Reducing Attack Surfaces for Intra-Application
Communication in Android

David Kantola, Erika Chin, Warren He, and David Wagner
University of California, Berkeley
{dkantola,emc,-w,daw}@berkeley.edu

ABSTRACT

The complexity of Android’s message-passing system has
led to numerous vulnerabilities in third-party applications.
Many of these vulnerabilities are a result of developers con-
fusing inter-application and intra-application communication
mechanisms. Consequently, we propose modifications to the
Android platform to detect and protect inter-application mes-
sages that should have been intra-application messages. Our
approach automatically reduces attack surfaces in legacy ap-
plications. We describe our implementation for these changes
and evaluate it based on the attack surface reduction and
the extent to which our changes break compatibility with
a large set of popular applications. We fix 100% of intra-
application vulnerabilities found in our previous work, which
represents 31.4% of the total security flaws found in that
work. Furthermore, we find that 99.4% and 93.0% of Android
applications are compatible with our sending and receiving
changes, respectively.

Categories and Subject Descriptors

D.4.6 [Operating Systems]|: Security and Protection; D.4.4
[Operating Systems]: Communications Management

General Terms
Security

Keywords

Android, message passing, mobile phone security

1. INTRODUCTION

Mobile platforms have rapidly evolved over the course of
a few years. Within five years, Android has seen over 16
major revisions to the API. Over this time, developers have
produced over 400,000 applications [21] and the Android
Market has distributed over 10 billion application downloads,
with over a two-fold increase in the last six months of 2011

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPSM’12, October 19, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1666-8/12/10 ...$15.00.

alone [6, 4]. With over 700,000 Android devices being ac-
tivated each day [22], millions of people are relying on the
Android operating system to provide the functionality to run
a multitude of applications.

Users also expect their personal data to be secure and their
applications to be isolated from one another. Given the wide
range of tasks users perform (from gaming to banking to per-
sonal email) and the number of applications users install on
their phones, it is critical to protect applications from other
(potentially malicious) third-party applications. To provide
isolation between applications, Android runs them under
separate UlDs, effectively sandboxing the applications [2].
However, problems arise when the Android API pokes holes
in the sandbox by allowing applications to communicate with
one another. Android provides a message-passing system
in which applications can send and receive messages called
Intents. This system enables the reuse of functionality across
applications and provides the system with an interface to
applications. It is also widely used to enable different com-
ponents within an application to communicate with each
other. However, if used incautiously, this messaging system
can undermine the security of applications. In previous work,
we identified many vulnerabilities in the message passing
system [7]. We showed that the contents of messages can be
sniffed, modified, stolen, or replaced (which can compromise
user privacy) and data or otherwise malicious messages can
be forged or injected into an application.

In this work, we identify a subclass of communication
vulnerabilities and implement and evaluate a solution to au-
tomatically detect and patch these vulnerabilities. A common
developer mistake is to expose a component or message un-
intentionally to third-party applications. Android messaging
is used for both intra- and inter-application communication,
and developer confusion about this distinction can lead to
unnecessary exposure of internal application messages and
components.

We aim to reduce message-related vulnerabilities by modi-
fying the heuristics that the Android platform uses to deter-
mine whether communication is intended to be application-
internal. We focus on ways that the platform can protect
existing and future applications from these problems. This
approach shifts the implementation burden from individual
application developers to the platform developer. Instead
of relying on developers to resolve their vulnerabilities (and
waiting for them to make the fixes), platform changes could
take effect with the push of one over-the-air update and be
applied to currently installed applications. Our platform

changes also eliminate the need for access to application
source code and avoid complex program analysis.

To prevent unintended exposure of intra-application com-
munication to third-party applications (and thus prevent
data leakage and injection attacks), we alter the heuristics
that Android uses to determine the eligible senders and re-
cipients of messages. Specifically, we try to identify intended
intra-application communication that has been sent and ex-
posed to third-parties, and instead deliver those messages
internally and prevent internal components from receiving
external messages.

We analyze a large set of popular, third-party Android
applications to estimate the compatibility cost of our changes.
We find that 99.4% and 93.0% of applications are compatible
with our sending and receiving changes, respectively.

In addition to compatibility, we analyze the extent to which
our changes increase application security. We analyze a num-
ber of previously-identified security vulnerabilities related to
messaging and measure how many would be fixed by our pro-
posed platform changes. We find that our changes fix 100%
of intra-application vulnerabilities found in previous work,
which represents 31.4% of all security flaws found in that
work. Our findings show that we can improve the security of
applications with low backward-compatibility costs.

We make the following contributions:

1. We present heuristics to identify unintentional public
communication.

2. We develop a platform-centric approach to applying this
heuristic to automatically prevent this vulnerability.

3. We perform a large-scale analysis of ~ 1,000 applica-
tions and conduct an in-depth analysis of the compati-
bility cost (showing the feasibility of this approach) in
addition to an analysis of the security gain.

4. We discuss alternative ways to apply the heuristic to
improve the security of applications and further reduce
the compatibility cost.

2. ANDROID PLATFORM OVERVIEW

An Android application consists of a number of modular
components. Types of components include Activities, which
represent user interface screens; Services, which are long-
running background tasks; and Broadcast Receivers, which
are short-running background tasks triggered by a broadcast
Intent — a message that can be received by multiple compo-
nents. An Intent sent to an Activity or Service, by contrast,
can be received only by a single component. These three
types of components can send and receive Intents.! Common
terms are listed for reference at the end of this section.

2.1 Intents

Sending an Intent is a two-step process. First, the Intent
must be created. Intents include fields such as action, rep-
resenting either the action to perform or the action that is
being reported; data, a reference to something to act on; and
category, representing additional information about the kind
of component that should receive the Intent.

Intents can also include fields explicitly referencing a de-
sired recipient component or application. We define Intents

We do not discuss the Content Provider component, as it
represents a database and cannot send or receive Intents.

including either of these fields as explicit; all others we call
implicit, meaning the platform will search for appropriate
recipient components in any application that supports an
operation specified in the Intent. By contrast, explicit Intents
can be delivered only to the specified recipient.

After creating the Intent, whether explicit or implicit,
the sender must send the Intent through an Android API
call. Since the API call implicitly specifies the type of the
destination component, a broadcast Intent, for example, will
never be delivered to an Activity.

2.2 Intent Filters

Components declare their ability to receive implicit Intents
through the use of Intent Filters, which allow developers to
specify the kinds of operations a component supports. Intent
Filters include the same action, data, and category fields as
Intents, and there are rules for matching Intents with Intent
Filters. A component can declare zero or more Intent Filters,
and if an Intent matches any Intent Filter, it can be delivered
to that component. In the case of multiple possible recipients,
the delivery selection depends on the component type. A
broadcast Intent is delivered to all matching Receivers. A
Service Intent is delivered at random to one of the matching
Services. If there are multiple matching Activities, either the
user will be prompted to choose among the possible recipients
or the system will send it to a default Activity for that type
of Intent.

2.3 Component Exposure

A component that can receive Intents only from other
components in the same application is considered private.
By contrast, a component that can receive Intents from
other applications is considered exported, or public. Public
components expose their functionality to other applications,
creating a potential security risk. Developers can explicitly
set a component as either public or private in the application
manifest using the exported flag.

When developers omit this flag, it is up to the platform to
heuristically infer whether the component should be exported.
The platform’s current heuristic is to export a component if
it contains one or more Intent Filters (Figure 1). This means
components may be exported by the platform, even if the
developer is not expecting it. Thus, any time the platform
implicitly makes a component exported, this can create a
security risk.

Note that a component’s exposure is unrelated to the
contents of its Intent Filters: a public component can always
be addressed with an explicit Intent. However, Dynamic
Receivers (Broadcast Receivers declared at runtime) are an
exception, since some can only receive implicit Intents. Thus,
they are always public, and Intents they receive must match
one of their Intent Filters.

Besides limiting a component’s external interaction through
its public or private status, developers can further limit it
using Signature- or SignatureOrSystem-level permissions.
(Hereafter, we refer to these permissions as simply signature-
level permissions.) Components protected with such permis-
sions can receive Intents only from other applications that
are either pre-installed or signed by the same developer that
created the permission.

type of
component?

Dynamic Receiver

Activity, Service, or Broadcast Receiver

use the value
specified

exported attribute set? exported

has <intent-filter>
in manifest?

unexported exported

Figure 1: Android exports components that declare
an Intent Filter or are explicitly marked for export.
Dynamic Receivers are always public.

List of Terms

component a module that can send and receive Intents.
Activity a user interface screen.
Broadcast Receiver a short-running background task.
Dynamic Receiver declared at runtime.
Service a long-running background task.
private cannot receive Intents from other applications.
public/exported can receive external Intents.
exported flag makes a component public or private.
Intent a message passed between components.
broadcast can be received by multiple components.
explicit specifies the recipient.
implicit platform decides what component(s) receive it.
Intent field
action what to perform or be reported.
category information about the kind of recipient.
data a reference to something on which to act.
Intent Filter a list of operations a component supports.
signature-level permission only granted by signature.

3. ATTACK SURFACES

Of the Intent-based attack surfaces identified in our pre-
vious work, many are exposed by developers unnecessarily
using implicit Intents for application-internal messaging. In
these cases, neither Intents nor components should be ex-
posed to other applications. We summarize these attack
surfaces in this section.

3.1 Threat Model

We only consider Intent-based attacks on applications
by other applications that do not hold common signature-
level permissions. The only other applications that could
hold such permissions are applications signed with the same
developer’s key or those packaged with the system itself.
We do not consider attacks in which a developer’s signing
key is compromised. An attacker may be any untrusted
application installed from an online application distribution
platform such as the Android Market [1], while a victim

Broadcast

Eavesdropping (Unordered) Denial of Service (Ordered)

@7 F=|@) -

Alice Eve Alice Alice

Figure 2: Broadcast Eavesdropping (left): Two of
Alice’s own components receive the broadcast, but
so does Eve’s component. Broadcast Denial of Ser-
vice for Ordered Broadcasts (right): Mallory’s com-
ponent receives the broadcast first and prevents Al-
ice’s other components from receiving it.

may be any application. Additionally, we only focus on
attacks made possible by intra-application communication
mechanisms being made available to other applications. We
do not attempt to resolve attacks made possible due to
intentional inter-application communication.

3.2 Unauthorized Intent Receipt

When components send implicit Intents intended for re-
ceipt by other components in the same application (without
the protection of a signature-level permission), the Intent is
exposed to other applications. Any component of the correct
type with a matching Intent Filter can intercept the Intent.
The possible attacks enabled by such unauthorized Intent
receipt depend on the type of Intent.

Broadcast Intents are vulnerable to passive eavesdropping,
which can harm security or privacy if the Intent contains
sensitive data (Figure 2). Ordered broadcast Intents, which
are delivered to Broadcast Receivers in priority order, are
vulnerable to both active denial of service attacks (Figure 2)
and malicious data injection. Each recipient of the broadcast
has the options to stop the Intent from propagating to the
rest of the recipients or change the data before passing it to
the next recipient (which in turn may be able to inject the
data back into the sending component).

Activity and Service Intents are vulnerable to hijacking
attacks, in which an attacker intercepts a request to start an
Activity or a request to start or bind to a Service and the
malicious application starts its own Activity or Service in
its place (Figure 3). This attack allows an attacker to steal
data from the Intent, hijack the user interface in a way that
may be transparent to the user, and return malicious data
to the sending component.

3.3 Intent Spoofing

If a developer unintentionally leaves an internal component
exposed to other applications, which can occur if the compo-
nent declares Intent Filters for receiving implicit Intents, the
component may be vulnerable to attacks in which a malicious
application spoofs the internal Intent (unless the component
is protected by a signature-level permission). Again, the
possible attacks enabled by Intent spoofing depend on the
type of component exposed.

Broadcast Receivers are vulnerable to broadcast injection,
in which the receiving component is tricked into believing a

Activity / Service

Hijacking Hijacking with Response

% e | WX T e
Alice Alice

i Mallory L ! Mallory

Figure 3: Activity/Service Hijacking (left): Alice’s
component unintentionally starts Mallory’s compo-
nent instead of her own. False Response (right):
Mallory’s component returns a malicious result to
Alice’s component. Alice thinks the result comes
from her own component.

Broadcast Injection

@) & -

Mallory

Figure 4: Broadcast Injection: Mallory’s component
broadcasts to Alice’s exported Broadcast Receiver.
Alice thinks the broadcast comes from her own com-
ponent.

malicious broadcast Intent came from another component in
its own application (Figure 4). The spoofed broadcast may
then cause the victim component to change some state in
a way that damages the user’s security or privacy or even
transmit malicious data contained in the broadcast elsewhere.
Activities and Services are vulnerable to unauthorized
launch or bind attacks, in which the attacker either starts or
binds to the victim component (Figure 5). These attacks are
similar to cross-site request forgeries on the Web, and their
exploitation can have similar consequences [17, 5].

4. SYSTEM PLATFORM CHANGES

While the Android platform provides tools for developers
to defend intra-application Intent messaging from such secu-
rity vulnerabilities, we find that many developers use implicit

Activity / Service

Unauthorized Launch Unauthorized Launch or Bind

M »{%}.ice -t "{ig"ce

Mallory Mallory

Figure 5: Unauthorized Launch (left): Mallory’s
component starts Alice’s component. Unauthorized
Launch or Bind (right): Mallory’s component starts
or binds to Alice’s component and Alice’s compo-
nent returns a result to Mallory’s component. Alice
thinks she is returning a result to her component.

Intents in an insecure way for application-internal messages.
Specifically, developers frequently use the action field of an
Intent like an address instead of explicitly addressing the
Intent, exposing the communication to both unauthorized
Intent receipt and Intent spoofing. Our findings motivate our
recommendation for a backward-compatible change to the
heuristics the platform uses to determine whether implicit
Intents and components that receive them should really be
exposed to other applications. Modifications to the platform
immediately fix application vulnerabilities. If the onus were
placed on individual developers (through a modified com-
munication API, documentation of common communication
pitfalls, better developer education, etc.), developers may
not choose to update their programming practice and they
may not update their legacy applications. The fix would
depend on the vigilance of individual developers. As security
has often not been a top priority for rapid developers, many
applications may remain vulnerable. By implementing a
platform-centric solution, we reduce the burden of the devel-
opers and immediately patch all applications, including those
already installed on users’ phones. Unfortunately, changes
may break backward-compatibility with current Android
behavior (which we evaluate in Section 5).

We propose heuristics that we implemented in Version 2.2
of the Android platform, revising and extending the changes
to increase compatibility with legacy applications as we
gained a better understanding of the platform. In addi-
tion, we were able to identify ways to modify the heuristics
to increase the security gain without incurring additional
compatibility cost. In this section, we introduce terminology,
discuss our heuristics, and discuss how Android was modified
to implement our heuristics.

4.1 Terminology

We define some terminology that we will be using later in
this section:

e Standard action - A standard action is an action string
that is either (1) defined in the Android documenta-
tion or (2) used in Android applications bundled with
the open-source distribution of Android, since these
applications and their public APIs could be consid-
ered as convention. We identified 299 standard actions.
(See Table 1 for examples.) Non-standard actions are
any other actions (i.e., actions created by third-party
developers).

e System-only broadcast Intents - A system-only broad-
cast Intent is a special broadcast Intent that can be sent
only by the operating system. Non-system processes
cannot spoof these system-only broadcasts. There are
62 system-only broadcasts. (See Table 2 for examples
of system-only broadcasts.) This is also referred to as
a protected broadcast. While the operating system can
send these messages, it is not limited to sending only
this type of message.

e Entry-point Activity - An entry-point Activity is an
Activity that is the starting point of an application.
Specifically, it is any Activity with an Intent Filter
that receives either the MAIN action or the APPWID-
GET_CONFIGURE action, as the presence of either of
these actions signifies that the Activity is intended
to be started by another application.

Standard actions

android.intent.action.DIAL
android.intent.action. EDIT
android.intent.action. MAIN
android.intent.action.SEARCH
android.intent.action. VIEW

Table 1: A few standard actions (non-exhaustive).

System-only broadcast actions

android.backup.intent. CLEAR

android.intent.action. ACTION_POWER_DISCONNECTED
android.intent.action. BATTERY_CHANGED
android.intent.action. REBOOT

android.intent.action. TIME_TICK

Table 2: A few system-only broadcast actions (non-
exhaustive).

4.2 Heuristics

We present heuristics that the platform can use to distin-
guish the use of Intents for communication between compo-
nents of the same application from the use of Intents between
multiple applications.

Preventing Unauthorized Intent Receipt.

If an implicit Intent can be delivered to any component in
the same application, then we assume the developer intended
the Intent be used for intra-application communication, and
thus the Intent should not be delivered to any other appli-
cation. We apply this heuristic only if the Intent contains
non-standard actions. This effectively restricts modifica-
tions of expected Intent delivery to Intent actions that were
uniquely created by the developer. When Intents containing
these developer-created actions can be delivered within the
same application, it is unlikely the Intents were intended to
be exposed to other applications, as developers commonly
misuse implicit Intents in this way for intra-application mes-
saging. Also, we do not restrict delivery of broadcast Intents
protected by a signature-level permission, since this type of
Intent cannot be intercepted easily.

Preventing Intent Spoofing.

Android exports a component either (1) if it has the ex-
ported flag, or (2) if it lacks the flag but has an Intent Filter.
(Android infers that registering an Intent Filter indicates
that the component is expecting external messages.)

To replace this behavior, we propose a set of more re-
strictive heuristics for inferring whether a component was
intended to be an interface for other applications (Figure 6).
If a component is protected with a signature-level permission,
we follow the original Android behavior, so such a compo-
nent that does not set the exported flag is exported if it
contains any Intent Filters. This behavior is justified be-
cause requiring a signature-level permission already protects
a component from Intent spoofing, and furthermore may
indicate that the component is intended to be exposed to
either system applications or applications authored by the
same developer.

If, however, a component is not protected with a signature-
level permission, we propose it only be exported if at least one

of the following is true: it (1) sets the exported flag, (2) has
an Intent Filter with a data field specified, (3) has an Intent
Filter that registers to receive system-only actions, (4) is an
entry-point Activity, or (5) has an Intent Filter that registers
to receive Intents with a standard action. In addition, we
impose the restriction that for non-entry-point Activities to
be exported without the exported flag set, they must have
an Intent Filter that receives the DEFAULT category.

Condition 1 identifies when a developer explicitly makes
a component public or private. This flag indicates that the
developer is aware of the status of the component, so we will
not change the component’s status contrary to the devel-
oper’s explicit specification. Condition 2 specifies to make a
component public when the Intent Filter contains a data field,
an indicator that a sender may be trying to share data refer-
ences with the external component. Condition 3 identifies a
case when the component expects to receive a message from
the operating system. These components must be public,
sometimes subject to an additional protection discussed later.
Condition 4 identifies Activities that are intended to be in-
voked when a user launches an application. These Activities
must be exported so they can be started by external launcher
applications. Condition 5 identifies components that are ex-
pecting standard actions, which may come from third-party
applications, as standard actions represent a kind of Intent
messaging protocol. Finally, we only export non-entry-point
Activities implicitly if they support the DEFAULT category
because the standard API calls to start an Activity with an
implicit Intent require the Activity to support the DEFAULT
category. Without this category, the component will receive
only explicit Intents. Absent this restriction, Activities that
cannot typically receive Intents from external applications
become vulnerable to Intent spoofing.

We also define a new protected property for Broadcast
Receivers. If a Broadcast Receiver declares Intent Filters that
only receive system-only broadcast actions, we export the
component but flag it as protected, which means we enforce
at runtime that only system-only broadcasts are delivered to
the component. As system-only broadcasts alone match the
component’s Intent Filter, the only way to inject a spoofed
Intent into such a component is with an explicit Intent.
Enforcing the protected property prevents any malicious
explicit Intents from reaching the component.

Finally, every time an Intent Filter is associated with
a Dynamic Receiver, we created a separate exported flag
for each such Intent Filter. Thus, only exported Intent
Filters are considered when resolving a broadcast Intent
from another application. An alternative would be to create
a single exported flag for the Dynamic Receiver. We chose
this more restrictive heuristic because developers may not be
aware that associating a new Intent Filter with a Dynamic
Receiver does not remove previous associations.

Note that our heuristics are more restrictive in exposing
both Intents and Components than the existing Android
heuristics, and as such they cannot increase the attack surface.
Also, we developed these heuristics before evaluating their
compatibility and security effects on applications. The only
changes we made were in expanding the list of standard
actions to include undocumented actions used by applications
included with the open-source distribution of Android. On
this basis we argue that our evaluation results generalize to
other applications.

type of

Y
use the value . . Y use the value M .
g exported attribute set? exported attribute set? o exported attribute set?
specified specified
protected with a v M protected with a protected with a M M protected with a
signature permission?. signature permission?. signature permission?. signature permission?.
Y
has <intent-filter> N has <intent-filter> M
in manifest? in manifest?
receives
stem-on M is an “entry point” Y M receives system-only
Y only activity? broadcasts?
broadcasts?
exported
receives only
system-only
broadcasts?
matches a M Y any <intent-filter>
? i ?
data reference? contains <data>? any <intent-filter> Y Y
contains <data>? can only receive
system-only
broadcasts
% v any <intent-filter>
matches a any <intent-filter> contains Y contains <data>?
“standard” action? “ g jon>?,
standard"” <action>? Tny <intent-filter> containg™y,_".
“standard” <action>?
Y . " Ny
any <intent-filter> contains
2 Y . . h
QEFAULT <category>; any <intent-filter> contains
standard” <action>?
exported unexported | unexported |

Dynamic Receiver (filter)

component?

Activity / Activity Alias Broadcast Receiver

exported

Figure 6: Our heuristic for when components should be exported.

4.3 Implementation

The relevant portions of the Android framework archi-
tecture for our heuristic changes are the system server and
high-level APIs. The system server is a privileged process
containing many threads that has central control over load-
ing applications, managing their meta-data, and delivering
Intents, among other things. Each Android application runs
in a separate process, which has high-level APIs loaded into
the address space of its instance of the Dalvik VM. An ap-
plication sends and receives Intents through the high-level
APIs, which in turn communicate with services running in
the system server through a lower layer of IPC that marshals
objects across process boundaries.

The two services we modified in the system server are the
Activity Manager and the Package Manager. The Activity
Manager is responsible for running components, including
accepting and delivering Intents. The Package Manager both
loads applications and maintains their meta-data, which
includes their Intent Filters, so the Package Manager resolves
Intents to components.

Our implementation logs a message each time our changes
differ from Android’s default heuristic (i.e., an implicit Intent
is prevented from escaping an application or a component is
made private that would have otherwise been public in the
original Android heuristic).

4.3.1 Implicit Intent Exposure Changes

To reduce the exposure of implicit Intents, we modified the
Intent delivery system to try to deliver the Intent to the origin
application first before trying to resolve the Intent to other
applications. More specifically, we leveraged the existing
setPackage (callerPackage) call which limits delivery to a
specified application (effectively making the implicit intent
temporarily application-explicit) and modified the Activity
Manager to call it on any implicit Intent (with the destination
set to the origin application) before attempting to resolve it to
a component through the Package Manager. If the resolution
fails, then there must be no application-internal component
that can respond to the Intent, so we call setPackage (null)
to make the Intent implicit again and attempt to resolve it
once more.

To utilize setPackage (callerPackage), we had to modify
the implementation of the Intent sending APIs to pass the
name of the calling Android package name, a string that
uniquely identifies each application, to the Activity Manager.
This is necessary because otherwise the Activity Manager
can learn only the calling application’s UID, PID, and the pri-
mary application associated with its process. Since multiple
applications can share a process and UID, this information is
insufficient to identify the calling application. We modified
the implementation of the sending methods, not the inter-
faces, so this change does not affect the API for developers.
We list those methods in Table 3.

The PackageManager class also provides methods for re-
solving Intents to components without sending anything.
These are queryBroadcastReceivers(), queryIntentActiv-
ities(), resolveService(), queryIntentServices(), re-
solveActivity (), and queryIntentActivityOptions(). We
modified all of these in the same manner.

For broadcasts, one challenge we encountered was the lack
of an interface for resolving an Intent to a list of Dynamic
Receivers that were created in a specified application. (Due
to a bug in the Android source code, setPackage() does

Component Methods Modified

Type

Service startService(), bindService(),
(Context stopService()

class)

Receiver sendBroadcast (), sendOrderedBroad-
(Context cast(), sendStickyBroadcast (),

class) sendStickyOrderedBroadcast (),
removeStickyBroadcast ()
startActivity(), startActivityFor-
Result(), startActivityIfNeeded(),
startActivityFromChild ()

Activity
(Context and
Activity class)

Table 3: A list of the Intent sending methods that
were modified.

not limit the recipient to specific applications for broadcast
Intents.) We created separate lists for internal Broadcast
Receivers and Dynamic Receivers, and if the Intent does
not match either kind of receiver, we attempt resolution to
external receivers.

4.3.2 Component Exposure Changes

To implement our component exposure heuristic, we added
functionality to help protect Broadcast Receivers and Dy-
namic Receivers that only expect system-only Broadcasts
(from explicit Intent spoofing attacks).

We implemented the enforcement of the protected property
in the Activity Manager. If a broadcast Intent resolves to
a protected Broadcast Receiver, we allow the Intent to be
delivered if the caller has the capability to send a system-only
broadcast (i.e., it is one of the operating system processes).
Otherwise, we ask the Package Manager whether the Intent’s
action is system-only. If it is, we log the error and prevent
delivery to the Broadcast Receiver.

Implementing the heuristic for Dynamic Receivers was
more complex. As a Dynamic Receiver can register mul-
tiple Intent Filters, each Intent Filter needs state to track
its exposure status. First, we added an exported field to
the BroadcastFilter class, which represents a single Intent
Filter. Second, we implemented the code to set the exported
field using our heuristic for each call to registerReceiver()
in the Activity Manager. Finally, we added code to enforce
the exported property in the Activity Manager. If a Broad-
castFilter is not exported, we check whether the caller
UID and the UID of the application that registered the filter
match. If they do not, we log the error and skip the current
Dynamic Receiver.

S. EVALUATION

We evaluated our proposed changes on a collection of 969
popular (top free and paid) applications from the Android
Market.? We believe this to be a suitable dataset as popular
applications are more likely to be on users’ phones, repre-
senting a realistic approximation of potential application
interaction. With this dataset, we built upon ComDroid (a
static analysis tool that identifies general message vulnera-
bilities [7]) to look for specific instances where our changes

2We originally started with 1,000 applications and removed
applications from the dataset that only consisted of keys to
unlock paid features for free applications or were duplicates.

prevent intentional inter-application communication, con-
tributing to incompatibility, as well as instances where our
changes eliminate ComDroid vulnerability warnings, con-
tributing to increased security. We call this new tool In-
traComDroid. (Hereafter we use IntraComDroid to refer
to the tool that we use for our compatibility analysis and
component and Intent modication tracking and we use Com-
Droid to refer to the tool that produces all message-related
vulnerability warnings.)

In addition, we used IntraComDroid to examine the extent
to which our changes fix concrete security vulnerabilities and
unintentional, unnecessarily exposed Intents and components
we identified in our previous work. We revisit a case study of a
bus schedule application with multiple security vulnerabilities
and find that our changes patch all the vulnerabilities.

5.1 Compatibility Analysis

We used static analysis to guide our compatibility investi-
gation. To identify situations where our changes may break
inter-application communication, IntraComDroid resolves
and records all messages each application receives and sends.
Then it analyzes all messages and receiving components in
the set to determine the pairs of applications that can com-
municate with one another. It also analyzes each application
and flags all cases in which our proposed heuristics would
change the exposure of an Intent or component. Using the
previous analysis of all communication in the dataset, Intra-
ComDroid logs two types of potential incompatibilities that
warrant manual examination.

The first are instances where an application sends an Intent
that one of its own components can receive but components
in other applications can also receive. If such a case is an
instance of intentional inter-application communication, our
changes may break compatibility, as they prevent the Intent
from being delivered to the other application.

The second are instances where our changes make a com-
ponent private, but where IntraComDroid either found other
applications that could send Intents that could be received
by the component or where it could not find any Intents that
address the component at all. In these cases, the concern is
that these components were intended as public APIs that our
changes will break or that there was an error in the analysis
and an Intent was not properly identified.

We manually analyzed each list of potential incompatibili-
ties using several methods. We:

e searched for documentation of public Intent APIs to
confirm intentional inter-application communication

e checked archives of Android applications to see whether
two applications were different versions of the same
application, and presumably not communicating

e read disassembled code to find undetected, internal
Intent senders and to understand how Intents were
being used in applications

e ran the applications on our modified Android platform,
attempting to trigger breakage

Intent exposure compatibility. Out of 969 applications
each checked against all 968 other applications, we found
99.4% are compatible with our proposed changes to implicit

Intent Component,
Exposure Changes | Exposure Changes
Apps Analyzed 969 100
Compatible 99.4% 93.0%
Incompatible 0.6% 5.0%
Uncertain 0.0% 2.0%

Table 4: Compatibility analysis results

Intent exposure (Table 4). We classify the six incompatible
applications into two categories and show that both can be
fixed easily in either application code, in the platform, or
in both. First, four applications broadcast Intents to other
applications, but also declare they themselves can handle
the Intent. In the case where all of these applications are
by the same developer, simply protecting the broadcasts
with a signature-level permission declared in all applications
resolves the incompatibility. If there is no restriction on who
developed the receiving applications, we call this a broadcast
protocol and propose fixing the incompatibility by adding a
flag to broadcasts that makes them explicitly public (imple-
mented by application developers). In the second category,
four applications share common Service code between two
applications by the same developer. Since both applica-
tions have the same developer, the developer can resolve
the incompatibility by simply protecting the Services with a
Signature-level permission declared in both applications.

Component exposure compatibility. Out of 100 of the
most popular applications each checked against all 968 other
applications, we found 93% were compatible with our pro-
posed changes to the heuristics used to export components.
We were unable to determine whether our changes are incom-
patible with two applications. We found five incompatible
applications, which fell into two types, both of which can be
easily fixed in application code. First, two applications use
third-party libraries based on Intents for inter-application
communication. In this case, only the library developer need
document how to explicitly export the appropriate compo-
nents. New documentation would provide compatibility for
new applications, while simply exporting the right compo-
nents would make legacy applications compatible. Second,
three applications allow components to be exported for inter-
application communication between applications developed
by the same party. The incompatible components were all
Receivers, so protecting the broadcasts with a Signature-
level permission declared in all applications would make the
applications compatible.

5.2 Security Analysis

We evaluated our proposed heuristics by examining the
extent to which our changes concretely increase application
security for the 20 applications we manually analyzed in
previous work. We find our applied heuristics would patch
100% of the subset of warnings that were marked as intra-
application communication. Of all of the vulnerabilities and
bugs that were detected with ComDroid, our new heuris-
tics patch 31.4% (11/35) of the security vulnerabilities and
100.0% (15/15) of the unintentional exposures. We examined
the unpatched vulnerabilities and bugs, and they are all in
the class of vulnerabilities where external communication is
intended (but still vulnerable to third-party attack). Of the

Component Exposure | Intent Exposure

Total Warnings 3182 8680

Eliminated 1431 (45.0%) 1608 (18.5%)
Warnings

Table 5: The proportion of ComDroid warnings elim-
inated by our heuristics.

17 remaining unauthorized Intent receipt vulnerabilities and
bugs, 4 could be fixed by adding a requirement that certain
Intents can be received only by system applications (e.g., In-
tents that send android.settings.INPUT_METHOD_SETTINGS
or android.intent.action.DELETE). This is the reverse of
the existing restriction that some Intents can be sent only
by the system. However, this is outside of the scope of our
work. Of the 7 unpatched Intent spoofing vulnerabilities, 6
could be fixed by making some of the actions the components
expect system-only actions (e.g., android.intent.action.
TIME_SET, android.appwidget.action.APPWIDGET_UPDATE,
android.provider.Telephony.SMS_RECEIVED). With these
changes, our heuristic would then identify them as protected
Receivers which would be protected by our system.

We also evaluated our proposed heuristics by examining
the proportion of potential security vulnerabilities detected
by ComDroid that our changes would eliminate in the set of
969 applications. We use the term “potential security vul-
nerabilities” because ComDroid issues warnings for exposed
communication. Manual examination is required to identify
a vulnerability, which we classify as something that exposes
data or functionality that can be detrimental to the user, so
vulnerabilities are context-dependent. For example, gaining
control of an Activity is not considered an exploitable vulner-
ability unless it could lead to theft of payment or password
information.

We find that our platform changes would eliminate 45.0%
and 18.5% of ComDroid’s receiving and sending warnings,
respectively (Table 5). While we can only speculate on how
many concrete vulnerabilities this is, we do know that these
changes make up 25.6% of the total warnings. This means
that developers using ComDroid have 25.6% fewer warnings
that they would have had to examine otherwise and may
reduce vulnerabilities by 25.6% as well.

Finally, we revisit a case study from our previous work on
Nationwide Bus, an application that provides bus location
and arrival information for Korean cities [18]. Three kinds of
security vulnerabilities were found in the application. First,
the application uses an implicit broadcast Intent to send
bus information to its own Broadcast Receiver, exposing
privacy-sensitive information to eavesdropping applications.
Second, the receiver is exported, exposing it to malicious
injection of false bus stops and schedules. Third, the receiver
forwards the bus information to an exported Service, which
is also exposed to malicious injection of false information.

This application illustrates precisely the attack surfaces
our new heuristic aims to reduce. As the application can
receive its own broadcast, our heuristic detects the Intent
as intra-application and prevents eavesdropping applications
from receiving it. Furthermore, since our heuristic for compo-
nent exposure makes the affected components private, other
applications can no longer inject malicious information into
the components.

5.3 Discussion

We discuss the limitations of our approach, alternative
implementations, and the implications for future systems.

Limitations. To prevent unauthorized Intent receipt, our
heuristics prevent an implicit Intent from being delivered to
external applications when the originating application can
receive the Intent. This heuristic restricts an application from
sending an Intent to both internal and external recipients.
However, our evaluation shows this is currently not a common
use of Intents. If this is judged to be an important use case for
Intents, a future API could accept a flag explicitly allowing
Intents to be delivered externally.

Our compatibility evaluation is limited by the analysis
used by IntraComDroid. If IntraComDroid fails to correctly
resolve the contents of an Intent for external communica-
tion, we lose knowledge of the sent Intent, and thus miss a
possible breakage (if our heuristic also makes the recipient
component private). For example, static analysis cannot
determine the contents of Intents that are dynamically re-
ceived and forwarded to other components. Similarly, we
are also limited by the size of our dataset. If an application
communicates with an application outside of our dataset,
we have no knowledge of what that other application does.
This could result in false negatives, which may cause us to
underestimate the compatibility cost of our changes. Despite
these limitations, we believe the dataset size and ComDroid
analysis are sufficient to estimate compatibility and security.

An alternative approach to static analysis is to run the
applications dynamically. The limitation here is that cur-
rent dynamic Android analyzers do not achieve sufficient
execution coverage. They may fail to trigger specific events
required to construct and send an Intent, thereby losing
outgoing message information. Also, to evaluate whether
a message should be delivered internally or externally, the
system would need to have knowledge of all possible receivers
for all applications. Due to device resource constraints, it is
impossible to install a large set of applications on the device
at once. Alternatively, each pair of applications in a set
could be installed iteratively, but this technique is slow. Our
static approach achieves reasonable code coverage and is not
limited by resource constraints.

Our compatibility evaluation is also limited by our choice
of the most popular applications without regard to what
applications have common developers. Since applications
with a common developer are more likely to communicate
with each other, considering them separately would increase
the relevance of a future compatibility evaluation.

Alternative Implementations. In the case that Android
is hesitant to push these changes to the platform, our pro-
posed heuristic can be applied in other ways. We discuss
the alternatives in order of decreasing security and increas-
ing compatibility. First, the modified platform would be
distributed as a third-party, custom ROM, like Cyanogen-
Mod [3]. This approach would maintain our compatibility
rates, but only users who choose that platform would gain
any security benefit. Second, Android Market and other
markets could use our static analysis tool to identify appli-
cations where our changes could break compatibility. Then
they could use our heuristics to selectively perform binary
rewriting (to make Intents explicit and components private)

on only the vulnerable but compatible applications. This
would increase compatibility and security on most applica-
tions. Third, anti-virus software could use our heuristics
to identify intra-application communication. It could moni-
tor communication, issue alerts for external communication
with “internal” Intents or components, and ignore any known
broadcast protocols.

Finally, our heuristics could be used in a lint tool to de-
tect exposed intra-application communication. The lint tool
could warn the developer and provide a recommended re-
mediation (e.g., set the exported flag to false) any time
our heuristics would treat a component differently than the
Android platform does. The false positive rate would be
low (the recommended remediation would be problematic for
only 0.6%—7% of applications, as our compatibility evalua-
tion shows), and if developers test their applications, false
positives would likely be relatively harmless. This approach
achieves full compatibility, but security gains would accrue
gradually over time (as developers would have to opt-in).

Implications for Future Systems. Guessing developer
intention is the primary difficulty in automatically patching
intra-application communication vulnerabilities. Although
our approach shows a low compatibility cost, one way to
avoid the guesswork is to make developers declare their in-
tentions upfront. We recommend that future systems require
developers to make their intentions explicit.

As a lesson for future systems, we recommend that a sys-
tem should not implicitly open holes in isolation and expose
applications to possible attack without an explicit request
by the developer. Isolation should be enabled by default,
and system designers should be wary of complex mecha-
nisms that make it tricky for developers to predict when
their application might be exposed to attack. Android vi-
olates this principle: under certain conditions, it will treat
a component as exported even if the exported flag has not
been set. This has misled developers into using Intents in an
unsafe way. Unfortunately, many applications have already
been written assuming this behavior, so it cannot be easily
changed. In this paper, we develop intricate measures to re-
duce the number of applications put at risk, while striving to
maintain a high level of backward compatibility for existing
applications. However, future systems could avoid this com-
plexity and avoid compatibility problems by simply following
this principle from the start. In particular, we recommend
future systems provide different APIs to separate internal
communication from external communication.

Android could follow this recommendation in a future API
revision by making the exported flag mandatory and adding
separate API calls for sending Intents to internal and external
components.

6. RELATED WORK

Application Communication. Insecure application com-
munication and exposure can lead to other attacks in addition
to information leakage, information injection, and compo-
nent hijacking. Maji et al. measure the robustness of the
Intent system against malformed or unexpected Intents [19].
They build a tool, JJB, to fuzz test Android components.
They find that input validation and exception handling are
overlooked problems whose absence can result in crashes of
the Android runtime system.

Unrestricted access to components can also lead to privilege
escalation. Many researchers have examined this problem [13,
9, 8, 15]. Davi et al. discuss privilege escalation through the
Android Scripting Environment [8] and Grace et al. present
a static analysis tool to detect such attacks [15]. Felt et
al. [13] and Dietz et al. [9] further propose runtime defenses.
By making unintentionally exposed components private, our
work can prevent some access by third-party Intents, thereby
avoiding a portion of these problems.

Android Vulnerability Discovery and Measurement.
Researchers have also identified other vulnerabilities in An-
droid applications. Felt et al. examine permission overprivi-
lege that arise due to confusion with Android’s permission
system and present Stowaway, a static analysis tool to detect
these bugs in applications [12]. Fuchs et al. examine the
combination of permissions and databases, and they present
SCanDroid, a static analysis tool that uses a data-centric
approach to reason about the security properties of an appli-
cation [14]. Enck et al. conduct a broad survey of vulnerabili-
ties in Android, including standard Java and Android-specific
security threats (e.g., information leakage through logs and
messages) [11]. In contrast, we focus solely on vulnerabilities
that result from exposing intra-application communication.
Also, their work focuses on tools to help developers detect
and fix vulnerabilities; in contrast, we focus on platform
changes that can protect a large fraction of applications and
reduce the risk of these kinds of vulnerabilities.

Hardening Android Applications. We are not the only
ones to seek to strengthen the security and privacy of Android
through platform modifications. Ongtang et al. present
Saint, a modification of the Android platform for runtime
enforcement of application provider policies [20]. It provides
a means for application developers to set finer-grained policies
on whom the application should trust and what it should
require before interacting with other applications. Saint
assumes developer knowledge in setting security policies
and moves control over security decisions to the application
developer. Our work assumes less developer expertise and
moves the control to the platform.

Enck et al. present TaintDroid, a modification to the An-
droid platform to provide dynamic taint tracking on sensitive
data (e.g., location, contact lists, etc.) [10]. Hornyack et al.
present AppFence, a tool to provide users with the option to
either prevent data from leaving the phone or provide false
shadow data in place of legitimate data [16]. These systems
focus on protecting user privacy by limiting the behavior
of grayware and malware. We focus on fixing vulnerable
applications to prevent data leakage and injection.

7. CONCLUSION

Developer confusion on how to write Android applications
correctly has rendered many applications vulnerable to at-
tack. We describe an implementation of a better heuristic
in the Android platform for detecting unintentional inter-
application Intent messaging. We showed that our proposal
reduces the number of such vulnerabilities. We evaluated
both the security gain and the compatibility cost of our
proposed changes, finding 99.4% and 93.0% of applications
analyzed are compatible with our Intent exposure and com-
ponent exposure changes, respectively. Our proposal fixes

31.4% of security flaws found in a previous study. Our work
suggests that intra-application communication vulnerabilities
in applications can be patched by the Android platform in a
way that is reasonably backward-compatible with existing
applications.

Acknowledgments

This material is based upon work supported by the Intel
Science and Technology Center for Secure Computing and
National Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of Intel or the National
Science Foundation.

8. REFERENCES

[1] Android Market. http://www.android.com/market/.

[2] Android security overview.
http://source.android.com/tech/security/index.
html#the-application-sandbox.

[3] CyanogenMod. http://www.cyanogenmod.com/.

[4] H. Barra. Android: momentum, mobile and more at
Google 1/0. http://googleblog.blogspot.com/2011/
05/android-momentum-mobile-and-more-at.html,
May 2011.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proc. of the
15th ACM Conference on Computer and
Communications Security, October 2008.

[6] C. Bonnington. Google’s 10 billion Android app
downloads: By the numbers. http://www.wired.com/
gadgetlab/2011/12/10-billion-apps-detailed/,
December 2011.

[7] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in Android.
In Proc. of the Annual International Conference on
Mobile Systems, Applications, and Services, June 2011.

[8] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy.
Privilege escalation attacks on Android. Information
Security, pages 346-360, 2011.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In Proc. of the 20th USENIX
Security Symposium, August 2011.

[10] W. Enck, P. Gilbert, B.-g. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proc. of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), October 2010.

[11] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of Android application security. In Proc. of the
20th USENIX Security Symposium, August 2011.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proc. of the 18th
ACM Conference on Computer and Communications
Security, October 2011.

[13] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proc. of the 20th USENIX Security
Symposium, August 2011.

[14] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
SCanDroid: Automated security certification of
Android applications. Technical report, University of
Maryland, 2009.

[15] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock Android
smartphones. In Proc. of the 19th Annual Symposium
on Network and Distributed System Security (NDSS),
February 2012.

[16] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you're looking for:
retrofitting Android to protect data from imperious
applications. In Proc. of the 18th ACM Conference on
Computer and Communications Security, October 2011.

[17] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In Proc. of the 2nd
IEEE International Conference on Security and
Privacy in Communication Networks (SecureComm,),
August 2006.

[18] H. Lee. Nationwide bus.
http://www.androlib.com/android.application.
net-hyeongkyu-android-incheonbus-Eqwq.aspx.

[19] A. Maji, F. Arshad, S. Bagchi, and J. Rellermeyer. An
empirical study of the robustness of inter-component
communication in Android. In Proc. of the 42nd
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2012.

[20] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in Android. In Proc. of the 25th Annual
Computer Security Applications Conference (ACSAC),
December 2009.

[21] I. Paul. Android market tops 400,000 apps.
http://wuw.pcworld.com/article/247247/android_
market_tops_400000_apps.html, January 2012.

[22] E. Schonfeld. Android phones pass 700,000 activations
per day, approaching 250 million total. http:
//techcrunch.com/2011/12/22/android-700000/,
December 2011.

