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________________________________________________________________________ 
Modern Massively Multiplayer Online Games (MMOGs) allow hundreds of thousands of players to interact with a 
large, dynamic virtual world. Implementing a scalable MMOG service is challenging because the system is subject 
to high workload variability, and nevertheless must always operate under very strict Quality of Service (QoS) 
requirements. Traditionally, MMOG services are implemented as large dedicated IT infrastructures with aggressive 
over-provisioning of resources in order to cope with the worst-case workload scenario. In this paper we address the 
problem of building a large-scale, multi-tier MMOG service using resources provided by a Cloud computing 
infrastructure. The Cloud paradigm allows customers to request as many resources as they need using a pay as you 
go model. We harness this paradigm by proposing a dynamic provisioning algorithm which can resize the resource 
pool of a MMOG service to adapt to workload variability and maintain a response time below a given threshold. We 
use a Queueing Network performance model to quickly estimate the system response time for different 
configurations. The performance model is used within a greedy algorithm to compute the minimum number of 
servers to be allocated on each tier in order to satisfy the system response time constraint. Numerical experiments 
are used to validate the effectiveness of the proposed approach.  
 
Categories and Subject Descriptors: C.4 [Computer Systems Organization]:Performance of Systems; K.6.2 
[Management of Computing and Information Systems]: Installation Management—Pricing and resource 
allocation; C.2.4 [Computer Communication Networks]: Distributed Systems—Distributed applications 
General Terms: Algorithms, Performance 
Additional Key Words and Phrases: Cloud Computing, Dynamic Scalability, Massively Multiplayer Online Games, 
Performance Modeling 

 

1. INTRODUCTION 

Modern Massively Multiplayer Online Games (MMOGs) are large-scale distributed systems 

serving millions of concurrent users which interact in real-time with a large,  dynamic virtual 

world. An important characteristic of online games is their strict performance requirements, 

especially response time [Chen et al. 2006; Dick et al. 2005]: depending on the type of game, 

the response time to ensure a responsive play may range from tens of milliseconds for First 

Person Shooter action games, to a few seconds for Role-Playing games. MMOGs are usually 

implemented as client-server architectures, where the server is responsible for maintaining 

the global state of the virtual play field in response of users (clients) requests. Since the 
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client-server network connection can easily become a significant source of latency, which 

the game service providers can not control, MMOG services are often hosted on multiple, 

geographically distributed datacenters, so that each user can be redirected to the “faster” 

(i.e., best connected) one. Binding users to datacenters can be performed at run-time by 

taking into consideration the measured end-to-end connection quality; when network 

connections or datacenters become congested, users can be migrated to different servers. 

Multiple datacenters also help to address scalability problems, because the virtual world can 

be partitioned or replicated across the available servers [Cai et al. 2002; Palazzi et al. 2006]. 

Nevertheless, scalability problems still exist because the system is subject to high 

variability of the workload: as the number of concurrent users increases, so does the system 

response time. To keep the response time within appropriate levels, a resource overprovision 

policy is often adopted, that is based on statically allocating enough resources to cope with 

the worst case scenario. This policy is inefficient because it can lead to a largely suboptimal 

utilization of the hosting environment resources. In fact, since the worst case scenario rarely 

happens, a significant fraction of the allocated resources may remain unused at run time. 

To support this claim, we have monitored the number of online users of the 

RuneScape MMOG [Jagex Ltd. 2011]. RuneScape is a Fantasy MMOG where players can 

travel across the fictional medieval realm of Gielinor. There is not a fixed storyline: players 

can decide to combat against monsters, practice skills or interact competitively or 

cooperatively with other players. From the technical point of view, the RuneScape client 

code is written in Java and runs inside a browser. Players connect to servers which are 

located in different world regions to reduce the communication latency. 

We collected the total number of online players as displayed on the 

http://www.runescape.com/ Web page using a sampling period of two minutes, during the 

period May—October 2011. Fig. 1 shows a subset of the data1, from May 5 to May 10, 2011. 

A daily pattern is clearly visible; during peak hours, more than 200.000 players are 

connected to the system (the load is split across the regional servers), while about 110.000 

players are active during off-peak hours. Hence, the daily churn (number of players 

leaving/joining the system during the day) is about 100.000 users. For the dataset shown in 

Fig. 1 the maximum number of online players is about 230.000 and the minimum is about 

130.000. In this scenario, statical resource provisioning based on the average load results in 

system overloaded roughly half the time; provisioning for the worst case results in a massive 

resource underutilization. 

                                                 
1 The full dataset is available at http://pads.cs.unibo.it/ 
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Fig. 1. Number of simultaneous RuneScape players during the period May 5–May 10, 2011 

 

In recent years, the Cloud computing paradigm has emerged as an affordable way to cope 

with scalability issues. Specifically, Cloud computing allows customers to “rent” computing 

and storage resources, and only pay for what they actually use. Many Cloud providers 

employ the utility computing model, where computing, storage or application resources are 

billed like regular utility services (such as electricity). 

Cloud computing can be very helpful in deploying large-scale MMOG services, for 

at least two reasons: (i) game service providers do not have to provision  for peak load limits, 

and (ii) the MMOG service can be augmented to request more resources during peak 

periods, and release them when no longer needed. 

In this paper we propose a dynamic resource provisioning strategy for large-scale 

MMOG services implemented on top of Cloud infrastructures providing resources using the 

Infrastructure as a Service (IaaS) model. An IaaS Cloud provides low level computing and 

storage capabilities where the customer can run arbitrary software, including Operating 

Systems and applications [Zhang et al., 2010]. IaaS Clouds make heavy use of virtualization 

techniques in order to fragment and allocate physical resources to customers. For example, 

computing power is usually provided as Virtual Machine (VM) instances executing on some 

physical server. The same physical server can host multiple VM instances, each instance 

exposing part of the capabilities of the server. Virtualization allows Cloud providers to offer 

a set of homogeneous (virtual) resources, characterized by a choice of key parameters (CPU 

speed, memory size and so on) among which customers can choose. The underlying physical 

infrastructure, can be made of heterogeneous resources, is not directly exposed to the clients. 

We consider a large scale gaming service built over multiple, geographically 

distributed datacenters, each one providing resources on demand using Cloud infrastructures. 
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Each datacenter hosts a three-tier system, which handles one partition of the virtual world. 

The goal is to ensure that the system response time R at each datacenter is kept below a pre-

defined threshold Rmax. As already observed, the value of Rmax depends on the kind of game: 

action games, where fast interaction between players and the environment is essential, 

require very low response times (tens of milliseconds); strategy games, on the other hand, 

can deliver a satisfactory game play with response times of the order of a few seconds. 

Therefore, the game operator defines the value for Rmax that provides the best experience to 

its users [Palazzi et al. 2006].  

Thanks to the underlying Cloud, it is possible to add (remove) computing nodes to 

(from) any tier. Hence, we satisfy the response time constraint by dynamically adding or 

removing server instances where necessary. From the point of view of the game service 

provider, the cost of a datacenter depends on the number of nodes allocated there. We thus 

aim at minimizing the total cost of a datacenter by minimizing the number of allocated nodes 

such that the response time satisfies the constraint R < Rmax. 

We assume that the MMOG service is capable of transparently reconfiguring itself 

when the resource pool of each datacenter is altered. We also assume that only one 

datacenter is in charge of handling a given region of the virtual world in a specific game 

session. This is actually what happens in many real implementations of MMOGs [Jagex Ltd. 

2011]. A consequence of such an approach is that, for instance, most issues related to the 

consistency management of the game state can be easily handled. In general, this does not 

hold when multiple servers working on the same virtual region of the same game session are 

geographically distributed. In fact, in this case other factors might influence the level of 

provided responsiveness, e.g. the synchronization algorithm, the distribution of clients 

connected to distributed servers [Mauve et al. 2004; Palazzi et al. 2006]. 

To achieve the goal above, we enhance the gaming service hosted in each Cloud 

with two additional components, called monitor and planner. The monitor is a passive 

observer which collects run-time performance metrics; in particular, the monitor measures 

the current system response time R, and triggers the planner when the response time deviates 

from the threshold Rmax. The planner is responsible for computing the optimal (minimum) 

number of nodes to allocate at each tier so that the response time is maintained below the 

threshold. 

Since the planner must operate at run-time, it is extremely important that a new 

configuration is computed quickly. To do so, we use a greedy strategy in which one node is 

added (or removed) at a time from a suitably chosen tier. The planner uses a Queueing 

Network (QN) performance model to identify the tier to alter, and to estimate the system 
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response time after each change; the parameters needed to analyze the performance model 

are those collected by the monitor. Thanks to the QN model, the planner can efficiently 

compute complex reconfiguration changes which involve the addition or removal of multiple 

nodes from different tiers. In fact it is well known that adding more servers to the bottleneck 

tier only is not guaranteed to improve the overall system performance, as the bottleneck may 

shift to other tiers. 

This paper is structured as follows. In Section 2 we compare our approach with the 

relevant literature. In Section 3 we describe the high-level architecture of the MMOG 

services we consider, and precisely formulate the dynamic provisioning problem as an 

optimization problem. Section 4 describes our proposed dynamic reconfiguration algorithm. 

The effectiveness of the solution is evaluated in Section 5 by means of numerical 

experiments. Finally, conclusions and future research directions are illustrated in Section 6. 

 

 

2. RELATED WORKS 

Despite the fact that Cloud computing in general is an active research topic, to the best of our 

knowledge, the problem of QoS provision in Cloud computing environments is only recently 

receiving attention. In this section we briefly review a few papers on this topic that show 

some analogy with our approach to development of QoS-aware Cloud-based applications. 

Two kind of approaches have been considered in the literature: model based and 

measurement based. Model based solutions use performance models to drive the adaptation 

step. In [Li et al. 2009] the authors describe a method for achieving resource optimization at 

run time by using performance models in the development and deployment of the 

applications running in the Cloud. Their approach is based on a Layered Queueing Network 

(LQN) performance model, that predicts the effect of simultaneous changes (such as 

resource allocation/deallocation) to many decision variables (throughputs, mean service 

delays, etc.). In [Ranjan et al. 2002] the authors consider an approximation of a multi-tier 

architecture as a G/G/N queueing center with general interarrival time, general service time 

distribution and N identical servers, under heavy load. In [Urgaonkar et al. 2008] a general, 

k-tier system is modeled as a chain of G/G/1 queueing centers. We also mention a recent 

work which addresses the same topic considered here, that is, dynamic resource provisioning 

in MMOG infrastructures. In [Nae et al. 2010] the authors first introduce a combined 

processor, network and memory load model specifically tailored to MMOG architectures, 

which is used together with a neural-network based predictor in order to anticipate 

fluctuations without the need to accurately monitor them in real-time. 
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Our approach differs from those mentioned above because it is not limited to 

MMOG systems, but can be easily applied also to generic multi-tier services with an 

arbitrary number of tiers (see Section 6 for details). 

As to measurement-based approaches, they basically consist in periodically 

monitoring the QoS provided by the cloud and react to its performances by tuning the 

amount of resources exploited for hosting the service. For instance, in [Ferretti et al. 2010] a 

reconfiguration approach is exploited that dynamically adds/releases resources devoted to 

support a given service, based on the amount of SLA violations that occur during the service 

utilization, in order to avoid that the rate of these violations surpasses a predetermined 

threshold. The work proposed in this paper copes with the same mentioned problem. 

However, our solution is based on a novel and different approach with respect to [Ferretti et 

al. 2010]. In fact, in the former the authors consider a single-tier service and propose a 

purely reactive system in which a reconfiguration is triggered based on the experienced QoS 

violations. On the other hand, in this paper we consider a multi-tier MMOG architecture for 

which identifying a new configuration which satisfies the QoS constraint is more 

challenging. The reason is that in multi-tiered applications it is necessary to identify both the 

tier(s) from which resources should added/removed, and also compute how many resource 

instances to add/remove. To this aim, we propose a model-based approach based on a simple 

heuristic which uses a Queueing Network performance model to quickly estimate the system 

response time for different configurations. 

Other works focus mostly on issues related to the definition and monitoring of the 

SLAs in a Cloud computing environment and do not address issues of QoS enforcement and 

resource optimization. In [Spillner and Schill 2009] the authors present a methodology for 

adding or adjusting the values of non-functional properties in service descriptions depending 

on the service run time behavior, and then dynamically deriving adjusted SLA template 

constraints. In contrast, in our proposal the SLA constraint is given, and the service must be 

modified at run-time to provide the necessary QoS level. Issues related to the SLA 

monitoring are presented in [Korn et al. 2009]. In that paper the authors introduce the notion 

of Service Level Management Authority (SLMA), a third independent party that monitors 

the SLA and facilitates the interaction between the Cloud vendor and the end customer. This 

approach differs from ours as in the solution we propose the monitoring facilities are 

implemented by a component of our middleware platform rather than by an external entity. 

(However it is worth noticing that due to the modularity of our architecture, one could 

investigate the possibility of integrating a SLMA in our solution). 

 



 
ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year 

 

Fig. 2. High level architecture of a distributed, Cloud-based gaming infrastructure 

 

3. PROBLEM FORMULATION AND SYSTEM MODEL 

We consider a large-scale distributed infrastructure to support MMOGs as shown in Fig. 2. 

The system has three types of actors: (i) users (game players), which interact with a virtual 

world by controlling software avatars; (ii) the MMOG service, which is responsible for 

maintaining the game state and executing all necessary interactions between players and the 

virtual world, and (iii) the resource provider, which is responsible for providing 

computational and storage resources on demand to the operator of the MMOG service. 

The MMOG service maintains state information about a single virtual universe, or 

metaverse. In order to ensure scalability, many existing MMOG implementations partition 

the metaverse across multiple servers [Kumar et al. 2008]. As the size and complexity of 

game increase, it is reasonable to split the metaverse across multiple datacenters, each one 

handling a partition. We assume that the virtual playfield is partitioned into non-overlapping 

(or only partially overlapping) zones [Cai et al. 2002]. Human players control virtual avatars 

which move and interact inside a zone; avatars are not bound to a single zone, but can move 

freely over the whole virtual world. 
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The MMOG service operator maintains the state of each zone through a zone 

controller, which is a software component responsible for handling all interactions between 

players and/or the virtual world inside a single zone. To enhance scalability and distribute 

the workload, each zone is handled by a separate hardware infrastructure hosted on different 

datacenters. Given that communication between datacenters may incur significant delays, it 

is important that interactions across neighboring zones is minimized. For example, each 

partition may hold a collection of “islands” such that all interactions happen within the 

collection, while players can jump from one “island” to another (possibly joining a new 

server on a different datacenter). We assume that the MMOG service makes crossing a 

partition (zone) a seamless operation. 

Depending on the (virtual) mobility pattern of each player, some areas of the 

metaverse may become crowded, while others may become less populated. In order to cope 

with this variability, each zone controller is hosted on resources provided and operated by a 

IaaS Cloud infrastructure. The Cloud provider is in general a separate entity that rents 

computational and storage resources to the customers on a pay-as-you go model [Zhang et 

al. 2010]. This means that the game operator can request additional servers and/or storage 

space at any time, and release them when no longer needed. Thus, the game operator can 

request more resources when the workload on a zone increases, in order to keep the response 

time perceived by players below a predefined maximum value. When the workload 

decreases, the game operator can release surplus resources in order to reduce costs. 

We now describe in detail the structure of a zone controller. We consider the multi-

tier architecture described in [Hsiao and Yuan 2005], which is shown in Fig. 3. The firewall 

represents the entry point and allows traffic filtering. The first layer contains a set of 

gateways, which are responsible for handling basic gaming protocol checking and 

verification. The cell servers are responsible for managing the virtual world and its 

evolution; each server controls a small area inside the virtual zone assigned to the 

corresponding datacenter. Finally, the database servers are used to store persistent game 

state information. Load balancers are used to evenly distribute requests among servers 

across layers. 

It is reasonable to expect that all servers within the same layer are homogeneous, 

i.e., have approximately the same configuration (CPU, memory, disk) and the same 

performance. While our dynamic reconfiguration algorithm could be extended to cope with 

non homogeneous layers, this scenario would be of little practical interest within this 

context, since sophisticated load balancing techniques would be required to distribute the 

load in such a way that slower machines do not become bottlenecks. Besides, as observed in 
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Section 1, Cloud providers allow customers to request server instances with specific 

characteristics (CPU speed, number of cores, memory size, disk space), and hence the 

homogeneity assumption is the norm rather than the exception. Of course, we allow different 

layers to require different server configurations; for example, the DB servers layer may 

require servers with larger and faster disks to sustain a larger I/O rate.   

 

Fig. 3. Multi-tier architecture of the MMOG server hosted by a single datacenter 

 

As observed above, the MMOG service is subject to workload variability because 

game players can join and leave the system at any time, and can migrate from one zone to 

another. In this paper we address the problem of ensuring that the average response time 

experienced by a player does not exceed some pre-defined maximum value. To solve this 

problem we propose a model-based algorithm for dynamic reconfiguration of the MMOG 

service; our algorithm uses a simple QN model to identify the bottleneck tier(s), and 

compute the number of servers to add/remove. The reconfiguration algorithm is executed by 

each zone controller independently from each other. 

Formally, the system configuration C is defined as a vector with three elements C = 

(C1 , C2 , C3) where Ci represents the number of hosts allocated to tier i = 1, 2, 3. Thus, C1 is 
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the number of gateways, C2 the number of cell servers and C3 the number of DB servers 

which are currently instantiated. The aim of the reconfiguration algorithm is to compute the 

configuration C with minimum total number of servers such that the (estimated) system 

response time is less than Rmax. Formally, we aim at solving the following optimization 

problem: 

   minimize  (C1 + C2 + C3)   (1) 

   subject to  R(C) < Rmax 

     C = (C1 , C2 , C3) 

     Ci ∈ {1, 2, … }, i = 1, 2, 3 

where R(C) is the estimated system response time with configuration C = (C1 , C2 , C3). In 

general, R(C) does not depend on the configuration C only, but also on other parameters, as 

will be discussed in the next section. 

Since the total number of hosts allocated at each Cloud datacenter is proportional to 

the total cost of the resources provided by that datacenter, by reducing the total number of 

hosts we also reduce the cost of the MMOG infrastructure. 

 

4. RECONFIGURATION ALGORITHM 

In this section we describe the details of the reconfiguration algorithm. We enhance the 

gaming service shown in Fig. 3 with two additional components, called monitor and planner. 

Each datacenter has its own monitor and planner, and each datacenter executes the 

autonomic reconfiguration algorithm described in the following, independently from the 

others. 

The monitor is a passive observer which collects run-time performance metrics; in 

particular, the monitor measures the system response time R. When R deviates from Rmax , 

the monitor triggers the planner, which computes the optimal (minimum) number of nodes to 

allocate at each tier so that the response time is maintained below the threshold. The new 

configuration is computed by finding an approximate solution to the optimization problem 

(1). 

Since the planner must operate at run-time, it is extremely important that a new 

configuration is computed quickly. To do so, we use a greedy strategy in which one node is 

added (or removed) at a time from a suitably chosen tier. In general, it might be necessary to 

add (or remove) multiple hosts from different tiers with a single reconfiguration step; 

furthermore, the identification of a new configuration must be done efficiently in order to 

quickly adapt to the workload fluctuations. This rules out the simple solution in which hosts 
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are added or removed by trial and errors, and the impact of each new configuration is 

directly measured on the running system. 

The planner uses a QN performance model to identify the tier to alter, and to 

estimate the system response time after each change; the parameters needed to analyze the 

performance model are those collected by the monitor. Thanks to the QN model, the planner 

can efficiently compute complex reconfiguration changes which involve the addition or 

removal of multiple nodes from different tiers. 

 

4.1. The Monitor 

The monitor is a passive observer which collects run-time statistics on a single datacenter. 

Specifically, the monitor collects the following parameters: 

− The average system response time R; 

− The average system throughput X (rate at which requests, i.e., game events 

generated by clients connected to that node, are processed); 

− The tier utilizations U = (U1 , U2 , U3), where Ui is the utilization of tier i.  

Since these parameters may be subject to high variability, it is necessary to apply 

suitable smoothing functions to the raw data before they can be actually used. A simple 

approach is to collect multiple samples, and compute a moving average over a time window 

of length W. For a comprehensive treatment of the state change detection problem see 

[Gustafsson 2000]. 

The system administrators must define two additional thresholds: Rlow and Rhigh , 

such that Rlow < Rhigh < Rmax . The monitor checks whether the average response time R 

computed over the last time window is less than Rlow or greater than Rhigh . In either case, the 

planner is invoked. If R < Rlow the planner tries to deallocate resources from under-utilized 

tiers; if R > Rhigh the planner adds resources to the bottleneck tiers in order to reduce the 

system response time before it hits the threshold Rmax (details will be given in the next 

section). 

The values of Rlow , Rhigh and W are in general system- and application-dependent, 

and impact both the frequency of reconfiguration and the sensitivity of the reconfiguration 

algorithm. If Rlow is small, over provisioning may happen, because unused resources are 

relinquished only when R < Rlow , which may rarely happen. Similarly, if Rhigh is large, 

violations of the “hard” response time limit Rmax may happen before the system has the 

opportunity to react. Finally, low values of W imply that the system can react quickly to 

surges in the number of concurrent users, at the cost of increasing the frequency of 

reconfigurations and thus increasing the overhead of the adaptation process. As a rule of 
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thumb, we empirically found that setting Rhigh = 0.9Rmax and Rlow = 0.8Rmax is a 

reasonable setting; the value of W should be chosen according with the workload fluctuation 

speed. For services which exhibit the daily pattern typical of human activities with a period 

of approximately 24 hours,  values of W in the range 5—20 minutes are appropriate. 

The control loop just described is shown in Algorithm 1. The system administrator 

must choose an initial configuration C (line 1), after which an infinite loop is used to collect 

monitoring data and reconfigure the system when necessary. The functions Acquire and 

Release are provided by the planner component, and will be described in the next section. 

 

ALGORITHM 1: QoS-Aware Reconfiguration Algorithm 
Require: Rlow < Rhigh < Rmax: Thresholds 
1: Let C be the initial configuration 
2: loop 
3:  Monitor the system and compute R; X; U 
4:  C'  := C 
5:  if (R > Rhigh) then 
6:   C'  := Acquire(C; U; X; R) 
7:  else if (R < Rlow) then 
8:   C'  := Release(C; U; X; R) 
9:  end if 
10:  if a new configuration C' ≠ C has been found then 
11:   Apply the new configuration C'  to the system 
12:   C := C'  
13:  end if 
14: end loop 

 

4.2. The Planner 

The planner is responsible for identifying a new configuration C = (C1 , C2 , C3) as a solution 

of the optimization problem 1. The planner uses a QN performance model to estimate the 

system response time of different configurations.  

A datacenter is modeled using the single-class, product-form closed QN shown in 

Fig. 4. For any configuration C = (C1 , C2 , C3), the model has (C1 + C2 + C3) service centers 

organized in three tiers with C1 , C2 and C3 servers each, respectively. A fixed population of 

N requests continuously circulate in the system, N being the total number of players 

currently connected to the system. We allow the value of N to change over time, as users join 

and leave the system.  

Each server is approximated as a -/G/1—PS center with general service time and 

Processor Sharing (PS) service discipline. The only requirement on the service time 

distribution is that it must have rational Laplace transform; this requirement is not very 

restrictive, since it includes all distributions which can be expressed as a network of 
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exponential stages; exponential, hyperexponential and hypoexponential service time 

distributions all have rational Laplace transform. The PS service discipline closely 

approximates the scheduling policies of actual servers, where requests are processed in 

round-robin fashion each receiving service for a small quantum of time. Under these 

assumptions, the QN belongs to the class of BCMP networks which have product-form 

solution [Baskett et al. 1975, Balsamo 2000], which basically means that average 

performance measures (response times, utilizations and so on) can be computed efficiently. 

This is important because the model must be analyzed at run-time, so we favor 

computational efficiency over model accuracy. Also consider that precise performance 

estimations not only require an accurate model, but also detailed and accurate model 

parameters which can be acquired only with an invasive and time-consuming monitoring 

activity.   

We assume that the workload can be balanced across the servers of the same tier, 

such that all nodes have, on average, approximately equal utilization. We remark that this 

assumption is not strictly necessary, since the QN model can be analyzed with arbitrary 

parameters. However, our dynamic scalability algorithm relies on the assumption that the 

load on the bottleneck tier can be reduced by spreading the requests over a larger number of 

servers. This requirement is not strict, that is, we allow unbalance to happen; however, it is 

reasonable to assume that on average all servers on the same tier have similar utilization. 

This is in fact the case for existing MMOGs based on a multi-tiered architecture [Cai et al. 

2002, Hsiao and Yuan 2005]. If the MMOG service is unable to spread the load evenly, then 

“hot spots” may arise and the system will eventually hit scalability limits no matter how 

many resources are allocated. 

To analyze the network of Fig. 4, the following additional parameters are needed: 

(i) an estimation of the number N of requests currently in the system, and (ii) the aggregate 

service demand at each tier. 
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Fig. 4. Queueing Model of a datacenter 

 

The number of concurrent requests N (which can be seen as the number of active 

players that periodically generate game events during the game evolution) can be computed 

from the measured system response time R and throughput X using Little’s Law [Little 1961] 

as: 

     N = X R    (2) 

The service demand Di of tier i is the cumulative time spent by a request in any 

server of tier i. According to the Utilization Law [Lazowska et al. 1984], the service demand 

on an individual server of tier i can be expressed as Ui / X. If the utilization and throughput 

were measured when the system configuration was C = (C1 , C2 , C3), then the total service 

demand at tier i is 

    Di = Ci × Ui / X,  i = 1, 2, 3   (3) 

Table I summarizes all symbols used in this paper. 

 

Table I. Symbols used in this paper 

R Measured system response time 

X Measured system throughput 

Ui Measured utilization of tier i 

Rmax Maximum allowed response time 
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Rhigh Upper response time limit 

Rlow  Lower response time limit 

N Number of users online 

Ci Number of nodes at tier i 

Di Estimated Total service demand of tier i 

Ui Estimated average utilization of nodes at tier 

 

 

ALGORITHM 2: MVA(C;D;N) →→→→ 〈〈〈〈U;R〉〉〉〉 
Require: C configuration to analyze 
Require: D = (D1;D2;D3) total service demands of tiers 
Require: N number of active users 
Ensure: U = (U1;U2;U3) estimated utilization of tiers 
Ensure: R estimated system response time 
1: for k := 1 to 3 do 
2:  Qk := 0          {Mean queue length at any tier k server} 
3: end for 
4: for n := 1 to N do 
5:  for k := 1 to 3 do 
6:   Rk := Dk(1 + Qk) 
7:  end for 

8:  ∑ =
= 3

1k kks CRR          {System response time} 

9:  Xs := n / Rs               {System Throughput} 
10:  for k := 1 to 3 do 
11:   Qk := Xs × Rk 
12:  end for 
13: end for 
14: for k := 1 to 3 do 
15:  Uk := Xs × Dk 
16: end for 
17: Return 〈〈〈〈U;R〉〉〉〉 

 

For product-form QNs, the Mean Value Analysis (MVA) algorithm [Reiser and 

Lavenberg 1980] can be used to compute individual device utilizations and system response 

time on a closed network with n requests given the average queue lengths with n−1 requests. 

Thus, starting from an empty network, MVA computes solutions for populations 1, 2, ... , N . 

A closed network with N requests and K queueing centers can be analyzed using the general 

MVA algorithm in time O(N K). However, since all servers in each tier are equivalent, the 

network of Fig. 4 can be analyzed in time O(N) using the specialized MVA implementation 

of Algorithm 2. 

If we are not interested in exact performance values, it is possible to compute upper 

and lower asymptotic bounds on the system throughput and response time using the 
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Balanced System Bounds (BSB) algorithm [Zahorjan et al. 1982]. The computational 

complexity is greatly reduced, as the network of Fig. 4 can be analyzed in time O(1) 

(independent from the number of requests N). It has already been observed [Marzolla and 

Mirandola 2010] that for dynamic reconfiguration applications, the MVA algorithm only 

provides marginal advantages over the simpler and more computationally efficient 

computation of BSB. Therefore, we will estimate the system response time as the average 

value of the upper and lower bounds provided by the BSB algorithm. 

 

ALGORITHM 3: BSB(C;D;N) →→→→ 〈〈〈〈U;R〉〉〉〉 
Require: C configuration to analyze 
Require: D = (D1;D2;D3) total service demands of tiers 
Require: N number of active users 
Ensure: U = (U1;U2;U3) estimated utilization of tiers 
Ensure: R estimated system response time 
1: Dmax := max{D1 /C1; D2/C2; D3/C3}         {Maximum demand of a server} 
2: Dtot := (D1 + D2 + D3)              {Total service demand on all servers} 
3: Dave := Dtot /(C1 + C2 + C3)            {Average service demand of a server} 
4: X- := N / (Dtot + (N - 1) × Dmax)             {Lower bound on system throughput} 
5: X+ := min {1 / Dmax;N / (Dtot + (N - 1) × Dave)}  {Upper bound on system throughput} 
6: R- := max {N × Dmax; Dtot + (N - 1) × Dave}  {Lower bound on system response time} 
7: R+ := Dtot + (N - 1) × Dmax        {Lower bound on system response time} 
8: X := (X+ + X-) / 2            {Estimated system throughput} 
9: R := (R+ + R-) / 2       {Estimated system response time} 
10: for i := 1 to 3 do 
11:  Ui := X × Di 
12: end for 
13: Return 〈〈〈〈U;R〉〉〉〉 

 

Algorithm 3 computes upper and lower bounds on the system throughput (X+ and X- 

respectively) and upper and lower bounds on the system response time (R+ and R− 

respectively). The response time R is then estimated as the average value of the upper and 

lower bounds (R+ + R−) / 2 (line 9). The parameter D = (D1 , D2 , D3) represents the total 

service demand vector of tiers 1–3 as computed using Eq. (3), using the measurements 

performed by the monitor. 

Acquiring new resources. When the measured response time R is greater than Rhigh, we 

need to allocate new resources to improve the system responsiveness. Let C be the current 

configuration at the time the planner is invoked. The new configuration C'  is computed by 

the procedure Acquire() shown in Algorithm 4. The procedure uses a simple greedy strategy 

to iteratively define C' starting from C. At each iteration, the QN model is used to estimate 

the utilization of all tiers, and the system response time (line 5). The bottleneck tier b ∈ {1, 

2, 3} is identified as the tier whose nodes have higher utilization (line 7). Then, a single host 
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is added to the bottleneck tier (line 8). These steps are repeated until the estimated response 

time is less than (Rhigh + Rlow) / 2; at that point, the configuration C'  becomes the new system 

configuration: new hosts are allocated from the Cloud service, and all tiers of the MMOG 

server are reconfigured accordingly. 

 

ALGORITHM 4: Acquire(C; U; X ; R) →→→→ C'  
Require: C Current system configuration 
Require: U Measured utilizations 
Require: X ; R Measured system throughput and response time 
Ensure: C'  New system configuration 
1: C' := C 
2: Compute N using Eq. (2) 
3: Compute D = (D1;D2;D3) using Eq. (3) 
4: repeat 
5:  〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N)      {Evaluate configuration C' } 
6:  if (R ≥ (Rhigh + Rlow) / 2) then 
7:   Let b the tier with highest utilization Ub 
8:   C'b := C'b + 1 
9:  end if 
10: until R < (Rhigh + Rlow) / 2 
11: Return C' 

 

Releasing resources. When the measured response time R is less than Rlow , we try to release 

hosts. Let C be the current configuration at the time the planner is invoked. The new 

configuration C'  is computed by procedure Release() shown in Algorithm 5. Again, 

procedure Release() uses an iterative greedy strategy to compute C'  from C. At each 

iteration we consider the set S ∈ {1, 2, 3} of tiers with more than one node (line 4); S 

represents the set of tiers from which one host could be removed. We identify the tier u ∈ S 

with lowest utilization, and try to remove one node from tier u (line 8). We estimate the new 

system response time R using BSB (line 9). If R becomes larger than (Rhigh + Rlow) / 2, we do 

not deallocate any host from tier u: we thus remove u from S (line 11), and iterate again. The 

process stops when S becomes empty, which means that either (i) all tiers have exactly one 

host, or (ii) it is not possible to remove any host from any tier without causing the estimated 

system response time to become larger than (Rhigh + Rlow) / 2. 

It is worth noticing that the architecture of the monitor and planner components is 

very simple and does not require any major modification to the existing MMOG service. 

Furthermore, the monitor and planner can be implemented using Cloud based services and 

therefore in an elastic way. 

 

ALGORITHM 5: Release(C; U; X ; R) →→→→ C'  



 
ACM Computers in Entertainment, Vol. X, No. X, Article X, Publication date: Month Year 

Require: C Current system configuration 
Require: U Measured utilizations 
Require: X ; R Measured system throughput and response time 
Ensure: C'  New system configuration 
1: C' := C 
2: Compute N using Eq. (2) 
3: Compute D = (D1;D2;D3) using Eq. (3) 
4: S := {i | C'i > 1} 
5: 〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N)      {Evaluate configuration C' } 
6: while (S ≠ ∅) do 
7:  Let u the tier in S with lowest utilization 
8:  C'u := C'u + 1                 {Try to reduce tier u} 
9:  〈〈〈〈U;R〉〉〉〉 := BSB(C' ;D;N)      {Evaluate configuration C' } 
10:  if (R ≥ (Rhigh + Rlow) / 2) then 
11:   C'u := C'u + 1            {Rollback to old configuration} 
12:   S := S \ {u}      {Remove u from the set S} 
13:  else 
14:   S := {i | C'i > 1} 
15:  end if 
16: end while 
17: Return C' 

 

4.3. Computational Cost 

Both Algorithms 4 and 5 execute a number of iterations in which a single host is added to, or 

removed from a single tier. The cost of each iteration is O(1), since performance evaluation 

of the three-tier queueing system using BSB can be done in constant time. It should be 

observed that a more accurate estimation of performance parameters using the MVA 

algorithm would require O(N) operations, where N is the number of active users at the time 

the network is analyzed. Since N can become quite large (thousands of active players are 

common in most MMOGs), MVA is not appropriate for our application· 

Given the current system configuration C = (C1 , C2 , C3), the new configuration C' 

= (C'1 , C'2 , C'3) identified by the procedure Acquire() has the property that C'i ≥ Ci for all i 

= 1, 2, 3. Thus, the computational cost of Acquire() is ( )( )∑ =
−3

1

'

i ii CCO . Similarly, given 

the current configuration C, the new configuration C'  returned by procedure Release() is 

such that C'i ≤ Ci for all i. The worst case happens when the initial configuration (C1, C2, C3) 

is reduced to (1, 1, 1), that is, all hosts (except one host for each tier) are released. Thus, the 

worst-case computational cost of Release() is ( )∑ =

3

1i iCO . 

 

5. NUMERICAL RESULTS 

In this section we evaluate the dynamic reconfiguration strategy described in Section 4. 

Algorithms 4 and 5 have been implemented in GNU Octave [Eaton 2002], an interpreted 
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language for numerical computations. We performed two sets of experiments: one with a 

completely synthetic workload, and one using a real workload obtained by monitoring the 

number of online users as reported by the RuneScape Web site. 

Synthetic workloads. We performed a time-stepped simulation of duration T = 200 

steps. In order to reduce the number of input parameters, we generated a sequence of values 

for the number of online users Nt at time t, for each t = 1, …, T . We defined fixed values for 

the average service times Si at tier i as S1 = 0.08, S2 = 0.8, S3 = 0.58. The measured system 

response time R, throughput X and tier utilizations Ui are computed using the MVA 

algorithm on the QN model of Fig. 4. In our experiments we set Rmax = 100, Rhigh = 90 and 

Rlow = 70. The planner uses a window of size W=5 time steps. We assume that 

acquiring/releasing hosts and reconfiguring the system takes some time. Specifically, a 

reconfiguration completes ∆t=3 time steps after it has been requested. We evaluate our 

approach in three different scenarios, using different workloads. 

Figures 5–8 show the results. Each plot contains three parts: on top we show the 

observed system response time (thick line) achieved using the dynamic adaptation algorithm 

described in this paper, while the thin line shows the time-averaged system response time 

over the last W steps. Horizontal lines show the values of Rmax, Rhigh and Rlow respectively. 

The times at which a new configuration is applied (Reconfiguration points) are also shown. 

On the middle part we show the number of allocated nodes on each tier: the height of 

colored bands are the values of C1, C2 and C3 , from bottom to top. Finally, the bottom part 

shows the number Nt of concurrent online users at each time step t. 

Real Workload. We performed another experiment by using a real workload 

collected from RuneScape. We monitored the number of online users as reported in the Web 

page [Jagex Ltd. 2011], collecting one sample every two minutes over a period of several 

weeks from May to October 2011. For our test we consider a subset of the data which 

consists of tree days, from May 5 to May 7, 2011 (about 2160 data points). We re-sampled 

the data to one data point every 10 minutes, reducing the  
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Fig. 5. Simulation result, irregular workload with low churn 

 

Fig. 6. Simulation result, periodic workload with low frequency 
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Fig. 7. Simulation result, periodic workload with medium frequency 

 

Fig. 8. Simulation result, periodic workload with high frequency (implying high churn) 
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Fig. 9. Simulation result with the real workload; one time step corresponds to 10 minutes of 

wall clock time 

 

dataset to about 432 data points. Thus, each simulation step refers to 10 minutes of wall 

clock time. We set the same fixed values for the average service times Si at tier i as in the 

previous set of experiments (S1 = 0.08, S2 = 0.8, S3 = 0.58). We considered a moving average 

over W = 5 samples, and we assume that a system reconfiguration requires ∆t = 2 time steps 

(20 minutes of wall clock time). Threshold have been set as Rmax = 100, Rhigh = 90 and Rlow = 

80. The simulation result is shown in Fig. 9; remarkably, no violation of the Service Level 

Agreement (SLA) occurred, as our algorithm was capable of following the fluctuations of 

the workload.  

Discussion. Simulation results are summarized in Table II. The following parameters are 

reported: 

− The Figure the result refers to; 

− The minimum and maximum number of online users; 

− The number of times a new configuration has been applied. 

− The number of time steps in which the SLA constraint R(C) < Rmax has been 

violated; 
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− The minimum, maximum and total number of servers which have been allocated by 

the dynamic provisioning algorithm during the simulation run. If Ci(t) is the number 

of servers allocated at time t at tier i = 1, 2, 3, then the minimum number of servers 

is mint {C1(t) + C2(t) + C3(t)}, the maximum number of servers if maxt {C1(t) + 

C2(t) + C3(t)}, and the total number of servers is ∑t (C1(t) + C2(t) + C3(t)). 

− The total number of servers which would have been statically allocated in case of 

provisioning for the worst-case scenario. This number is simply the maximum 

number of servers multiplied by the length of the simulation run; 

− The ratio between the total number of servers allocated by the dynamic 

provisioning algorithm and the total number of servers for the worst-case static 

allocation; lower is better. 

 

Table II. Simulation results 

Online users N. Servers (dynamic) 

  min max Reconf. 
SLA 

violations Min max tot 
N. Servers 

(static) 
N. Serv. Dynamic / 

N. Serv. Static 

Fig. 5 300 800 17 12 8 16 2295 3200 0.72 

Fig. 6 3517 17895 21 22 66 333 45386 66600 0.68 

Fig. 7 3319 17809 25 32 63 323 41623 64600 0.64 

Fig. 8 4441 18157 26 35 86 338 42785 67600 0.63 

Fig. 9 134608 229939 23 0 2440 3977 1258126 1590800 0.79 
 

We observe that our algorithm is effective in reducing the number of resources 

(hosts) which are necessary to satisfy the QoS constraint on the system response time. A 

clear correlation is seen on Figures 5–9 between the number of active sessions and the total 

number of allocated hosts: as the number of concurrent users increases, so does the system 

response time, which in turn triggers reconfigurations resulting in more hosts being added to 

the appropriate tiers. When the number of concurrent users decreases, servers are deallocated 

from the tiers. 

The number of violations of the SLA, as shown in Table II, is generally quite low; 

SLA violations happen when there is very high churn, that is, when many users join the 

system in few time steps. This can be seen by considering Figs. 6–8, which have an 

increasingly high workload fluctuation frequency causing higher churn in a very short time. 

If the workload fluctuates smoothly, as in Fig. 5, the response time is almost always kept 

below the threshold Rmax. If larger fluctuations happen, as in Fig. 6–8, our adaptation 

algorithm may require some time to react properly. 

It is interesting to observe that real workloads for MMOG do not exhibit steep 

fluctuations, as can be seen on Fig. 9. Remarkably, for the real workload our dynamic 
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provisioning algorithm produces no SLA violation, despite the fact that the controller is 

invoked every 10 minutes of wall-clock time, and a new configuration requires two 

simulation steps (20 minutes) to be applied to the system. The latter parameter is set to an 

extremely conservative value, yet results are extremely good. 

Finally, the last column of Table II shows that the dynamic provisioning strategy 

allows a considerable reduction in the number of allocated servers. Recall that the computing 

resources used by the MMOG operator are provided by a third party Cloud provider; the 

number of allocated servers is proportional to the cost of the MMOG infrastructure, and is 

paid by the MMOG operator to the Cloud provider. Our algorithm allows this cost to be 

significantly reduced, while still providing an appropriate level of QoS to the game players. 

 

6. CONCLUSIONS AND FUTURE WORKS 

In this paper we described a framework for runtime performance aware reconfiguration of a 

distributed, Cloud-based MMOG system. We consider a large-scale MMOG service 

implemented across geographically distributed datacenter, each datacenter providing 

resources on demand, according to the Cloud computing paradigm. Each Cloud hosts a 

three-tier system, which handles one partition of the virtual game space. Each datacenter is 

passively monitored to detect when the average response time deviates from the threshold 

Rmax. When that happens, we reconfigure the datacenter by adding or removing computing 

nodes. We use a greedy heuristic to allocate the minimum number of nodes such that the 

expected response time does not exceed the threshold. Different configurations are evaluated 

using a product-form QN performance model. 

The methodology proposed in this paper can be improved along several directions. 

In this paper we assumed that the cost of all Cloud resources is the same; this may not be the 

case, e.g., if a DB server machine needs a different configuration (and thus, has different 

cost) than a Gateway machine. Thus, we are working towards a more sophisticated 

optimization problem which takes into account the price of the resources. We are also 

exploring the use of forecasting techniques as a mean to trigger reconfigurations in a 

proactive way. Another extension of the proposed approach, that is currently under 

investigation, is the instrumentation of software clients used by the players. In this way, it 

would be possible to collect runtime statistics about the gaming experience of each player 

and to consider the re-allocation of gamers among the Tier 1 hosts (i.e. Gateways). This 

could bring to a reduction of the latency experienced by each client, including in the adaptive 

evaluation process the whole gaming infrastructure and therefore, in some extent, improving 

the gaming experience. 
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Finally, we remark that the approach described in this paper is not limited to 

MMOG services only, but can be easily extended to any large-scale multi-tier service for 

which resources at the different tiers can be dynamically provisioned. Algorithms 1—5 

require trivial modifications to cope with the general case of t-tiered systems, for any t. As 

such, our proposal is quite general as it could be applied to, e.g., E-Commerce sites, online 

auction services and similar Online Data Intensive (OLDI) applications [Meisner et al. 2011] 

which are characterized by response time constraints and are subject to workload 

fluctuations induced by user-generated queries.     
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