware that accelerates software transactional memory (Sec-
tion 2.1). We discuss which among the many conventional
co-design/verification methods would best serve our pur-
poses and why. Our chosen method was one which combined
an un-timed software model with cycle-accurate intercon-
nection and HDL simulation through a processor bus func-
tional model (BFM), since this provided sufficient visibility
and simulation speed (Section 2.2). However, we found that
when using a BFM for verification, conventional method-
ology needs to be significantly ertended in order to capture
data-race corner cases induced by modern multi-processor
architectures. Especially crucial were correct implementa-
tions of memory consistency and cache coherence as well as a
need to introduce timing randomization (Section 3.1). This
paper also demonstrates how such a co-simulation environ-
ment can be constructed on top of existing tools and software
(Section 3.2). We show the effectiveness of our methodology
and draw out general lessons from it (Section 4), before we
conclude in Section 5.

Our contributions can be summarized as follows:

e We present a non-trivial system-level co-design and co-
verification experience with x86 processors connected
to custom hardware. In this scenario, we found that
combining the software model with an interconnection
simulator and HDL simulator via a processor BFM is
the most effective method for functional verification.

e We also explain, however, that conventional ways of
constructing a processor BFM should be revised in ac-
cordance with modern multi-core processors and inter-

corem1|

(1) Read A

™
Hardware

(3) Write A (local)

(4) End TX

(5) “#1: OK to go?”

(5) “#1: Write A”

(6) “#N is violated”
/ (6) “#1 is OK to go”
(7) Commit A (7) Restart TX

Figure 1: Outline of the STM acceleration protocol.

connection architecture; it is especially important to
accurately implement the memory consistency model
and cache coherence protocol. Introducing timing ran-
domization is also very important.

2. DESIGN AND VERIFICATION
2.1 Target Design

This section outlines the design of our system for the sake
of providing sufficient background context for one to un-
derstand our co-design and co-verification issues, while the
detailed design of the system is outside scope of this paper.

Transactional Memory (TM) [9] is an abstract program-
ming model that aims to greatly simplify parallel program-
ming. In this model, the programmer declares atomicity
boundaries (transactions), while the runtime system ensures
a consistent ordering among concurrent reads and writes to
the shared memory. However, a typical software transac-
tional memory (STM), an implementation of such a runtime
system solely with software, tends to exhibit huge perfor-
mance overhead.

Our system is composed of specialized hardware which is
externally connected to commodity CPUs and accelerates an
STM system [2]. The motivation was reduction of the per-
formance overhead generally experienced by STM systems
without modifying the core and thus increasing processor
design complexity. The TM abstraction is enforced through
the following protocol, which is outlined in Figure 1:

(1) Whenever a core reads a shared variable, (2) the core
fires a notification message to the TM hardware. (3) Writes
to shared variables are kept in a software buffer, and are not
visible to other cores until (4) execution reaches the end of a
transaction. At this point, the core (5) sends the addresses
of all the writes that it wants to commit to the hardware
and waits for a response. (6) The TM hardware, based on
all the read/write address received from all the cores, now
determines which cores(transactions) have conflicting read
and writes and sends out the requisite messages to those
cores. (7) Depending on these messages, each core proceeds
to commit or restart its current transaction from the begin-
ning.

The above protocol is implemented as a tightly-coupled
software and hardware system. Software sends messages and
manages the local write buffer, while the external hardware
accelerator performs fast conflict detection. For our develop-
ment environment, we used an instance of an FPGA-based

corem1|

(1) Read A

(2) “#N: Read A"

™
Hardware

(3) Write A (local)

(4) End TX

(5) “#1: OK to go?”

(5) “#1: Write A”

Core #N
Violated

Figure 2: A failure case in our first design.

Transactional Memory
Accelerator
(Our Design)

- -X8Core -~ -
~(18Ghg)xd T

SI] E ===,

P TTTT ! o
| Shared Cache (2MB) I (a) : MMR I: Cache
I

I
| (Coherent) | (Coherent) 1 I :
I HyperTransport HyperTransport | \ Coherent HyperTransport I
J b= F] | o |

CPU#1: AMD Barcelona CPU#2: AMD Barcelona FPGA #1: Altera Straitx Il

— -X86Core o~ -
~ "(1.8Ghz)x4 —

Figure 3: Block Diagram of Implementation Envi-
ronment: Our design is connected to the rest of the
system via (a) non-coherent interface, (b) memory-
mapped register interface, and (c) coherent cache
interface.

rapid prototyping system [14]. Figure 3 illustrates the block
diagram of the prototyping system. The system is com-
posed of two quad-core x86 CPUs and an FPGA that is
connected coherently via a chain of point-to-point links. We
implemented our custom hardware (TM Accelerator) on the
FPGA of the system (Figure 3). Messages from the CPU are
sent to our HW via a non-coherent interface, while responses
to the CPU go through the coherent cache. Note that the
former non-coherent mechanism enables hiding communica-
tion latency between the CPU and FPGA while the latter
coherent communication avoids interrupts and long-latency
polling.

2.2 Our Initial Failure and
Issues with Co-Verification

Since our system was composed of tightly coupled hard-
ware and software, we had to deal with a classic chicken-
and-egg co-verification problem: How can we verify the cor-
rectness of the hardware without the correctly-working soft-
ware and vice versa? Our initial approach was to decouple
hardware and software verification; we verified the software
with an instruction set simulator (ISS) and virtual hard-
ware model while targeting the hardware using unit-level
HDL simulation and direct debugging on the FPGA.

It was only after the simulation in our ISS environment

Method Strength

Weakness

(A) Prototyping

(B) Full HW simulation

(C) ISS + HW simulation [15, 12]
(D) ISS + Virtual HW model [7, 18]

(E) SW model + HW sim. [20, 17, 21]
(possibly through BFM)

(F) Emulation [13, 1]

(G) Binary Translation [10]

real SW execution

Fastest execution on real HW
Full visibility and control
Faster simulation than (B)
Faster simulation than (C);
Can predate HDL development
Verification of target HDL with

Fast execution of target HDL
Fast SW execution on host HW Lack of deterministic replay of concurrent execution.

Limited visibility regarding hardware status
Extremely low simulation speed

Waste of simulation cycles for unrelated instructions
Same issues as (C); Fidelity of virtual HW model;
Requires a separate HW verification step

Overhead of SW re-writing;;

Lack of timing information for SW execution

Cost of the systems; Limited support of core types

Table 1: Comparisons of HW-SW co-verification methods.

and unit tests in FPGA environment had all passed success-
fully, but the whole system was tested altogether for the first
time, when we realized that there was a flaw in our original
design. The specific error scenario is shown in Figure 2. The
figure depicts the same read-write sequence as in Figure 1
except that in this case, the delivery of the read message
from core N is delayed until after delivery of the commit
message from core 1. As there was no consideration of such
case in our original design, the software execution was sim-
ply crashed after a failure of consistency enforcement. Note
that since the ISS assumed in-order instruction execution
and the HW model assumed in-order packet delivery, our en-
vironment was not able to generate the scenario described
in Figure 2. As it happened, this scenario occurred quite
frequently in real HW.*

That being said, we had spent a significant amount of
engineering efforts to confirm that Figure 2 is really the rea-
son of the observed failure. Single-threaded SW executions
never failed, while multi-threaded ones crashed occasionally
but non-deterministically. A logic analyzer, tapped onto our
FPGA, was not very helpful because a typical execution in-
volves billions of memory accesses, each access generating
tens of memory packets — it was extremely hard to identify
which of those packets were relevant to the error and how
those are related to SW execution. For example, a crash
observed after one last memory access from one core (e.g.
de-referencing a dangling pointer), could be a result of a
write, falsely allowed to commit, from another core millions
of cycles before. Simple step-by-step execution of a single
processor was not helpful either due to our parallel execu-
tion requirement. As a matter of fact, we identified this issue
through a deep speculation on our initial design, which was
confirmed later only after adapting another co-design/co-
verification methodology (Section 3).

Fixing up this issue, we properly augmented the proto-
col in Figure 1 and re-designed our hardware and software
accordingly. This time, however, in order to save ourselves
from repeating the same mistake, we considered applying
other methodologies and tools proposed for HW/SW co-
design and co-verification [16, 1, 18, 12, 20, 15, 7, 17, 13|
Our requirements could be summarized as follows:

e The new STM software needed to be intensely vali-
dated (with the new hardware), especially under the
assumption of parallel execution, variable latency and
out-of-order message delivery as shown in Figure 2.

!There are two major reasons for this. (1) The underly-
ing network enforces no delivery ordering between different
cores. (2) We used a non-temporal x86 store instruction to
implement asynchronous message transmission; however the
semantics of the instruction allowed the message to stay in
the store-buffer for an indefinite amount of time.

Such an intensive SW validation naturally demanded
fast execution.

e We were more interested in functional verification of
the new hardware rather than architecture exploration.
Furthermore, as our new hardware was becoming avail-
able soon (after small modification from the initial ver-
sion), we wanted direct verification of target RTL as
well.

e We wanted a mechanism for error analysis better than
manual inspection of GBs of logs/waveforms from sim-
ulation or logic analyzer. At a minimum, we wanted
to associate such logs with software execution context.

Table 1 summarizes the advantages and disadvantages
of conventional approaches that we considered. Our ini-
tial approach used prototyping (Method A in Table 1) and
ISS combined with virtual models (Method D), but as de-
scribed previously failed to serve our purpose. Full simula-
tion (Method B) was never an option since we didn’t have ac-
cess to the HDL source of the CPUs and it would have surely
failed to meet the fast execution requirement. We have al-
ready described how ISS (Method C) initially failed to find
the erroneous case in the first place. An alternative was to
use a detailed architecture simulator (e.g. [22]) but its simu-
lation speed was insufficient. Also, there were no emulators
(Method F) available to us which supported our core (AMD
x86) and interconnection type (HyperTransport). Finally,
we were not able to use fast software simulation techniques
based on binary instrumentation (Method G), because it is
not trivial with this method, to replay every load/store in-
struction of every processors in exact same order. Note that
such a feature is crucial for verifying multi-processor systems
like ours by nature.

The only remaining option was to construct a model that
faithfully reflected the behavior of the software while inter-
facing with the HDL simulation (Method E). However, this
method brought its own challenges which we discuss in detail
in the following section.

3. APPLYING SW MODEL-BASED
CO-SIMULATION

3.1 General Issues and Solutions

In this section, we discuss general issues that arise when
using a software model for HW /SW co-verification and how
we overcame those issues. For each issue, we either introduce
lessons learned from previous research or discuss how they
were not applicable in our case.

(Issue #1) Software has to be re-written into a
form that can interface with HDL simulation.

The first issue can be minimized by using the BFM of
the processor [17] (also known as processor abstraction with
transaction-level (TL) interface) which works as a bridge be-
tween software execution and hardware simulation. Specif-
ically, instead of creating a separate software model, the
whole software is executed natively; however every read and
write instruction that may potentially affect the target hard-
ware is replaced with a simul_read() and simul_write()
function call. These function calls invoke data transfers in
simulation, suspending the software context until the under-
lying hardware simulation finishes processing the requested
data transfer (in a cycle-accurate way). In the worst case,
every load and store should be replaced; in most cases, it
is enough to change only the Hardware Abstraction Layer
(HAL), a small well-encapsulated portion of software [21, 6].

Hardware simulation can consist of two different compo-
nents: a cycle-accurate interconnection network simulation
and HDL simulation. The interconnection simulator can
easily interact with HDL through simple function-to-signal
translators [3] as long as the simulation is packet-wise ac-
curate. This decoupled approach provides more flexibility
and better simulation speed than doing whole HDL simula-
tion [19].

In our case, only a small portion of code inside the STM
was identified as HAL — the user application was entirely
built upon the STM interface. For the interconnect, we
used a cycle-accurate HyperTransport simulator, developed
by AMD, which can interact with the HDL simulator (e.g.
ModelSim) via PLIL

(Issue #2) The multi-threaded software should be
executed concurrently, but also be re-playable in a
determistic manner.

The second issue arises because we are combining execu-
tion of multi-threaded software with a simulator which is ex-
ecuted sequentially by nature. Note that we cannot let each
thread in the original application freely interact with the
simulator for the purpose of deterministic re-execution, i.e.
simulators based on binary instrumentation such as Pin [10]
cannot be used. Instead, we rely on the single-threaded sim-
ulator to interleave multiple software execution contexts.

SystemC [8] is a standard simulation engine that can han-
dle multiple execution contexts for such use cases [21, 17];
SystemC allows for trivial implementation of blocking calls.
Unfortunately, there are still plenty of (in-house) simulators
which do not adhere to the SystemC standard, including
popular CPU simulators [22] and interconnection simula-
tors [4]. Our interconnection simulator® was not compliant
with SystemC, either. We therefore implemented our own
blocking-call mechanism using co-routines, or fibers.

(Issue #3) Software models lose timing informa-
tion.

Being natively executed, software models lose timing in-
formation — they simply continuously inject read/write re-
quests to the BFM simulator. The conventional solution
is to insert delay calls explicitly before each call-site of
simul _read and simul_write in the user application, which
compensates for the CPU cycles between the previous block-
ing call and the current one [21, 6].

2The simulator is a proprietary implementation by AMD
and requires an NDA to access.

I
Application SW
SW Model
(x4/Node)
STM (Algorithm)
STM (HAL) 1 Our HW (HDL)
I
Timing-Randomized HW Model Library HW (HDL
Bus Functional Model } (2 Nodes) pHWtDL)
[piiytytyintyieiyleiel e U 1
1 L 1
! _Cache Network Simulator HDL Simulator 1
V! Simulator H

Figure 4: Block diagram of our co-simulation envi-
ronment.

Our approach differs from the conventional solution in
two ways: (1) we insert the delay inside the simul_read
method rather than at the call-sites in the user-application
code, and (2) we (pseudo-)randomize the delay values. We
justify this for the following reasons: First, our method re-
quires no further modification of the user application code.
Second, user-provided delay information at the call-sites is
already inaccurate. For instance, CPU cycles between two
call-sites cannot be accurately compensated if there are (ex-
ponentially) many execution paths between them. Finally,
for the purpose of functional verification, the exact num-
ber of execution cycles for non-relevant SW sections is of
little interest. Rather, for functional verification, we want
to interleave packet injection from multiple cores in varying
orders as much as possible.

(Issue #4) The memory consistency model must
be carefully considered.

This is one issue that has not been discussed extensively in
the literature. In previous studies [17, 21, 6], the BFM sim-
ply injected network packets to the interconnection network
in the order requested by the software as is the behavior in
classic embedded processors. However, this does not closely
approximate the memory packet generation pattern of our
modern x86 processor; it fails to account for the aggressive
reordering of memory requests.

Instead, we implement a more realistic memory consis-
tency model in our processor BFM, namely Total Store Or-
dering (T'SO) [11]. This is the model on which many modern
processors (e.g. x86 and SPARC) are based. To ensure TSO,
we keep a per-core store buffer inside our BFM. The write
request goes to the buffer without injecting a packet into the
network as long as there is an available slot in the buffer.
On a read request, we first search for the target address in
the store buffer. If not found, a new (read-request) packet
is injected into the network. Otherwise, the contents in the
store buffer, up to the entry that has been matched, are
flushed before the new packet is injected. The store buffer
is always flushed in FIFO order.

In addition, cache coherency should be implemented cor-
rectly as well, simply for the sake of correct parallel execu-
tion. However, we were able to leverage the cache simulator
already embedded in our network simulator.

(Issue #5) There should be an easy way of error
analysis.
In previous section, we explained how painful and unsuc-

- Application \
int index = foo(x);
int v = TM_READ (sarray[index]) O -

STM (Algorithm
mpL)TMiRead(addr) {

if (write_buffer.check (addr))
return write_buffer.get (addr) ;
else {

Send read message (addr, tid); O

return get_value (addr) ;

¥ ¥

STM (HAL

i[O Send_read message (.) (
unsigned MSG = ...
SIM Noncoh write (HW_ADDR, MSG) ; O H

}

4£==——§
SIM_Noncoh_write (SIM_ADDR, VAL) { BFM \\
SIM wait cycles (RandInt (MAX_WAIT)) ;
. // HW store buffer function...
BUS_Inject (NCWR, SIM_ADDR, VAL); Q- -
. // in—flight packet bookkeeping H HW
SIM return to_simul context (core id); || >>
} P
=== - -momomo o L 25 |
1 .
X Network Simulator :
L o e e 1

Figure 5: Execution sequence: From SW-context to
simulator context.

cessful it was manually inspecting massive amounts of logs
that are blindly generated by logic analyzer (or simulator),
when identifying breach of consistency protocol.

To the contrary, our BFM-based approach enabled a bet-
ter scheme for an off-line analysis; we exploit the facts that
(1) the multi-processor simulation is actually being executed
single-threaded on a workstation, that (2) the simulated ad-
dress space is separated from simulator’s address space, and
that (3) simulated execution context and native execution
context are also clearly divided. In specific, we further in-
strumented the STM (i.e. our HAL) such that we add a log
entry in a global shadow data structure whenever there is a
relevant activity from the current core, such as transactional
memory access or commit request. Whenever a new entry
is appended to the shadow data structure, a global check
on consistency protocol is performed as well — for instance,
if the log indicates that the current transaction has a con-
flicting memory access with another transaction but both
are allowed to commit, the simulation immediately reports
an error with accurate conflict information. Note that the
global shadow data structure is kept inside simulator’s con-
text, and therefore such a error check is thread-safe and does
not consume any simulation cycle.

3.2 OQOur Co-simulation Environment: Imple-
mentation

This subsection details the implementation of our
co-simulation environment where all the issues discussed in
previous subsections are resolved. Figure 4 depicts the block
diagram of our co-simulation environment. Our HDL de-
sign is simulated alongside the library HDL of our FPGA
framework, whose interconnect pin-outs are connected to
the network simulator through the PLI mechanism. Our
BFM implementation is treated as a traffic generator by
the interconnection network simulator, which is dynamically
linked at runtime. The BFM module, network simulator and
HDL simulator represent the hardware part of the system in
this simulation environment. The software part is the whole

-»Oclock () {

BEM
for (i = 0;i< Cores_Per_Node;i++) {
if (wait_counter[i]) { // idle cycles
if (——wait_counter([i] == 0)

SIM return_core_context (i) ;

lelse{// waiting for packet
if (BUS_is_packet_done (packet[i])) { O :
SIM return_core_context (i) ;

Figure 6: Execution sequence: From simulator con-
text to SW-context.

application and STM software that are unmodified except
HAL, which is now built upon BFM API (Table 2). Each
application thread is implemented as a fiber (co-routines)
whose context switching is managed by BFM. Specifically,
we used the POSIX makecontext(3) and swapcontext(3)
mechanisms for fiber implementation. We instantiate two
BFM modules (CPU nodes) on the simulator with each BEM
module executing four SW threads (CPU cores) at a time,
which faithfully models our system configuration (see Fig-
ure 3).

Table 2 summarizes the API of our processor BFM, which
is called by the software model. Noticeably, the API pro-
vides separate methods for normal (cached), non-coherent,
and uncached accesses as well as flush and atomic opera-
tions. Separation of these methods is required for accurate
implementation of TSO memory consistency as explained in
the previous subsection.

Figure 5 shows how execution flows from a SW context
(i.e. a fiber executing the SW model) to the simulator con-
text (i.e. the main fiber for simulation). As in normal execu-
tion, whenever the user application reads a shared variable,
the code jumps to and executes the TM_READ function in the
STM library. Note that the application has executed na-
tively up to this point and has not yet consumed a single
simulation cycle. However, instead of actually sending a
transactional read message to the FPGA, the HAL part of
the STM calls into the BEM API (SIM_Noncoh_write) which
eventually injects a packet into the simulator (BUS_Inject)
and switches context to simulator execution
(SIM_return_simulator). However, before injecting each
packet, the BEM adds random idle cycles (SIM_wait_cycles).

Figure 6 shows execution flow from the simulator context
to SW context. The network simulator, which performs sim-
ple cycle-based simulation, calls clock() function for each
BFM at each simulation cycle. Since the software context is
either idle-waiting or waiting for packet transfer, the BFM
checks those conditions and resumes any software model that
is ready by context-switching back to the software model
(SIM_return_core_context).

4. RESULTS AND DISCUSSION

Our new co-simulation environment (Section 3.2), was ex-
tremely useful for verifying the functional correctness of our
system. With this environment, we first simulated our old
design and confirmed that the old system fails at cases like
Figure 2. Note that the new environment is able to generate
such cases, while our previous ISS-based simulation wasn’t;
also it is easy to track down errors in this environment, which

Method Name Description

SIM_write/read
SIM_noncoh_write/read

Normal cacheable memory accesses.
Memory accesses bypass cache but stay in store-buffer.®

SIM_uncached_write/read Memory accesses bypass cache and store-buffer’

SIM_memory_fence
SIM_atomic_cas

SIM_wait_cycles Insert idle cycles

Flush pending memory accesses
Atomic compare and swap

% We keep two separate store-buffers; one for cacheable accesses and the other for non-coherent ones.
® An uncached access flushes all pending memory accesses.

Table 2: API of our processor BFM.

was nearly impossible in our previous FPGA execution. Af-
terwards, we used this co-simulation environment intensively
to validate functional correctness of the new design.

The merits of this BFM-based software model approach
can be summarized as follows. First, it enabled us to exe-
cute the application software compiled with the entire STM
library in conjunction with the target hardware simulation.
We remind the readers that our STM library itself is a very
complicated piece of software which orchestrates the correct
execution of our tightly-coupled HW-SW system. In other
words, there was no way of writing simple test-bench for our
system level simulation but executing the whole software.

Second, the co-simulation environment could generate many

variations of overlapped transactions. On one hand, ran-
domized timing helped to explore corner cases in data-race
conditions. Note that this randomized timing does not accu-
rately reflect actual software execution timing at all. How-
ever, for the purpose of functional verification, this is better
than an un-timed or even ISS-based approach that does not
provide for such variation. This is analogous to the useful-
ness of a random-based test bench in unit-level hardware
verification.

On the other hand, accurate implementation of the mem-
ory consistency model was another key factor in successful
test-pattern generation. For example, our stm_read instruc-
tion is composed of an actual memory read followed by a
message passed to the FPGA — the race between the read
request packet and the message created many interesting
corner cases in our design. Note that in-order packet gen-
eration, as used in previous studies [21, 6, 17], is not able
to capture such cases. Overall, the consistency model cre-
ates interleaving of data accesses from a single core; timing
randomization among multiple cores.

Third, we were able to execute many different simulations
in a relatively short time. The absolute simulation speed was
still dominated by the HDL simulator and its PLI interface.
However, since most of the software model was executed
natively, there was no waste of valuable simulation cycles to
execute instructions that were not necessary for functional
verification. Table 3 compares the performance of all of
our co-verification environments. We remind the users that
SW-model based approach only consumes simulation cycles
for required instructions, i.e. shared memory access; other
instructions, such as local memory access, branches, and
arithmetic operations are executed natively at the speed of
underlying workstation.

Fourth, the co-simulation environment provided a very
helpful error detection mechanism, which was impossible in
native execution on FPGA. Figure 7 displays an example
of an error-identified log generated by our simulation envi-
ronment. Note that the last row points out which address

Speed
Environment (cycles/secs) Time®
Prototype 1.8 (GHz) < 1ms
(SW-model®+ HDL sim) ~ 400 < 15 mins
(SW-model*+virtual model) ~ 3M < 100 ms
1SS 4-virtual model ~ 50K < 1.5 hrs

(a) Simulation time was measured on a 2.3Ghz
Nehalem machine.
(b) Time to execute our small application.

Table 3: Simulation Speed of our Verification Envi-
ronments

cycle T, Ty
1048976 — TX Begin —

1048990 ‘W 1000786h
1059102 R 1000786h

1070428 — TX commit —
1078824 C 1000786h
1081034 TX end
1081106 — TX commit —

1081300 Error: T7 got Commit Okay.
1081300 It should be violated by 100786h

Figure 7: Example log and error detection from our
simulation.

is violating serialize-ability From this log, we were able to
relate SW context and HW status, since the simulation cy-
cle is shared by both SW simulation and HDL simulation.
The ability of deterministic re-play of problematic execution
was also crucial for debugging. As a result, we found bugs
not only in HW, but also in SW or in protocol with this
environment.

The lessons from our case study can be summarized as
follows: (a) It is beneficial to combine a SW model with an
interconnection simulator and an HDL simulator for func-
tional verification, as it enables fast simulation. This com-
bination can be easily realized through a BFM processor
model. (b) In such an environment, it is essential to accu-
rately implement the memory consistency model and cache
coherency in order to capture corner cases induced by data
races. Adding timing randomization is also important. (c)
Keeping a shadow log in the (non-simulated) memory can
help track down data race-induced errors by exploiting the
fact that the simulation is being sequentially executed.

In a sense, the above lessons are a minimal simulation ab-
straction for fast functional co-verification of tightly coupled
HW-SW systems, where data race between multiple compu-
tation units becomes an issue. We believe these lessons are
also valuable to other designers since the trend of modern
digital system is to introduce more and more parallelism and
heterogeneity in it; our prototype was an exemplar instance
of such systems.

5. CONCLUSION

In this paper, we presented our HW/SW co-verification
experience on a commodity multi-processor system with cus-
tom hardware. For the sake of functional verification of such
a system, it was most effective to combine native SW exe-
cution with cycle-based interconnect simulation and HDL
simulation by means of a processor BFM. However, our ex-
periences showed that such BFMs should faithfully reflect
the memory consistency models of their target processors
and would benefit greatly from randomized packet injection
timing in their network simulations. These requirements
enable the co-simulation to generate a wide variety of data
access interleavings, which is essential for co-verification of
modern multi-processor systems.

6. ACKNOWLEDGEMENTS

This paper was supported by DOE contract, Sandia or-
der 942017; Army contract AHPCRC W911NF-07-2-0027-1;
DARPA contract, Oracle order US1226344; NSF grant CCF-
0546060; DARPA Contract, SEEC: Specialized Extremely
Efficient Computing, Contract # HR0011-11-C-0007; NSF
grant, SHF: Large: Domain Specific Language Infrastruc-
ture for Biological Simulation Software, CCF-1111943; Stan-
ford PPL affiliates program, Pervasive Parallelism Lab: Or-
acle, AMD, Intel, and NVIDIA. Authors also acknowledge
additional support from Oracle.

7. REFERENCES

[1] Cadence, Inc. Palladium series.
http://wuw.cadence.com/products/sd/palladium_
series/pages/default.aspx.

[2] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson,

C. Kozyrakis, and K. Olukotun. Hardware
acceleration of transactional memory on commodity
systems. ASPLOS ’11. ACM, 2011.

[3] J. Cornet, F. Maraninchi, and L. Maillet-Contoz. A
Method for the Efficient Development of Timed and
Untimed Transaction-Level Models of
Systems-on-Chip. In DATE, 2008.

[4] W. Dally and B. Towles. Principles and practices of
interconnection networks. Morgan Kaufmann, 2004.

[5] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,

A. Solomatnikov, B. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding sources of
inefficiency in general-purpose chips. In ISCA, 2010.

[6] S. Honda, T. Wakabayashi, H. Tomiyama, and
H. Takada. RTOS-centric hardware/software
cosimulator for embedded system design. In
CODES+ISSS. ACM, 2004.

[7] S. Hong, S. Yoo, S. Lee, S. Lee, H. Nam, B. Yoo,

J. Hwang, D. Song, J. Kim, J. Kim, et al. Creation

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

22]

and utilization of a virtual platform for embedded
software optimization:: an industrial case study. In
CODES+ISSS, 2006.

O. S. Initiative. Systemc. http://www.systemc.org.
J. Larus and R. Rajwar. Transactional Memory.
Morgan Claypool Synthesis Series, 2006.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. Janapa, and R. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

P. McKenney. Memory ordering in modern
microprocessors, part 1. Linuz Journal, 2005(136):2,
2005.

Mentor Graphics, Inc. seamless.
http://www.mentor.com/products/fv/seamless/.

Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa,
and T. Yoshimura. A fast hardware/software
co-verification method for system-on-a-chip by using a
C/C++ simulator and FPGA emulator with shared
register communication. In DAC, 2004.

T. Oguntebi, S. Hong, J. Casper, N. Bronson,

C. Kozyrakis, and K. Olukotun. FARM: A
prototyping environment for tightly-coupled,
heterogeneous architectures. In FCCM, 2010.

M. Reshadi, P. Mishra, and N. Dutt. Instruction set
compiled simulation: a technique for fast and flexible
instruction set simulation. In DAC, 2003.

J. Rowson. Hardware/software co-simulation. In DAC,
1994.

L. Séméria and A. Ghosh. Methodology for
hardware/software co-verification in C/C++. In
ASP-DAC, 2000.

Sysnopsys, Inc. Virtual prototyping solutions.
http://http://www.synopsys.com/Systems/
VirtualPrototyping/Pages/default.aspx.

J. Um, W. Kwon, S. Hong, Y. Kim, K. Choi, J. Kong,
S. Eo, and T. Kim. A systematic IP and bus
subsystem modeling for platform-based system design.
In DATE, 2006.

Xilinx, Inc. Bus functional model (bfm) simulation of
processor intellectual property.
http://www.xilinx.com/support/documentation/
application_notes/xapp516.pdf.

S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and
A. Jerraya. Building fast and accurate SW simulation
models based on hardware abstraction layer and
simulation environment abstraction layer. In DATE,
2003.

M. Yourst. PTLsim: A Cycle Accurate Full System
x86-64 Microarchitectural Simulator. In ISPASS.
IEEE, 2007.

