skip to main content
10.1145/2382936.2382994acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
short-paper

Microarray vs. RNA-Seq: a comparison for active subnetwork discovery

Published:07 October 2012Publication History

ABSTRACT

While microarrays have been successfully used by the researchers to analyze gene expression levels, cutting edge high throughput sequencing technologies now made it possible to go one step further. Recent studies show that absolute expression levels are not accurately estimated by microarray data. In this work, we elaborate various experiments to compare highly-active subnetworks in protein-protein interaction networks found by the state-of-the-art tools used with microarray or RNA-Seq data. Our experiments show that RNA-Seq data can be important to detect active networks which are overlooked by the microarray data. Furthermore, these networks can contain genes which are biologically proved to be significant. However, we also observed that when the RNA-Seq data is used, the subnetworks found by the tools may not be effective as biomarkers due to their large sizes. Hence, some changes in the algorithms incorporated in current tools may be necessary while working with RNA-Seq data.

References

  1. C. Alfarano, C. E. Andrade, K. Anthony, N. Bahroos, and M. B. et al. The biomolecular interaction network database and related tools 2005 update. Nucl. Acids Res., 33(Suppl 1):D418--D424, 2005.Google ScholarGoogle Scholar
  2. D. Beisser, S. Brunkhorst, T. Dandekar, G. W. Klau, and M. T. D. et al. Robustness and accuracy of functional modules in integrated network analysis. Bioinf., 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Beisser, G. W. Klau, T. Dandekar, and T. M. M. T. Dittrich. Bionet: an r-package for the functional analysis of biological networks. Bioinf., 26(8):1129--1130, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B, 57(1):289--300, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. Bottomly, N. A. R. Walter, J. E. Hunter, P. Darakjian, S. Kawane, and et al. Evaluating gene expression in c57bl/6j and dba/2j mouse striatum using RNA-Seq and microarrays. PloSOne, 6(3):e17820, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Breitling, A. Amtmann, and P. Herzyk. Graph-based iterative group analysis enhances microarray interpretation. BMC Bioinf., 5:100, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Bruni, G. Minopoli, T. Brancaccio, M. Napolitano, R. Faraonio, and et al. Fe65, a ligand of the alzheimer's β-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J. Biol. Chem., 277:35481--35488, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. K. Chellappa, L. Jankova, J. M. Schnabl, S. Pan, Y. Brelivet, and et al. Src tyrosine kinase phosphorylation of nuclear receptor HNF4a correlates with isoform-specific loss of HNF4α in human colon cancer. PNAS, 2012.Google ScholarGoogle Scholar
  9. S. A. Chowdhury, R. K. Nibbe, M. R. Chance, and M. Koyutürk. Subnetwork state functions define dysregulated subnetworks in cancer. J. Comput. Bio., 18(3):263--281, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  10. H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3:140, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. Dao, K. Wang, C. Collins, M. Ester, A. Lapuk, and et al. Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinf., 27(13):i205--i213, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinf., 24(13):i223--i231, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Dutkowski and T. Ideker. Protein networks as logic functions in development and cancer. PLoS Comp. Bio., 7(9):e1002180, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. X. Fu, N. Fu, S. Guo, Z. Yan, Y. Xu, and et al. Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics, 10:161, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Griffith, O. L. Griffith, J. Mwenifumbo, R. Goya, A. S. Morrissy, and et al. Alternative expression analysis by RNA sequencing. Nat. Methods, 7:843--847, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Griffith, J. C. Mwenifumbo, P. Y. Cheung, J. E. Paul, T. J. Pugh, and et al. Novel mRNA isoforms and mutations of uridine monophosphate synthetase and 5-fluorouracil resistance in colorectal cancer. Pharmacogenomics, 17, 2012.Google ScholarGoogle Scholar
  17. M. Griffith, M. J. Tang, O. L. Griffith, R. D. Morin, S. Y. Chan, and et al. Alexa: a microarray design platform for alternative expression analysis. Nat. Methods, 5(2):118, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Hoshino, N. Miyoshi, K. ichi Nagai, Y. Tomimaru, H. Nagano, and et al. Epithelial-mesenchymal transition with expression of snai1-induced chemoresistance in colorectal cancer. Biochem. Biophys. Res. Commun., 390(3):1061--1065, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. W. Ichikawa, T. Takahashi, K. Suto, Y. Shirota, Z. Nihei, and et al. Simple combinations of 5-fu pathway genes predict the outcome of metastatic gastric cancer patients treated by s-1. Int. J. Cancer, 119:1927--1933, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  20. W. Ichikawa, H. Uetake, Y. Shirota, H. Yamada, T. Takahashi, and et al. Both gene expression for orotate phosphoribosyltransferase and its ratio to dihydropyrimidine dehydrogenase influence outcome following fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Br. J. Cancer, 89:1486--1492, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  21. T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinf., 18(Suppl 1):S233--S240, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. W. Ivana Ljubić, U. Pferschy, G. W. Klau, P. Mutzel, and et al. An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Program. Ser. B., 105:427--449, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D'Eustachio, E. Schmidt, and et al. Reactome: a knowledgebase of biological pathways. Nucl. Acids Res., 33(Suppl 1):D428--D432, 2005.Google ScholarGoogle Scholar
  24. C. D. Lasher, C. L. Poirel, and M. T. M. Cellular response networks. In L. Heath and N. Ramakrishnan, editors, Problem solving handbook in computational biology and bioinformatics. Springer, 2011.Google ScholarGoogle Scholar
  25. H. Ma, E. E. Schadt, L. M. Kaplan, and H. Zhao. COSINE: condition-specific sub-network identification using a global optimization method. Bioinf., 27(9):1290--1298, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. H. Malone and B. Oliver. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology, 9:34, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18:1509--1517, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Matsuyama, S. Togo, D. Shimizu, N. Momiyama, T. Ishikawa, and et al. Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: Three-gene expression model predicts clinical response. In. J. Cancer, 119:406--413, 2006.Google ScholarGoogle Scholar
  29. R. M. Niles, S. A. Wilhelm, G. D. J. Steele, B. Burke, T. Christensen, and et al. Isolation and characterization of an undifferentiated human colon carcinoma cell line (MIP-101). Cancer Invest., 5(6):545--552, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Peri, J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnalagadda, and et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 13:2363--2371, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. K. Ramani, R. C. Bunescu, R. J. Mooney, and E. M. Marcotte. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 6:R40, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  32. J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, and et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437:1173--1178, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown(3). Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science, 270(5235):467--470, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker. Cytoscape 2.8: new features for data integration and network visualization. Bioinf., 27(3):431--432, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Stahl, B. Hitzmann, K. Mutz, D. Landgrebe, M. Lübbecke, and et al. Transcriptome analysis. In W. S. Hu and A.-P. Zeng, editors, Genomics and Systems Biology of Mammalian Cell Culture, volume 127 of Advances in Biochemical Engineering/Biotechnology, pages 1--25. Springer Berlin/Heidelberg, 2012.Google ScholarGoogle Scholar
  36. U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, and et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 122(6):957--968, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  37. I. T. Tai, M. Dai, D. A. Owen, and L. B. Chen. Genome-wide expression analysis of therapy-resistant tumors reveals sparc as a novel target for cancer therapy. J. Clin. Invest., 115(6):1492--1502, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  38. I. Ulitsky, A. Krishnamurthy, R. M. Karp, and R. Shamir. DEGAS: De novo discovery of dysregulated pathways in human diseases. PLoS one, 5(10):e12267, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  39. I. Ulitsky and R. Shamir. Identification of functional modules using network biology and high-throughput data. BMC Systems Biology, 1:8, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  40. I. Ulitsky and R. Shamir. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinf., 25(9):1158--1164, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10:57--63, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  42. G. Warsow, B. Greber, S. S. Falk, C. Harder, M. Siatkowski, and et al. Expressence - revealing the essence of differential experimental data in the context of an interaction/regulation network. BMC Sys. Biol., 4:164, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  43. N. Zhang, Y. Yin, S.-J. Xu, and W.-S. Chen. 5-fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 13:1551--1569, 2008.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Microarray vs. RNA-Seq: a comparison for active subnetwork discovery

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          BCB '12: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine
          October 2012
          725 pages
          ISBN:9781450316705
          DOI:10.1145/2382936

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 October 2012

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • short-paper

          Acceptance Rates

          BCB '12 Paper Acceptance Rate33of159submissions,21%Overall Acceptance Rate254of885submissions,29%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader