

Author address: M. Marzolla, S. Ferretti and G. D’Angelo, Università di Bologna, Dipartimento di Scienze
dell’Informazione, Mura Anteo Zamboni 7, I-40127 Bologna, Italy. Email: marzolla@cs.unibo.it (M. Marzolla);
sferrett@cs.unibo.it (S. Ferretti); g.dangelo@unibo.it (G. D’Angelo).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this
notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
©2010 ACM 1544-3574/2010/12-ARTX $10.00
DOI DOI: 10.1145/XXXXXX.XXXXXX. http://doi.acm.org/10.1145/ XXXXXX.XXXXXX

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Dynamic Resource Provisioning for Cloud-
Based Gaming Infrastructures

MORENO MARZOLLA, STEFANO FERRETTI, GABRIELE
D'ANGELO
Department of Computer Science, University of Bologna, Italy
__
Modern Massively Multiplayer Online Games (MMOGs) allow hundreds of thousands of players to interact with a
large, dynamic virtual world. Implementing a scalable MMOG service is challenging because the system is subject
to high workload variability, and nevertheless must always operate under very strict Quality of Service (QoS)
requirements. Traditionally, MMOG services are implemented as large dedicated IT infrastructures with aggressive
over-provisioning of resources in order to cope with the worst-case workload scenario. In this paper we address the
problem of building a large-scale, multi-tier MMOG service using resources provided by a Cloud computing
infrastructure. The Cloud paradigm allows customers to request as many resources as they need using a pay as you
go model. We harness this paradigm by proposing a dynamic provisioning algorithm which can resize the resource
pool of a MMOG service to adapt to workload variability and maintain a response time below a given threshold. We
use a Queueing Network performance model to quickly estimate the system response time for different
configurations. The performance model is used within a greedy algorithm to compute the minimum number of
servers to be allocated on each tier in order to satisfy the system response time constraint. Numerical experiments
are used to validate the effectiveness of the proposed approach.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]:Performance of Systems; K.6.2
[Management of Computing and Information Systems]: Installation Management—Pricing and resource
allocation; C.2.4 [Computer Communication Networks]: Distributed Systems—Distributed applications
General Terms: Algorithms, Performance
Additional Key Words and Phrases: Cloud Computing, Dynamic Scalability, Massively Multiplayer Online Games,
Performance Modeling

1. INTRODUCTION

Modern Massively Multiplayer Online Games (MMOGs) are large-scale distributed systems

serving millions of concurrent users which interact in real-time with a large, dynamic virtual

world. An important characteristic of online games is their strict performance requirements,

especially response time [Chen et al. 2006; Dick et al. 2005]: depending on the type of game,

the response time to ensure a responsive play may range from tens of milliseconds for First

Person Shooter action games, to a few seconds for Role-Playing games. MMOGs are usually

implemented as client-server architectures, where the server is responsible for maintaining

the global state of the virtual play field in response of users (clients) requests. Since the

ART#

gda
Formato
Please cite as:

Moreno Marzolla, Gabriele D'Angelo, Stefano Ferretti.
Dynamic Resource Provisioning for Cloud-based Gaming Infrastructures.
ACM Computers in Entertainment, vol. 10, issue 3, article 4 (December 2012),
ISSN: 1544-3574.

gda
Rettangolo

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

client-server network connection can easily become a significant source of latency, which

the game service providers can not control, MMOG services are often hosted on multiple,

geographically distributed datacenters, so that each user can be redirected to the “faster”

(i.e., best connected) one. Binding users to datacenters can be performed at run-time by

taking into consideration the measured end-to-end connection quality; when network

connections or datacenters become congested, users can be migrated to different servers.

Multiple datacenters also help to address scalability problems, because the virtual world can

be partitioned or replicated across the available servers [Cai et al. 2002; Palazzi et al. 2006].

Nevertheless, scalability problems still exist because the system is subject to high

variability of the workload: as the number of concurrent users increases, so does the system

response time. To keep the response time within appropriate levels, a resource overprovision

policy is often adopted, that is based on statically allocating enough resources to cope with

the worst case scenario. This policy is inefficient because it can lead to a largely suboptimal

utilization of the hosting environment resources. In fact, since the worst case scenario rarely

happens, a significant fraction of the allocated resources may remain unused at run time.

To support this claim, we have monitored the number of online users of the

RuneScape MMOG [Jagex Ltd. 2011]. RuneScape is a Fantasy MMOG where players can

travel across the fictional medieval realm of Gielinor. There is not a fixed storyline: players

can decide to combat against monsters, practice skills or interact competitively or

cooperatively with other players. From the technical point of view, the RuneScape client

code is written in Java and runs inside a browser. Players connect to servers which are

located in different world regions to reduce the communication latency.

We collected the total number of online players as displayed on the

http://www.runescape.com/ Web page using a sampling period of two minutes, during the

period May—October 2011. Fig. 1 shows a subset of the data1, from May 5 to May 10, 2011.

A daily pattern is clearly visible; during peak hours, more than 200.000 players are

connected to the system (the load is split across the regional servers), while about 110.000

players are active during off-peak hours. Hence, the daily churn (number of players

leaving/joining the system during the day) is about 100.000 users. For the dataset shown in

Fig. 1 the maximum number of online players is about 230.000 and the minimum is about

130.000. In this scenario, statical resource provisioning based on the average load results in

system overloaded roughly half the time; provisioning for the worst case results in a massive

resource underutilization.

1 The full dataset is available at http://pads.cs.unibo.it/

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 1. Number of simultaneous RuneScape players during the period May 5–May 10, 2011

In recent years, the Cloud computing paradigm has emerged as an affordable way to cope

with scalability issues. Specifically, Cloud computing allows customers to “rent” computing

and storage resources, and only pay for what they actually use. Many Cloud providers

employ the utility computing model, where computing, storage or application resources are

billed like regular utility services (such as electricity).

Cloud computing can be very helpful in deploying large-scale MMOG services, for

at least two reasons: (i) game service providers do not have to provision for peak load limits,

and (ii) the MMOG service can be augmented to request more resources during peak

periods, and release them when no longer needed.

In this paper we propose a dynamic resource provisioning strategy for large-scale

MMOG services implemented on top of Cloud infrastructures providing resources using the

Infrastructure as a Service (IaaS) model. An IaaS Cloud provides low level computing and

storage capabilities where the customer can run arbitrary software, including Operating

Systems and applications [Zhang et al., 2010]. IaaS Clouds make heavy use of virtualization

techniques in order to fragment and allocate physical resources to customers. For example,

computing power is usually provided as Virtual Machine (VM) instances executing on some

physical server. The same physical server can host multiple VM instances, each instance

exposing part of the capabilities of the server. Virtualization allows Cloud providers to offer

a set of homogeneous (virtual) resources, characterized by a choice of key parameters (CPU

speed, memory size and so on) among which customers can choose. The underlying physical

infrastructure, can be made of heterogeneous resources, is not directly exposed to the clients.

We consider a large scale gaming service built over multiple, geographically

distributed datacenters, each one providing resources on demand using Cloud infrastructures.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Each datacenter hosts a three-tier system, which handles one partition of the virtual world.

The goal is to ensure that the system response time R at each datacenter is kept below a pre-

defined threshold Rmax. As already observed, the value of Rmax depends on the kind of game:

action games, where fast interaction between players and the environment is essential,

require very low response times (tens of milliseconds); strategy games, on the other hand,

can deliver a satisfactory game play with response times of the order of a few seconds.

Therefore, the game operator defines the value for Rmax that provides the best experience to

its users [Palazzi et al. 2006].

Thanks to the underlying Cloud, it is possible to add (remove) computing nodes to

(from) any tier. Hence, we satisfy the response time constraint by dynamically adding or

removing server instances where necessary. From the point of view of the game service

provider, the cost of a datacenter depends on the number of nodes allocated there. We thus

aim at minimizing the total cost of a datacenter by minimizing the number of allocated nodes

such that the response time satisfies the constraint R < Rmax.

We assume that the MMOG service is capable of transparently reconfiguring itself

when the resource pool of each datacenter is altered. We also assume that only one

datacenter is in charge of handling a given region of the virtual world in a specific game

session. This is actually what happens in many real implementations of MMOGs [Jagex Ltd.

2011]. A consequence of such an approach is that, for instance, most issues related to the

consistency management of the game state can be easily handled. In general, this does not

hold when multiple servers working on the same virtual region of the same game session are

geographically distributed. In fact, in this case other factors might influence the level of

provided responsiveness, e.g. the synchronization algorithm, the distribution of clients

connected to distributed servers [Mauve et al. 2004; Palazzi et al. 2006].

To achieve the goal above, we enhance the gaming service hosted in each Cloud

with two additional components, called monitor and planner. The monitor is a passive

observer which collects run-time performance metrics; in particular, the monitor measures

the current system response time R, and triggers the planner when the response time deviates

from the threshold Rmax. The planner is responsible for computing the optimal (minimum)

number of nodes to allocate at each tier so that the response time is maintained below the

threshold.

Since the planner must operate at run-time, it is extremely important that a new

configuration is computed quickly. To do so, we use a greedy strategy in which one node is

added (or removed) at a time from a suitably chosen tier. The planner uses a Queueing

Network (QN) performance model to identify the tier to alter, and to estimate the system

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

response time after each change; the parameters needed to analyze the performance model

are those collected by the monitor. Thanks to the QN model, the planner can efficiently

compute complex reconfiguration changes which involve the addition or removal of multiple

nodes from different tiers. In fact it is well known that adding more servers to the bottleneck

tier only is not guaranteed to improve the overall system performance, as the bottleneck may

shift to other tiers.

This paper is structured as follows. In Section 2 we compare our approach with the

relevant literature. In Section 3 we describe the high-level architecture of the MMOG

services we consider, and precisely formulate the dynamic provisioning problem as an

optimization problem. Section 4 describes our proposed dynamic reconfiguration algorithm.

The effectiveness of the solution is evaluated in Section 5 by means of numerical

experiments. Finally, conclusions and future research directions are illustrated in Section 6.

2. RELATED WORKS

Despite the fact that Cloud computing in general is an active research topic, to the best of our

knowledge, the problem of QoS provision in Cloud computing environments is only recently

receiving attention. In this section we briefly review a few papers on this topic that show

some analogy with our approach to development of QoS-aware Cloud-based applications.

Two kind of approaches have been considered in the literature: model based and

measurement based. Model based solutions use performance models to drive the adaptation

step. In [Li et al. 2009] the authors describe a method for achieving resource optimization at

run time by using performance models in the development and deployment of the

applications running in the Cloud. Their approach is based on a Layered Queueing Network

(LQN) performance model, that predicts the effect of simultaneous changes (such as

resource allocation/deallocation) to many decision variables (throughputs, mean service

delays, etc.). In [Ranjan et al. 2002] the authors consider an approximation of a multi-tier

architecture as a G/G/N queueing center with general interarrival time, general service time

distribution and N identical servers, under heavy load. In [Urgaonkar et al. 2008] a general,

k-tier system is modeled as a chain of G/G/1 queueing centers. We also mention a recent

work which addresses the same topic considered here, that is, dynamic resource provisioning

in MMOG infrastructures. In [Nae et al. 2010] the authors first introduce a combined

processor, network and memory load model specifically tailored to MMOG architectures,

which is used together with a neural-network based predictor in order to anticipate

fluctuations without the need to accurately monitor them in real-time.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Our approach differs from those mentioned above because it is not limited to

MMOG systems, but can be easily applied also to generic multi-tier services with an

arbitrary number of tiers (see Section 6 for details).

As to measurement-based approaches, they basically consist in periodically

monitoring the QoS provided by the cloud and react to its performances by tuning the

amount of resources exploited for hosting the service. For instance, in [Ferretti et al. 2010] a

reconfiguration approach is exploited that dynamically adds/releases resources devoted to

support a given service, based on the amount of SLA violations that occur during the service

utilization, in order to avoid that the rate of these violations surpasses a predetermined

threshold. The work proposed in this paper copes with the same mentioned problem.

However, our solution is based on a novel and different approach with respect to [Ferretti et

al. 2010]. In fact, in the former the authors consider a single-tier service and propose a

purely reactive system in which a reconfiguration is triggered based on the experienced QoS

violations. On the other hand, in this paper we consider a multi-tier MMOG architecture for

which identifying a new configuration which satisfies the QoS constraint is more

challenging. The reason is that in multi-tiered applications it is necessary to identify both the

tier(s) from which resources should added/removed, and also compute how many resource

instances to add/remove. To this aim, we propose a model-based approach based on a simple

heuristic which uses a Queueing Network performance model to quickly estimate the system

response time for different configurations.

Other works focus mostly on issues related to the definition and monitoring of the

SLAs in a Cloud computing environment and do not address issues of QoS enforcement and

resource optimization. In [Spillner and Schill 2009] the authors present a methodology for

adding or adjusting the values of non-functional properties in service descriptions depending

on the service run time behavior, and then dynamically deriving adjusted SLA template

constraints. In contrast, in our proposal the SLA constraint is given, and the service must be

modified at run-time to provide the necessary QoS level. Issues related to the SLA

monitoring are presented in [Korn et al. 2009]. In that paper the authors introduce the notion

of Service Level Management Authority (SLMA), a third independent party that monitors

the SLA and facilitates the interaction between the Cloud vendor and the end customer. This

approach differs from ours as in the solution we propose the monitoring facilities are

implemented by a component of our middleware platform rather than by an external entity.

(However it is worth noticing that due to the modularity of our architecture, one could

investigate the possibility of integrating a SLMA in our solution).

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 2. High level architecture of a distributed, Cloud-based gaming infrastructure

3. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a large-scale distributed infrastructure to support MMOGs as shown in Fig. 2.

The system has three types of actors: (i) users (game players), which interact with a virtual

world by controlling software avatars; (ii) the MMOG service, which is responsible for

maintaining the game state and executing all necessary interactions between players and the

virtual world, and (iii) the resource provider, which is responsible for providing

computational and storage resources on demand to the operator of the MMOG service.

The MMOG service maintains state information about a single virtual universe, or

metaverse. In order to ensure scalability, many existing MMOG implementations partition

the metaverse across multiple servers [Kumar et al. 2008]. As the size and complexity of

game increase, it is reasonable to split the metaverse across multiple datacenters, each one

handling a partition. We assume that the virtual playfield is partitioned into non-overlapping

(or only partially overlapping) zones [Cai et al. 2002]. Human players control virtual avatars

which move and interact inside a zone; avatars are not bound to a single zone, but can move

freely over the whole virtual world.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

The MMOG service operator maintains the state of each zone through a zone

controller, which is a software component responsible for handling all interactions between

players and/or the virtual world inside a single zone. To enhance scalability and distribute

the workload, each zone is handled by a separate hardware infrastructure hosted on different

datacenters. Given that communication between datacenters may incur significant delays, it

is important that interactions across neighboring zones is minimized. For example, each

partition may hold a collection of “islands” such that all interactions happen within the

collection, while players can jump from one “island” to another (possibly joining a new

server on a different datacenter). We assume that the MMOG service makes crossing a

partition (zone) a seamless operation.

Depending on the (virtual) mobility pattern of each player, some areas of the

metaverse may become crowded, while others may become less populated. In order to cope

with this variability, each zone controller is hosted on resources provided and operated by a

IaaS Cloud infrastructure. The Cloud provider is in general a separate entity that rents

computational and storage resources to the customers on a pay-as-you go model [Zhang et

al. 2010]. This means that the game operator can request additional servers and/or storage

space at any time, and release them when no longer needed. Thus, the game operator can

request more resources when the workload on a zone increases, in order to keep the response

time perceived by players below a predefined maximum value. When the workload

decreases, the game operator can release surplus resources in order to reduce costs.

We now describe in detail the structure of a zone controller. We consider the multi-

tier architecture described in [Hsiao and Yuan 2005], which is shown in Fig. 3. The firewall

represents the entry point and allows traffic filtering. The first layer contains a set of

gateways, which are responsible for handling basic gaming protocol checking and

verification. The cell servers are responsible for managing the virtual world and its

evolution; each server controls a small area inside the virtual zone assigned to the

corresponding datacenter. Finally, the database servers are used to store persistent game

state information. Load balancers are used to evenly distribute requests among servers

across layers.

It is reasonable to expect that all servers within the same layer are homogeneous,

i.e., have approximately the same configuration (CPU, memory, disk) and the same

performance. While our dynamic reconfiguration algorithm could be extended to cope with

non homogeneous layers, this scenario would be of little practical interest within this

context, since sophisticated load balancing techniques would be required to distribute the

load in such a way that slower machines do not become bottlenecks. Besides, as observed in

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Section 1, Cloud providers allow customers to request server instances with specific

characteristics (CPU speed, number of cores, memory size, disk space), and hence the

homogeneity assumption is the norm rather than the exception. Of course, we allow different

layers to require different server configurations; for example, the DB servers layer may

require servers with larger and faster disks to sustain a larger I/O rate.

Fig. 3. Multi-tier architecture of the MMOG server hosted by a single datacenter

As observed above, the MMOG service is subject to workload variability because

game players can join and leave the system at any time, and can migrate from one zone to

another. In this paper we address the problem of ensuring that the average response time

experienced by a player does not exceed some pre-defined maximum value. To solve this

problem we propose a model-based algorithm for dynamic reconfiguration of the MMOG

service; our algorithm uses a simple QN model to identify the bottleneck tier(s), and

compute the number of servers to add/remove. The reconfiguration algorithm is executed by

each zone controller independently from each other.

Formally, the system configuration C is defined as a vector with three elements C =

(C1 , C2 , C3) where Ci represents the number of hosts allocated to tier i = 1, 2, 3. Thus, C1 is

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

the number of gateways, C2 the number of cell servers and C3 the number of DB servers

which are currently instantiated. The aim of the reconfiguration algorithm is to compute the

configuration C with minimum total number of servers such that the (estimated) system

response time is less than Rmax. Formally, we aim at solving the following optimization

problem:

 minimize (C1 + C2 + C3) (1)

 subject to R(C) < Rmax

 C = (C1 , C2 , C3)

 Ci ∈ {1, 2, … }, i = 1, 2, 3

where R(C) is the estimated system response time with configuration C = (C1 , C2 , C3). In

general, R(C) does not depend on the configuration C only, but also on other parameters, as

will be discussed in the next section.

Since the total number of hosts allocated at each Cloud datacenter is proportional to

the total cost of the resources provided by that datacenter, by reducing the total number of

hosts we also reduce the cost of the MMOG infrastructure.

4. RECONFIGURATION ALGORITHM

In this section we describe the details of the reconfiguration algorithm. We enhance the

gaming service shown in Fig. 3 with two additional components, called monitor and planner.

Each datacenter has its own monitor and planner, and each datacenter executes the

autonomic reconfiguration algorithm described in the following, independently from the

others.

The monitor is a passive observer which collects run-time performance metrics; in

particular, the monitor measures the system response time R. When R deviates from Rmax ,

the monitor triggers the planner, which computes the optimal (minimum) number of nodes to

allocate at each tier so that the response time is maintained below the threshold. The new

configuration is computed by finding an approximate solution to the optimization problem

(1).

Since the planner must operate at run-time, it is extremely important that a new

configuration is computed quickly. To do so, we use a greedy strategy in which one node is

added (or removed) at a time from a suitably chosen tier. In general, it might be necessary to

add (or remove) multiple hosts from different tiers with a single reconfiguration step;

furthermore, the identification of a new configuration must be done efficiently in order to

quickly adapt to the workload fluctuations. This rules out the simple solution in which hosts

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

are added or removed by trial and errors, and the impact of each new configuration is

directly measured on the running system.

The planner uses a QN performance model to identify the tier to alter, and to

estimate the system response time after each change; the parameters needed to analyze the

performance model are those collected by the monitor. Thanks to the QN model, the planner

can efficiently compute complex reconfiguration changes which involve the addition or

removal of multiple nodes from different tiers.

4.1. The Monitor

The monitor is a passive observer which collects run-time statistics on a single datacenter.

Specifically, the monitor collects the following parameters:

− The average system response time R;

− The average system throughput X (rate at which requests, i.e., game events

generated by clients connected to that node, are processed);

− The tier utilizations U = (U1 , U2 , U3), where Ui is the utilization of tier i.

Since these parameters may be subject to high variability, it is necessary to apply

suitable smoothing functions to the raw data before they can be actually used. A simple

approach is to collect multiple samples, and compute a moving average over a time window

of length W. For a comprehensive treatment of the state change detection problem see

[Gustafsson 2000].

The system administrators must define two additional thresholds: Rlow and Rhigh ,

such that Rlow < Rhigh < Rmax . The monitor checks whether the average response time R

computed over the last time window is less than Rlow or greater than Rhigh . In either case, the

planner is invoked. If R < Rlow the planner tries to deallocate resources from under-utilized

tiers; if R > Rhigh the planner adds resources to the bottleneck tiers in order to reduce the

system response time before it hits the threshold Rmax (details will be given in the next

section).

The values of Rlow , Rhigh and W are in general system- and application-dependent,

and impact both the frequency of reconfiguration and the sensitivity of the reconfiguration

algorithm. If Rlow is small, over provisioning may happen, because unused resources are

relinquished only when R < Rlow , which may rarely happen. Similarly, if Rhigh is large,

violations of the “hard” response time limit Rmax may happen before the system has the

opportunity to react. Finally, low values of W imply that the system can react quickly to

surges in the number of concurrent users, at the cost of increasing the frequency of

reconfigurations and thus increasing the overhead of the adaptation process. As a rule of

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

thumb, we empirically found that setting Rhigh = 0.9Rmax and Rlow = 0.8Rmax is a

reasonable setting; the value of W should be chosen according with the workload fluctuation

speed. For services which exhibit the daily pattern typical of human activities with a period

of approximately 24 hours, values of W in the range 5—20 minutes are appropriate.

The control loop just described is shown in Algorithm 1. The system administrator

must choose an initial configuration C (line 1), after which an infinite loop is used to collect

monitoring data and reconfigure the system when necessary. The functions Acquire and

Release are provided by the planner component, and will be described in the next section.

ALGORITHM 1: QoS-Aware Reconfiguration Algorithm
Require: Rlow < Rhigh < Rmax: Thresholds
1: Let C be the initial configuration
2: loop
3: Monitor the system and compute R; X; U
4: C' := C
5: if (R > Rhigh) then
6: C' := Acquire(C; U; X; R)
7: else if (R < Rlow) then
8: C' := Release(C; U; X; R)
9: end if
10: if a new configuration C' ≠ C has been found then
11: Apply the new configuration C' to the system
12: C := C'
13: end if
14: end loop

4.2. The Planner

The planner is responsible for identifying a new configuration C = (C1 , C2 , C3) as a solution

of the optimization problem 1. The planner uses a QN performance model to estimate the

system response time of different configurations.

A datacenter is modeled using the single-class, product-form closed QN shown in

Fig. 4. For any configuration C = (C1 , C2 , C3), the model has (C1 + C2 + C3) service centers

organized in three tiers with C1 , C2 and C3 servers each, respectively. A fixed population of

N requests continuously circulate in the system, N being the total number of players

currently connected to the system. We allow the value of N to change over time, as users join

and leave the system.

Each server is approximated as a -/G/1—PS center with general service time and

Processor Sharing (PS) service discipline. The only requirement on the service time

distribution is that it must have rational Laplace transform; this requirement is not very

restrictive, since it includes all distributions which can be expressed as a network of

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

exponential stages; exponential, hyperexponential and hypoexponential service time

distributions all have rational Laplace transform. The PS service discipline closely

approximates the scheduling policies of actual servers, where requests are processed in

round-robin fashion each receiving service for a small quantum of time. Under these

assumptions, the QN belongs to the class of BCMP networks which have product-form

solution [Baskett et al. 1975, Balsamo 2000], which basically means that average

performance measures (response times, utilizations and so on) can be computed efficiently.

This is important because the model must be analyzed at run-time, so we favor

computational efficiency over model accuracy. Also consider that precise performance

estimations not only require an accurate model, but also detailed and accurate model

parameters which can be acquired only with an invasive and time-consuming monitoring

activity.

We assume that the workload can be balanced across the servers of the same tier,

such that all nodes have, on average, approximately equal utilization. We remark that this

assumption is not strictly necessary, since the QN model can be analyzed with arbitrary

parameters. However, our dynamic scalability algorithm relies on the assumption that the

load on the bottleneck tier can be reduced by spreading the requests over a larger number of

servers. This requirement is not strict, that is, we allow unbalance to happen; however, it is

reasonable to assume that on average all servers on the same tier have similar utilization.

This is in fact the case for existing MMOGs based on a multi-tiered architecture [Cai et al.

2002, Hsiao and Yuan 2005]. If the MMOG service is unable to spread the load evenly, then

“hot spots” may arise and the system will eventually hit scalability limits no matter how

many resources are allocated.

To analyze the network of Fig. 4, the following additional parameters are needed:

(i) an estimation of the number N of requests currently in the system, and (ii) the aggregate

service demand at each tier.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 4. Queueing Model of a datacenter

The number of concurrent requests N (which can be seen as the number of active

players that periodically generate game events during the game evolution) can be computed

from the measured system response time R and throughput X using Little’s Law [Little 1961]

as:

 N = X R (2)

The service demand Di of tier i is the cumulative time spent by a request in any

server of tier i. According to the Utilization Law [Lazowska et al. 1984], the service demand

on an individual server of tier i can be expressed as Ui / X. If the utilization and throughput

were measured when the system configuration was C = (C1 , C2 , C3), then the total service

demand at tier i is

 Di = Ci × Ui / X, i = 1, 2, 3 (3)

Table I summarizes all symbols used in this paper.

Table I. Symbols used in this paper

R Measured system response time

X Measured system throughput

Ui Measured utilization of tier i

Rmax Maximum allowed response time

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Rhigh Upper response time limit

Rlow Lower response time limit

N Number of users online

Ci Number of nodes at tier i

Di Estimated Total service demand of tier i

Ui Estimated average utilization of nodes at tier

ALGORITHM 2: MVA(C;D;N) →→→→ 〈〈〈〈U;R〉〉〉〉
Require: C configuration to analyze
Require: D = (D1;D2;D3) total service demands of tiers
Require: N number of active users
Ensure: U = (U1;U2;U3) estimated utilization of tiers
Ensure: R estimated system response time
1: for k := 1 to 3 do
2: Qk := 0 {Mean queue length at any tier k server}
3: end for
4: for n := 1 to N do
5: for k := 1 to 3 do
6: Rk := Dk(1 + Qk)
7: end for

8: ∑ =
= 3

1k kks CRR {System response time}

9: Xs := n / Rs {System Throughput}
10: for k := 1 to 3 do
11: Qk := Xs × Rk
12: end for
13: end for
14: for k := 1 to 3 do
15: Uk := Xs × Dk
16: end for
17: Return 〈〈〈〈U;R〉〉〉〉

For product-form QNs, the Mean Value Analysis (MVA) algorithm [Reiser and

Lavenberg 1980] can be used to compute individual device utilizations and system response

time on a closed network with n requests given the average queue lengths with n−1 requests.

Thus, starting from an empty network, MVA computes solutions for populations 1, 2, ... , N .

A closed network with N requests and K queueing centers can be analyzed using the general

MVA algorithm in time O(N K). However, since all servers in each tier are equivalent, the

network of Fig. 4 can be analyzed in time O(N) using the specialized MVA implementation

of Algorithm 2.

If we are not interested in exact performance values, it is possible to compute upper

and lower asymptotic bounds on the system throughput and response time using the

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Balanced System Bounds (BSB) algorithm [Zahorjan et al. 1982]. The computational

complexity is greatly reduced, as the network of Fig. 4 can be analyzed in time O(1)

(independent from the number of requests N). It has already been observed [Marzolla and

Mirandola 2010] that for dynamic reconfiguration applications, the MVA algorithm only

provides marginal advantages over the simpler and more computationally efficient

computation of BSB. Therefore, we will estimate the system response time as the average

value of the upper and lower bounds provided by the BSB algorithm.

ALGORITHM 3: BSB(C;D;N) →→→→ 〈〈〈〈U;R〉〉〉〉
Require: C configuration to analyze
Require: D = (D1;D2;D3) total service demands of tiers
Require: N number of active users
Ensure: U = (U1;U2;U3) estimated utilization of tiers
Ensure: R estimated system response time
1: Dmax := max{D1 /C1; D2/C2; D3/C3} {Maximum demand of a server}
2: Dtot := (D1 + D2 + D3) {Total service demand on all servers}
3: Dave := Dtot /(C1 + C2 + C3) {Average service demand of a server}
4: X- := N / (Dtot + (N - 1) × Dmax) {Lower bound on system throughput}
5: X+ := min {1 / Dmax;N / (Dtot + (N - 1) × Dave)} {Upper bound on system throughput}
6: R- := max {N × Dmax; Dtot + (N - 1) × Dave} {Lower bound on system response time}
7: R+ := Dtot + (N - 1) × Dmax {Lower bound on system response time}
8: X := (X+ + X-) / 2 {Estimated system throughput}
9: R := (R+ + R-) / 2 {Estimated system response time}
10: for i := 1 to 3 do
11: Ui := X × Di
12: end for
13: Return 〈〈〈〈U;R〉〉〉〉

Algorithm 3 computes upper and lower bounds on the system throughput (X+ and X-

respectively) and upper and lower bounds on the system response time (R+ and R−

respectively). The response time R is then estimated as the average value of the upper and

lower bounds (R+ + R−) / 2 (line 9). The parameter D = (D1 , D2 , D3) represents the total

service demand vector of tiers 1–3 as computed using Eq. (3), using the measurements

performed by the monitor.

Acquiring new resources. When the measured response time R is greater than Rhigh, we

need to allocate new resources to improve the system responsiveness. Let C be the current

configuration at the time the planner is invoked. The new configuration C' is computed by

the procedure Acquire() shown in Algorithm 4. The procedure uses a simple greedy strategy

to iteratively define C' starting from C. At each iteration, the QN model is used to estimate

the utilization of all tiers, and the system response time (line 5). The bottleneck tier b ∈ {1,

2, 3} is identified as the tier whose nodes have higher utilization (line 7). Then, a single host

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

is added to the bottleneck tier (line 8). These steps are repeated until the estimated response

time is less than (Rhigh + Rlow) / 2; at that point, the configuration C' becomes the new system

configuration: new hosts are allocated from the Cloud service, and all tiers of the MMOG

server are reconfigured accordingly.

ALGORITHM 4: Acquire(C; U; X ; R) →→→→ C'
Require: C Current system configuration
Require: U Measured utilizations
Require: X ; R Measured system throughput and response time
Ensure: C' New system configuration
1: C' := C
2: Compute N using Eq. (2)
3: Compute D = (D1;D2;D3) using Eq. (3)
4: repeat
5: 〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N) {Evaluate configuration C' }
6: if (R ≥ (Rhigh + Rlow) / 2) then
7: Let b the tier with highest utilization Ub
8: C'b := C'b + 1
9: end if
10: until R < (Rhigh + Rlow) / 2
11: Return C'

Releasing resources. When the measured response time R is less than Rlow , we try to release

hosts. Let C be the current configuration at the time the planner is invoked. The new

configuration C' is computed by procedure Release() shown in Algorithm 5. Again,

procedure Release() uses an iterative greedy strategy to compute C' from C. At each

iteration we consider the set S ∈ {1, 2, 3} of tiers with more than one node (line 4); S

represents the set of tiers from which one host could be removed. We identify the tier u ∈ S

with lowest utilization, and try to remove one node from tier u (line 8). We estimate the new

system response time R using BSB (line 9). If R becomes larger than (Rhigh + Rlow) / 2, we do

not deallocate any host from tier u: we thus remove u from S (line 11), and iterate again. The

process stops when S becomes empty, which means that either (i) all tiers have exactly one

host, or (ii) it is not possible to remove any host from any tier without causing the estimated

system response time to become larger than (Rhigh + Rlow) / 2.

It is worth noticing that the architecture of the monitor and planner components is

very simple and does not require any major modification to the existing MMOG service.

Furthermore, the monitor and planner can be implemented using Cloud based services and

therefore in an elastic way.

ALGORITHM 5: Release(C; U; X ; R) →→→→ C'

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Require: C Current system configuration
Require: U Measured utilizations
Require: X ; R Measured system throughput and response time
Ensure: C' New system configuration
1: C' := C
2: Compute N using Eq. (2)
3: Compute D = (D1;D2;D3) using Eq. (3)
4: S := {i | C'i > 1}
5: 〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N) {Evaluate configuration C' }
6: while (S ≠ ∅) do
7: Let u the tier in S with lowest utilization
8: C'u := C'u + 1 {Try to reduce tier u}
9: 〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N) {Evaluate configuration C' }
10: if (R ≥ (Rhigh + Rlow) / 2) then
11: C'u := C'u + 1 {Rollback to old configuration}
12: S := S \ {u} {Remove u from the set S}
13: else
14: S := {i | C'i > 1}
15: end if
16: end while
17: Return C'

4.3. Computational Cost

Both Algorithms 4 and 5 execute a number of iterations in which a single host is added to, or

removed from a single tier. The cost of each iteration is O(1), since performance evaluation

of the three-tier queueing system using BSB can be done in constant time. It should be

observed that a more accurate estimation of performance parameters using the MVA

algorithm would require O(N) operations, where N is the number of active users at the time

the network is analyzed. Since N can become quite large (thousands of active players are

common in most MMOGs), MVA is not appropriate for our application·

Given the current system configuration C = (C1 , C2 , C3), the new configuration C'

= (C'1 , C'2 , C'3) identified by the procedure Acquire() has the property that C'i ≥ Ci for all i

= 1, 2, 3. Thus, the computational cost of Acquire() is ()()∑ =
−3

1

'

i ii CCO . Similarly, given

the current configuration C, the new configuration C' returned by procedure Release() is

such that C'i ≤ Ci for all i. The worst case happens when the initial configuration (C1, C2, C3)

is reduced to (1, 1, 1), that is, all hosts (except one host for each tier) are released. Thus, the

worst-case computational cost of Release() is ()∑ =

3

1i iCO .

5. NUMERICAL RESULTS

In this section we evaluate the dynamic reconfiguration strategy described in Section 4.

Algorithms 4 and 5 have been implemented in GNU Octave [Eaton 2002], an interpreted

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

language for numerical computations. We performed two sets of experiments: one with a

completely synthetic workload, and one using a real workload obtained by monitoring the

number of online users as reported by the RuneScape Web site.

Synthetic workloads. We performed a time-stepped simulation of duration T = 200

steps. In order to reduce the number of input parameters, we generated a sequence of values

for the number of online users Nt at time t, for each t = 1, …, T . We defined fixed values for

the average service times Si at tier i as S1 = 0.08, S2 = 0.8, S3 = 0.58. The measured system

response time R, throughput X and tier utilizations Ui are computed using the MVA

algorithm on the QN model of Fig. 4. In our experiments we set Rmax = 100, Rhigh = 90 and

Rlow = 70. The planner uses a window of size W=5 time steps. We assume that

acquiring/releasing hosts and reconfiguring the system takes some time. Specifically, a

reconfiguration completes ∆t=3 time steps after it has been requested. We evaluate our

approach in three different scenarios, using different workloads.

Figures 5–8 show the results. Each plot contains three parts: on top we show the

observed system response time (thick line) achieved using the dynamic adaptation algorithm

described in this paper, while the thin line shows the time-averaged system response time

over the last W steps. Horizontal lines show the values of Rmax, Rhigh and Rlow respectively.

The times at which a new configuration is applied (Reconfiguration points) are also shown.

On the middle part we show the number of allocated nodes on each tier: the height of

colored bands are the values of C1, C2 and C3 , from bottom to top. Finally, the bottom part

shows the number Nt of concurrent online users at each time step t.

Real Workload. We performed another experiment by using a real workload

collected from RuneScape. We monitored the number of online users as reported in the Web

page [Jagex Ltd. 2011], collecting one sample every two minutes over a period of several

weeks from May to October 2011. For our test we consider a subset of the data which

consists of tree days, from May 5 to May 7, 2011 (about 2160 data points). We re-sampled

the data to one data point every 10 minutes, reducing the

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 5. Simulation result, irregular workload with low churn

Fig. 6. Simulation result, periodic workload with low frequency

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 7. Simulation result, periodic workload with medium frequency

Fig. 8. Simulation result, periodic workload with high frequency (implying high churn)

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Fig. 9. Simulation result with the real workload; one time step corresponds to 10 minutes of

wall clock time

dataset to about 432 data points. Thus, each simulation step refers to 10 minutes of wall

clock time. We set the same fixed values for the average service times Si at tier i as in the

previous set of experiments (S1 = 0.08, S2 = 0.8, S3 = 0.58). We considered a moving average

over W = 5 samples, and we assume that a system reconfiguration requires ∆t = 2 time steps

(20 minutes of wall clock time). Threshold have been set as Rmax = 100, Rhigh = 90 and Rlow =

80. The simulation result is shown in Fig. 9; remarkably, no violation of the Service Level

Agreement (SLA) occurred, as our algorithm was capable of following the fluctuations of

the workload.

Discussion. Simulation results are summarized in Table II. The following parameters are

reported:

− The Figure the result refers to;

− The minimum and maximum number of online users;

− The number of times a new configuration has been applied.

− The number of time steps in which the SLA constraint R(C) < Rmax has been

violated;

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

− The minimum, maximum and total number of servers which have been allocated by

the dynamic provisioning algorithm during the simulation run. If Ci(t) is the number

of servers allocated at time t at tier i = 1, 2, 3, then the minimum number of servers

is mint {C1(t) + C2(t) + C3(t)}, the maximum number of servers if maxt {C1(t) +

C2(t) + C3(t)}, and the total number of servers is ∑t (C1(t) + C2(t) + C3(t)).

− The total number of servers which would have been statically allocated in case of

provisioning for the worst-case scenario. This number is simply the maximum

number of servers multiplied by the length of the simulation run;

− The ratio between the total number of servers allocated by the dynamic

provisioning algorithm and the total number of servers for the worst-case static

allocation; lower is better.

Table II. Simulation results

Online users N. Servers (dynamic)

 min max Reconf.
SLA

violations Min max tot
N. Servers

(static)
N. Serv. Dynamic /

N. Serv. Static

Fig. 5 300 800 17 12 8 16 2295 3200 0.72

Fig. 6 3517 17895 21 22 66 333 45386 66600 0.68

Fig. 7 3319 17809 25 32 63 323 41623 64600 0.64

Fig. 8 4441 18157 26 35 86 338 42785 67600 0.63

Fig. 9 134608 229939 23 0 2440 3977 1258126 1590800 0.79

We observe that our algorithm is effective in reducing the number of resources

(hosts) which are necessary to satisfy the QoS constraint on the system response time. A

clear correlation is seen on Figures 5–9 between the number of active sessions and the total

number of allocated hosts: as the number of concurrent users increases, so does the system

response time, which in turn triggers reconfigurations resulting in more hosts being added to

the appropriate tiers. When the number of concurrent users decreases, servers are deallocated

from the tiers.

The number of violations of the SLA, as shown in Table II, is generally quite low;

SLA violations happen when there is very high churn, that is, when many users join the

system in few time steps. This can be seen by considering Figs. 6–8, which have an

increasingly high workload fluctuation frequency causing higher churn in a very short time.

If the workload fluctuates smoothly, as in Fig. 5, the response time is almost always kept

below the threshold Rmax. If larger fluctuations happen, as in Fig. 6–8, our adaptation

algorithm may require some time to react properly.

It is interesting to observe that real workloads for MMOG do not exhibit steep

fluctuations, as can be seen on Fig. 9. Remarkably, for the real workload our dynamic

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

provisioning algorithm produces no SLA violation, despite the fact that the controller is

invoked every 10 minutes of wall-clock time, and a new configuration requires two

simulation steps (20 minutes) to be applied to the system. The latter parameter is set to an

extremely conservative value, yet results are extremely good.

Finally, the last column of Table II shows that the dynamic provisioning strategy

allows a considerable reduction in the number of allocated servers. Recall that the computing

resources used by the MMOG operator are provided by a third party Cloud provider; the

number of allocated servers is proportional to the cost of the MMOG infrastructure, and is

paid by the MMOG operator to the Cloud provider. Our algorithm allows this cost to be

significantly reduced, while still providing an appropriate level of QoS to the game players.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we described a framework for runtime performance aware reconfiguration of a

distributed, Cloud-based MMOG system. We consider a large-scale MMOG service

implemented across geographically distributed datacenter, each datacenter providing

resources on demand, according to the Cloud computing paradigm. Each Cloud hosts a

three-tier system, which handles one partition of the virtual game space. Each datacenter is

passively monitored to detect when the average response time deviates from the threshold

Rmax. When that happens, we reconfigure the datacenter by adding or removing computing

nodes. We use a greedy heuristic to allocate the minimum number of nodes such that the

expected response time does not exceed the threshold. Different configurations are evaluated

using a product-form QN performance model.

The methodology proposed in this paper can be improved along several directions.

In this paper we assumed that the cost of all Cloud resources is the same; this may not be the

case, e.g., if a DB server machine needs a different configuration (and thus, has different

cost) than a Gateway machine. Thus, we are working towards a more sophisticated

optimization problem which takes into account the price of the resources. We are also

exploring the use of forecasting techniques as a mean to trigger reconfigurations in a

proactive way. Another extension of the proposed approach, that is currently under

investigation, is the instrumentation of software clients used by the players. In this way, it

would be possible to collect runtime statistics about the gaming experience of each player

and to consider the re-allocation of gamers among the Tier 1 hosts (i.e. Gateways). This

could bring to a reduction of the latency experienced by each client, including in the adaptive

evaluation process the whole gaming infrastructure and therefore, in some extent, improving

the gaming experience.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

Finally, we remark that the approach described in this paper is not limited to

MMOG services only, but can be easily extended to any large-scale multi-tier service for

which resources at the different tiers can be dynamically provisioned. Algorithms 1—5

require trivial modifications to cope with the general case of t-tiered systems, for any t. As

such, our proposal is quite general as it could be applied to, e.g., E-Commerce sites, online

auction services and similar Online Data Intensive (OLDI) applications [Meisner et al. 2011]

which are characterized by response time constraints and are subject to workload

fluctuations induced by user-generated queries.

REFERENCES

BALSAMO, S. 2000. Product form queueing networks. In Performance Evaluation: Origins

and Directions, G. Haring, C. Lindemann, and M. Reiser, Eds. Lecture Notes in Computer

Science Series, vol. 1769. Springer, 377–401.

BASKETT, F., CHANDY, K. M., MUNTZ, R. R. AND PALACIOS, F. G. 1975. Open,

Closed, and Mixed Networks of Queues with Different Classes of Customers. J. ACM 22, 2

(April 1975), 248—260

CAI, W., XAVIER, P., TURNER, S. J., AND LEE, B.-S. 2002. A scalable architecture for

supporting interactive games on the internet. In Proceedings of the sixteenth workshop on

Parallel and distributed simulation. PADS ’02. IEEE Computer Society, Washington, DC,

USA, 60–67.

CHEN, K.-T., HUANG, P., AND LEI, C.-L. 2006. How sensitive are online gamers to

network quality? Commun. ACM 49, 34–38.

DICK , M., WELLNITZ, O., AND WOLF, L. C. 2005. Analysis of factors affecting players’

performance and perception in multiplayer games. In Proceedings of the 4th Workshop on

Network and System Support for Games, NETGAMES 2005. ACM, 1–7.

EATON, J. W. 2002. GNU Octave Manual. Network Theory Limited.

F ERRETTI, S., GHINI, V., PANZIERI, F., PELLEGRINI, M., AND TURRINI, E. 2010.

QoS-Aware Clouds. In 2010 IEEE 3rd International Conference on. Cloud Computing

(CLOUD 2010), 321–328.

GUSTAFSSON, F. 2000. Adaptive Filtering and Change Detection. John Wiley & Sons,

Ltd.

HSIAO, T.-Y. AND YUAN, S.-M. 2005. Practical middleware for massively multiplayer

online games. IEEE Internet Computing 9, 47–54.

JAGEX LTD. 2011. RuneScape. http://www.runescape.com/, july 2012.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

KORN, A., PELTZ , C., AND MOWBRAY, M. 2009. A service level management authority

in the cloud. Tech. Rep. HPL-2009-79, HP Laboratories.

KUMAR, S., CHHUGANI, J., KIM, C., KIM, D., NGUYEN, A., DUBEY, P., BIENIA, C.,

AND KIM, Y. 2008. Second life and the new generation of virtual worlds. Computer 41, 9,

46–53.

LAZOWSKA, E. D., ZAHORJAN, J., GRAHAM, G. S., AND SEVCIK, K. C. 1984.

Quantitative System Performance: Computer System Analysis Using Queueing Network

Models. Prentice Hall.

LI, J., CHINNECK, J., WOODSIDE, M., LITOIU, M., AND ISZLAI, G. 2009. Performance

model driven qos guarantees and optimization in clouds. In Proceedings of the 2009 ICSE

Workshop on Software Engineering Challenges of Cloud Computing. CLOUD ’09. IEEE

Computer Society, Washington, DC, USA, 15–22.

LITTLE, J. D. C. 1961. A proof for the queuing formula: L = λW . Operations Research 9, 3,

383–387.

MARZOLLA, M. AND MIRANDOLA, R. 2010. Performance aware reconfiguration of

software systems. In Computer Performance Engineering–7th European Performance

Engineering Workshop, EPEW 2010, Bertinoro, Italy, September 23-24, 2010. Proceedings,

A. Aldini, M. Bernardo, L. Bononi, and V. Cortellessa, Eds. Lecture Notes in Computer

Science Series, vol. 6342. Springer, 51–66.

MAUVE, M., VOGEL, J., HILT, V., AND EFFELSBERG, W. 2004. Local-lag and

timewarp: providing consistency for replicated continuous applications. IEEE Transactions

on Multimedia 6, 1, 47–57.

MEISNER, L., SADLER, C. M., BARROSO, L. A., WEBER, W.-D.. AND WENISCH, T.

F. 2011. Power management of online data-intensive services. In Proceedings of the 38th

annual international symposium on Computer architecture (ISCA '11). ACM, New York,

NY, USA, 319—330

NAE, V., IOSUP, A., AND PRODAN, R. 2010. Dynamic resource provisioning in

massively multiplayer online games. IEEE Transactions on Parallel and Distributed Systems

99, 1–15.

PALAZZI, C. E., FERRETTI, S., CACCIAGUERRA, S., AND ROCCETTI, M. 2006.

Interactivity-loss avoidance in event delivery synchronization for mirrored game

architectures. IEEE Transactions on Multimedia 8, 4, 874–879.

R ANJAN, S., ROLIA, J., FU, H., AND KNIGHTLY, E. 2002. Qos-driven server migration

for internet data centers. In Quality of Service, 2002. Tenth IEEE International Workshop

on. 3–12.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

REISER, M. AND LAVENBERG, S. S. 1980. Mean-value analysis of closed multichain

queuing networks. Journal of the ACM 27, 2, 313–322.

SPILLNER, J. AND SCHILL, A. 2009. Dynamic SLA template adjustments based on

service property monitoring. In Proceedings of the 2009 IEEE International Conference on

Cloud Computing. CLOUD ’09. IEEE Computer Society, Washington, DC, USA, 183–189.

URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M. AND TANTAWI, A.

2005 An Analytical Model for Multi-tier Internet Services and its Applications,

SIGMETRICS Perform. Eval. Rev. 33, 1 (June 2005), 291—302

URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., AND WOOD, T. 2008.

Agile dynamic provisioning of multi-tier internet applications. ACM Trans. Auton. Adapt.

Syst. 3, 1, 1–39.

ZAHORJAN, J., SEVCIK , K. C., EAGER , D. L., AND GALLER, B. 1982. Balanced job

bound analysis of queueing networks. Commun. ACM 25, 134–141.

ZHANG, Q., CHENG, L., AND BOUTABA, R. 2010. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications 1, 7–18.

ABOUT THE AUTHOR

MORENO MARZOLLA graduated in Computer Science from the University “Ca' Foscari”

of Venezia (Italy) in 1998 and received a PhD in Computer Science from the same

University in 2004. From 1998 to 2001 he was a software developer at the italian National

Institute for Nuclear Physics (INFN). From 2004 to 2005 he was a post-doc researcher at the

University of Venezia. From 2005 to 2009 he was a research engineer at INFN working on

Grid Computing; during that period he also co-chaired of the Production Grids Infrastructure

(PGI) Working Group at the Open Grid Forum. In november 2009 he joined the department

of Computer Science of the University of Bologna as assistant professor. His research

interests include systems performance modeling, software engineering, high performance

and green computing.

STEFANO FERRETTI is an assistant professor at the Department of Computer Science,

University of Bologna. He received the Laurea degree (with honors) and the Ph.D. in

Computer Science from the University of Bologna in 2001 and 2005, respectively. He is the

chair of the Workshop on DIstributed Simulation and Online gaming (DISIO). His current

research interests include distributed and multimedia systems, synchronization algorithms,

complex and computer networks, wireless networks.

ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year

GABRIELE D'ANGELO received the Laurea degree (summa cum laude) in Computer

Science in 2001, and a PhD degree in Computer Science in 2005, both from the University

of Bologna, Italy. He is an Assistant Professor at the Department of Computer Science of the

University of Bologna. His research interests include parallel and distributed simulation,

distributed systems, online games, network security and forensics. He is the author of several

publications on these topics and he is in the editorial board of the Elsevier Simulation

Modelling Practice and Theory Elsevier journal. During the last years he has worked on the

design and implementation of the ARTIS parallel and distributed simulation middleware.

