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Abstract 

Linear cryptanalysis and differential cryptanalysis are 
the most important methods of attack against block ci­
phers. Their efficiency have been demonstrated against 
several ciphers, including the Data Encryption Stan­
dard. We prove that both of them can be considered, 
improved and joined in a more general statistical frame­
work. We also show that the very same results as those 
obtained in the case of DES can be found without any 
linear analysis and we slightly improve them into an 
attack with theoretical complexity 242 ·9 . 

We can apply another statistical attack - the x2
-

cryptanalysis - on the same characteristics without a 
definite idea of what happens in the encryption process. 
It appears to be roughly as efficient as both differential 
and linear cryptanalysis. We propose a new heuristic 
method to find good characteristics. It has found an 
attack against DES absolutely equivalent to Matsui's 
one by following a distinct path. 

1 Introduction 

Since the proposal of the Data Encryption Standard by 
the U.S. government, the scientific community concen­
trated a significant part of its efforts on its cryptanalysis 
[1]. This well-known function encrypts a 64-bits plain­
text into a 64-bits ciphertext using a 56-bits secret key, 
so that the best attack is expected to have complexity 
256 (255 if we take into account the complementation 
property of DES as in [6]). 

A first significant result, obtained by Biham and 
Shamir, gave a general method for chosen plaintext at-
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tacks - the differential cryptanalysis [2, 3]. Using a 
deep analysis of the internal framework of the function, 
they try to control a correlated piece of information on 
several particular plaintexts and recover it by statisti­
cal attacks. The correlated piece of information used 
is simply a chosen bit-wise exclusive or difference be­
tween two texts. The main result of Biham and Shamir 
proves, using heuristic arguments, that it is possible to 
mount an attack with 247 chosen plaintexts. 

A second result gave also a general method, called 
linear cryptanalysis, for known plaintext attacks. It has 
been discovered by Matsui who proved that it is possi­
ble to implement an attack against DES with 243 known 
plaintexts [8]. Using another deep analysis of the func­
tion, this attack tries to trace a correlation between one 
bit of information on the plaintext and one bit of infor­
mation on the ciphertext. One more time, the informa­
tion is obtained linearly with respect to the exclusive 
or. 

Both methods are bottom-up approachs based on the 
concept of characteristic. This is a scenario of the prop­
agation of the correlated piece of information. It is as­
sociated to a probability, which has to be as biased as 
possible. The goal of the heuristic arguments consists in 
finding efficient characteristics, first analyzing the lin­
ear properties of the substitution boxes, then plugging 
them into one another in a such a way that a linear in­
formation is leaked throughout the encryption process. 
Once this analysis has led to an efficient characteristic, 
we only need to keep which information on the plaintext 
and the ciphertext is required for the upper level of the 
attack. 

The success of those methods have focused the atten­
tion on the linear properties ofthe boxes. In this paper, 
we try to prove that the linear properties are not so im­
portant. We propose another heuristic approach based 
on statistics. We show how to recover an attack similar 
to Matsui's one without any linear consideration. We 
also propose a top-down approach which unifies linear 
and differential cryptanalysis. We prove that a simple 
x2 test can get the similar results without knowing pre-
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cisely what happens (for instance on a black box which 
implements a secret encryption function). Those results 
have already partially been presented in [9}. 

Throughout this paper, we use the following nota­
tions: 

• k is a secret key in the domain K; 

• P is a plaintext in the domain P; 

• C is a ciphertext in the domain C; 

• Enck is an encryption function which maps P to C 
using key k; 

• x 1\ y denotes the bitwise and of the bit-strings x 
andy; 

• W(x) is the Hamming weight of the bit-string x; 

• x · y is the dot-product of x andy, that is the parity 
of W(x 1\ y); 

• !predicate is 1 if predicate is true, 0 otherwise. 

2 Heuristic using projection 

2.1 Transition matrix of a projected ci­
pher 

In the encryption process, intermediate results of the 
encryption function can be arbitrarily ignored and sup­
posed to be uniformly independent of the rest of the 
computation. We call this operation projection. Af­
ter projection, assuming that the removed inputs are 
random, each box becomes stochastic, transforming the 
leftover inputs into the remaining outputs. Thus, it is 
possible to compute the transition matrix of the pro­
jected boxes. 

For instance, if a and b are the masks of all remaining 
inputs and outputs of an S-box S (that is to say, that 
we only know the value x 1\ a from the input x, and that 
we are only interested in the value y 1\ b from the output 
y), we compute the matrix of all 

T;,j= Pr [S(X)I\b=jfXI\a=i}. 
X umform 

We use tools from tensorial algebra to compute the 
transition matrix of a network of S-boxes: the tran­
sition matrix of (x, y) ,_. (F(x), G(x)) is the tensorial 
product (also called the Kronecker product) of the tran­
sition matrix ofF and the transition matrix of G, and 
the transition matrix of F o G is the matrix-product of 
the transition matrices of F and G whenever the out­
put mask of G is the input mask of F. Assuming that 
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Figure 1: Feistel's scheme with 16 rounds 

Mi and M 0 are the masks of the remaining inputs and 
outputs of the whole encryption function, we obtain all 
values 

for all q possible values of x under the heuristic as­
sumption, depending on the key k. This forms the 
bias vector vk = ( v% 1

, v% 2
, ..• ) of the distribution of 

X = (P 1\ Mi, C 1\ M 0
) with respect to the uniform 

distribution. In the following sections, we consider a 
more general X of the form 

X= h3(h1(k), h2(P, C)) 

depending on a small piece of information h1 ( k) on k 
and a small piece of information h2 ( P, C) on the pair 
(P,C). 

2.2 Projection of DES 

DES is based on the Feistel scheme illustrated on Fi~;ure 
1. There are two 32-bits registers L and R modified at 
each round by a process which depends on a subkey k; 
depending on the master key k (see [1}). 

As an example, we ignore the same 27 bits of the left 
register of DES and the same 31 bits of the right one 
between the second and the fifteenth round (the reason 
why we use only the 14 middle rounds will appear in 
the next Sections). More precisely, for all masks mL 

and mR such that W(mL) = 5 and W(mR) = 1, we 



only keep the information (L; 1\ mL, R; 1\ mR) in each 
round, that is 6 bits of information. We computed the 
26 X 26 bias vector Vk ( ffi£, mR) of 

X = (L1Ro 1\ mLmR, LsR11\ mLmR)· 

Experiments shows that the norm i!Vk(mL, mR)Iiz 
which we call deviation does not depend significantly 
on k provided it is large. Thus, trying all the possi­
ble positions of the 6 bits kept, we have found the best 
choices of the bit positions the first of are: 

ffi£ ffiR logzi!Vk liz 
21040081,6 00008000,6 -25.580 
21040082,6 00008000,6 -25.583 
21040084,6 00008000,6 -25.583 
21040088,6 00008000,6 -25.583 
21040090,6 00008000,6 -25.583 
210400a016 00008000,6 -25.583 

0 0 0 0 0 0 0 0 0 

This shows that the best choices are exactly those which 
contain the pattern 

(for which log2 I!Vkll 2 = -24.583) that is the bits used 
in Matsui's attack [8]. Trying all the 4 and 2 positions 
achieved an analogous result. Trying all the 3 and 3 
positions did not provide any larger deviation. 

The best other choice which does not contain Matsui's 
characteristic is: 

for which log2 i!Vkll2 = -30.768. 

2.3 Information on the key leaked 

To see how much Vk(mL, mR) depends on k, we stud­
ied how many different vectors we get with different k. 
Linear cryptanalysis only consider a one-bit long value 
X. Thus, the bias vector Vk has the form ( -8, 8) and 
there are only two different vectors (:t=8, ±8), depending 
on one bit of information on k. Moreover, keys which 
produce the same bit of information are in the same 
affine space with codimension 1. 

More generally, when a characteristic defined by 
(mL, mR) contains c linear characteristics, the vector 
Vk(mL, mR) depends on c bits of information on k. 
Thus, there are 2° different vectors, and keys which 
produce the same one are in the same affine space with 
codimension c. To study the nature of the information 
on k which influences the vector, we compute all the 
affin~ spaces spanned by random keys which produce 
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the same vector. For instance, with the characteristic 
defined by 

for which log2 I!Vkll2 = -24.583 the experiment shows 
4 different vectors Vk(mL, mR)· Thus, the key space is 
partitioned into 4 classes, and we can prove that each 
class spans an affine space with codimension 2. We 
already know that Matsui's linear characteristic defines 
one bit of information on k which is computed linearly: 

Parity ( E9 k; 1\ oooooooo2ooooooo. EfJ 
iE {3,5, 7,9,11 ,13,15} 

EB k; 1\ o4oooooooooooooo.) . 
iE{4,8,12} 

We have found another bit of information which influ­
ences the vector: 

Parity ( E9 k; 1\ 04000000000000008 ) 

iE {2,4,6,8,10, 12, 14} 

Using Matsui's notations, those bits are respectively 

k3[22] EfJ k4[44] EfJ ks[22] EfJ k7[22] EfJ ks[44] EfJ kg[22] 
EEJku [22] EfJ k12[44] EfJ k13[22] EfJ k1s[22] 

and 

With the characteristic defined by 

mL = 0401010416 mR ::: 00c0000016 

we observed 16 different classes. We observed that keys 
in the same class spanned an affine space with codi­
mension 4. Thus, this characteristic uses 4 linear bits 
on k. 

3 Statistical cryptanalysis 

3.1 Model of the attack 

In the model of the attack1, the concept of characteristic 
defines three hash functions: 

• h1 : K ___.. C where C is a small space with cardi­
nality f (the aim of the cryptanalysis is to obtain 
probabilistic information on k' = h1 ( k)); 

1This model appears to be similar to Harpes's partitioning 
cryptanalysis [5]. 



• h2 : P x C ---> S where S is the sample space with 
cardinality s which only contains useful informa­
tion for the analysis; 

• h3 : .C x S ---> Q where Q is a space with cardinality 
q. 

For a random sampleS= h2 (P, C) coming from random 
P and C = Enck(P), we let X== h3 (k', S), k' = h1(k). 
Basically, X is a piece of information depending on the 
intermediate results in the encryption. For the purpose 
of the cryptanalysis, X should be both 

• computable with small pieces of information on 
(P, C) and k, namely Sand k', 

• and sufficiently biased for X = h2( k', S) (where 
k' = h1 ( k)) to be statistically distinguishable from 
the distribution of h2(K, S) commingfrom a wrong 
guess !{ :j: k'. 

The principle of the attack consists in seeking for the 
good k' which makes the distribution of all the observed 
X deviate significantly from a smooth distribution. In 
the example of DES, h3 is a mask over messages ob­
tained after the first round and before the last round, 
and h1 and h2 give the information required to compute 
it. 

We assume that we can use several independent sam­
ples S = h2 (P, C), given that P follows a given distri­
bution H in the domain P and such that C = Enck(P) 
with the unknown k. The attack is a known or chosen 
plaintext attack depending on whether H corresponds 
to an available real plaintext distribution or not. It 
may be a ciphertext only attack when S is computable 
from C. For all candidates ]{ to k' = h1(k), we can 
compute a candidate X = h3(I\", S) to h3(k', S). The 
main idea of the attack consists in assuming that we 
can distinguish ]{ == k' from ]{ :j: k' by a statistical 
measurement :E on the observed distribution. In most 
cases, for J( = k', this distribution will look less regular 
than for K :j: k'. The attack proceeds in four phases: 

• Counting Phase. Collect several random sam­
ples S; = h 2 (P;, C;), i = 1, ... , n. This consists in 
counting all occurrences of all the possible values 
of S in s counters. 

• Analysis Phase. For each of the P candidates J(, 

count all the occurrences in all X; = h3 (K, S;) and 
give it a mark Musing the statistic :E(X1 , ... , Xn)· 
Hereafter nx denotes (for a given K) the number 
of samples such that h3(K, S;) = x. 

• Sorting Phase. Sort all the candidates K using 
their marks Mx. 
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• Searching Phase. Exhaustively try all keys fol-
lowing 1;he sorted list of all the candidates. 

The space complexity is 0( s + P) since we need s coun­
ters for all 8 = h2 ( P, C) and P registers for all candi­
dates K. The time complexity is 0( n) for the Count­
ing Phase, O(sP) for the Analysis Phase and O(PlogP) 
for the Sorting Phase. The average complexity of the 
Searching Phase, which depends on the expected rank 
of the good candidate in the sorted list, will be dis­
cussed below. Typically, the bottleneck computations 
are the Counting Phase and the Searching Phase, and 
we need to study the trade-off between them: we need 
many samples to expect the good candidate to have a 
high rank, but not too many to be able to count them. 

3.2 Analysis of the attack 

We make several approximations which might be justi­
fied by heuristic arguments in concrete examples. We 
recall that H denotes the distribution of the random 
plaintext source. 

Approxima.tion 1. If /{ :j: h1 ( k), the distribution 

h3(K, H) of 

is a distribution D which does not depend on !{. 

Approximation2. If J( = h1 (k), the distribution of 
X is a distribution D' which is independent on D. 

Typically, D is the uniform distribution in the domain 
Q with cardinality q. We call deviation between D and 
D' the value 

""( Pr [X=x]- Pr [X=x])~' 
L...J XED' XED 

X 

The accurate analysis depends on the choice of the 
statistic :E, but we give here the outline of the analysis. 
We denote f-l and (J" (resp. 1-l' and (J"') the mean and the 
standard deviation of :E(X1 , ... , Xn) all X; following 
the distribution D (resp. D'). In the rest of this paper, 
we make another Approximation. 

Approximation3. We have (J":::::: (J"
1 and J.L 'Pft f-l1 • 

The mark MK of ]{ is defined to be 

Mx = :E(h3(K, St), ... , h3(K, Sn))- J.L 
(J" 

so, the standard deviation of any mark is 1, the expected 
mark of a wrong candidate is 0, and the expected mark 
of the good candidate is f = e';y which will be called 
the efficiency of the attack. In real applications, Ap­
proximation :3 may corresponds to a first order approx­
imation. 



2 
8% = 2-3.7 

Figure 2: Decreasing of the normal law 

Let 

<I>(t)= ~lt e-~dt. 
y27r -00 

be the normal distribution function. In the following, 
the sentence "the distribution of M is asymptotically 
normal" means that 

when the number of samples is large. 

Theorem 1. Under the Approximations and if the dis­
tribution of all MK are asymptotically normal, the av­
erage complexity of the Searching Phase tends to 

where N is the number of keys k. 

This will be practically approximated by N.<I> ( -E/;/2). 

Proof. The mark of the good candidate k' = h 1(k) with 
samples S1, ... , Sn is 

Mk' = L.(ha(k',St), ... ,ha(k',Sn)) -J.L 
(]" 

which is approximately normal, with mean f. and stan­
dard deviation 1. The mark of any wrong candidate 
K =f. ht(k) is 

MK = L.(ha(K, St), ... , ha(K, Sn))- J.l 
(]" 

which is approximately standardized and normal. Mk' 
and MK are independent by Approximation 2, so 
M •'--;; K- < is standardized and normal. Thus, the prob-

ability that the Mk' is less than MK is <I> ( -E/;/2). The 
rank of k' is 

so the expected rank of k' is 1 + (£ - 1).<I> ( -E/;/2) 
and the average complexity of the Searching Phase is 
obtained multiplying this by !f. D 

The decreasing of <I> ( -E/;/2) is illustrated on the table 
on Figure 2. 
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3.3 The use of several characteristics 

It is possible to use several characteristics C; (or the 
same one several times) with efficiency f.; for i = 1, ... , c 
using a trick analog to the one analyzed by Kaliski and 
Robshaw [7]. We get lists of several candidates so that 
each full key ]( have marks M}. We let 

(1) 

and we define the general mark 

We can do the exhaustive search following the general 
marks. It is easy to prove that the Theorem 1 remains 
valid if we replace f. by ( when all Mk are independent. 
Thus, it is possible to slightly improve the best known 
linear attack on DES collecting a huge number of less 
efficient characteristics. 

4 Differential approach 

For a given nonzero a, the statistic 'Ediff counts the num­
ber of sample pairs (X;, Xj) such that X; EB Xj = a: 

n 

'Editr(Xt, ... , Xn) = L 1x;$Xi=a = L nxny. 
i,j=l 

For vectors a coming from a differential characteristic, 
a heuristic analysis from Biham and Shamir enables to 
approximate (for i =f. j) 

Pr [X; EB Xi = a] - Pr [X; EB Xi = a] = 8. 
X;,XjED' X;,XjED 

Theorem 2. If D is uniform over Q, the efficiency of 
the attack using 'Ediff is 

f.~n q 8<n q (d2(D,D'))2. 
J2(q- 1) - J2(q- 1) 

Proof. We have J.l1 - J.l = n(n- 1)8 and 

(]"= 
Jn(n- 1)J2(q- 1) 

q 
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Figure 3: Matsui's characteristic 

so we get €. Using Cauchy-Schwarz's Inequality, we have 

where v'k is defined in Section 2. 0 

5 Linear approach 

5.1 Linear cryptanalysis 

For a given nonzero a, the statistic 1;lin counts the num­
ber of samples X; such that the dot product X; · a is 
zero: 

n 

1;lin = 2: 1x;·a=O = L nx. 
:i=1 x·a=O 

For vectors a coming from a linear characteristic, a 
heuristic analysis from Matsui enables to approximate 

Pr [X; ·a == 0] - Pr [X; ·a= 0] = 6. 
X;ED' X;ED 

Theorem 3. If D' is uniform over Q, the attack using 
Etin, which is asymptotically normal, is 

< = y'n.26 :S ..;nq.d2(D, D'). 

This Theorem will be proved in a more general form 
below. 
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5.2 Matsui's attack against DES 

As illustrated by Figure 3, Matsui's characteristic is de-
fined by 

k' ( k1 1\ 00000000770000008 ) 

k16 1\ 7700000000000000. 

s ( LoRa 1\ 010400800001f800,. ) LaRs 1\ f90400810000800~6 

X ( L1 1\ 01040080,. ) LsR1 1\ 210400800000800~6 

with the notations used in Section 2 and where L1 , 

L8 and R7 are computed from P = (La, Ro) and 
C = (Ls, Rs) using k [8]. It is easy to see that k' and S 
are sufficient to compute X. For reasons related to the 
structure of F, the masks on the subkeys are coded in 
octal while the masks on the message registers are coded 
in hexadecimal. We have£= 212 (this is the number of 
candidates K), s = 219 (number of possible samples S) 
and q = 28 . The bias is approximated by tricky heuris­
tic arguments to 161 = 1.19 x 2- 21 . Using n = 243 , we 
have c = 3.37. Therefore, using two such characteristics 
as Matsui did (that is using it together with its reversed 
characteristic obtained by exchanging the left, and the 
right masks), the global efficiency is given by the Equa­
tion (1) and the exhaustive search gets its complexity 
improved by a factor <I>( -3.37) = 2- 11 .4. The complex­
ity of the Searching Phase is evaluated to 244 ·6 . (Mat­
sui's experiment would have yielded complexity 243

, so 
Theorem 1 may be a little pessimistic, but we notice 
that the approximation c ~ ..;nqd2(D, D') = 3.78 yields 



Experiment 1 2 3 4 5 6 7 8 9 10 
Matsui's attack 1 280 1 2 59 10 12 35 1 4 
linear mark #1 1 46 1 2 205 48 8 58 2 4 
linear mark #2 1 46 1 2 204 81 11 59 2 4 
linear mark #3 1 100 1 2 205 48 8 60 2 6 
linear mark #4 1 100 1 2 206 80 11 57 2 6 
linear mark #5 1 45 1 2 103 79 8 58 2 4 
linear mark #6 1 44 1 2 104 48 11 58 2 6 
linear mark #7 1 101 1 2 104 48 11 57 2 6 
linear mark #8 1 100 1 2 103 80 8 57 2 4 
l::(linear marks) 2 1 68 1 2 140 57 10 55 2 6 
x2 attack 100 2221 516 197 435 1294 3667 2389 335 1320 

Figure 4: Experiment of attacks on 8-rounds DES 

complexity 242 ·38 .) 

5.3 Generalized linear test 

We can generalize Matsui's statistic by any linear one 
using suitable ax: 

n 

~glin = 2:::: a X; = 2:::: ax nx. 
i=1 X 

Theorem 4. ~glin is asymptotically normal. The best 
efficiency is obtained with ax = v'k. If D is uniform 
over Q, it is 

Proof. We have 

X 

and 

u = Vn "(ax- a) 2 Pr [X= x] 
L...,; XED 

X 

where a = L:x ax PrxED[X = x]. ~glin is asymptot­
ically normal, due to the central limit Theorem [4). 
Thus, we have 

The Theorem comes from Cauchy-Schwarz's Inequality 
in the particular case where PrxED[X = x] = t· 0 

The problem of using the best linear statistic is sim­
ilar to the problem of linear cryptanalysis, where we 
have to guess a vector a coming from a linear charac­
teristic. Here, we have to bet on the transition matrix 
to get all ax. If there are only few possible transition 

matrices, we use the sum of the squares of all the linear 
marks as a new statistic, which turns out to be almost 
as efficient as the best one. (The reason why we use the 
sum-of-squares is that the different marks are linearly 
dependent, so a linear mean would be suject to strange 
cancellations.) 

5.4 A slight improvement of Matsui's 
attack 

For Matsui's symmetrized characteristic which 1s de­
fined by 
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h1 (k) ( k1 1\ 00000000770000008 ) 
k16 1\ 77000000000000008 

h2(P, C) ( LoRo 1\ 210400800001f80~6 ) L8R8 1\ f904008100008000,6 

h3(k', S) ( L1Ro 1\ 2104008000008000,6 ) L8R1 1\ 2104008000008000,6 

we have s = 220
, 1!. = 212 and q = 210 . Using the 

heuristic with projections, the deviation has been ap­
proximated to d2(D, D') ~ 2- 24 ·58 . Hence, using 242 ·93 

known plaintext/ciphertext couples (instead of 243 ·00 , 

which is 5% larger), we obtain f = 3.69. With two 
such characteristics, the exhaustive search is improved 
by a factor <I>( -3.69) = 2- 1314 and the Searching 
Phase gets a complexity 242 ·86 • Since off-line exhaus­
tive search is cheaper than getting a new sample, we 
can afford 242 known plaintexts which gives f = 3.78 
then 256 .<!>( -3.78) = 247·93 : 242 known plaintexts en­
ables to find the key within a 248 average complexity. 

For eight-rounds DES, Matsui announced 1.49 x 217 

knwon plaintexts, but it was to get the same complexity 
than for sixteen-rounds DES in the exhaustive search, 
that is 243 . Here, we have d2 (D, D') ~ 2- 11. 86 , so, 
with 217 known plaintexts, we have f = 3.11 and the 



exhaustive search ha.s complexity 256 .<I>( -3.11) = 245 ·93 

with two characteristics. (With 218 known plaintexts, 
the same computation yields complexity 238 ·50 .) This 
attack has been implemented. 

Experiments show there are only eight kinds of bias 
vector VK. We use as a statistic the sum-of-the-squares 
of the eight marks obtained with the eight correspond­
ing linear statistics. With the only characteristic de­
fined in this Section, we have t' = 212 candidates and 
the rank of the good candidate in the sorted list should 
be l+f.<I>(-f/\1'2) on average. For n = 217 samples, we 
have f = 3.11 so the average rank should be 57.86. Ten 
random experiments yielded ranks illustrated on Figure 
4. We put ranks obtained by Matsui's mark, by each of 
the eight linear marks, by the sum-of-squares of the lin­
ear marks, and by the x2 mark we will present on next 
Section. This shows the use of the best linear statis­
tic slightly improves Matsui's attack. It also confirms 
that the x2 attack is a little less efficient than the other 
attacks, as we will prove. 

6 x2 cryptanalysis 

The deviation from the uniform distribution in a domain 
with cardinality q ca.n be tested using the x2 test [4]: 

Theorem 5. Under the hypothesis, the efficiency of the 
attack using ~x2 is 

Proof. For bad candidates, the statistic ~x2 tends to the 
x2 distribution with q- 1 degrees of freedom: 1-l = q- 1 
and u = J2(q- 1). When the degree of freedom is 
large, this distribution can be approximated by a nor­
mal one. 

Let 

( )

2 
I q n X 

~x2 =:;;: L nx- q- nvk 
X 

~~2 is a kind of x2 statistic such that 

E(~~2) =: q- 1- q(d2(D, D')) 2
. 

So, we have 

~x2 = ~~2 + 2d2(D, D') . .Jifii~glin- nq(d2(D, D'))2 

where ~glin is the best standardized linear test (i.e. with 
E(~glin) = 0 and up~glin) = 1). So, we have 

!-l1 = q- 1 + (n- 1)q(d2(D, D'))2 

which allows to compute E. 0 

146 

A straightforward consequence of this Theorem is that 
with the same characteristic and the same number a 
plaintext/ ciphertext couples, the x2 cryptanalysis is 
more efficient than the differential cryptanalysis (which 
is a quadratic statistic). 

Using this statistic, we do not need to have a pre­
cise idea of which information is leaked throughout E:nc, 
such as what would have been done in linear or differen­
tial cryptanalysis using a particular vector a. Here, we 
use a characteristic, and if there exists a powerful sub­
characteristic according to linear of differential crypt­
analysis, the x2 test is able to detect it and to use it to 
distinguish the good k'. 

For instance, we can try Matsui's symmetrized char­
acteristic with the x2 cryptanalysis. We have q = 210 

and d2(D, D') ~ 2- 24·58 • Using 246 ·2 known plain­
texts (9 times as Matsui does), we get f = 2.90. Here 
the x2 variable is approximately normal. So, using 
two such characteristics, we get the average complex­
ity 256 .<1>( -2.90) = 246 ·9 . 

7 Conclusion 

We have shown that differential and linear cryptanal­
ysis can be viewed in a more statistical approach. It 
is possible to join the efforts of several characteristics 
to improve them. Both attacks can be improved using 
an additional information, that is the vector of all vf. 
Conversely, with less knowledge about the characteristic 
(that is without the precise knowledge of which bits of 
the input and the output play a role and what happens 
in between), the x2 cryptanalysis performs an attack 
which is roughly as efficient. 

To prove that the linear aspects of differential or lin­
ear cryptanalysis are not unavoidable, we presented a 
new heuristic method which has produced the same at­
tack than Matsui's. This leads to new directions in 
cryptanalysis. We hope that this new approach and 
the experiments presented in this paper will motivate 
further investigations in the use of statistic experiments 
in cryptanalysis. 
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