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ABSTRACT
We consider the problem of specifying combinations of data
structures with complex sharing in a manner that is both
declarative and results in provably correct code. In our ap-
proach, abstract data types are specified using relational
algebra and functional dependencies. We describe a language
of decompositions that permits the user to specify different
concrete representations for relations, and show that opera-
tions on concrete representations soundly implement their
relational specification. We also describe an auto-tuner that
automatically identifies the best decomposition for a particu-
lar workload. It is easy to incorporate data representations
synthesized by our compiler into existing systems, leading to
code that is simpler, correct by construction, and comparable
in performance to the code it replaces.

1. INTRODUCTION
One of the first things a programmer must do when im-

plementing a system is commit to particular data structure
choices. For example, consider a simple operating system pro-
cess scheduler. Each process has an ID pid , a state (running
or sleeping), and a variety of statistics such as the cpu time
consumed. Since we need to find and update processes by ID,
we store processes in a hash table indexed by pid ; as we also
need to enumerate processes in each state, we simultaneously
maintain a linked list of running processes and a separate
list of sleeping processes.

Whatever our choice of data structures, it has a pervasive
influence on the subsequent code. Moreover, as requirements
evolve it is difficult and tedious to change the data struc-
tures to match. For example, suppose we add virtualization
support by allowing processes with the same pid number to
exist in different namespaces ns, together with the ability to
enumerate processes in a namespace. Extending the existing
data structures to support the new requirement may require
many changes distributed throughout the code.

Furthermore, invariants on multiple, overlapping data struc-
tures that represent different views of the same data are hard
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Figure 1: Data Representation Synthesis.

to state, difficult to enforce, and easy to get wrong. For the
scheduler, we require that each process appears in both the
hash-table indexed by process ID and exactly one of the
running or sleeping lists. Such invariants must be enforced
by every piece of code that manipulates the scheduler’s data
structures. It is easy to forget a case, say by failing to add a
process to the appropriate list when it changes state or by
failing to delete a hash table entry when a process terminates.
Invariants of this nature require deep knowledge about the
heap’s structure, and are difficult to enforce through existing
static analysis or verification techniques.

We propose to use data representation synthesis, depicted
in Figure 1. In our approach, a data structure client writes
code that describes and manipulates data at a high-level
as relations. A data structure designer then provides de-
compositions that describe how those relations should be
represented in memory as a combination of primitive data
structures. Our compiler RelC takes a relation and its de-
composition and synthesizes efficient and correct low-level
code that implements the relational interface.

Synthesis allows programmers to describe and manipulate
data at a high level as relations, while enabling control of
how relations are represented physically in memory. By ab-
stracting data from its representation, programmers no longer
prematurely commit to a particular data representation. If
programmers want to change or extend their choice of data
structures, they need only change the decomposition; the
code that uses the relation need not change at all. Synthe-
sized representations are correct by construction; so long as
the programmer obeys the constraints listed in the relational
specification, invariants on the synthesized data structures
are automatically maintained.

Due to space constraints we omit many details from this
article. See the full paper [11] for a more comprehensive



treatment.

2. RELATIONAL ABSTRACTION
We first introduce the relation abstraction via which data

structure clients manipulate synthesized data representations.
Representing and manipulating data as relations is familiar
from databases, and our interface is largely standard. We use
relations to abstract a program’s data from its representa-
tion. Describing particular representations is the task of the
decomposition language of Section 3.

A tuple t = 〈c1: v1, c2: v2, . . . 〉 maps a set of columns
{c1, c2, . . . } to values v. We write t(c) for the value of column
c in tuple t. A relation r is a set of tuples {t1, t2, . . . } over
identical columns C. A relation r has a functional dependency
C1 → C2 if any pair of tuples in r that are equal on columns
C1 are also equal on columns C2.

A relational specification is a set of column names C and
functional dependencies ∆. For the scheduler example from
Section 1, processes may be modeled as a relation with
columns {ns, pid , state, cpu}, where the values of state are
drawn from the set {S,R}, representing sleeping and running
processes respectively. The other columns have integer values.
For example, the scheduler might represent three processes
as the relation:

rs = { 〈ns: 1, pid : 1, state:S, cpu: 7〉 ,
〈ns: 1, pid : 2, state:R, cpu: 4〉 ,
〈ns: 2, pid : 1, state:S, cpu: 5〉}

(1)

Not every relation represents a valid set of processes; all
meaningful sets of processes satisfy a functional dependency
ns, pid → state, cpu, which allows at most one state or cpu
value for any given process.

Relational Operations.
We provide five operations for creating and manipulat-

ing relations. Operation empty () creates a new empty rela-
tion. The operation insert r t inserts tuple t into relation r,
remove r s removes tuples matching tuple s from relation
r, and update r s u applies the updates in tuple u to each
tuple matching s in relation r. Finally query r s C returns
the columns C of all tuples in r matching tuple s. The tu-
ples s and u given as arguments to the remove, update and
query operations may be partial tuples, that is, they need
not contain every column of relation r. Extending the query
operator to handle comparisons other than equality or to
support ordering is straightforward; however, for clarity of
exposition we restrict ourselves to queries based on equalities.

For the scheduler example, we call empty () to obtain an
empty relation r. To insert a new running process into r, we
invoke:

insert r 〈ns: 7, pid : 42, state:R, cpu: 0〉
The operation

query r 〈state:R〉 {ns, pid}
returns the namespace and ID of each running process in r,
whereas

query r 〈ns: 7, pid : 42〉 {state, cpu}

returns the state and cpu of process 42 in namespace 7. By
invoking

update r 〈ns: 7, pid : 42〉 〈state:S〉
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Figure 2: Data representation for a process sched-
uler: (a) a decomposition, (b) an instance of that de-
composition. Solid edges represent hash tables, dot-
ted edges represent vectors, and dashed edges rep-
resent doubly-linked lists.

we can mark process 42 as sleeping, and finally by calling

remove r 〈ns: 7, pid : 42〉
we can remove the process from the relation.

3. DECOMPOSITIONS
Decompositions describe how to represent relations as a

combination of primitive container data structures. Not every
decomposition can correctly implement every relation. Our
goal in this section is to define adequacy conditions which
are sufficient conditions for a decomposition to faithfully
represent a relation.

3.1 Decompositions
A decomposition is a rooted, directed acyclic graph that

describes how to represent a relational specification. The
subgraph rooted at each node of the decomposition describes
how to represent part of the original relation; each edge of
the decomposition describes a way of breaking up a relation
into a set of smaller relations.

Figure 2(a) shows one possible decomposition for the sched-
uler relation. Informally, this decomposition reads as follows.
From the root (node x), we can follow the left-hand edge,
which uses a hash table to map each value n of the ns field
to a sub-relation (node y) with the {pid , cpu} values for n.
From one such sub-relation, the outgoing edge of node y maps
a pid (using another hashtable) to a sub-relation consisting
of a single tuple with one column, the corresponding cpu
time. The state field is not represented on the left-hand path.
Alternatively, from the root we can follow the right-hand
edge, which maps a process state (running or sleeping) to a
sub-relation of the {ns, pid , cpu} values of the processes in
that state. Each such sub-relation (rooted at node z) maps
a {ns, pid} pair to the corresponding cpu time. While the
left path from x to w is implemented using a hash table of
hash tables, the right path is a vector with two entries, one
pointing to a list of running processes, the other to a list of
sleeping processes. Because node w is shared, there is only
one physical copy of each cpu value, shared by the two access
paths.

We now describe the three decomposition primitives.

• A unit decomposition, depicted as a node labeled with
a set of columns C, represents a single tuple t with
columns C. A unit node cannot have any outgoing
edges. For example, in Figure 2(a) node w is a unit



decomposition containing a single cpu value.

• A map decomposition, depicted as an edge labeled with
a set of columns C, represents a relation as a mapping
{t 7→ vt′ , . . . } from a set of columns C, called key
columns, to a set of residual relations rt′ , one for each
valuation t of the key columns. Each residual relation rt′
is in turn represented by decomposition v. For example,
in Figure 2(a) the edge from y to w labeled pid indicates
that for each instance of vertex y in a decomposition
instance there is a data structure that maps each value
of pid to a different residual relation, represented using
the decomposition rooted at w. Any container that
implements a key-value associative map interface can be
used to implement the map; the example uses unordered
doubly-linked lists of key-value pairs, hash tables, and
arrays mapping keys to values. The set of containers
is extensible; any container implementing a common
interface may be used.

• Multiple edges that exit the same node denote a join,
which represents a relation as the natural join of two
sub-relations r1 and r2. Each sub-relation has its own
sub-decomposition, allowing a join to represent the
same data but with different cost models. In diagrams,
join decompositions exist wherever multiple map edges
exit the same node. For example, in Figure 2(a) node
x has two outgoing edges and hence is the join of two
map decompositions.

A decomposition instance, or instance for short, is a rooted,
directed acyclic graph representing a particular relation. Each
node of a decomposition corresponds to a set of nodes in an
instance of that decomposition. Figure 2(b) shows an instance
of the decomposition representing the relation rs defined in
Equation (1). The structure of an instance corresponds to
a low-level memory state; nodes are objects in memory and
edges are data structures navigating between objects. For
example, node z〈state:S〉 has two outgoing edges, one for each
sleeping process; the dashed edge indicates that the collection
of sleeping processes is implemented as a doubly-linked list.

Each decomposition node has an associated “type,” con-
sisting of a pair of column sets B . C; every instance of
node v in a decomposition instance has a distinct valuation
of columns B, and each such instance represents a relation
with columns C. In the decomposition of Figure 2(a), the
root node x has type ∅ . {ns, pid , cpu, state}. Since there
is only one valuation for the empty set of columns ∅ there
is exactly one instance of variable x in any instance of the
decomposition; further the subgraph of a decomposition in-
stance rooted at x represents a relation with all columns.
Similarly, node y has type {ns} . {pid , cpu}, implying that
there is a distinct instance of node y for each value of the ns
field in the relation, and that the subgraph rooted at each
instance of y represents a relation with columns pid , cpu.
Node z has type {state} . {ns, pid , cpu}. Finally node w has
type {ns, pid , state} . {cpu}.

The structure of a decomposition instance parallels the
structure of the decomposition; for each node v:B .C in the
decomposition the instance contains a corresponding set of
node instances {vt, vt′ , . . . }, each for different valuations of
columns B. For example, in Figure 2, decomposition node
z has two different instances z〈state:S〉 and z〈state:R〉, one for
each state value in the relation.

3.2 Adequacy of Decompositions
We define an abstraction function α, defined formally in the

full paper [11], which maps decomposition instances to the
relation they represent. The abstraction function is defined
recursively on the structure of the decomposition instance.
Informally, a unit node represents its associated tuple t, a
map decomposition represents the union of t joined with
α(vt′) for each edge t 7→ vt′ that comprises the map, and a
join decomposition represents the natural join of all of its
subdecompositions.

Not every relation can be represented by every decomposi-
tion. In general a decomposition can only represent relations
with specific columns satisfying certain functional dependen-
cies. For example the decomposition d̂ in Figure 2(a) cannot
represent the relation

r′ = { 〈ns: 1, pid : 2, state:S, cpu: 42〉 ,
〈ns: 1, pid : 2, state:R, cpu: 34〉},

since for each pair of ns and pid values the decomposition
d̂ can only represent a single value for the state and cpu
fields. However r′ does not correspond to a meaningful set of
processes—the relational specification in Section 2 requires
that all well-formed sets of processes satisfy the functional
dependency ns, pid → state, cpu, which allows at most one
state or cpu value for any given process.

We define adequacy conditions, that characterize when a
decomposition d̂ is a suitable representation for a relation
with columns C satisfying functional dependencies (FDs) ∆.
The adequacy conditions are analogous to a type system; if
a decomposition d̂ is adequate, then it can represent every
possible relation with columns C satisfying FDs ∆:

Lemma 1. If decomposition d̂ is adequate for relations
with columns C and FDs ∆, then for each relation r with
columns C that satisfies ∆ there is some instance d such that
α(d) = r.

4. QUERIES AND UPDATES
In Section 3 we introduced decompositions, which describe

how to represent a relation in memory as a collection of
data structures. In this section we show how to compile the
relational operations described in Section 2 into code tailored
to a particular decomposition. There are two basic kinds of
relational operation, namely queries and mutations. Since
we use queries when implementing mutations, we describe
queries first.

4.1 Queries and Query Plans
Recall that the query operation retrieves data from a

relation; given a relation r, a tuple t, and a set of columns
C, a query returns the projection onto columns C of the
tuples of r that match tuple t. We implement queries in two
stages, similar to a database: query planning, which attempts
to find the most efficient execution plan q for a query, and
query execution, which evaluates a particular query plan over
a decomposition instance.

In the RelC compiler, query planning is performed at
compile time; the compiler generates specialized code to
evaluate the chosen plan q with no run-time planning or
evaluation overhead. The compiler is free to use any method
it likes to chose a query plan, as long as the plan answers
the query correctly.



As a motivating example, suppose we want to find the set of
pid values of processes that match the tuple 〈ns: 7, state:R〉
using the decomposition of Figure 2. That is, we want to
find the running processes in namespace 7. One possible
strategy would be to look up 〈state:R〉 on the right-hand
side, and then to iterate over all ns, pid pairs associated with
the state, checking to see whether they are in the correct
namespace. Another strategy would be to look up namespace
7 on the left-hand side, and to iterate over the set of pid
values associated with the namespace. For each pid we then
check to see whether the ns and pid pair is in the set of
processes associated with 〈state:R〉 on the right-hand side.
Each strategy has a different computational complexity; the
query planner enumerates the alternatives and chooses the
“best” strategy.

A query plan is a tree of query plan operators. The query
plan tree is superimposed on a decomposition and rooted at
the decomposition’s root. A query plan prescribes an ordered
sequence of nodes and edges of the decomposition instance
to visit. There are five query plan operators:

Unit The qunit operator returns the unique tuple repre-
sented by a unit decomposition instance if that tuple
matches t. It returns the empty set otherwise.

Scan The operator qscan(q) invokes operator q for each child
node vs where s matches t. Recall a map primitive is a
mapping from a set of key columns C to a set of child
nodes {vt}t∈T . Since operator qscan iterates over the
contents of a map data structure, it typically takes time
linear in the number of entries.

Lookup The qlookup(q) operator looks up a particular set
of key values in a map decomposition; each of the key
columns of the map must be bound in the tuple t given
as input to the operator. Query operator q is invoked on
the resulting sub-decomposition, if any. The complexity
of the qlookup depends on the particular choice of data
structure. In general, we expect qlookup to have better
time complexity than qscan.

Join The qjoin(q1, q2, lr) operator performs a join across
both sides of a join decomposition. The computational
complexity of the join may depend on the order of
evaluation. If lr is the value left, then first query q1 is
executed on the left side of the join decomposition, then
query q2 is executed on the right side of the join for
each tuple returned by tuple q1; the result of the join
operator is the natural join of the two subqueries. If lr
is the value right, the two queries are executed in the
opposite order. The qlr(q, lr) operator is a special case
of the join operator, which performs query q on either
the left-hand or right-hand side of a join specified by
the argument lr . The other side of the join is ignored.

Recall our motivating example, namely the query

query r 〈ns: 7, state:R〉 {pid}
that returns the set of running processes in namespace 7. The
two plans described above that implement the query are

q1 = qlr
(
qlookup(qscan(qunit)), right

)
q2 = qjoin

(
qlookup(qscan(qunit)),

qlookup(qlookup(qunit)), left
)
.
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Figure 3: Example of insertion and removal. Insert-
ing the tuple t = 〈ns: 2, pid : 1, state:S, cpu: 5〉 into in-
stance (a) produces instance (b); conversely remov-
ing tuple t from (b) produces (a). Differences be-
tween the instances are shown using dashed lines.

An important property of the query operators is that they
all require only constant space; there is no need to allocate
intermediate data structures to execute a query. Constant-
space queries can also be a disadvantage; for example, the
current restrictions would not allow a “hash-join” strategy for
implementing the join operator, nor is it possible to perform
duplicate-elimination. It would be straightforward to extend
the query language with non-constant-space operators.

Not every query plan is a correct strategy for evaluating a
query. We say a query plan q is valid if q correctly answers
queries over a decomposition d̂ given a set of input columns
A and yielding output columns B. Query validity is defined
formally in the full paper [11].

To pick good implementations for each query, the compiler
uses a query planner that finds the query plan with the
lowest cost as measured by a simple heuristic cost estimation
function. The query planner enumerates the set of valid query
plans for a particular decomposition d, input columns B, and
output columns C, and it returns the plan with the lowest
cost. It is straightforward to enumerate query plans, although
there may be exponentially many possible plans for a query.

4.2 Mutations
Next we turn our attention to operations dempty, which

creates an empty instance of a decomposition d̂, and dinsert,
which inserts a tuple t into a decomposition instance d.

To create an empty instance of a decomposition, the dempty
operation simply creates a single instance of the root node of
the decomposition graph; since the relation does not contain
any tuples, we do not need to create instances of any map
edges. The adequacy conditions for decompositions ensure
that the root node does not contain any unit decompositions,
so it is always possible to represent the empty relation.

To insert a tuple t into an instance d of a decomposition
d̂, for each node v: B . C in the decomposition we need
to find or create a node instance vs in the decomposition
instance, where s is tuple t restricted to columns B. For each
edge in the decomposition we also need to find or create an
instance of the edge connecting the corresponding pair of
node instances. We perform insertion over the nodes of a
decomposition in topologically-sorted order. For each node
v we locate the existing node instance vs corresponding to
tuple t, if any. If no such vs exists, we create one, inserting
vs into any data structures that link it to its ancestors. For
example, inserting the tuple 〈ns: 2, pid : 1, state:S, cpu: 5〉 into



the decomposition instance shown in Figure 3(a) yields the
state shown in Figure 3(b).

We next consider the dremove and dupdate operations.
Operation dremove removes tuples matching tuple s from an
instance d of decomposition d̂.

To remove tuples matching a tuple t, we compute a cut
of the decomposition between those nodes that can only be
part of the representation of tuples matching t, and those
nodes that may form part of the representation of tuples that
do not match t. We then break any edge instances crossing
the cut. To find the edge instances to break we can reuse
the query planner. Once all such references are removed, the
instances of nodes in Y are unreachable from the root of the
instance and can be deallocated. We can also clean up any
map nodes in X that are now devoid of children.

Operation dupdate updates tuples matching s using values
from u in an instance d of decomposition d̂. Semantically,
updates are a removal followed by an insertion. In the imple-
mentation we can reuse the nodes and edges discarded in the
removal in the subsequent insertion—i.e., we can perform
the update in place.

4.3 Soundness of Relational Operations
Finally we show that the operations on decompositions

faithfully implement their relational specifications.

Theorem 2. Let C be a set of columns, ∆ a set of FDs,
and d̂ a decomposition adequate for C and ∆. Suppose a
sequence of insert, update and remove operators starting from
the empty relation produce a relation r, and each intermediate
relation satisfies FDs ∆. Then the corresponding sequence of
dinsert, dupdate, and dremove operators given dempty d̂ as
input produce an instance d such that α(d) = r.

5. AUTO-TUNER
Thus far we have concentrated on the problem of compiling

relational operations for a particular decomposition of a rela-
tion. However, a programmer may not know, or may not want
to invest time in finding the best possible decomposition for
a relation. We have therefore constructed an auto-tuner that,
given a program written to the relational interface, attempts
to infer the best possible decomposition for that program.

The auto-tuner takes as input a benchmark program that
produces as output a cost value (e.g., execution time), to-
gether with the name of a relation to optimize. The auto-
tuner then exhaustively constructs all decompositions for
that relation up to a given bound on the number of edges,
recompiles and runs the benchmark program for each de-
composition, and returns a list of decompositions sorted by
increasing cost. We do not make any assumptions about the
cost metric—any value of interest such as execution time or
memory consumption may be used.

6. EXPERIMENTS
We have implemented a compiler, named RelC, that takes

as input a relational specification and a decomposition, and
emits C++ code implementing the relation. We evaluate our
compiler using micro-benchmarks and three real-world sys-
tems. The micro-benchmarks (Section 6.1) show that different
decompositions have dramatically different performance char-
acteristics. Since our compiler generates C++ code, it is easy
to incorporate synthesized data representations into existing
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Figure 4: Elapsed times for directed graph bench-
marks for decompositions up to size 4 with identical
input. For each decomposition we show the times
to traverse the graph forwards (F), to traverse both
forwards and backwards (F+B), and to traverse for-
wards, backwards and delete each edge (F+B+D).
We elide 68 decompositions which did not finish a
benchmark within 8 seconds.

systems. We apply synthesis to three existing systems (Sec-
tion 6.2), namely a web server, a network flow accounting
daemon, and a map viewer, and show that synthesis leads to
code that is simultaneously simpler, correct by construction,
and comparable in performance to the code it replaces.

We chose C++ because it allows low-level control over
memory-layout, has a powerful template system, and has
widely-used libraries of data structures from which we can
draw. Data structure primitives are implemented as C++
template classes that implement a common associative con-
tainer API. The set of data structures can easily be extended
by writing additional templates and providing the compiler
some basic information about the data structure’s capabili-
ties. We have implemented a library of data structures that
wrap code from the C++ Standard Template Library and
the Boost Library, namely doubly-linked lists (std::list,
boost::intrusive::list), binary trees (std::map, boost::intrusive::set),
hash-tables (boost::unordered_map), and vectors (std::vector).
The library includes both non-intrusive containers, in which
elements are represented out-of-line as pointers, and intru-
sive containers, in which the pointer structure of a container
is threaded through the elements of the container with no
additional indirection. Since the C++ compiler expands tem-
plates, the time and space overheads introduced by the wrap-
pers is minimal.

6.1 Microbenchmarks
We implemented a selection of small benchmarks; here we

focus on just one based on directed graphs.
The graph benchmark reads in a directed weighted graph

from a text file and measures the times to construct the
edge relation, to perform forwards and backwards depth-
first searches over the whole graph, and to remove each
edge one-by-one. We represent the edges of a directed graph
as a relation edges with columns {src, dst ,weight} and a
functional dependency src, dst → weight . We represent the
set of the graph nodes as a relation nodes consisting of a single
id column. The RelC compiler emits a C++ module that
implements classes nodes::relation and edges::relation
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Figure 5: Decompositions 1, 5 and 9 from
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stances of boost::intrusive::list.

with methods corresponding to each relational operation. A
typical client of the relational interface is the algorithm to
perform a depth-first search:

edges::relation graph_edges;

nodes::relation visited;

// Code to populate graph_edges elided.

stack<int> stk;

stk.push(v0);

while (!stk.empty()) {

int v = stk.top();

stk.pop();

if (!visited.query(nodes::tuple_id(v))) {

visited.insert(nodes::tuple_id(v));

edges::query_iterator_src__dst_weight it;

graph_edges.query(edges::tuple_src(v), it);

while (!it.finished()) {

stk.push(it.output.f_dst());

it.next();

}

}

}

The code makes use of the standard STL stack class in
addition to an instance of the nodes relation visited and
an instance of the edges relation graph_edges.

To demonstrate the tradeoffs involved in the choice of de-
composition, we used the auto-tuner framework to evaluate
three variants of the graph benchmark under different de-
compositions. We used a single input graph representing the
road network of the northwestern USA, containing 1207945
nodes and 2840208 edges. We used three variants of the graph
benchmark: a forward depth-first search (DFS); a forward
DFS and a backward DFS; and finally a forward DFS, a
backward DFS, and deletion of all edges one at a time. We
measured the elapsed time for each benchmark variant for
the 84 decompositions that contain at most 4 map edges (as
generated by the auto-tuner).

Timing results for decompositions that completed within
an 8 second time limit are shown in Figure 4. Decompositions
that are isomorphic up to the choice of data structures for
the map edges are counted as a single decomposition; only
the best timing result is shown for each set of isomorphic
decompositions. There are 68 decompositions not shown
that did not complete any of the benchmarks within the
time limit. Since the auto-tuner exhaustively enumerates all
possible decompositions, naturally only a few of the resulting
decompositions are suitable for the access patterns of this
particular benchmark; for example, a decomposition that

Original Synthesis

System Total Module Decomposition Module

thttpd 7050 402 42 239
Ipcap 2138 899 55 794
ZTopo 5113 1083 39 1048

Table 1: Non-comment lines of code for existing sys-
tem experiments. For each system, we report the
size of entire original system and just the source
module we altered, together with the size of the
altered source module and the mapping file when
using synthesis.

indexes edges by their weights performs poorly.
Figure 5 shows three representative decompositions from

those shown in Figure 4 with different performance charac-
teristics. Decomposition 1 is the most efficient for forward
traversal, however it performs terribly for backward traversal
since it takes quadratic time to compute predecessors. De-
compositions 5 and 9 are slightly less efficient for forward
traversal, but are also efficient for backward traversal, differ-
ing only in the sharing of objects between the two halves of
the decomposition. The node sharing in decomposition 5 is
advantageous for all benchmarks since it requires fewer mem-
ory allocations and allows more efficient implementations
of insertion and removal; in particular because the lists are
intrusive the compiler can find node w using either path and
remove it from both paths without requiring any additional
lookups.

6.2 Synthesis in Existing Systems
To demonstrate the practicality of our approach, we took

three existing open-source systems—thttpd, Ipcap, and ZTopo—
and replaced core data structures with relations synthesized
by RelC.

The thttpd web server is a small and efficient web server
implemented in C. We reimplemented the module of thttpd
that caches the results of the mmap() system call. When
thttpd receives a request for a file, it checks the cache to
see whether the same file has previously been mapped into
memory. If a cache entry exists, it reuses the existing mapping;
otherwise it creates a new mapping. If the cache is full then
the code traverses through the mappings removing those
older than a certain threshold.

The IpCap daemon is a TCP/IP network flow accounting
system implemented in C. IpCap runs on a network gateway,
and counts the number of bytes incoming and outgoing from
hosts on the local network, producing a list of network flows
for accounting purposes. For each network packet, the daemon
looks up the flow in a table, and either creates a new entry
or increments the byte counts for an existing entry. The
daemon periodically iterates over the collection of flows and
outputs the accumulated flow statistics to a log file; flows
that have been written to disk are removed from memory.
We replaced the core packet statistics data structures with
relations implemented using RelC.

ZTopo is a topographic map viewer implemented in C++.
A map consists of millions of small image tiles, retrieved using
HTTP over the internet and reassembled into a seamless
image. To minimize network traffic, the viewer maintains
memory and disk caches of recently viewed map tiles. When
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Figure 6: Elapsed time for IpCap to log 3× 105 ran-
dom packets for 26 decompositions up to size 4 gen-
erated by the auto-tuner, ranked by elapsed time.
The 58 decompositions not shown did not complete
within 30 seconds.

retrieving a tile, ZTopo first attempts to locate it in memory,
then on disk, and as a last resort over the network. The tile
cache was originally implemented as a hash table, together
with a series of linked lists of tiles for each state to enable
cache eviction. We replaced the tile cache data structure
with a relation implemented using RelC.

Table 1 shows non-comment lines of code for each test-case.
In each case the synthesized code is comparable to or shorter
than the original code in size. Both the thttpd and ipcap
benchmarks originally used open-coded C data structures,
accounting for a large fraction of the decrease in line count.
ZTopo originally used C++ STL and Boost data structures,
so the synthesized abstraction does not greatly alter the line
count. The ZTopo benchmark originally contained a series
of fairly subtle dynamic assertions that verified that the two
different representations of a tile’s state were in agreement; in
the synthesized version the compiler automatically guarantees
these invariants, so the assertions were removed.

For each system, the relational and non-relational versions
had equivalent performance. If the choice of data representa-
tion is good enough, data structure manipulations are not
the limiting factor for these particular systems. The assump-
tion that the implementations are good enough is important,
however; the auto-tuner considered plausible data representa-
tions that would have resulted in significant slow-downs, but
found alternatives where the data manipulation was no longer
the bottleneck. For example we used the auto-tuner on the
Ipcap benchmark to generate all decompositions up to size 4;
Figure 6 shows the elapsed time for each decomposition on
an identical random distribution of input packets. The best
decomposition is a binary-tree mapping local hosts to hash-
tables of foreign hosts, which performs approximately 5×
faster than the decomposition ranked 18th, in which the data
structures are identical but local and foreign hosts are trans-
posed. For this input distribution the best decomposition
performs identically to the original hand-written code.

Our experiments show that different choices of decomposi-
tion lead to significant changes in performance (Section 6.1),
that we can tune the representation based on evolving work-
loads, and that the best performance is comparable to existing
hand-written implementations (Section 6.2). The resulting
code is concise (Sections 6.1 and 6.2), and the soundness of
the compiler (Theorem 2) guarantees that the resulting data
structures are correct by construction.

7. DISCUSSION AND RELATED WORK

Databases and Relational Programming.
Literature on lightweight databases also advocates a pro-

gramming model based on relations, which are implemented
in the backend using container data structures [7, 22, 3, 2].
A novel aspect of our approach is that our relations can
have specified restrictions (specifically, functional dependen-
cies). These restrictions, together with the fact that in our
compilation context the set of possible queries is known in
advance, enable a wider range of possible implementations
than a traditional database, particularly representations us-
ing complex patterns of sharing. Also new in our work is the
notion of adequate decompositions and a proof that oper-
ations on adequate decompositions are sound with respect
to their relational specifications. Our definition of adequacy
is informed in particular by the classic Boyce-Codd Normal
Form in relational schema design.

Unlike previous lightweight database work, we describe a
dynamic auto-tuner that can automatically synthesize the
best decomposition for a particular relation, and we present
our experience with a full implementation of these techniques
in practice. The auto-tuner framework has a similar goal to
AutoAdmin [6]. AutoAdmin takes a set of tables, together
with a distribution of input queries, and identifies a set of
indices that are predicted to produce the best overall perfor-
mance under the query optimizer’s cost model. The details
differ because our decomposition and query languages are
unlike those of a conventional database.

Many authors propose adding relations to both general-
and special-purpose programming languages (e.g., [5, 17, 19,
23]). We focus on the orthogonal problem of specifying and
implementing the underlying representations for relational
data. Data models such as E/R diagrams and UML also
rely heavily on relations. One potential application of our
technique is to close the gap between modeling languages
and implementations.

Synthesizing Data Representations.
The problem of automatic data structure selection was

explored in SETL [20] and has also been pursued for Java
collection implementations [21]. The SETL representation
sublanguage [8] maps abstract SETL set and map objects to
implementations, although the details are quite different from
our work. Unlike SETL, we handle relations of arbitrary arity,
using functional dependencies to enforce complex sharing
invariants. In SETL, set representations are dynamically
embedded into carrier sets under the control of the runtime
system, while by contrast our compiler synthesizes low-level
representations for a specific decomposition with no runtime
overhead.

Synthesizing specialized data representations has previ-
ously been considered in other domains. Ahmed et al. [1]
proposed transforming dense matrix computations into im-
plementations tailored to specific sparse representations as a
technique for handling the proliferation of complicated sparse
representations.

Synthesis Versus Verification Approaches.
A key advantage of data representation synthesis over

hand-written implementations is the synthesized operations
are correct by construction, subject to the correctness of



the compiler. We assume the existence of a library of data
structures; the data structures themselves can be proved
correct using existing techniques [24]. Our system provides a
modular way to assemble individually correct data structures
into a complete and correct representation of a program’s
data.

The Hob system uses abstract sets of objects to specify
and verify end-to-end properties of systems using multiple
data structures that share objects [14]. Monotonic types-
tates enable aliased objects to monotonically change their
typestates in the presence of sharing without violating type
safety [10]. Researchers have developed systems that have
mechanically verified data structures (for example, hash ta-
bles) that implement binary relational interfaces (e.g., [24]).
The relation implementation presented in this paper is more
general (it can implement relations of arbitrary arity) and
solves problems orthogonal to those addressed in previous
research.

Specifying And Inferring Shared Representations.
The decomposition language provides a “functional” de-

scription of the heap that separates the problem of modeling
individual data structures from the problem of modeling
the heap as a whole. Unlike previous work, decompositions
allow us to state and reason about complex sharing invari-
ants that are difficult to state and impossible to verify using
previous techniques. Separation logic allows elegant spec-
ifications of disjoint data structures [18], and mechanisms
have been added to separation logic to express some types
of sharing [4, 9]. Some static analysis algorithms infer some
sharing between data structures in low level code [13, 12,
16, 15]; however verifying overlapping shared data structures
in general remains an open problem for such approaches.
The combination of relations and functional dependencies
allows us to reason about sharing that is beyond current
static analysis techniques.

8. CONCLUSION
We have presented a system for specifying and operating

on data at a high level as relations while correctly compiling
those relations into a composition of low-level data structures.
Most unusual is our ability to express, and prove correct, the
use of complex sharing in the low-level representation. We
show using three real-world systems that data representation
synthesis leads to code that is simpler, correct by construction,
and comparable in performance to existing hand-written
code.
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