Please cite as:

Moreno Marzolla, Gabriele D'Angelo, Stefano Ferretti.

Dynamic Resource Provisioning for Cloud-based Gaming Infrastructures.

ACM Computers in Entertainment, vol. 10, issue 3, article 4 (December 2012),
ISSN: 1544-3574.

Dynamic Resource Provisioning for Cloud-
Based Gaming Infrastructures

MORENO MARZOLLA, STEFANO FERRETTI, GABRIELE
D'ANGELO
Department of Computer Science, University of Bologna, Italy

Modern Massively Multiplayer Online Games (MMOG#pwa hundreds of thousands of players to interaith &
large, dynamic virtual world. Implementing a scé#abiMOG service is challenging because the systesubject
to high workload variability, and nevertheless mabtays operate under very strict Quality of Sexv{QoS)
requirements. Traditionally, MMOG services are iempénted as large dedicated IT infrastructures agressive
over-provisioning of resources in order to copehwiite worst-case workload scenario. In this paperddress the
problem of building a large-scale, multi-tier MMOS$&rvice using resources provided by a Cloud comguti
infrastructure. The Cloud paradigm allows custontenequest as many resources as they need ugiag @as you
go model. We harness this paradigm by proposingnardic provisioning algorithm which can resize thsource
pool of a MMOG service to adapt to workload vari@pand maintain a response time below a giveeghold. We
use a Queueing Network performance model to quiddgimate the system response time for different
configurations. The performance model is used withigreedy algorithm to compute the minimum numifer
servers to be allocated on each tier in order tisfgahe system response time constraint. Numeexgperiments
are used to validate the effectiveness of the mepapproach.

Categories and Subject Descriptors: CQorhputer Systems OrganizatioftPerformance of Systems; K.6.2
[Management of Computing and Information Systemp Installation Managementfricing and resource
allocation; C.2.4 [Computer Communication Networkg: Distributed Systems-Bistributed applications

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Cloud Computibignamic Scalability, Massively Multiplayer Onlinea@®es,
Performance Modeling

1. INTRODUCTION

Modern Massively Multiplayer Online Games (MMOGs#g darge-scale distributed systems
serving millions of concurrent users which interiacteal-time with a large, dynamic virtual

world. An important characteristic of online ganigsheir strict performance requirements,
especially response time [Chen et al. 2006; Dicd.€2005]: depending on the type of game,
the response time to ensure a responsive play aragerfrom tens of milliseconds for First
Person Shooter action games, to a few secondsolerPaying games. MMOGs are usually
implemented as client-server architectures, whieeeserver is responsible for maintaining

the global state of the virtual play field in resge of users (clients) requests. Since the
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client-server network connection can easily becarsignificant source of latency, which
the game service providers can not control, MMO&ises are often hosted on multiple,
geographically distributed datacenters, so thah esmer can be redirected to the “faster”
(i.e., best connected) one. Binding users to datace can be performed at run-time by
taking into consideration the measured end-to-endnection quality; when network

connections or datacenters become congested, caerbe migrated to different servers.
Multiple datacenters also help to address scalglgtioblems, because the virtual world can
be partitioned or replicated across the availableess [Cai et al. 2002; Palazzi et al. 2006].

Nevertheless, scalability problems still exist hesmathe system is subject to high
variability of the workload: as the number of coment users increases, so does the system
response time. To keep the response time withinogpiate levels, a resource overprovision
policy is often adopted, that is based on stagicalllocating enough resources to cope with
the worst case scenario. This policy is inefficibatause it can lead to a largely suboptimal
utilization of the hosting environment resourcesfdct, since the worst case scenario rarely
happens, a significant fraction of the allocatesbtgces may remain unused at run time.

To support this claim, we have monitored the numbkronline users of the
RuneScape MMOG [Jagex Ltd. 2011]. RuneScape isntaba MMOG where players can
travel across the fictional medieval realm of Gieli. There is not a fixed storyline: players
can decide to combat against monsters, practiclls skr interact competitively or
cooperatively with other players. From the techihjpaint of view, the RuneScape client
code is written in Java and runs inside a browBtayers connect to servers which are
located in different world regions to reduce thenocaunication latency.

We collected the total number of online players displayed on the
http://www.runescape.com/ Web page using a sammergpd of two minutes, during the
period May—October 2011. Fig. 1 shows a subset®tiata, from May 5 to May 10, 2011.

A daily pattern is clearly visible; during peak meumore than 200.000 players are
connected to the system (the load is split acrosgégional servers), while about 110.000
players are active during off-peak hours. Hence taily churn (number of players

leaving/joining the system during the day) is abb@®.000 users. For the dataset shown in
Fig. 1 the maximum number of online players is a®#280.000 and the minimum is about

130.000. In this scenario, statical resource pioniag based on the average load results in
system overloaded roughly half the time; provisignior the worst case results in a massive

resource underutilization.

! The full dataset is available at http://pads.ddauit/
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RuneScape users online, may 5-10, 2011
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Fig. 1. Number of simultaneous RuneScape playetiagithe period May 5-May 10, 2011

In recent years, th€loud computingparadigm has emerged as an affordable way to cope
with scalability issues. Specifically, Cloud comipgtallows customers to “rent” computing
and storage resources, and only pay for what tlotyally use. Many Cloud providers
employ theutility computingmodel, where computing, storage or applicatiomueses are
billed like regular utility services (such as etégity).

Cloud computing can be very helpful in deployinggkscale MMOG services, for
at least two reasons: (i) game service providensaddiave to provision for peak load limits,
and (i) the MMOG service can be augmented to rsegumeore resources during peak
periods, and release them when no longer needed.

In this paper we propose a dynamic resource paiisg strategy for large-scale
MMOG services implemented on top of Cloud infrastmues providing resources using the
Infrastructure as a Service (laaS) model. An la&si€ provides low level computing and
storage capabilities where the customer can ruitranp software, including Operating
Systems and applications [Zhang et al., 2010]. @&EBds make heavy use of virtualization
techniques in order to fragment and allocate playsiesources to customers. For example,
computing power is usually provided as Virtual Mimeh(VM) instances executing on some
physical server. The same physical server can imodtiple VM instances, each instance
exposing part of the capabilities of the servertudlization allows Cloud providers to offer
a set of homogeneous (virtual) resources, chaiaeteby a choice of key parameters (CPU
speed, memory size and so on) among which custaraarshoose. The underlying physical
infrastructure, can be made of heterogeneous ressus not directly exposed to the clients.

We consider a large scale gaming service built awertiple, geographically

distributed datacenters, each one providing reesusa demand using Cloud infrastructures.
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Each datacenter hosts a three-tier system, whiollés one partition of the virtual world.
The goal is to ensure that the system responseRiateeach datacenter is kept below a pre-
defined threshol®R,.,. As already observed, the valueRy., depends on the kind of game:
action games, where fast interaction between pdayerd the environment is essential,
require very low response times (tens of milliset)n strategy games, on the other hand,
can deliver a satisfactory game play with respaimees of the order of a few seconds.
Therefore, the game operator defines the valu&kfgythat provides the best experience to
its users [Palazzi et al. 2006].

Thanks to the underlying Cloud, it is possible tll gremove) computing nodes to
(from) any tier. Hence, we satisfy the responsesttonstraint by dynamically adding or
removing server instances where necessary. Fronpdire of view of the game service
provider, the cost of a datacenter depends on uh#&ar of nodes allocated there. We thus
aim at minimizing the total cost of a datacententigimizing the number of allocated nodes
such that the response time satisfies the consRairR .

We assume that the MMOG service is capable of pamesitly reconfiguring itself
when the resource pool of each datacenter is dltefée also assume that only one
datacenter is in charge of handling a given regibthe virtual world in a specific game
session. This is actually what happens in manyinepllementations of MMOGs [Jagex Ltd.
2011]. A consequence of such an approach is tbaipstance, most issues related to the
consistency management of the game state can by leasdled. In general, this does not
hold when multiple servers working on the sameuairtegion of the same game session are
geographically distributed. In fact, in this cagbes factors might influence the level of
provided responsiveness, e.g. the synchronizatigorithm, the distribution of clients
connected to distributed servers [Mauve et al. 20@4azzi et al. 2006].

To achieve the goal above, we enhance the gamiviceehosted in each Cloud
with two additional components, calledonitor and planner The monitor is a passive
observer which collects run-time performance metrin particular, the monitor measures
the current system response tiRieand triggers the planner when the response tew@tks
from the thresholR,.« The planner is responsible for computing therogti(minimum)
number of nodes to allocate at each tier so thatrélsponse time is maintained below the
threshold.

Since the planner must operate at run-time, itxiseenely important that a new
configuration is computed quickly. To do so, we asgreedy strategy in which one node is
added (or removed) at a time from a suitably chasem The planner uses a Queueing

Network (QN) performance model to identify the tieralter, and to estimate the system
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response time after each change; the parametededhé¢e analyze the performance model
are those collected by the monitor. Thanks to tiNe r@odel, the planner can efficiently
compute complex reconfiguration changes which ime@ahe addition or removal of multiple
nodes from different tiers. In fact it is well knovhat adding more servers to the bottleneck
tier only is not guaranteed to improve the ovesgitem performance, as the bottleneck may
shift to other tiers.

This paper is structured as follows. In Section€csmpare our approach with the
relevant literature. In Section 3 we describe thghtevel architecture of the MMOG
services we consider, and precisely formulate tjeachic provisioning problem as an
optimization problem. Section 4 describes our psegodynamic reconfiguration algorithm.
The effectiveness of the solution is evaluated ®cti®n 5 by means of numerical

experiments. Finally, conclusions and future rededirections are illustrated in Section 6.

2. RELATED WORKS
Despite the fact that Cloud computing in generalnsctive research topic, to the best of our
knowledge, the problem of QoS provision in Cloudhpaiting environments is only recently
receiving attention. In this section we briefly i@~ a few papers on this topic that show
some analogy with our approach to development @-@eare Cloud-based applications.
Two kind of approaches have been considered iditgrature: model based and
measurement based. Model based solutions use iparice models to drive the adaptation
step. In [Li et al. 2009] the authors describe d@hme for achieving resource optimization at
run time by using performance models in the develeqmt and deployment of the
applications running in the Cloud. Their approazibased on a Layered Queueing Network
(LON) performance model, that predicts the effe€tsonultaneous changes (such as
resource allocation/deallocation) to many decisiamiables (throughputs, mean service
delays, etc.). In [Ranjan et al. 2002] the authmrssider an approximation of a multi-tier
architecture as &/G/N queueing center with general interarrival timeneyal service time
distribution andN identical servers, under heavy load. In [Urgaor#taal. 2008] a general,
k-tier system is modeled as a chain@Gf5/1 queueing centers. We also mention a recent
work which addresses the same topic considered thexteis, dynamic resource provisioning
in MMOG infrastructures. In [Nae et al. 2010] thatteors first introduce a combined
processor, network and memory load model spediidailored to MMOG architectures,
which is used together with a neural-network bageedictor in order to anticipate

fluctuations without the need to accurately monikeam in real-time.
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Our approach differs from those mentioned aboveabse it is not limited to
MMOG systems, but can be easily applied also toegenmulti-tier services with an
arbitrary number of tiers (see Section 6 for dsjail

As to measurement-based approaches, they basicaligist in periodically
monitoring the QoS provided by the cloud and reacits performances by tuning the
amount of resources exploited for hosting the serviFor instance, in [Ferretti et al. 2010] a
reconfiguration approach is exploited that dynafhicadds/releases resources devoted to
support a given service, based on the amount of @bktions that occur during the service
utilization, in order to avoid that the rate of $keviolations surpasses a predetermined
threshold. The work proposed in this paper copeth whe same mentioned problem.
However, our solution is based on a novel and diffeapproach with respect to [Ferretti et
al. 2010]. In fact, in the former the authors cdesia single-tier service and propose a
purely reactive system in which a reconfiguratisnriggered based on the experienced QoS
violations. On the other hand, in this paper wesater a multi-tier MMOG architecture for
which identifying a new configuration which satedi the QoS constraint is more
challenging. The reason is that in multi-tieredlegpions it is necessary to identify both the
tier(s) from which resources should added/remoead, also compute how many resource
instances to add/remove. To this aim, we propasedel-based approach based on a simple
heuristic which uses a Queueing Network performanodel to quickly estimate the system
response time for different configurations.

Other works focus mostly on issues related to #faniion and monitoring of the
SLAs in a Cloud computing environment and do nairass issues of QoS enforcement and
resource optimization. In [Spillner and Schill 2D®®e authors present a methodology for
adding or adjusting the values of non-functionaiparties in service descriptions depending
on the service run time behavior, and then dynalyiacteriving adjusted SLA template
constraints. In contrast, in our proposal the SloAgtraint is given, and the service must be
modified at run-time to provide the necessary Qe®ell Issues related to the SLA
monitoring are presented in [Korn et al. 2009]tHat paper the authors introduce the notion
of Service Level Management Authority (SLMA), arthindependent party that monitors
the SLA and facilitates the interaction between@h@ud vendor and the end customer. This
approach differs from ours as in the solution weppse the monitoring facilities are
implemented by a component of our middleware ptaifoather than by an external entity.
(However it is worth noticing that due to the matity of our architecture, one could

investigate the possibility of integrating a SLM#\adur solution).
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Fig. 2. High level architecture of a distributedp@i-based gaming infrastructure

3. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a large-scale distributed infrastruector support MMOGs as shown in Fig. 2.
The system has three types of actors: (i) usemmégalayers), which interact with a virtual
world by controlling software avatars; (i) tHdMOG service which is responsible for
maintaining the game state and executing all nacg$steractions between players and the
virtual world, and (iii) the resource provider which is responsible for providing
computational and storage resources on demane toptbrator of the MMOG service.

The MMOG service maintains state information akewsingle virtual universe, or
metaverseln order to ensure scalability, many existing MBGmplementations partition
the metaverse across multiple servers [Kumar e2@08]. As the size and complexity of
game increase, it is reasonable to split the metavacross multiple datacenters, each one
handling a partition. We assume that the virtualfitld is partitioned into non-overlapping
(or only partially overlapping) zones [Cai et a&02]. Human players control virtual avatars

which move and interact inside a zone; avatarsiatéound to a single zone, but can move
freely over the whole virtual world.
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The MMOG service operator maintains the state athezone through aone
controller, which is a software component responsible fordliag all interactions between
players and/or the virtual world inside a single&oTo enhance scalability and distribute
the workload, each zone is handled by a separativhee infrastructure hosted on different
datacenters. Given that communication between eatars may incur significant delays, it
is important that interactions across neighboringes is minimized. For example, each
partition may hold a collection of “islands” suchat all interactions happen within the
collection, while players can jump from one “islartd another (possibly joining a new
server on a different datacenter). We assume t&atMMOG service makes crossing a
partition (zone) a seamless operation.

Depending on the (virtual) mobility pattern of eaplayer, some areas of the
metaverse may become crowded, while others maynbedess populated. In order to cope
with this variability, each zone controller is hedton resources provided and operated by a
laaS Cloud infrastructure. The Cloud provider isgeneral a separate entity that rents
computational and storage resources to the custoarern pay-as-you go model [Zhang et
al. 2010]. This means that the game operator cquest additional servers and/or storage
space at any time, and release them when no loregated. Thus, the game operator can
request more resources when the workload on ainoneases, in order to keep the response
time perceived by players below a predefined marimualue. When the workload
decreases, the game operator can release surptusges in order to reduce costs.

We now describe in detail the structure of a zamroller. We consider the multi-
tier architecture described in [Hsiao and Yuan 20@&ich is shown in Fig. 3. Thigrewall
represents the entry point and allows traffic fitg. The first layer contains a set of
gateways which are responsible for handling basic gamingtqzol checking and
verification. The cell serversare responsible for managing the virtual world atsl
evolution; each server controls a small area indite virtual zone assigned to the
corresponding datacenter. Finally, tatabase serverare used to store persistent game
state information.Load balancersare used to evenly distribute requests among erve
across layers.

It is reasonable to expect that all servers withie same layer are homogeneous,
i.e., have approximately the same configuration YCPnemory, disk) and the same
performance. While our dynamic reconfiguration aifgpon could be extended to cope with
non homogeneous layers, this scenario would beitttd lpractical interest within this
context, since sophisticated load balancing teclesgwould be required to distribute the

load in such a way that slower machines do notinecoottlenecks. Besides, as observed in
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Section 1, Cloud providers allow customers to retuerver instances with specific
characteristics (CPU speed, number of cores, mersiag, disk space), and hence the
homogeneity assumption is the norm rather tharexiception. Of course, we allow different
layers to require different server configuratiof, example, the DB servers layer may

require servers with larger and faster disks toadus larger I/O rate.

Firewall

Load
Balancers
Tier 1
(C, servers) Gateways
Load
Balancers
Tier 2 Cell
(C, servers) Servers
Load
Balancers
Tier 3 DB
(C, servers) Servers

Fig. 3. Multi-tier architecture of the MMOG serveosted by a single datacenter

As observed above, the MMOG service is subject aoklwad variability because
game players can join and leave the system atiamg; and can migrate from one zone to
another. In this paper we address the problem sfiratg that the average response time
experienced by a player does not exceed some firedanaximum value. To solve this
problem we propose a model-based algorithm for ehyoaeconfiguration of the MMOG
service; our algorithm uses a simple QN model teniily the bottleneck tier(s), and
compute the number of servers to add/remove. Témnfiguration algorithm is executed by
each zone controller independently from each other.

Formally, thesystem configuratiof is defined as a vector with three elemedts

(C1, Gy, C3) whereC; represents the number of hosts allocated ta tiet, 2, 3. ThusC; is
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the number of gateways§;, the number of cell servers a@ the number of DB servers
which are currently instantiated. The aim of theordiguration algorithm is to compute the
configurationC with minimum total number of servers such that ¢(astimated) system

response time is less thd,.,. Formally, we aim at solving the following optiraizon

problem:
minimize Ci+Cy+Cy) (1)
subject to R(C) < Rmax
C=0C1,C, G

CGoO{1,2,..}4i=1,2,3
whereR(C) is the estimated system response time with cardigpnC = (C, , C, , C3). In
general R(C) does not depend on the configurat@ronly, but also on other parameters, as
will be discussed in the next section.
Since the total number of hosts allocated at edehddatacenter is proportional to
the total cost of the resources provided by th&aater, by reducing the total number of

hosts we also reduce the cost of the MMOG infrasumne.

4. RECONFIGURATION ALGORITHM

In this section we describe the details of the mégaration algorithm. We enhance the
gaming service shown in Fig. 3 with two additionamponents, calleghonitorandplanner.
Each datacenter has its own monitor and planned, each datacenter executes the
autonomic reconfiguration algorithm described ie tiollowing, independently from the
others.

The monitor is a passive observer which collectstimne performance metrics; in
particular, the monitor measures the system regptmeR. WhenR deviates fromRpax ,
the monitor triggers the planner, which computesaptimal (minimum) number of nodes to
allocate at each tier so that the response tinmeaigtained below the threshold. The new
configuration is computed by finding an approximattution to the optimization problem
D).

Since the planner must operate at run-time, itxtseenely important that a new
configuration is computed quickly. To do so, we asgreedy strategy in which one node is
added (or removed) at a time from a suitably chdigenin general, it might be necessary to
add (or remove) multiple hosts from different tiexith a single reconfiguration step;
furthermore, the identification of a new configimat must be done efficiently in order to

quickly adapt to the workload fluctuations. Thisesiout the simple solution in which hosts
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are added or removed by trial and errors, and mmgact of each new configuration is
directly measured on the running system.

The planner uses a QN performance model to idenligy tier to alter, and to
estimate the system response time after each chimg@arameters needed to analyze the
performance model are those collected by the moniteanks to the QN model, the planner
can efficiently compute complex reconfiguration mhas which involve the addition or

removal of multiple nodes from different tiers.

4.1. The Monitor
The monitor is a passive observer which collectstine statistics on a single datacenter.
Specifically, the monitor collects the followingraaneters:
— The average system response tine
— The average system throughpit (rate at which requests, i.e., game events
generated by clients connected to that node, aeepsed);
— The tier utilizationdJ = (U; , U, , U3), whereU; is the utilization of tief.

Since these parameters may be subject to highbil#tgiait is necessary to apply
suitable smoothing functions to the raw data betbey can be actually used. A simple
approach is to collect multiple samples, and compumoving average over a time window
of length W. For a comprehensive treatment of the state chaegection problem see
[Gustafsson 2000].

The system administrators must define two additidheesholds:Rq, and Ruigh ,
such thatRey < Rnigh < Rnax - The monitor checks whether the average respbmseR
computed over the last time window is less tRap or greater thaR,g, . In either case, the
planner is invoked. IR < R, the planner tries to deallocate resources fromeratllized
tiers; if R > Ryign the planner adds resources to the bottleneck itiecsder to reduce the
system response time before it hits the thresti)lg (details will be given in the next
section).

The values oRyy , Righ andW are in general system- and application-dependent,
and impact both the frequency of reconfiguratiod #me sensitivity of the reconfiguration
algorithm. If Rq,, is small, over provisioning may happen, becausased resources are
relinquished only whemR < Ry, , which may rarely happen. Similarly, Ry is large,
violations of the “hard” response time linfR,.x may happen before the system has the
opportunity to react. Finally, low values @ imply that the system can react quickly to
surges in the number of concurrent users, at tte 0b increasing the frequency of

reconfigurations and thus increasing the overhdathe adaptation process. As a rule of
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thumb, we empirically found that settifgyigh = 0.Rmax and Rgy = 0.8Rmax is a

reasonable setting; the valueWfshould be chosen according with the workload flatibn
speed. For services which exhibit the daily pattgpical of human activities with a period
of approximately 24 hours, values\Wfin the range 5—20 minutes are appropriate.

The control loop just described is shown in Aldgamit 1. The system administrator
must choose an initial configurati@ (line 1), after which an infinite loop is useddollect
monitoring data and reconfigure the system wheresgary. The functionfcquire and

Release are provided by the planner component, and williégcribed in the next section.

ALGORITHM 1: QoS-Aware Reconfiguration Algorithm
Require: Ry < Rhigh < Rmax: Thresholds
1: Let C be the initial configuration

2:loop

3 Monitor the system and compute R; X; U

4: c':=C

5: if (R > Rhigh) then

6: C' := Acquire(C; U; X; R)

7 else if (R <Ryy) then

8: C' .= Release(C; U; X; R)

9: end if

10: if a new configuration C' # C has been found then
11: Apply the new configuration C' to the system
12: c:.=C

13: end if

14: end loop

4.2. The Planner
The planner is responsible for identifying a newfaurationC = (C, , C, , C3) as a solution
of the optimization problem 1. The planner usesMaigrformance model to estimate the
system response time of different configurations.

A datacenter is modeled using the single-clasgjumtsform closed QN shown in
Fig. 4. For any configuratio@ = (C, , C, , C3), the model hasd; + C, + C;) service centers
organized in three tiers witB; , C, andC; servers each, respectively. A fixed population of
N requests continuously circulate in the systédnbeing the total number of players
currently connected to the system. We allow theeaifN to change over time, as users join
and leave the system.

Each server is approximated as a -/G/1—PS centér geineral service time and
Processor Sharing (PS) service discipline. The awelguirement on the service time
distribution is that it must have rational Laplatansform; this requirement is not very

restrictive, since it includes all distributions iefh can be expressed as a network of
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exponential stages; exponential, hyperexponentiadl dypoexponential service time
distributions all have rational Laplace transforfihe PS service discipline closely
approximates the scheduling policies of actual essrvwhere requests are processed in
round-robin fashion each receiving service for aalbmquantum of time. Under these
assumptions, the QN belongs to the class of BCMiwarks which haveproduct-form
solution [Baskett et al. 1975, Balsamo 2000], which babicaheans that average
performance measures (response times, utilizaiadsso on) can be computed efficiently.
This is important because the model must be andlyae run-time, so we favor
computational efficiency over model accuracy. Alsonsider that precise performance
estimations not only require an accurate model, dab detailed and accurate model
parameters which can be acquired only with an imeaand time-consuming monitoring
activity.

We assume that the workload can be balanced attresservers of the same tier,
such that all nodes have, on average, approximatphal utilization. We remark that this
assumption is not strictly necessary, since the r@ddlel can be analyzed with arbitrary
parameters. However, our dynamic scalability athoni relies on the assumption that the
load on the bottleneck tier can be reduced by siimgahe requests over a larger number of
servers. This requirement is not strict, that i, allow unbalance to happen; however, it is
reasonable to assume that on average all servetiseosame tier have similar utilization.
This is in fact the case for existing MMOGs basedaomulti-tiered architecture [Cai et al.
2002, Hsiao and Yuan 2005]. If the MMOG servicersble to spread the load evenly, then
“hot spots” may arise and the system will eventudit scalability limits no matter how
many resources are allocated.

To analyze the network of Fig. 4, the following #uichal parameters are needed:
(i) an estimation of the numbét of requests currently in the system, and (i) dlggregate
service demand at each tier.
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Fig. 4. Queueing Model of a datacenter

The number of concurrent requedtgwhich can be seen as the number of active

players that periodically generate game eventnduhie game evolution) can be computed

from the measured system response fhamd throughpuX using Little’s Law [Little 1961]

as:

N=XR

)

The service demanD; of tieri is the cumulative time spent by a request in any

server of tieii. According to the Utilization Law [Lazowska et 4P84], the service demand

on an individual server of tiercan be expressed bis/ X. If the utilization and throughput

were measured when the system configuration@as(C; , C, , C3), then the total service

demand at tieris

Di=CxU;/X i=1,2,3

Table | summarizes all symbols used in this paper.

Table I. Symbols used in this paper

®)

Measured system response time

Measured system throughput

Measured utilization of tier i

Rinax

Maximum allowed response time
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Riigh | Upper response time limit

Row | Lower response time limit

Number of users online

Number of nodes at tier i

Estimated Total service demand of tier i

c| O O 2

Estimated average utilization of nodes at fier

ALGORITHM 2: MVA(C;D;N) - (U;R)

Require: C configuration to analyze

Require: D = (D1;D5;Ds) total service demands of tiers

Require: N number of active users

Ensure: U = (Uy;U,;U3) estimated utilization of tiers

Ensure: R estimated system response time

1. fork:=1to 3do

2: Q=0 {Mean queue length at any tier k server}
3: end for

4:forn:=1to Ndo

5: fork:=1to 3do

6: Ry := De(1 + Qy)

7 end for

8: R, = 23 RC {System response time}
) k=1 k

9: Xs:=n/Rs {System Throughput}

10: for k:=1to 3 do

11. Qk = X5 X Ry

12: end for

13: end for

14: fork:=1to 3do
15: Uy = Xg X Dy
16: end for

17: Return (U;R)

For product-form QNs, the Mean Value Analysis (MVAlgorithm [Reiser and
Lavenberg 1980] can be used to compute individesiog utilizations and system response
time on a closed network withrequests given the average queue lengthsmwithrequests.
Thus, starting from an empty network, MVA compusetutions for populations 1, 2, .N,.
A closed network withN requests anl queueing centers can be analyzed using the general
MVA algorithm in time ON K). However, since all servers in each tier are \ejant, the
network of Fig. 4 can be analyzed in timeNp(sing the specialized MVA implementation
of Algorithm 2.

If we are not interested in exact performance \glitas possible to compute upper

and lower asymptotic bounds on the system througlamad response time using the
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Balanced System Bounds (BSB) algorithm [Zahorjanakt1982]. The computational
complexity is greatly reduced, as the network af. M can be analyzed in time O(1)
(independent from the number of requéadjs It has already been observed [Marzolla and
Mirandola 2010] that for dynamic reconfigurationpigations, the MVA algorithm only
provides marginal advantages over the simpler amgtemcomputationally efficient
computation of BSB. Therefore, we will estimate gystem response time as the average

value of the upper and lower bounds provided byR88B algorithm.

ALGORITHM 3: BSB(C;D;N) - (U;R)

Require: C configuration to analyze

Require: D = (D1;D5;D5) total service demands of tiers
Require: N number of active users

Ensure: U = (Uy;U,;U3) estimated utilization of tiers
Ensure: R estimated system response time

1: Dpax := max{D; /Cy; D,/Cy; D3/C3} {Maximum demand of a server}
2: Dot := (Dy + D5 + D») {Total service demand on all servers}
3: Dave := Dot /(C1 + C, + Cy) {Average service demand of a server}
4: X :=N/ Dyt + (N - 1) X Diay) {Lower bound on system throughput}
5: X" :=min {1/ DpmacN / (Dot + (N - 1) X Doye)} {Upper bound on system throughput}
6: R := max {N X Dyay; Diot + (N - 1) X D,e} {LOower bound on system response time}
7:R":= Dtot + (N - 1) X Dyax {Lower bound on system response time}
8 X =(X"+X)/2 {Estimated system throughput}
9:R:=(R"+R)/2 {Estimated system response time}

10: fori:=1to3do
11. U =X xD
12: end for

13: Return (U;R)

Algorithm 3 computes upper and lower bounds orsifstem throughput andX
respectively) and upper and lower bounds on thdesysresponse timeR{ and R
respectively). The response tirReis then estimated as the average value of therigpmk
lower boundsR" + R) / 2 (line 9). The paramet® = (D, , D, , D3) represents the total
service demand vector of tiers 1-3 as computedguBiq. (3), using the measurements
performed by the monitor.

Acquiring new resources.When the measured response tiRiés greater thamR,g, we
need to allocate new resources to improve the sysésponsiveness. L& be the current
configuration at the time the planner is invoketleThew configuratiolC' is computed by
the procedurécquire() shown in Algorithm 4. The procedure uses a singpéedy strategy
to iteratively defineC' starting fromC. At each iteration, the QN model is used to estma
the utilization of all tiers, and the system respotime (line 5). The bottleneck tierd {1,

2, 3} is identified as the tier whose nodes haghér utilization (line 7). Then, a single host
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is added to the bottleneck tier (line 8). Thespstare repeated until the estimated response
time is less tharR,igh + Row) / 2; at that point, the configurati&@! becomes the new system
configuration: new hosts are allocated from theu@lservice, and all tiers of the MMOG

server are reconfigured accordingly.

ALGORITHM 4: Acquire(C; U; X; R) » C'

Require: C Current system configuration

Require: U Measured utilizations

Require: X ; R Measured system throughput and response time

Ensure: C' New system configuration

1.C"=C

2: Compute N using Eq. (2)

3: Compute D = (D1;D;;D3) using Eq. (3)

4: repeat

{(U;R) := BSB(C";D;N) {Evaluate configuration C'}

if (R = (Rhigh + Rlow) / 2) then
Let b the tier with highest utilization Uy
Cp=Cp+1

end if
10: until R < (Rpigh + Riow) / 2
11: Return C'

Releasing resourcesWhen the measured response tRie less tharfr,,, , we try to release
hosts. LetC be the current configuration at the time the p&nis invoked. The new
configuration C' is computed by procedurBelease() shown in Algorithm 5. Again,
procedureRelease() uses an iterative greedy strategy to complitefrom C. At each
iteration we consider the s&0O {1, 2, 3} of tiers with more than one node (ling &
represents the set of tiers from which one hostdcbe removed. We identify the tiard S
with lowest utilization, and try to remove one nddan tieru (line 8). We estimate the new
system response tinkeusing BSB (line 9). IR becomes larger thaRgy, + Row) / 2, we do
not deallocate any host from tigrwe thus remove from S (line 11), and iterate again. The
process stops whehbecomes empty, which means that either (i) alstileve exactly one
host, or (i) it is not possible to remove any hfsetn any tier without causing the estimated
system response time to become larger tRagh ¢ Row) / 2.

It is worth noticing that the architecture of themitor and planner components is
very simple and does not require any major modificato the existing MMOG service.
Furthermore, the monitor and planner can be imphettusing Cloud based services and

therefore in an elastic way.

ALGORITHM 5: Release(C; U; X; R) - C'
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Require: C Current system configuration

Require: U Measured utilizations

Require: X ; R Measured system throughput and response time

Ensure: C' New system configuration

1:C =C

2: Compute N using Eq. (2)

3: Compute D = (D1;D,;D3) using Eq. (3)

4. S:={i|C>1}

5: (U;R) := BSB(C';D;N) {Evaluate configuration C'}
6: while (S # 0) do

7 Let u the tier in S with lowest utilization

8: C,=C,+1 {Try to reduce tier u}
9: {(U;R) := BSB(C";D;N) {Evaluate configuration C'}
10: if (R 2 (Rhigh + R|0w) / 2) then

11: C,=C+1 {Rollback to old configuration}
12: S:=S\{u} {Remove u from the set S}
13: else

14: S={i|Ci>1}

15: end if

16: end while

17: Return C'

4.3. Computational Cost
Both Algorithms 4 and 5 execute a number of iteratiin which a single host is added to, or
removed from a single tier. The cost of each iterats O(1), since performance evaluation
of the three-tier queueing system using BSB carddre in constant time. It should be
observed that a more accurate estimation of pedooem parameters using the MVA
algorithm would require Q) operations, wher8l is the number of active users at the time
the network is analyzed. Sint¢ can become quite large (thousands of active ptages
common in most MMOGS), MVA is not appropriate far@pplication-

Given the current system configurati@r= (C, , C; , C3), the new configuratiog’

=(C';, C',, C%) identified by the procedurgcquire() has the property th&'; > C; for all i
=1, 2, 3. Thus, the computational cost of Acql)i're(O(ZiB:l(Ci' -C )) Similarly, given

the current configuratiol€, the new configuratiol©' returned by procedurelease() is
such thaC; < G for all i. The worst case happens when the initial configumgC,, C,, Cs)

is reduced to (1, 1, 1), that is, all hosts (exasy host for each tier) are released. Thus, the

worst-case computational costRélease() is O(Z;Ci )

5. NUMERICAL RESULTS
In this section we evaluate the dynamic reconfiionastrategy described in Section 4.

Algorithms 4 and 5 have been implemented in GNUa@et[Eaton 2002], an interpreted
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language for numerical computations. We performead sets of experiments: one with a
completely synthetic workload, and one using a veatlkload obtained by monitoring the
number of online users as reported by the RuneSaégtesite.

Synthetic workloadsWe performed a time-stepped simulation of durafic= 200
steps. In order to reduce the number of input patars, we generated a sequence of values
for the number of online usel at timet, for eacht = 1, ..., T . We defined fixed values for
the average service tim&sat tieri asS, = 0.08,S;, = 0.8,S; = 0.58. The measured system
response timeR, throughputX and tier utilizationsU; are computed using the MVA
algorithm on the QN model of Fig. 4. In our expegitts we seRyax = 100,Ryign = 90 and
Row = 70. The planner uses a window of si¥é=5 time steps. We assume that
acquiring/releasing hosts and reconfiguring thetesystakes some time. Specifically, a
reconfiguration completeat=3 time steps after it has been requested. We atealour
approach in three different scenarios, using dfieworkloads.

Figures 5-8 show the results. Each plot containsetiparts: on top we show the
observed system response time (thick line) achiesstg the dynamic adaptation algorithm
described in this paper, while the thin line shahes time-averaged system response time
over the lasWV steps. Horizontal lines show the valuesRpfy Rnigh and R, respectively.
The times at which a new configuration is appliBgd¢onfiguration points) are also shown.
On the middle part we show the number of allocatedes on each tier: the height of
colored bands are the values@f C, andC; , from bottom to top. Finally, the bottom part
shows the numbe; of concurrent online users at each time step

Real Workload We performed another experiment by using a reatklvad
collected from RuneScape. We monitored the numbenline users as reported in the Web
page [Jagex Ltd. 2011], collecting one sample ewery minutes over a period of several
weeks from May to October 2011. For our test wesisr a subset of the data which
consists of tree days, from May 5 to May 7, 2014o(a 2160 data points). We re-sampled

the data to one data point every 10 minutes, reduci the

ACM Computers in Entertainment, Vol. X, No. X, Aig X, Publication date: Month Year



140

120 — —
[ 100 F{malx
E ~e [/ & I/ Roen
9 BO—J/WBQJ'W 1.
c low
MNA' —
]
o 40 . —
esponse Time
20 Moving Average —
Recc?nf. point ©
0 | |
20 T T
Um 15
S 10
g 5
0
o
[0l
E
(o]
£
= -
o | !
100 150 200
Time step
Fig. 5. Simulation result, irregular workload witw churn
140 ‘ ‘ I
120 |- —
A o .
E 100 k‘\ oy | ,.\.V‘%Vm =N R::;xh
= R\ s _
g Wal NN .ahg‘ﬁm
- ey vV
o 40 - ] —
Response Time
20 - Moving Average —
Rec?nf. point ©
0
o
@)
&
)
<)
w
@
g
]
£
5
0 \ \ |
0 50 100 150 200
Time step
Fig. 6. Simulation result, periodic workload withw frequency
ACM Computers in Entertainment, Vol. X, No. X, Aig X, Publication date: Month Year



140

120 —
A 4 £ PN R,
g 1o alivawa e 7
p
g F{Iow
=)
[oN
@
o
Response Time
20 Moving Average —
Rec?nf. point
0
OC".\
Jd
&

Online users

140

120

100

80

60

Response Time

40

20

Cy,Cy Cy
o
o

Online users

50 100 150 200

Time step

Fig. 7. Simulation result, periodic workload witredium frequency

I i It

max

. Rhigh

I:Klow

Response Time
Moving Average
Rec?nf. point O

50 100 150 200

Time step

Fig. 8. Simulation result, periodic workload wittgh frequency (implying high churn)

ACM Computers in Entertainment, Vol. X, No. X, Aig X, Publication date: Month Year



120 — —

max
P4 Rhign
low

Response Time

Response Time
20 - Moving Average —
Rec?nf. point ©

Cy. C,. Cy
N
(]
(]
(]

200000 —
150000 — —
100000 — —

50000 — —
0 | | | | | | |

0 50 100 150 200 250 300 350 400

Online users

Time step

Ei

g. 9. Simulation result with the real workloadeatime step corresponds to 10 minutes of

wall clock time

dataset to about 432 data points. Thus, each diiolatep refers to 10 minutes of wall
clock time. We set the same fixed values for theraye service time§ at tieri as in the
previous set of experimentS; (= 0.08,S, = 0.8,S; = 0.58). We considered a moving average
overW = 5 samples, and we assume that a system recatfijurequires\t = 2 time steps
(20 minutes of wall clock time). Threshold havemeet aRRya = 100,Ryign = 90 andRe,, =
80. The simulation result is shown in Fig. 9; rekadty, no violation of the Service Level
Agreement (SLA) occurred, as our algorithm was bapaf following the fluctuations of
the workload.

Discussion Simulation results are summarized in Table lle Tollowing parameters are
reported:

— The Figure the result refers to;

— The minimum and maximum number of online users;

— The number of times a new configuration has begfieth

— The number of time steps in which the SLA constr&(C) < Rn.x has been

violated,;
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- The minimum, maximum and total number of servericivhave been allocated by
the dynamic provisioning algorithm during the siatidn run. IfC(t) is the number
of servers allocated at timet tieri = 1, 2, 3, then the minimum number of servers
is min {Cy(t) + Cy(t) + Cs(t)}, the maximum number of servers if ma@XCy(t) +
Cy(t) + C4(1)}, and the total number of serverspis(Cy(t) + Cy(t) + C4(t)).

— The total number of servers which would have beaticslly allocated in case of
provisioning for the worst-case scenario. This namis simply the maximum
number of servers multiplied by the length of thewdation run;

— The ratio between the total number of servers atkat by the dynamic
provisioning algorithm and the total number of sesvfor the worst-case static

allocation; lower is better.

Table Il. Simulation results

Online users SLA N. Servers (dynamic) N servers N. Serv. Dynamic /

min max Reconf. violations Min max__ tot (static) N. Serv. Static
Fig. 5 300 800 17 12 8 16 2295 3200 0.72
Fig. 6 3517 17895 21 22 66 333 45386 66600 0.68
Fig. 7 3319 17809 25 32 63 323 41623 64600 0.64
Fig. 8 4441 18157 26 35 86 338 42785 67600 0.63
Fig. 9 134608 229939 23 0 2440 3977 1258126 1590800 0.79

We observe that our algorithm is effective in rédgcthe number of resources
(hosts) which are necessary to satisfy the QoSti@nson the system response time. A
clear correlation is seen on Figures 5-9 betweemtimber of active sessions and the total
number of allocated hosts: as the number of coantiisers increases, so does the system
response time, which in turn triggers reconfigunasi resulting in more hosts being added to
the appropriate tiers. When the number of conctiusars decreases, servers are deallocated
from the tiers.

The number of violations of the SLA, as shown ibl€al, is generally quite low;
SLA violations happen when there is very high chuhat is, when many users join the
system in few time steps. This can be seen by dering Figs. 6-8, which have an
increasingly high workload fluctuation frequencwsing higher churn in a very short time.
If the workload fluctuates smoothly, as in Fig.tlhe response time is almost always kept
below the thresholR, If larger fluctuations happen, as in Fig. 6-8r @daptation
algorithm may require some time to react properly.

It is interesting to observe that real workloads KMOG do not exhibit steep

fluctuations, as can be seen on Fig. 9. Remarkdbtythe real workload our dynamic
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provisioning algorithm produces no SLA violatiorespite the fact that the controller is
invoked every 10 minutes of wall-clock time, andnaw configuration requires two
simulation steps (20 minutes) to be applied todygem. The latter parameter is set to an
extremely conservative value, yet results are exthg good.

Finally, the last column of Table Il shows that tiygamic provisioning strategy
allows a considerable reduction in the number lofcated servers. Recall that the computing
resources used by the MMOG operator are provided byird party Cloud provider; the
number of allocated servers is proportional to dbst of the MMOG infrastructure, and is
paid by the MMOG operator to the Cloud provider.r@lgorithm allows this cost to be

significantly reduced, while still providing an appriate level of QoS to the game players.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we described a framework for runtpeeformance aware reconfiguration of a
distributed, Cloud-based MMOG system. We considetai@e-scale MMOG service
implemented across geographically distributed datr, each datacenter providing
resources on demand, according to the Cloud comgpuiaradigm. Each Cloud hosts a
three-tier system, which handles one patrtitionhef Yirtual game space. Each datacenter is
passively monitored to detect when the averageoresptime deviates from the threshold
Rnax When that happens, we reconfigure the datacéytexdding or removing computing
nodes. We use a greedy heuristic to allocate themmim number of nodes such that the
expected response time does not exceed the thdegbifferent configurations are evaluated
using a product-form QN performance model.

The methodology proposed in this paper can be ivgat@long several directions.
In this paper we assumed that the cost of all Clesdurces is the same; this may not be the
case, e.g., if a DB server machine needs a diffezenfiguration (and thus, has different
cost) than a Gateway machine. Thus, we are workowards a more sophisticated
optimization problem which takes into account thé&e of the resources. We are also
exploring the use of forecasting techniques as anmte trigger reconfigurations in a
proactive way. Another extension of the proposegragch, that is currently under
investigation, is the instrumentation of softwaterts used by the players. In this way, it
would be possible to collect runtime statistics whitthe gaming experience of each player
and to consider the re-allocation of gamers amdwegTier 1 hosts (i.e. Gateways). This
could bring to a reduction of the latency experahby each client, including in the adaptive
evaluation process the whole gaming infrastructune therefore, in some extent, improving

the gaming experience.
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Finally, we remark that the approach describedhis paper is not limited to
MMOG services only, but can be easily extendedrty large-scale multi-tier service for
which resources at the different tiers can be dyoalty provisioned. Algorithms 1—5
require trivial modifications to cope with the gealecase ot-tiered systems, for anty As
such, our proposal is quite general as it coul@yglied to, e.g., E-Commerce sites, online
auction services and similar Online Data Inteng®EDI) applications [Meisner et al. 2011]
which are characterized by response time conssraarid are subject to workload

fluctuations induced by user-generated queries.
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