

1

Automated User Interface Testing for Web
Applications and TestComplete

Samer Al-Zain

Faculty of Information
Technology, Birzeit University,

Palestine, P.O Box 977
Telephone number, +970

(972)22973359.

szain@birzeit.edu

 Derar Eleyan

Faculty of Information
Technology, Birzeit University,

Palestine, P.O Box 977
Telephone number, +970

(972)22973359.

deleyan@birzeit.edu

 Joy Garfield
School of Technology,

Wolverhampton University,
Wolverhampton, WV1 1SB.

Telephone number, +441902

321464.

j.garfield@wlv.ac.uk

ABSTRACT

Automating software testing is an important and time-saving

activity used by software testing teams working on rapid and large

scale software projects. TestComplete is an example of a current

widely used testing tool. However, its test recorder tool appears

to have some weaknesses when using GUI (Graphical User

Interface) test recording for dynamic web applications. After

recording a GUI test using TestComplete recorder, it fails to run

again later on because some of the onscreen objects cannot be

recognized by TestComplete. Since TestComplete recorder tool

generates tests in scripting languages, the test itself will be refined

and modified to be robust and much more accurate. This paper

presents an algorithm for writing robust and successful test scripts

for TestComplete against dynamic web applications. It also

presents a comparative study with the Web Performance Test tool

provided by Microsoft Visual Studio.

Keywords

Automated Testing, TestComplete, Web Application, ASP.NET,

Quality Assurance, Visual Studio

1. INTRODUCTION
Software is involved in every aspect of modern day life. Almost

everything used today has software embedded to run it. In fact,

software has the ability to connect, simplify, heal and entertain

humankind. Global problems, such as killer diseases, climate

change, overpopulation, worldwide financial meltdowns,

alternative energy…and many more problems cannot be solved

unless software is part of that solution [1].

Nowadays, in a typical workplace, everyone uses a computer and

software applications. Entire organizations are powered by

software systems, some of which are critical systems where

software errors are not acceptable. Since software systems are

developed by imperfect humans, failures and errors will always be

present. Such software systems need to be developed in a way that

reduces or eliminates defects and errors [2].

Software testers should take sufficient time to test software but

time is a luxury that software testers do not have. Modern

software development organizations dedicate special departments

and teams to verify the quality of their software products [3].

These departments are known as QA (Quality Assurance)

departments and have the responsibility of testing and improving

the quality work of the organization. As useful software is

complex to build, there is always a problem in building and

developing quality complex software on time, as argued by [4].

Indeed many software projects fail to deliver software on time.

Many of these projects, however, try to squeeze their development

time by reducing the time for software testing. The result is a

software product that is not well tested or verified because testing

teams did not take enough time and recourses to test and verify

the software product.

One of the difficulties with software testing is that customers want

more functionality to be delivered faster and cheaper, while at the

same time wanting software quality to meet and sometimes

exceed their expectations. According to [5], more functionality

means software will become larger and more complex. It also

means that testers will run more test cases. Put simply, more

software needs to be tested in less time and more often, by fewer

people.

In modern software development processes, such as agile

methods, software testing is not a separate phase that is carried out

at the end of the project. It is integrated through the whole

development process and starts at the early stages of a project.

Every sprint adds new functionality to the overall system.

Regression tests are key tests used by testers in such situations to

make sure that new builds do not break previously tested software

modules. However, doing manual system and regression tests is

not practical and they are considered to be time consuming

activities.

Having software to test software is called test automation.

Graphical User Interface (GUI) test automation is an important

part of software testing and provides software testers with early

warning signs when parts of the system have changed or been

broken. Time is saved because automated tests run faster than

human tests, giving the ability to be run at night. This gives

software testers time to write additional and creative test cases.

User interface automation testing can also free software testers

from routine or mundane tasks, which will increase as

development moves on and new parts and software modules are

built. Finally, automated tests provide safety nets through

regression tests, which are executed whenever a new build is

completed by the development team [6].

One of the premium automation testing tools, and most notable, is

TestComplete, a product by SmartBear [7][8]. TestComplete can

mailto:szain@birzeit.edu
mailto:deleyan@birzeit.edu
mailto:j.garfield@wlv.ac.uk

2

create, manage and run automated tests for any windows, web or

rich client software. By using TestComplete, test engineers can

perform several types of automated tests, such as functional

Graphical User Interface (GUI) tests, regression tests, load and

stress tests, unit tests and many more. Another reason for

choosing TestComplete is that it provides testers with the ability

to write test scripts from scratch using scripting language, such as

Java Script. This ability enables testers to write complex and

dynamic test scripts.

Among software systems, web applications are the dominant

class. Web applications support a wide range of activities from e-

commerce and medical to scientific activities. Recent reports and

studies indicate that web applications are not as dependable as

they should be [9]. For instance, one study shows that 29 out of 40

leading e-commerce web applications and 28 out of 41

government sites exhibited some type of functionality failure

[10][11].

This paper will introduce the problem with TestComplete 8.5

recorder tool when recording and playing back an automated GUI

test for dynamic web applications. After explaining the test

environment, TestComplete will be used to record a test against a

dynamic web application and show how it fails to play back again.

After that, a methodology based on writing automated tests using

TestComplete script language will be utilized to propose a robust

solution. The solution itself will be tested against the same

scenario and verified.

1.1 Problem Statement: Recorder Tool at

TestComplete

One of the many features that TestComplete encompasses is its

ability to easily create and run automated user interface tests,

using the record-and-reply feature tool. According to Top Reasons

to Try TestComplete [8], TestComplete gives the ability to review

and enhance tests by providing test script views for those tests. So,

every time a tester records a GUI test using a TestComplete

recorder tool, TestComplete generates a test script in a test script

language, such as JavaScript. This test generated test script can be

enhanced and modified by the tester to improve test quality.

However, recording and running tests with the TestComplete

recorder tool alone, appears to be weak when it comes to dynamic

web pages. Most tests recorded for dynamic web pages, fail to run

again later on, because the TestComplete engine cannot recognize

some of the onscreen objects, such as links, buttons, text fields,

etc. SmartBear acknowledges this problem, as argued in [12]. This

problem has actually been present since TestComplete 7.5 and is

still not solved in the current version of TestComplete 8.5, which

is the version used in this paper.

TestComplete support presents more than one solution for this

problem. These solutions can be found in the help section for

TestComplete or at the online help portal. These solutions are

based on enhancing or modifying the generated test scripts to

make testing more robust. In fact, writing tests using test script in

TestComplete provides wide access to APIs (Application

Programming Interfaces) for TestComplete itself. This results in

more robust and smarter tests.

These solutions provided by TestComplete support are presented

as partial solutions, however, there is no clear and complete

solution algorithm that developers can follow and implement.

TestComplete help provides partial code in scripting languages to

address finding onscreen objects but they do not provide complete

code or algorithm/s that testers can use or follow easily.

One of the main causes of the problem (TestComplete recorder

tool) is that numerous web applications are dynamic in nature, and

some of its content controls (onscreen objects) have properties to

change their values from one web page execution to another.

TestComplete fails to recognize web page onscreen objects, such

as buttons, links, text fields, etc., when they are recreated over and

over again after recording a test.

This is due to the fact that, at the time of recording the test,

TestComplete recognizes the web control through the values of a

set of their attributes. Those attribute values are saved and used

later to find page controls when replaying the test. If one attribute

for onscreen object changes its value, TestComplete will not

recognize it and the test will fail, as shown in later sections. When

the test is re-played and the tested web page is recreated,

TestComplete engine records different values for some of the

attributes for onscreen objects [12].

Another cause of the problem is that, during software

development, developers change the control hierarchy and page

internal structure by modifying the tables’ structure. When

developers change the underlying tables (by adding and removing

rows and columns), some of the attributes for onscreen objects

change their value, because TestComplete engine depends on the

page hierarchy to define some of the attributes’ values. This

causes TestComplete not to recognize the onscreen objects when

the test is re-run.

TestComplete also has a problem when it comes to waiting for

web pages to load. TestComplete should wait for the page to load

completely and then start to access its onscreen objects.

Apparently, this does not happen most times and, when some

pages take more time to load, TestComplete may start accessing

its onscreen controls even though they are not completely loaded.

This will cause an error and the test run will fail. This paper will

also address that problem.

1.2 Recording Tests for Dynamic Web Pages

using TestComplete

In this part, the TestComplete recorder tool will be put under test

against a dynamic web application to record test scenarios and

highlight the problem occurrence. TestComplete recorder will

record the test and later the same test will be played back by

TestComplete to show the problem.

1.2.1 Experiment Design

The web application under test is sample dynamic web application

software built using ASP.NET 3.5. The author will use

TestComplete 8.5 to record and run GUI test automation. All

pages of this application are created at run time. Some attributes

of those page controls change, because the pages are created from

XML files. When pages are recreated, TestComplete assigns

different values to some of the attributes for onscreen objects.

The application consists of login page, main page, person search

and detail pages. Upon successful login, the main page is loaded.

Using left menu links, it is possible to navigate to the person

search page. On this page there is a link to add a new person by

opening the person details page in another browser instance.

The rationale behind this web application is that it is dynamic in

terms of web page creation. These kinds of web applications are

3

very common and very few are of static nature and because of

this, onscreen objects (buttons, text boxes, lists, etc) attributes

change. Since TestComplete relies on these attributes when

finding onscreen objects, some tests fail when playing back

recorded tests.

The tested application is published on the testing environment that

consists of a separate workstation. Another workstation will host

TestComplete and will serve as a testing workstation for recording

and executing tests, and will be on the same LAN. Microsoft

Internet Explorer 8 is used as the default internet browser.

1.2.2 Using TestComplete to Record a Test Scenario

In this section, the tester will use TestComplete to record and play

the automated user interface test against the target web

application, showing how TestComplete fails to play the test

again.

The test scenario steps are as follows:

1. Initiate IE8.

2. Navigate to target web application login page.

3. Provide user name, password and click on login button.

4. Wait for main page to load.

5. Click on link “Person”, which is located on left menu, to

view person search page.

6. Click on “new” at person search page to view person

detail page.

7. At person detail page, tester will save basic person

record by entering required fields only.

8. Test scenario ends.

First, the tester created a new project using TestComplete. Using

the TestComplete recorder tool, the tester recorded the above

scenario. The recorded test was then played back. TestComplete

performed well in steps 1 – 4, but failed in step 5 and all

subsequent steps. This is because TestComplete could not find the

onscreen object “Person” link, so the whole test failed.

2. METHODOLOGY

The proposed solution for this paper is based on writing test

scripts and TestComplete APIs, not on the TestComplete recorder

tool. As shown above, the TestComplete recorder tool generated

test failed when run again by the tester. Using TestComplete, all

recorded UI automated tests can result in test scripts, and the

tester can choose from various language scripts such as Jscript,

VB, Delphi, etc. Consequently, the software tester can write

robust and smart test scripts, without relying on TestComplete test

recorder. Through these scripts, it is possible to access the APIs

which TestComplete provides, to write test scripts that can search

for web controls, using a minimum set of attributes that do not

change when the page is re-created. Not all web page control

attributes change. However TestComplete recorder does not know

this when recording the test. So the solution is that when writing

test scripts, the tester will only focus on attributes that will not

change, leaving out the ones that are likely to change.

The tester can discover the attributes that do not change their

values by investigating the properties of onscreen objects, using

TestComplete Object Browser and Object Finder tools. These

tools can show the attributes’ values for onscreen objects at any

time. If the software developer gave an “id” for the onscreen

object during development, TestComplete will identify it as

attribute named idStr, using the object browser tool. If attribute

idStr is present for that onscreen object, it can be considered to be

enough for identifying that onscreen object, and there would be no

need for other attributes. If idStr is not present, then the tester can

look for other attributes that are more likely to retain their values

from one run to another. Examples of these attributes are

innerText and ObjectType.

According to [13], TestComplete can use several models to

present the hierarchy of web page elements. These models define

how elements of tested web pages are shown in the Object

Browser panel and, more importantly, how they are addressed in

test scripts. The models are DOM (Document Object Model), Tree

and Tag. Tag model does not depend on element hierarchy, as

Tree model does. According to TestComplete documentation,

DOM is not recommended to be used when accessing web page

elements of the same type, as this will slow down performance.

In such cases (as in this paper) Tree or Tag models are

recommended instead.

Neither of the two models solves the problem of identifying

elements when their attributes value and/or hierarchy change. This

leaves the main problem, which is, after the test is recorded and an

attempt is made to run it again, TestComplete will not find the on-

screen objects because some of their attribute values have changed

due to the dynamic nature of the tested application.

3. SOLUTION ALGORITHM

The solution is based on writing test scripts instead of using the

TestComplete recorder tool. Solution code (shown in the

appendix), is based on using TestComplete test script APIs. All

functions used have complete specification documented at

TestComplete help online or in the help section at TestComplete

itself.

Prerequisites: adding IE to tested application for TestComplete,

and providing URL for startup page.

Solution steps (algorithm):

1. Initiate Internet Explorer. This happens only once at

beginning of test scenario.

2. Obtain IE process.

3. Navigate to target page URL.

4. Make sure that the IE process waits for page to load

completely.

5. Make sure that the target onscreen object is loaded

inside web page before accessing them.

6. Find onscreen object using attributes that do not change

from one run to another.

7. Access onscreen object by getting, setting, or

performing click events on it.

8. If actions result in opening page in another window,

search and wait for that page to load.

4

3.1 Solution as JavaScript Code

Steps 1, 2 and 3 are done through code listing 1:

Listing 1

Step 4 is done through code listing 2:

Listing 2

PageName: the page URL required.

WaitTime: time to make TestComplete wait for web page to load

in milliseconds.

After obtaining the web page, it is necessary to wait and make

sure that its target onscreen object is loaded and ready. When

searching for the onscreen object, certain attributes will be chosen

that do not change from one page run to another. The first choice

will be the idStr property, which represents that programmatic

name given by the developer. If for any reason the idStr is not

presented, the tester should look at the Object Browser tool and

look for other attributes that do not change. Several attributes can

be used to find onscreen objects. Step 5 can be achieved by code

listing 3:

Listing 3

If the onscreen object is still not loaded, and an attempt is made to

find it, TestComplete will make its Exists attribute to be false. So,

the tester should wait 0.1 second every time before trying to find it

again.

With reference to the Person link that TestComplete failed to find

when applying the test in the previous section (see figure 3), the

tester will search for it using different attributes. This is because

the Person link does not have an idStr attribute. Candidate

attributes and values are ObjectType=Link and innerText=Person.

These two attributes will be used to search for the link.

Here two arrays will be used, one for attributes and another for

attributes values. Find() method has an overloaded version that

accepts arrays as well, so steps 6 and 7 are in code listing 4:

Listing 4

The author also used the Object Finder and Object Browser tools

provided by TestComplete to find and select attributes and their

corresponding values.

A complete solution test script is provided in figure 5 in appendix

B. After TestComplete executed the solution test script, which is

written in Java Script, the execution was successful and the test

script ended successfully.

3.2 Comparative Study with Web

Performance Test Tool

Web performance tests (Web Tests) are available at Microsoft

Visual Studio and works at the protocol layer by issuing HTTP

requests. When a tester records a test scenario, the web test

records a series of HTTP requests and later, when performing a

play-back, the web test executes those HTTP requests in the same

order they were recorded.

Web tests can be used to test the functionality of web applications

as well as testing the application stress, which is also known as

load testing. Web tests automatically handle other aspects of

HTTP, such as hidden field correlation, redirects, dependent

requests and HTTPS/SSL.

Recording a web test in Visual Studio is relatively easy, and

begins by starting Internet Explorer with an additional panel that

represents the recorder tool itself. As the tester proceeds with the

test scenario, the web test records all HTTP requests. Web test is

most suitable when performing simple functional tests and when

testing availability and navigability of a web application. For

instance, a tester can easily create a web test that tests the

availability and links of all web pages for a web application.

However, web tests in Visual Studio do not provide the dynamic

and rich features provided by TestComplete. It is true that a tester

can create data-driven web tests and convert the recorded HTTP

requests in C# so as to add looping and branches: but the web test

is only based on recording HTTP requests. On the other hand,

TestComplete provides extensive flexibility that enables testers to

write test scripts that can access, evaluate and manipulate all kinds

of data and on-screen objects on a web page.

4. DISCUSSION

Automation testing for the GUI is important since many problems

only manifest themselves at the GUI. Also some back-end

changes in the code could have a considerable effect on GUI

functionality. However, automating the GUI is difficult because

the user interface changes frequently. For this reason automation

test scripts need to be simple, well designed and maintainable.

Relying only on the recorder tool in TestComplete to generate test

scripts can result in fragile scripts. These can break easily

whenever minor changes are made to the GUI. When testing

dynamic web pages, recorder-generated scripts fail to execute

almost every time.

On the other hand, writing robust and simple test scripts that

utilize the API of TestComplete, according to the proposed

solution algorithm, has proven to solve those problems. Testers

should build the test scripts based on modules and libraries that

consolidate common and generic code, ending with easy to

maintain scripts that can enable testers to keep pace with

development when the GUI is changed.

IEProcess = TestedApps.Items(0).Run();

TargetPage = IEProcess.WaitChild(PageName,

WaitTime)

control = TargetPage.Find(“idStr”, “*txtName”,

1000);

while(control.Exists == false){

 Delay(100);

 control = TargetPage.Find(“idStr”,

“*txtName”, 1000);}

arrProps = [“ObjectType”, “innerText”];

arrValues = [“Link”, “Person”];

personLink=TargetPage.Find(ConvertJScript

Array(arrProps),

ConvertJScriptArray(arrValues),1000);

personLink.Click();

5

The Web Test tool provided by Visual Studio does not provide the

needed flexibility when writing complex test scripts as provided

by TestComplete.

5. CONCLUSION

This paper has shown how the TestComplete recorder tool failed

to generate robust test scripts that can be played back without

failing when recording tests for web applications. The tester used

the TestComplete recorder tool to record a test against specific

test scenario for dynamic web applications. After recording the

test, it failed to later run back successfully, as some of the

onscreen objects could not be recognized by the TestComplete

engine. This paper also introduced a robust solution test script, run

by the tester against the same test scenario, which did not depend

on the TestComplete recorder tool. This solution proved to be

robust and TestComplete ran it without failing. The solution test

script addresses dynamic web pages where their onscreen objects

can change hierarchy and attributes from one page run to another.

Solution script also addresses slow loading web pages, by waiting

for onscreen page objects to load. Writing test scripts in this

pattern provides software testers with full control of their test case

and addresses complex automated test scenarios.

Automating manual GUI testing scenarios by test tools such as

TestComplete will definitely save testers from repetitive and time-

consuming tasks, giving them additional time to focus on writing

more creative test cases. In large software development projects,

where software is developed rapidly, testers have no choice but to

use test automation tools. However, automation test scripts for

GUI’s need to be flexible, maintainable and based on modules and

libraries for common code.

Rich Internet Applications are becoming more and more famous,

such as Microsoft Silverlight. TestComplete 8.5 is seen weak

when recording and executing automated tests against Silverlight

applications using its recorder tool, by which recorded tests fail to

sometimes run successfully. This is an important area that needs

to be resolved in future studies.

6. REFERENCES

[1] Whittaker, J. (2009) Exploratory Software Testing: Tips,

Tricks, Tours, and Techniques to Guide Test Design, Boston:

Addison Wesley.

[2] Desikan, S. & Ramesh G. (2006) Software Testing: Principles

and Practices, Pearson Education: India.

[3] Sommerville, I. (2004) Software Engineering, England:

Addison Wesley.

[4] Bruegge, B. & Dutoit, A. (2004) Object Oriented Software

Engineering, Using UML, Patterns, and Java, NJ: Prentice Hall.

[5] Dustin, E. & Garrett, T. & Gauf, B. (2009) Implementing

Automated Software Testing: How to Save Time and Lower Costs

While Raising Quality, Boston: Addison-Wesley Professional.

[6] McWherter, J. & Hall, B. (2009) Testing ASP.NET Web

Applications, Indiana: Wrox.

[7] Riley, M. (2010) DevProConnections. Available at:

http://www.devproconnections.com/article/software-

testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise

(Accessed 15 April 2011).

[8] SmartBear Software (2011) Top Reasons to Try TestComplete.

Available at:

http://www.automatedqa.com/products/testcomplete/top-reasons-

to-try/ (Accessed: 12 May 2011).

[9] Afroz, M. & Rani, L & Priyadarshini, N. (2011) ‘Web

Application - A Study on Comparing Software Testing Tools’,

International Journal of Computer Science and

Telecommunications, 2(3).

[10] Business Internet Group of San Francisco (2003) The Black

Friday Report on Web Application Integrity. Available at:

http://www.tealeaf.com/downloads/news/analyst_report/BIGSF_B

lackFridayReport.pdf. (Accessed: 9 May 2011).

[11] Business Internet Group of San Francisco (2003) The BIG-SF

Report on Government Web Application Integrity. Available at:

http://www.tealeaf.com/downloads/news/analyst_report/BIG-

SF_Report_Gov2003-05. (Accessed: 9 May 2011).

[12] SmartBear Software (2011) Testing Dynamic Web Pages.

Available at: http://smartbear.com/support/viewarticle/12725/

(Accessed 16 April 2011).

[13] SmartBear Software (2011) Web Tree Models. Available at

http://smartbear.com/support/viewarticle/12439/ (Accessed: 5

June 2011).

[14] Crispin, L. & Gregory, J. (2009) Agile Testing: A Practical

Guide for Testers and Agile Teams, Boston: Addison Wesley.

http://www.devproconnections.com/article/software-testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise
http://www.devproconnections.com/article/software-testing/Review-SmartBear-Software-s-TestComplete-8-Enterprise
http://www.automatedqa.com/products/testcomplete/top-reasons-to-try/
http://www.automatedqa.com/products/testcomplete/top-reasons-to-try/
http://www.tealeaf.com/downloads/news/analyst_report/BIGSF_BlackFridayReport.pdf
http://www.tealeaf.com/downloads/news/analyst_report/BIGSF_BlackFridayReport.pdf
http://www.tealeaf.com/downloads/news/analyst_report/BIG-SF_Report_Gov2003-05
http://www.tealeaf.com/downloads/news/analyst_report/BIG-SF_Report_Gov2003-05
http://smartbear.com/support/viewarticle/12725/
http://smartbear.com/support/viewarticle/12439/

