

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

IUI '97: Proceedings of the 2nd international conference on Intelligent user

interfaces, ACM, 1997. 137-144

DOI: http://dx.doi.org/10.1145/238218.238315

Copyright: © 1997 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/238218.238315

SUBMITTED FOR PUBLICATION

1 09/15/95

Declarative Models of Presentation
Pablo Castells

Universidad Autonoma de
Madrid

Cantoblanco, 28049
Madrid, Spain

Tel: +34-1 397-3973
castells@lola.iic.uam.es

 Pedro Szekely
Information Sciences Institute

University of Southern
 California

4676 Admiralty Way, #1001
Marina del Rey, CA 90292

Tel: (310) 822-1511
szekely@isi.edu

 Ewald Salcher
Institute of Computer Graphics,

University of Technology,
 Graz,

Muenzgrabenstrasse 11/II/V
A-8010, Graz, Austria
Tel: +43 316 695810

salcher@icg.tu-graz.ac.at

ABSTRACT
Current interface development tools cannot be used to
specify complex displays without resorting to program-
ming using a toolkit or graphics package. Interface
builders and multi-media authoring tools only support
the construction of static displays where the components
of the display are known at design time (e.g., buttons,
menus). This paper describes a presentation modeling
system where complex displays of dynamically changing
data can be modeled declaratively. The system incorpo-
rates principles of graphic design such as guides and
grids, supports constraint-based layout and automatic
update when data changes, has facilities for easily speci-
fying the layout of collections of data, and has facilities
for making displays sensitive to the characteristics of the
data being presented and the presentation context (e.g.,
amount of space available). Finally, the models are de-
signed to be amenable to interactive specification and
specification using demonstrational techniques.

KEYWORDS: model-based user interfaces, user interface
design techniques, user interface development tools,
graphic design.

INTRODUCTION
A large portion of interface design effort involves speci-
fying the displays for an application. The displays of
most applications consist of a static part and a dynamic
part. The static part consists of menus, toolbars, and
dialogue boxes with a variety of menus and buttons.
Typically, the set of static components remains fixed
while the application executes, except for simple state
changes (e.g., graying out, becoming invisible). The dy-
namic part consists of more free-form displays combining

text and graphics. The dynamic part typically displays
application-specific data that the application generates at
run-time, or that users construct interactively. Display
components are created, destroyed, modified and laid out
while the application executes. Displays must be updated
when data changes.

Current tools for interactively specifying displays, such
as interface builders and multi-media authoring tools [6]
provide support for specifying the static part of a display,
but provide little or no support for specifying the dy-
namic parts. At most, they provide the ability to use pre-
defined components such as tables and graphs, but these
components often lack the flexibility needed in many
applications (see Figure 1 through Figure 3).

Even for the static parts, support is not adequate. Inter-
face builders provide little support for the way graphic
designers work. The layout facilities are patterned after
the layout facilities of drawing editors where groups of
elements can be left-aligned, right-aligned, etc. Graphic
designers often work by defining guides and grids to or-
ganize page layouts [3, 15]. For example, Figure 6 shows
the grid design for Apple’s “Making it Macintosh” dis-
plays [1].

This paper describes a declarative language for modeling
presentations that addresses many of the shortcomings of
current tools. This language is part of the MASTERMIND

model-based user interface development environment.
The language was designed to meet the following goals:

1. Support both static and dynamic displays.

2. Incorporate principles of graphic design such as grids
and guides.

SUBMITTED FOR PUBLICATION

2 09/15/95

3. Support automatic display update when data changes,
or the presentation context changes (e.g. amount of
screen space available).

4. Support for using display components for input op-
erations (e.g., sophisticated ways to select objects on
the screen).

5. Amenable to interactive specification.

Our approach is a declarative language for modeling dis-
plays with only a few primitives that can be composed in
many different ways. The language has iteration and
conditional constructs, and facilities to connect displays
to application data in order to support goal 1. It uses
guides, grids and constraints as the basic constructs to
specify layouts to support goal 2. The declarative nature
of the language is the key to supporting goals 3, 4 and 5
because declarative languages are good for supporting
tools that reason about the specification. The run-time
support system reasons about the specification to figure
out how to update displays (goal 3), and to figure out
what is displayed where in order to support input (goal
4).

The declarativeness of the language also facilitates con-
structing tools that reason about the display specifica-
tions. Example tools include critics which detect design
problems, advisors and automatic generation tools that
refine partially specified designs or generate designs
based on the data to be displayed. Also, the language
constructs can be visualized graphically to support inter-
active specification of displays.

The rest of the paper is organized as follows. The next
section shows example displays to illustrate the range of
presentations that can be modeled in MASTERMIND, and
to illustrate the modeling constructs. The following sec-
tions describe the modeling constructs, related work and
conclusions.

EXAM PLE DISPLAYS
The following figures show examples of displays mod-
eled in MASTERMIND. We will use these examples to il-
lustrate the shortcomings of current approaches for
specifying presentations, and to illustrate the power and
simplicity of our approach to specifying presentations.

Figure 1. Napoleon’s march to Moscow.

Figure 1 is the famous Minard chart showing Napoleon’s
march to Moscow. The thickness of the line encodes the
number of troops in Napoleon’s army, the line darkness
encodes the temperature (darker is hotter). The squares
and labels indicate places where battles took place. The
input data consists of two lists of records. One containing
information about latitude, longitude, number of troops,
and temperature, and the other list containing records of
the time and places where battles took place.

This figure is an example of a custom designed display
that cannot be produced by any charting program. Sage
[8, 9] can automatically generate this chart from the re-
lational data, but it requires that each tuple provide the
two end-points of each line. In MASTERMIND this display
can be modeled independently of the format in which the
data comes in (list of points or list of intervals).

Figure 2. Complex bar-chart

Figure 2 shows a composite bar-chart. The input data is a
list of three records one for each person. The record for
each person itself contains a list of records about the ac-
tivities that the person is managing. This chart cannot be
produced by charting programs, but can be produced by
Sage. The difficulty in generating this display is that it
consists of two charts put side by side in a coordinated
way, and each chart itself is a hierarchical composition of
an outline display (the data for each person) with a chart
(the activities managed by each person).

SUBMITTED FOR PUBLICATION

3 09/15/95

Figure 3. Browser

Figure 3 shows a browser to view objects in the
MASTERMIND models. The figure illustrates the use of
conditional presentations: if attributes have a single
value, only a string is presented, but if they have multiple
values, the values are shown as a column of labels.

Figure 4. Tree layout

Figure 4 shows a tree structure where the width of each
node is dependent on the information contained in that
node. This figure is interesting because it shows that
MASTERMIND supports recursively defined models.

ARCHITECTURE
To specify a display in MASTERMIND, developers build a
model that specifies the structure and graphical compo-
nents of the display, how the components are connected
to application data, the visual appearance of each com-
ponent, and how the components are laid out. Figure 5
shows the architecture of the MASTERMIND’s presentation
generation system.

The declarative model is translated into an executable
representation called component prototypes, before it is
given to the run-time system to generate and manage the
displays at run-time. The component prototypes contain
essentially the same information as the declarative
model, except that the declarative information is trans-
lated into constraints that the run-time system can exe-
cute directly [4, 5]. To generate the displays, the run-time
system takes the application data to be displayed and
makes instances of the component prototypes, yielding a
tree of graphical components, which is drawn to generate
the displays that appear on the end-user’s screen.

The run-time system updates the trees of graphical com-
ponents in response to change reports. Applications are
expected to generate reports when they change data that
might be displayed. MASTERMIND also generates reports
when the size of windows changes, or when the user in-
teractively requests that the display format be changed.
When reports arrive at the run-time system, they cause
attributes of the component trees to be invalidated, which
causes constraints to be invalidated. In the simplest case,
re-computing the constraints yields new values for the
component attributes that specify the visual appearance
or layout of the graphical components. In the more com-
plex cases, such as when the number of data elements to
be displayed changes, re-computing the constraints
causes components of the tree to be added or deleted.

The loose relationship between models and trees of
graphical components gives MASTERMIND the flexibility
to construct displays where the number of graphical
components, the kinds of components, and their ar-
rangement in the tree is actually determined at run-time
while the application is executing.

ApplicationApplication

Runtime
System

Model
Translator

C++

Designer

Graphical
Components

Presentation
Model

Prototypes

Model libraries

End User

Code
Generator

Display Display

Graphical
Components

Reports Reports

Figure 5. MASTERMIND Architecture

SUBMITTED FOR PUBLICATION

4 09/15/95

In contrast, interface builders and multimedia authoring
tools have a one to one mapping between the tree of
graphical components that is generated at run-time and
the specifications that developers provide. Developers
essentially specify at design-time the graphical compo-
nent trees to be generated at run-time, eliminating the
flexibility required to generate dynamic displays. This is
the reason why developers using these tools also need to
use a scripting language, or a general purpose program-
ming language to construct such dynamic displays.

The following sections describe the main elements of the
MASTERMIND presentation modeling language.

PRESENTATION M ODEL
In MASTERMIND a display is modeled as a composition of
objects called presentations. Each presentation is speci-
fied as a refinement of another presentation, called its
archetype. The MASTERMIND library contains a wide
variety of presentations (e.g., window, group, button,
rectangle) which can be used as archetypes of new pres-
entations. In addition to the archetype, each presentation
contains the following information:

Parameters. Each parameter has attributes to represent
the type of the parameter value, and optionally, the value.
The value can be either a constant, or an expression that
computes a value in terms of the values of other parame-
ters. Expressions often call application procedures.

MASTERMIND distinguishes between three kinds of pa-
rameters: visual parameters, which specify the visual
appearance of graphical components, such as color, line-
style, etc. Layout parameters, which contain information
to specify the layout. Layout parameters must be of type
Guide, Grid or Magnitude, which are the building blocks
for specifying layout. Data parameters, which specify the
application data to be displayed in a presentation.

Parts. A possibly empty list of parts. Each part is itself a
presentation, so it can itself have parameters, parts, repli-
cations and conditionals. The parts define the hierarchi-
cal decomposition of the display.

Replications. For each part that might be replicated there
is a set of attributes that specifies how to generate the
replicas (e.g. with respect to a sequence of data elements
stored in a data parameter).

Conditionals. A set of rules that specify adjustments to a
presentation, and the conditions under which the adjust-
ments are appropriate.

The Napoleon display can be used to illustrate the main
constructs for defining presentations. The syntax shown
here is just for the purpose of describing the model in this
paper. Developers are expected to construct the models
using interactive tools, so the textual syntax that
MASTERMIND provides is designed to be easy for the tools
to generate and to read, and thus is not necessarily easy
for people to read.

1 Napoleon_Window : Window
2 data_parameters
3 march_data : sequence<Data_Info>
4 battle_data : sequence<Battle_Info>
5 parts
6 segment : Line
7 replicate_for [march] in march_data
8 start_index : 2
9 battle : Group
10 replicate_for [battle] in battle_data
11 parts
12 city : Rectangle
13 name : Label
14 date : Label

The Napoleon march display has two data parameters
that specify the application data to be presented. The data
for the march (march_data) is a sequence of application
objects of type Data_Info. The battle data is a sequence of
Battle_Info objects. The display consists of two replicated
parts called segment and battle. The battle part itself has
three parts corresponding to the little square and the two
labels. The replicate_for statements specify that the part
should be replicated. The symbol in square brackets is the
name of a data parameter used to store the data sequence
element assigned to each part replica. The start_index
specifies that replicas should be generated starting from
the second data point (there are N points and N-1 line
segments). The details of how the replication and the
layout is defined will be described in the next sections.

Since the part hierarchy is not used to define layout, but
only the components of a window, the fact that
MASTERMIND uses a purely hierarchical decomposition of
displays does not impose restrictions on expressive
power. As Figures 1 to 4 illustrate, even displays with
fairly complex layouts can be specified in MASTERMIND.
The reason is that the layout information is separate from
the hierarchical decomposition.

Replications
As illustrated in Figures 1 to 4, there is a large class of
displays that show variable amounts of application data.
The MASTERMIND replication mechanism is designed to
make it easy to specify such displays. The replication

SUBMITTED FOR PUBLICATION

5 09/15/95

mechanism is tied to the part decomposition of a display.
Developers decompose a display into parts according to
the kinds of components that can appear in the display,
and then specify that some of those parts might appear
multiple times. The idea is to allow developers to specify
how one replica of a part should be displayed, and then to
easily augment the model to say that the part should ap-
pear multiple times. This strategy should be easy for de-
velopers to understand, and amenable to be specified us-
ing interactive tools and demonstrational techniques.

The layout of a set of replicated parts can be specified
using two strategies called the reference strategy and the
anchor/generic strategy. The reference strategy uses an-
other object as a reference for laying out the parts. The
most common reference is a grid, in which case the ele-
ments are placed in the grid (the different ways to use
grids are explained in the layout section). A different set
of replicated parts can also be used as a reference. In this
case each of the parts being laid out will be placed in
reference to a corresponding part in the reference set.
Developers must provide constraints to specify how each
part is placed with respect to its reference (e.g., placed
below the reference). This facility makes it easy to, for
example, add decorations to the parts in that sequence
(e.g., a line between each of the components).

The anchor/generic strategy involves specifying where
the first element of the replication should be placed, and
then specifying the placement of each of the other items
with respect to the previous one (more details in the sec-
tion about layout).

In general, the run-time behavior of a replication specifi-
cation is as follows (some of the details may vary de-
pending on the attributes of the replication specification).
MASTERMIND first computes the sequence of data ele-
ments to be displayed. For each element in the data se-
quence MASTERMIND creates a replica of the part (i.e., its
corresponding graphical component) and stores the data
item in the parameter specified by the replicate_for
statement. This allows each replica to access the data
item that it displays. By default MASTERMIND first gener-
ates all the replicas and then lays them out according to
either the reference or anchor/generic strategy. If the
reference method is used for layout MASTERMIND stops
generating replicas when the data sequence runs out, or
the associated reference is exhausted (i.e., runs out of
grid lines, or the referenced replication runs out). There
is also an on_demand keyword to override the default
replication behavior. When on_demand is true, replicas
will be generated only as needed by other components

(e.g., another replication that uses this replication as a
reference).

MASTERMIND supports automatic display update when
data sequences change (elements added or deleted), when
the allocated display area changes size, or when replicas
change size.

Figures 1 to 4 illustrate the many different ways in which
replications can be used. As explained above, the Napo-
leon march display uses two replications to generate the
line segments and the battle information. Since this dis-
play shows geographical data, the layout of the replicas is
based on the latitude and longitude of each data point,
and so it uses expressions to compute the locations of the
points based on the application data.

When combined with the conditionals facility, developers
can specify adjustments to the presentation of each data
item depending on the characteristics of the item or its
index (e.g., elements of even index have a darker back-
ground).

Conditionals
Conditionals are the mechanism to specify displays
whose structure, layout and visual appearance depends
dynamically on the data to be presented, on the space
available, and on other characteristics of the display.

MASTERMIND supports a conditional presentation mecha-
nism that allows developers to specify rules
(condition/action pairs) that describe how to adjust a
presentation when certain conditions are true (e.g., if
only 10 grid lines are available, hide parts A and B).
Each presentation can have a set of conditionals. Each
conditional consists of a sequence of rules that specify
how the presentation should be adjusted. When generat-
ing a presentation, MASTERMIND will visit each set of
rules, and apply the first rule in each sequence whose
condition is true.

The conditions are expressions that test properties of the
data (e.g., whether a number is in a certain range), or
that test properties of the display (e.g., whether a graphi-
cal component fits in a grid cell).

The actions contribute features incrementally to the
graphical component being created. Actions are specified
as partially filled in presentation specifications, thus
giving conditionals the power to modify any aspect of a
presentation. An action can even override the archetype
of a part and add more parts. Typically, actions just
specify values for visual parameters.

SUBMITTED FOR PUBLICATION

6 09/15/95

Conditionals are sensitive to changes in both application
and presentation context. While evaluating conditionals,
MASTERMIND records all the conditions tested while gen-
erating a graphical component. If the application data or
the characteristics of the display change MASTERMIND

can undo the actions for the conditions that are no longer
true, and apply the actions for the conditions that became
true. This results in the display being updated according
to the conditions that are currently true.

MASTERMIND’s conditional presentation is not as sophis-
ticated as the presentation planning components of sys-
tems like Sage [8, 9] and APT [2], which can do back-
tracking, and thus plan presentations more intelligently.
MASTERMIND’s mechanism is designed to let developers
pre-specify the kinds of adjustments that should occur at
run-time, and it is simple to understand, easy to control
and efficient to implement.

Connecting Displays to Application Data
Connecting displays to application data involves both
providing a way for the interface to access application
data, and providing a way for the application to announce
changes to data that should cause the displays to update.

Accessing application data is simple: presentations can
access application data by calling application procedures
from within expressions used in the various elements of a
model (e.g., expressions to specify the value of a pa-
rameter, or the condition of a conditional presentation).

Since applications do not know which of its objects are
displayed and how, applications cannot directly trigger
display updates. MASTERMIND uses a broadcast mecha-
nism to let applications announce changes to data. This
mechanism is based on two constructs: reports, which the
application sends to MASTERMIND, and report patterns,
which the presentation components use to select from the
incoming reports those that should cause the particular
presentation to update.

A report is a structured object with fields for specifying
the kind of report (change, add, remove, delete), a logical
identifier, which is an arbitrary symbol, a reference to the
object that was changed, and uninterpreted fields for ad-
ditional information. A report pattern is essentially a
partially filled in report structure. MASTERMIND provides
a language for the application to declare what kinds of
reports it can produce at run-time, and an API that al-
lows applications to send reports to MASTERMIND. Typi-
cally, the body of the application procedures needs to be
modified to include calls to the routines that send reports
to MASTERMIND.

The reports mechanism allows changes to be announced
at a logical level. For example, if two elements of an ar-
ray are swapped, the change should be announced as a
“swapping” report rather than as two independent
“change” reports. Logical or abstract events are crucial to
allow the interface to show the changes to users in a
meaningful way. In the array example, it is more appro-
priate to show an animation of the elements being
swapped, rather than simply updating the screen.

Visual Appearance
The main determiner of the visual appearance of a pres-
entation is the archetype (e.g., if the archetype is a rec-
tangle, then the presentation will look like a rectangle).
However, each presentation defines a set of parameters to
control its visual appearance (e.g., fill and line-style col-
ors of a rectangle). The values of the visual appearance
parameters can be set to constants or to expressions that
compute a value based on the values of other parameters
and of application data.

Layout
Specifying the layout of a presentation ultimately in-
volves specifying numbers for the location and size of all
parts of a presentation. MASTERMIND provides high level
facilities to specify layouts in much more convenient
ways.

The MASTERMIND layout facilities are based on the grid
design techniques used in graphic design. Figure 6 shows
a good example of how these techniques can be effec-
tively used in practice. The figure shows the screen anat-
omy of Apple’s “Making It Macintosh” displays [1].
There is a guide at the left to align the text items in the
left part of the window, and the title at the top of the
window. There is a grid to place the text and buttons next
to the text, and also to define the spacing between para-
graphs.

Figure 6. “Making it Macintosh”

SUBMITTED FOR PUBLICATION

7 09/15/95

In MASTERMIND layouts are specified using three con-
structs:

� Guides. A guide is a horizontal or vertical line. Its
position can be defined using a constant or an expres-
sion that computes a value based on the positions of
other guides.

� Grids. A grid is a set of horizontal or vertical lines.
Grids are characterized by four quantities, the number
of lines, the separation between the lines, the start
and the end positions. A grid is defined by specifying
three out of the four quantities.

� Constraints. The position of guides and grids is usu-
ally defined using an expression that computes a
value based on the position of other guides and grids.

MASTERMIND’s guides and grids can be used directly to
set-up a layout such as the one shown in the “Making it
Macintosh” figure. For example, the grid spacing would
be defined in terms of the font size using an expression,
and the top and bottom of the grid would be defined to
match horizontal guides at the top and bottom of the
screen.

Interface builders do not provide adequate facilities for
doing good page design as illustrated in this example.
Some interface builders provide grids, but they are used
just for initial placement of the items. It is not possible,
for instance to specify the grid size based on font size, so
that if the font size is changed at run-time, the design
doesn’t break apart.

Guides and grids are also crucial for defining the layout
of replicated parts. In the simplest case, a replication can
be assigned to a grid, meaning that consecutive replicas
are placed in consecutive grid-lines. Additional parame-
ters can be used to adjust this basic strategy: it is possible
to specify the grid-line index for the first replica, to
specify the number of grid-lines to be occupied by each
replica, to specify that each replica should go to the next
free grid-line, etc. Nested replications can be assigned to
a common grid, so the elements are placed sequentially
on the common grid.

The chart display (Figure 2) is a good example of the use
of replications, grids and guides. Figure 7 is a drawing
showing the structure of the chart display, which is de-
fined by a presentation called chart. It has one part called
person, which is replicated (as shown by the shadow)
with respect to each person for whom data is going to be
presented. The person part has itself two parts, one called
name, which displays the name of the person (e.g., Bill-
Smith), and a replicated part that represents each row of
the chart showing the information about each task that
the person is in charge of. This part itself has parts corre-
sponding to the task’s activity name, schedule, cost and
resource usage.

The layout of the parts is specified using guides and
grids. The chart defines a horizontal grid that the two
replicated parts share as their reference, as indicated by
the black dots numbered 1 and 2. When the display is
created, each person component will start in a new grid
line, and each task created within the person presentation
also starts in a new grid line. The vertical guides are used
to define the horizontal placement of some of the parts.
The black dots indicate guide and grid snappings that
define the placement of other components. The horizon-
tal position of the activity, schedule and parts is defined
in terms of the vertical guides also, but use more complex
expressions to compute the position. For example, the left
and right of the schedule depend on the two surrounding
guides and the start and end-date for the task.

Recursive presentations such as the tree shown in Figure
4 can also use a grid, where each level of recursion is
assigned to the next grid line.

Replications can also be laid out using an anchor/generic
mechanism based on conditional presentation. The posi-
tion of all replicas is specified by specifying the position
of the first element (anchor), and by specifying the posi-
tion of all other elements in terms of the previous one.
This is accomplished using two conditional presenta-
tions, one that applies to the replica with index one, and
one that applies to replicas with index greater than one.
The anchor/generic mechanism also allows developers to
define more than one generic presentation, say one for
the odd-indexed replicas and one for the even-indexed
replicas.

The tree display also illustrates the use of the an-
chor/generic mechanism to specify layouts. The hori-
zontal layout of the children of a node is specified as fol-
lows: the anchor is the first child, and its left is specified
as the left of the whole sub-tree. The left of all the other

name

activity schedule cost resource

person

chart

1

2
task

Figure 7. Structure of the chart display.

SUBMITTED FOR PUBLICATION

8 09/15/95

children (generic) is the right of the previous child plus
an offset.

RELATED WORK
MASTERMIND’s presentation model [13] is based mostly
on ideas from HUMANOID [10, 11 and 12], and ITS [14].
MASTERMIND’s model of presentation is based in
HUMANOID’s templates, which also had constructs for
replication and conditionals. The main improvement in
MASTERMIND is the model of layout based on grids and
guides, and the way in which the layout model is inte-
grated with replications and conditionals. Neither
HUMANOID or ITS or any other interface construction tool
has a model of layout that supports the grid-based design
methodology that graphic designers have developed for
page design. The integration of the grid-based layout
design with the replication construct yields a powerful
and simple scheme for laying out collections of graphical
components.

MASTERMIND’s conditional presentation mechanism has
been redesigned to be more similar to the ITS style rules.
Like ITS rules, and unlike the HUMANOID conditional
construct, the MASTERMIND rules can independently
contribute elements to build up a component. Unlike ITS,
MASTERMIND records the dependencies of the rule condi-
tions so that if data changes, the rules are re-applied in
the appropriate way to yield an updated display.

MASTERMIND borrows the idea of using constraints for
propagating values in the component tree from Garnet [4,
5]. MASTERMIND is implemented using Amulet, the C++
version of Garnet. MASTERMIND’s models are translated
into Amulet objects, and make extensive use of the
Amulet constraint system. One can think of MAS-

TERMIND as a declarative layer on top of Amulet, pro-
viding convenient constructs (replication, conditionals
and grid-based layout) to specify interfaces at a higher
level.

In many respects, MASTERMIND is similar to automatic
presentation planners such as Sage [8, 9] and APT [2].
MASTERMIND’s models of the charts that Sage can gener-
ate are very similar to the Sage specifications that Sage
uses to render the displays. The advantage of Sage over
MASTERMIND is that Sage can generate the specifications
automatically based only on the data to be presented.
However, Sage can only produce presentations from re-
lational data, where as MASTERMIND can model a much
larger variety of displays. In addition, MASTERMIND also
models user tasks and dialogue (not described in this
paper), so it can model all aspects of a user interface.

CONCLUSIONS
MASTERMIND’s few presentation modeling constructs
(part decomposition, replications, conditionals and grid-
based layout) can be composed in a large variety of ways
to specify a large number of displays. The figures pro-
vided in this paper show a small sampling of the ways in
which these constructs can be combined to construct dis-
plays which are not adequately supported with current
tools.

MASTERMIND is currently under active development, and
the system is not yet complete. We currently have a com-
plete specification of the modeling language [13] and a
knowledge representation system to represent the models.
The translator that converts models into the component
prototypes is not yet implemented, and the run-time sys-
tem is only partially implemented. We built the models
for all displays shown in these paper, and we hand-
translated them into the component prototypes which the
run-time system uses to generate the displays.

After completing the model translator and the run-time
system we will start working on interactive tools for
building these models. These tools will be built using
MASTERMIND itself. We plan to release the system for
general use in the summer of 1996.

REFERENCES
1. L. Alben, J. Faris and H. Saddler. Making It Macin-

tosh: Designing the message when the message is de-
sign. Interactions, v1.1, January 1994, pp. 10-22.

2. J. Mackinlay. Automating the Design of Graphical
Presentations of Relational Information. ACM Trans-
actions on Graphics, pp. 110-141, April 1986.

3. K. Mullet and D. Sano. Applying Visual Design:
Trade Secrets for Elegant Interfaces. Tutorial 2,
CHI’94 Conference on Human Factors in Computing
Systems, April 24-28, 1994.

4. B. A. Myers, D. Giuse, R. B. Dannenberg, B. Vander
Zanden, D. Kosbie, E. Pervin, A. Mickish, and P.
Marchal, Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces IEEE
Computer, Vol. 23, No. 11, November, 1990.

5. B. A. Myers, et. al. The Garnet Reference Manuals.
Technical Report CMU-CS-90-117-R2, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213. May 1992.

6. B. A. Myers. User Interface Software Tools. ACM
Transactions on Computer Human Interaction, v2,
n1, March 1995, pp. 64-103.

SUBMITTED FOR PUBLICATION

9 09/15/95

7. R. Neches, J. Foley, P. Szekely, P. Sukaviriya, P.
Luo, S. Kovacevic, and S. Hudson. Knowledgeable
Development Environments Using Shared Design
Models. In Proceedings of the International Work-
shop on Intelligent User Interfaces, Orlando, Florida,
Jan., 1993

8. S. F. Roth and J. Mattis Data Characterization for
Intelligent Graphics Presentation, in Proceedings
SIGCHI'90 Human Factors in Computing Systems,
Seattle, WA, ACM, April, 1990, pp. 193-200

9. S.F. Roth, J. Kolojejchick, J. Mattis, and J. Gold-
stein,. Interactive Graphic Design Using Automatic
Presentation Knowledge, in Proceedings of the
CHI'94 Conference (Boston, April 1994), ACM Press,
pp. 112-117

10. P. Szekely. Template-based mapping of application
data to interactive displays. In Proceedings UIST'90.
October 1990, pp. 1-9.Szekely 92

11. P. Szekely, P, Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In Proceedings
SIGCHI’92. May 1992, pp. 507-515.

12. P. Szekely, P. Luo, and R. Neches. Beyond Interface
Builders: Model-Based Interface Tools. In Proceed-
ings of INTERCHI'93 April, 1993, pp. 383-390.

13. P. Szekely and P. Castells Documentation for The
MASTERMIND Presentation Ontology.
Http://www.isi.edu/isd/Mastermind/Documentation.
August 1995.

14. C. Wiecha, W. Bennett, S. Boies, J. Gould and S.
Greene. ITS: A Tool For Rapidly Developing Inter-
active Applications. ACM Transactions on Informa-
tion Systems 8(3), July 1990. pp. 204-236.

15. R. Williams. The Non-Designer Design Book.
Peachpit Press Inc., Berkeley, California, 1994

