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ABSTRACT
Recent advancement in high throughput data collection tech-
nologies has resulted in the availability of diverse biomedical
datasets that capture complementary information pertain-
ing to the biological processes in an organism. Biomark-
ers that are discovered by integrating these datasets ob-
tained from a case-control studies have the potential to eluci-
date the biological mechanisms behind complex human dis-
eases. In this paper we define an interaction-type integra-
tive biomarker as one whose features together can explain
the disease, but not individually. In this paper, we propose
a pattern mining based integrative framework (PAMIN) to
discover an interaction-type integrative biomarkers from di-
verse case control datasets. PAMIN first finds patterns form
individual datasets to capture the available information sep-
arately and then combines these patterns to find integrated
patterns (IPs) consisting of variables from multiple datasets.
We further use several interestingness measures to charac-
terize the IPs into specific categories. Using synthetic data
we compare the IPs found using our approach with those
of CCA and discriminative-CCA (dCCA). Our results in-
dicate that PAMIN can discover interaction type patterns
that competing approaches like CCA and discriminative-
CCA cannot find. Using real datasets we also show that
PAMIN discovers a large number of statistically significant
IPs than the competing approaches.

1. INTRODUCTION.
Recent advancement in high throughput data collection tech-
nologies in bioinformatics has resulted in a dramatic increase
in the availability of diverse data sets that capture different
perspectives of a biological system pertaining to an organ-
ism [28, 13]. These types of data include, but are not lim-
ited to, DNA microarrays and RNA seq providing cell pro-
cess information, Single Nucleotide Polymorphisms (SNPs)

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

representing genetic variations, metabolomics data in terms
of proteins and other metabolites, and structural and func-
tional brain data from magnetic resonance imaging (MRI).
However, each of these datasets only provide information
about a part of the complex biological mechanism [26, 30].
Consolidating the information available in independent data
sets has created a real possibility of personalized medicine,
i.e., using detailed genetic, genomic, clinical, and environ-
mental information about a person as biomarkers for a cus-
tomized and more effective approach to patient care [20, 29,
4]. Such integrative biomarker discovery requires identify-
ing those features of the data that can distinguish between
healthy or low risk subjects (controls) and diseased or high
risk subjects (cases) [31, 19, 7].

Integration of multiple datasets for biomarker discovery tech-
niques can be broadly classified into two classes: 1) Predic-
tive models ([11, 22, 34, 12], [18] provides a good survey
on several kernel fusion methods) and 2) Feature extraction
based biomarker discovery techniques [25, 9, 8]. The goal
of the predictive model based approaches is to build clas-
sification models with high accuracy, but often such tech-
niques do not yield easily interpretable results. In contrast,
biomarkers (that are constructed using a small number of
features) can be directly useful in diagnosis, treatment or
prevention, but equally as important; they can also pro-
vide insights into the underlying nature of the disease or
related biomedical processes. Hence we focus only on such
techniques in this paper. Feature extraction based tech-
niques including several blind source separation techniques
like independent component analysis (ICA) [25] and canon-
ical correlation analysis (CCA) [8] have been developed to
find the relationship between variables across the datasets
directly. In general, these models look for components in
each of the available dataset such that those components
have some relationships across multiple datasets. The origi-
nal ICA framework, which cannot combine multiple dataset
directly, has been extended in several ways for integration
purpose. Examples include joint ICA [5], parallel ICA [25],
group ICA [6]. Each of these has its own model assumptions
[8]. On the other hand, canonical correlation analysis(CCA)
and its extensions [33, 24] provide a more natural framework
for integration where the relationship between different com-
ponents found from multiple datasets is defined as the inter-
subject variabilities. It has been also shown that CCA has
less model assumptions than ICA based techniques. There-
fore, CCA has been very popular for integrating datasets
both integrating multiple neuroscience datasets [9] and also



several biological datasets [23]. Multi-set CCA, a general-
ized CCA which can integrate more than two datasets, has
also been applied for integrating fMRI, EEG and structural
images recently [10]. Note that these approaches can only
find biomarkers whose individual features are discrimina-
tive and correlated. However, as we will show in this paper,
these techniques are unable to find integrative biomarkers
that consist of features that are not discriminative individu-
ally or correlated but together they distinguish between the
healthy and disease groups. Such biomarkers, referred in the
rest of the paper as interaction-type integrative biomarkers,
are important due to their ability to combine complimentary
information from different data sets.

In this paper, we propose a patternmining based integrative
framework (PAMIN) to discover interaction type integrative
biomarkers from diverse case control datasets. PAMIN first
finds patterns form individual datasets to capture the avail-
able information separately and then combines these pat-
terns to find integrated patterns (IPs) consisting of variables
from multiple datasets. We further use several interesting-
ness measures to characterize the IPs into specific categories
that are discussed in Section 2. Using synthetic data we
compare the IPs found using our approach with those of
CCA [9] and discriminative-CCA (dCCA) [33]. Our results
indicate that PAMIN can discover interaction type patterns
that competing approaches like CCA and discriminative-
CCA cannot find. Using real datasets we also show that
PAMIN discovers a large number of statistically significant
IPs than the competing approaches.

The rest of the paper is organized as follows: Section 2
presents a toy example illustrating the goal of the proposed
framework. In section 3, we present our proposed frame-
work. Evaluation and results are presented in section 4.
Finally, we conclude with section 5.

2. THE OVERALL GOAL OF THE FRAME-
WORK.

In this section, we will define the types of integrated pat-
terns that are relevant to the biomarker discovery prob-
lem. Consider two binary matrices X and Y , representing
two case-control datasets as shown in figure 1(a) and fig-
ure 1(b), respectively. Each of the two datasets has 15 fea-
tures(represented by columns) and 20 subjects(represented
by rows) with equal representations from healthy and dis-
eased groups (separated by a horizontal line). A shaded cell
in these data matrices indicates the presence of a feature
(i.e., has a value 1) for a corresponding subject and a white
cell indicates that a feature has a value 0 for a corresponding
subject. We define a pattern as a combination of features
including singletons that are associated with a particular set
of samples. X and Y have a set of 7 patterns represented
as {PX

i }7i=1 and {PY
i }7i=1, respectively. Notice that some of

these individual patterns are over-represented in one group,
but not in other (e.g., PX

1 and PY
1 ) and some are equally rep-

resented (same number of samples) in both groups (PX
3 and

PY
3 ). Among different existing interestingness measures, we

use diffsup to measure the discrimination power of a pattern,
which is defined as the difference between number of sam-
ples supported by a pattern in two classes (more formally
defined in Section 3).

(a) Synthetic dataset X with imputed pat-
terns

(b) Synthetic dataset Y with imputed pat-
terns

Figure 1: Two synthetic datasets.

We define the notion of an integrated pattern(IP) denoted by
IPij = {PX

i , PY
j } as one that is formed by combining a pat-

tern found in X and a pattern found in Y. An IP can serve as
potential biomarker only if it is over-represented in one of the
two groups of subjects (higher discrimination power). For
example, IP11 = {PX

1 , PY
1 } is not interesting, since both the

IP and the constituent patterns (PX
1 = {i1, i2} and PY

1 =
{j1, j2}) in individual datasets are eaqually represented(5
samples) in both classes (diffsup = 0). On the other hand,
IP22 = {PX

2 , PY
2 } where PX

2 = {i4} and PY
2 = {j4}, is

interesting since both IP and constituent patterns are over-
represented in disease group with diffsup = 0.4. In con-
trast, IP33 = {PX

3 , PY
3 } is not discriminative since it is not

represented in any of the groups leading to diffsup = 0, al-
though its constituent patterns (PX

3 = {i6} and PY
3 = {j6})

were discriminative with diffsup = 0.4 before integration.
In contrast, integrated pattern IP55 = {PX

5 , PY
5 } demon-

strates totally opposite phenomenon of IP33. Here, the con-
stituent patterns PX

5 = {i11} and PY
5 = {j11} are equally

represented in the disease group and the healthy group lead-
ing to diffsup = 0. However, together they cover the same
disease subjects but different healthy subjects. So, IP55 is
over-represented in the disease group.

Among the four IPs described above, only IP22 and IP55

are discriminative after integration and thus can act as an
potential biomarker. We also refer them as discriminative



integrated patterns. Furthermore, these four IPs demon-
strate the relationships among the discrimination power of
the IP and those of its constituent patterns. Indeed, we
define two types of discriminative IPs based on such re-
lationship namely, coherence-type and interaction-type IP.
More specifically, an coherence-type IP has same degree of
discrimination as similar to that of the constituent individ-
ual patterns (e.g., IP22). These patterns are interesting for
biomarker discovery in scenarios when the upstream effects
like (genetic perturbations) can be validated in downstream
effects (like changes in protein abundance in metabolomics
data) [31]. Thus, it can potentially illucidate an underly-
ing causal/cascade relationship among different biomarkers
coming from individual datasets. In contrast, we also define
an interaction-type IP as one whose constituent individual
patterns have a degree of discrimination that is lower than
that of the integrative pattern (e.g.,IP55). So, the discrimi-
nation power arises only when diiferent types of markers are
integrated.

Lastly, IP44 = {PX
4 , PY

4 } represents a special type of dis-
criminative IP where the individual patterns PX

4 = {i8, i9}
and PY

4 = {j8, j9} represent the with-in dataset interaction
for dataset X and Y, respectively. Therefore, it is a poten-
tial biomarker and also an coherence-type integrated pattern
similar as IP22.

In this paper, we aim to discover all discriminative inte-
grated patterns1 given any number of datasets. Moreover,
we will differentiate between two types of IPs: coherence-
type and interaction-type for finding meaningful biomarkers.
Note that among these two types of IPs, feature-extraction
based biomarker techniques including CCA and its exten-
sions can only find the coherence types of markers. This
is illustrated in more details later in the Section 4 in the
context of corresponding real-valued datasets.

3. THE GENERIC FRAMEWORK.
In this integration based framework, we aim to find inter-
esting integrated discriminative patterns (IP22,IP44,IP55 of
Figure 1) from multiple datasets. A straightforward way to
analyze multiple datasets is to combine them into a com-
mon matrix format, and then apply discriminative pattern
mining on the combined dataset. Unfortunately, differences
in the nature of the data creates numerous challenges to
taking such an approach. In particular, there can be differ-
ences in format (record vs. network), semantics (a genetic
sequence vs. a time sequence), type of variables (binary vs.
categorical vs. continuous), the number of variables (dimen-
sions), the amount of information present in each dataset,
and differences in biases and assumptions of each data set
due to differences in experimental designs and protocols. In
addition, we will find many patterns with variables coming
from only one dataset which are not interesting for inte-
gration and thus, have to be filtered in a post-processing
step. More generally, putting such disparate datasets to-
gether limits our ability to apply the most relevant pattern
finding techniques, muddles the underlying semantics of the
data, increases computational complexity, and reduces sta-
tistical significance of the discovered patterns.

1may be refered simply as integrated patterns from now on.

Figure 2: The generic two-step framework for find-
ing integrated discriminative patterns.

To address the above challenges, we propose a two-step ap-
proach. The idea is to first find the discriminative patterns
from individual datasets respecting the individual proper-
ties of the dataset and then combine them into integrated
patterns that can distinguish the disease group from the
healthy population (Figure 2). In next two subsections, we
will describe these two steps in details.

3.1 Finding patterns from individual datasets.
In this subsection, we will first define some notations and
then describe how to generate patterns from individual datasets.
The definition of a pattern in this step is generic here, as
long as the pattern can be associated with the subsets of
samples of both classes. For example, the pattern can be
either singleton or interaction or sequential pattern. More-
over, any kind of pattern mining technique that seems the
most appropriate can be used for this purpose.

Let D be a dataset with a set of m items (variables),I =
{i1, i2, ..., im}, and n samples from two classes S+ and S−.
Each sample can be represented as a vector (~xi, yi) for i =
[1, ..., n], where ~xi ⊆ I is a set of items and yi ∈ {S+, S−}.
The two sets of instances that respectively belong to the
two classes S+ and S− are denoted by D+ and D− such
that |D| = |D+| + |D−|. We define a pattern as PD =
{α1, α2, ..., αl} of dataset D, where l is the length of the
pattern and αi ∈ I, ∀i ∈ {1...l}. The set of instances from
the two classes that contain P are denoted by D+

P ⊆ D+

and D−
P ⊆ D−. The ratio of the samples covered by P in a

particular class to the total samples of that class is defined

as RelSup. For example, RelSup+(PD) =
|D+

P
|

|D+|
for the

positive class S+.

Definition. The absolute difference of the relative supports
of P inD+

P andD−
P is defined originally in [2, 15] and denoted

in this paper as diffsup:

diffsup(PD) = |RelSup+(PD)−RelSup−(PD)| (1)

In this step, we will generate all discriminative patterns from
each dataset being integrated based on the diffsup score.
However, relying on diffsup only will lead to lot of driver-
passenger types of pattern from within datasets. A driver-
passenger pattern is defined as pattern, where at least one



constituent feature has a degree of discrimination that is
equal to that of the pattern and at least one constituent
feature whose degree of discrimination is quite less than the
integrated pattern. For example, pattern PX =< i6, i13 >

from dataset X has diffsup=0.4 which is contributed by i6
only. Note that these types of patterns are not interesting
because the pattern does not provide additional discrimi-
native power than its subsets. To filter out such patterns
coming from a single dataset, the concept of improvement
has been used in the literature [3, 16]. Intuitively, improve-
ment of a pattern is defined as the gain of the discriminative
power over the best discriminative power of any subset.

Definition. For a pattern PD = {α1, α2, ..., αl} in a dataset
D, the improvement is defined as

improvement(PD) = diffsup(PD)− max
qD⊂PD

(diffsup(qD))

(2)

A pattern PD is called an interaction pattern if its diffsup(PD) >
δ and improvement(PD) > γ, for parameters δ > 0 and
γ > 0.

In this paper, we are mainly interested to retain such im-
provement type of patterns found from individual datasets
to retain the within dataset interactions as demonstrated by
IP44 =< {PX

4 , PY
4 } > in Figure 1. To find all interaction

patterns from a dataset, we use an approach similar to that
used in [17, 16]. More specifically, we first mine for the dis-
criminative patterns with diffsup > δ using SMP [15] and
then look at the improvement score of the discriminative
patterns with non-negative scores. However, the improve-
ment score is not anti-monotonic in nature [17]. This can
lead potentially lead to many missed interactions present
across the datasets. For example, a singleton variable from a
particular dataset may not be discriminative, but may have
interactions with the individual variables or patterns found
in other datasets. Therefore, we also retain all the single-
tons along with the interaction patterns obtained from each
datasets. We denote the set of all patterns found from a
Dataset D as a pattern set, PS(D) = {PD

j }dj=1

⋃

I, where
d is the number of patterns found from dataset D and I is
the itemset associated with D.

3.2 Finding integrated patterns using the pat-
terns from multiple datasets

In the second step, we will combine the individual pat-
terns found from individual datasets to obtain the final inte-
grated patterns. Suppose we have K heterogeneous datasets
{Dk}

K
k=1 collected for the same set of n samples. Let, mk

denote the number of items(variables) in dataset Dk. We
will have in this stage the pattern sets PS(Dk) found from
each of the datasets from the step 1. Let dk be the number
of patterns found from dataset Dk.

For each set of patterns PS(Dk) found from the kth dataset,
we define a binary matrix Ak with dimensions n×dk for ease
of further discussion. Each entry of the binary matrix {Ak}ij
represents whether the pattern (P

Dk

j ) covers the sample i,
for i = 1...n and j = 1...dk. Thus, each column of this ma-
trix, (ak

j ) corresponds to the jth pattern of kth dataset, for
j ∈ {1, ..., dk}. Once we have represented the patterns from
each dataset in matrix form, we can look for the associa-
tions and interactions of these patterns across the datasets

to obtain final integrated patterns. More formally, an indi-

vidual integrated pattern IP is given by IP =

l
⋃

t=1

P
Dt

j of

length l, where PDt

j ∈ PS(Dt) and t ∈ [1...K]. Note that
an integrated pattern might not contain patterns from each
of the datasets, so 2 ≤ l ≤ K.

As discussed earlier, the first criteria of an integrated pattern
to be considered as interesting is that it should be discrimi-
native enough, i.e., diffsup(IP ) > β. Then, we aim to dif-
ferentiate between the two types of IPs: coherence-type and
interction-type IP. We first aim to find the coherence-type
pattern by measuring the association of the constituent indi-
vidual patterns of an IP coming from multiple datasets. In
particular, we use IS measure to measure such associations.
Furthermore, we define another measure called balance score
to aid the process of finding interaction-type IPs. We will
first describe these measures in details and then described
the algorithm to find both types of IPs.

Objective measures for finding coherence-type IPs. We
first aim to measure the association of the constituent pat-
terns of an IP to find the coherence-type of patterns. How-
ever, the disparate natures of the diverse datasets being in-
tegrated introduce additional challenges for measuring as-
sociations. For example, the traditional RelSup measure
may not be appropriate for measuring the associations across
multiple datasets. Since, each dataset has their own proper-
ties and different degrees of information, having same amount
of support may not mean same association for each dataset.
Lets consider two IPs: IP22 =< PX

2 , PY
2 > and IP77 =<

PX
7 , PY

7 > with same support in disease group from Figure
1. The first integrated pattern has a real association, but
the second one is more likely to be statistically insignificant
since the individual patterns themselves have higher sup-
ports. Another important issue is that the two patterns may
contribute unequally to the joint association. For example,
for IP77, P

X
7 contributes more than PY

7 , since the former
has lower support than the latter (conf(PX

7 → PY
7 ) = 0.66,

but conf(PY
7 → PX

7 ) = 0.5).

Among the wide variety of interestingness measures [35],
we will consider one interestingness measure called IS for
assessing associations due to two interestingness properties.
First, it can measure the association relative to the baseline
supports of constituent markers in each dataset (expected
association). Second, IS measure combines the contribution
of each individual markers towards the joint associations
from the constituent markers by geometric mean [36]. So, if
the contribution from any of the two directions(confidence
measure) is low then the IS measure is also low. Note that we
are looking for disease heterogeneity here and thus interested
only in RelSup in the disease (positive) class.

Definition The IS measure between two binary variables A
and B is defined as follows:

IS(A,B) =
relsup+(A,B)

√

relsup+(A)× relsup+(B)

=
√

conf+(A → B)× conf+(B → A) (3)

Example IS(IP2) = 1.00, while IS(IP7) = 0.57.



Furthermore, we generalize the original definition of IS mea-
sure for integrated patterns from pairs to higher-order inte-
grated pattern for l ≥ 2, in such a way that the measure
becomes anti-monotonic. More formally, the IS measure for
an IP with length l > 2 can be defined as the minimum of
IS measures of all pairwise subsets of IP. The anti-monocity
property directly follows from the nature of the min func-
tion.

IS(IP ) = min
r,s∈{1,...,l},i∈{1,...,dr},j∈{1,...,ds}

IS(ari , a
s
j) (4)

Objective measure for finding interaction-type IPs If
the IS measure is low for an IP, then it can be either interaction-
type or driver-passenger type IP. To further explain this
scenerio, lets consider two IPs of Figure 1: IP55 = {PX

5 , PY
5 }

and IP66 = {PX
6 , PY

6 }. Both of these IPs will have low IS
scores. Because, for both of the IPs, the samples covered by
the consituent individual patterns are significantly differ-
ent than the samples covered by the IPs after integration.
Among them, IP55 is an interaction-type IP and thus is of
our interest. In contrast, IP66 has diffsup = 0.6, where
the individual patterns PX

6 = {i13} and PY
6 = {i13} al-

ready have discrimination power of 0 and 0.6, respectively.
These types of driver-passenger IPs is not of interest because
of the same reason as described in last subsection.

We observed an interesting property of driver-passenger type
IPs which is different than both interaction and coherence
types of IPs. The diffsups of the constituent patterns of
driver-passenger patterns are highly skewed. Thus, we want
to make sure that the discriminative power of each individual
patterns of an integrated pattern is balanced, rather than
skewed. This observation motivates our use of a measure
called balance score, which is defined as below.

Definition Balance score: For an integrated pattern IP =
⋃l

t=1
PDt

j of length l, where PDt

j ∈ PS(Dt) and t ∈ [1...K],

we can represent the diffsups of each pattern PDt

j as a diff-

sup vector
~DV (IS) =< diffsup(PD1

j ), ..., diffsup(PDt

j ), ..., diffsup(P
Dl

j ) >

The balance score(bs) is then defined as the cosine similarity
(cos θ, where θ is the angle) between the perfectly balanced

vector ~I =< 1, ..., 1 > of length l and ~DV (IS). More for-
mally,

bs(IP ) =

∑K

k=1
diffsup(ak

j )
√

n×
∑K

k=1
diffsup(ak

j )
(5)

For any IP, 0 ≤ bs ≤ 1. The larger the bs score, the more
balanced the diffsups of the constituent patterns. Example:
The IP66 =< PX

6 , PY
6 > has a balance score = 0.7, while

bs(IP22) = bs(IP44) = 1.

Proposition: The balance factor of a driver passenger pat-
tern is low.

To summarize, we want the IP to be both discriminative
and balanced as well to filter out the driver-passenger type

IP. Hence, we use both diffsup and the balance score (bs),
DBS(IP ) = diffsup(IP )∗bs(IP ) for assessing the discrimi-
native power of final integrated patterns. Afterward, we use
the IS measure to differentiate between the two types of
patterns. If the IS measure is high, it will be of coherence-
type, otherwise we will conclude it as interaction-type. Now,
we describe the algorithm used to mine integrated patterns,
such that an integrated pattern IP has both IS(IP ) > α

and DBS(IP ) > β given the Ak matrix for each dataset k.

We will use three different pruning criteria to search for such
integrated patterns efficiently. This first pruning can be per-
formed based on the anti-monocity property of IS measure.
Thus, if an IP of length 2 has IS(IP ) < α, then any superset
of IP with l > 2 can be easily pruned.

Another level of pruning is done based on an alternative
diffsup formulation suggested by Fang et al. [15], which
makes the diffsup measure anti-monotonic. The last pruning
criteria for making the algorithm efficient in this stage is to
use an upper bound of DBS(IP ).

Lemma: For any IP, DBS(IP ) ≤ diffsup(IP ).

Proof: It follows from the definition of DBS ?? and the
observation that 0 ≤ BS(IP ) ≤ 1. Thus, if diffsup(IP ) <
β, then we can prune the IP rather than calculating the
DBS. The modified PAMIN algorithm is shown in algorithm
1. This algorithm works in the similar to that of the apriori
framework [1]. It starts from IPs integrating two datasets
and then proceed to integrate higher-order IPs based on the
interesting IPs found from the previous stage. The apriori-
gen function used in line 19 is same as the original apriori
framework.

Algorithm 1. PaminFinal

1: Input: Ak, for k = [1, ..., K], parameters α and β

2: Output: The set of all discriminative coherence and
interaction type IP.

3: s=2.
4: Cs = {IP |l(IP ) = 2}
5: repeat

6: for IP ∈ Cs do

7: if diffsup(IP ) > β then

8: if DBS(IP ) > β then

9: Fs = Fs ∪ {IP}
10: if IS(IP ) ≥ α then

11: Select IS as coherent-type pattern.
12: else

13: Select IS as interaction-type pattern.
14: end if

15: end if

16: end if

17: end for

18: s = s+ 1
19: Cs = apriori− gen(Fs)
20: until Fs = φ

21: result = ∪Fs

end



4. EXPERIMENTS AND RESULTS.
In this section, we will present results for both synthetic
datasets and real datasets.

4.1 Datasets.
We generated several synthetic datasets that contain differ-
ent types of patterns that are similar of those described in
section 2. More specifically, we created different types of
patterns, i.e., P1-P5 mentioned in the Figure 1 for two real
datasets as shown in Figure 3. The first pattern IP1 is a non-
discriminative pattern. For any non-discriminative patterns
like these, we generated the data from two identical normal
distributions. One the other hand, the discriminative fea-
tures of IP2 and IP3 were created from two different normal
distributions with µ = 2 and µ = 0 for two classes. Further-
more they are correlated to the same extent across the two
datasets. However, there are some heterogeneous population
groups who support the association across the two datasets.
For the IP2, the samples supporting the constituent pat-
terns in individual datasets (PX

2 and PY
2 ) are highly corre-

lated and thus interesting for integrative purposes. On the
other hand, the samples supporting the components (PX

3

and PY
3 ) of integrated pattern IP3 are different and thus,

not intersting for integration purpose, although the individ-
ual patterns are discriminative by themselves. Once we have
generated these types of patterns, we add small amount of
white random noise to the data. Moreover, for each of the
5 integrated patterns, we also vary the number of samples
that support those patterns totaling 30 integrated patterns.
Note that the samples shown in Figure 3 are reordered to
represent the homogeneous subgroups.

Beyond this synthetic datasets, we will also evaluate the ef-
fectiveness of PAMIN for finding interesting patterns from
a real dataset collected from 229 schizophrenic and healthy
people. The data has three modalities: functional MRI to
measure the functional activity of brain, SNPs to measure
the genetic variation and sMRI to capture the structural
connectivity of brain. After several preprocessing steps, we
extracted 90, 162 and 70 features from each of the datasets
respectively. For fMRI dataset, we summarize the activation
of each of the 90 brain regions based on their mean corre-
lation with all other 89 brain regions involved in functional
network. For details please refer to [27].

4.2 Processing of CCA components to gener-
ate pattern.

One difficulty with comparing CCA with our approach is
that CCA and DCCA combine original features into compo-
nents by taking a linear combination of the features. There-
fore, once we find the discriminative components from CCA,
it is difficult to map them back to the original feature space,
and thus to the true patterns induced in the synthetic datasets
which consist of those original features. To circumvent this
problem, we assess the activation level of each original fea-
ture for the discriminative canonical component by looking
at the coefficints of component maps. More specifically, for
each component, we compute the Z-score of the activation
levels and then take the variables that exceed a particular
Z-score threshold as in [10].

4.3 Results on synthetic dataset.

: We investigated how CCA, DCCA and PAMIN work for
different cases when applied on the data shown in Figure
3. Note that, there are 5 integrated patterns, among which
IP11 and IP33 are non-discriminative integrated patterns,
and IP22, IP44, IP55 are the discriminative integrated pat-
terns, as discussed earlier in Section 2.

Figures 4 and 5 illustrate the components obtained from the
dataset represented in Figure 3 using the CCA and DCCA
techniques, respectively. In these figures, each row repre-
sents a component and each column represents the variables
in the original datasets, X and Y, respectively. Each en-
try of these component maps represents the activation pro-
file or contribution of the variable to that component. The
higher(red) or lower(blue) the co-efficients are, the better
the the association between the component and the corre-
sponding feature. The y-axis of each of these two figures
represents the discrimination power of those components in
terms of their t-test (-log P value). These two figures yeild
the following observations:

• The first non-discriminative integrated pattern IP11

containing the first two features of both X and Y datasets
are not found by CCA (correponding to component 1
and 10). However, CCA finds IP33, which is repre-
sented by the component 11 with p-value < 10−9 and
10−11. This IP is not discriminative after integration,
although the corresponding individual patterns are dis-
criminative. They are taken by CCA because, CCA
looks for overall correlation across the two datasets
and the support of the two constituent patterns come
from a different subset of samples. Note, this can rep-
resent a different type of integrated pattern which can
handle population heterogeneity better. Our pattern
mining based approach will not find these types of IPs
because of the AND type of relationship is used when
defining associations.

• The integrated pattern IP22 is a discriminative inte-
grated pattern and it is supported by same set of sam-
ples across the two datasets. So, both CCA (8th com-
ponent with p−value < 10−3.4 and < 10−3 for dataset
X and Y respectively) and PAMIN can find it.

• The interactive integrated patterns (represented by IP44

and IP55) cannot be found by any of the components
of CCA. Althogh the feature of IP55 corresponding to
across dataset interaction is picked by the last compo-
nent of CCA, it is not discriminative enough in both of
the datasets. We can see that some components pick
these patterns based on their common correlations in
the disease group, but cannot find the discriminative
power; since they look for discrimination power in indi-
vidual datasets independently. Note that our approach
can easily find all these interactive integrated patterns.

• Besides all these observations, we can also see that
sometimes a good pattern is merged with a poor non-
discriminative pattern into a single component. For
example, component 8 in both the datasets not only
covers the integrated pattern IP22, but also merges it
with the 7th variable from both datasets. This leads
to the potential driver-passenger patterns and impedes
the interpretability of the obtained biomarkers.
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Figure 3: Two datasets containing different types of patterns of interest.
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Figure 4: Integrated patterns recovered by CCA.

(a) The components selected by DCCA for each of the
variables of dataset X.

(b) The components selected by DCCA for each of the
variables of dataset Y.

Figure 5: Integrated patterns recovered by DCCA.

The findings of DCCA is same as those of CCA. Based on
these observations, we conclude that our approach can find
interactions both within and across the datasets, which CCA
and DCCA based technique will not be able to find. This
is because these approaches measure association across the
datasets based on the correlation and thus, misses any non-
linear types of relationships present in the data including
interactions.

4.4 Quantitative analysis on synthetic dataset.
In this section, we will compare PAMIN and CCA more sys-
tematically on a synthetic datasets containing 30 integrated
patterns. For applying our approach, we first converted the
real-valued dataset into a binary format by choosing differ-
ent thresholds. In particular, we binarized each column by
taking the top [10, 20, 30, 40] percentile from both tails
of the distribution and then represented each variable by

two new variables corresponding to two tails of the disc-
tributions. For detailed evaluation purpose, we compared
the precision and recall of all the methods(PAMIN, CCA,
and DCCA). Unlike CCA and DCCA, computing precision
and recall is easy for PAMIN, since it aims to find the
integrated patterns directly. To create an evaluation ma-
trix for CCA and DCCA, we first constructed a matrix
{Ek}Kk=1 for each datasets with dimension S × C, where
S and C = mink=1,..K dk) are the number of true integrated
patterns in our synthetic dataset and the number of compo-
nents found from CCA(or DCCA) respectively. Each entry
of this matrix Ek

ij is computed as the Jaccard similarity
between the set of variables present in the i-th integrated
pattern and the variables selected by the j-th canonical com-
ponent. Finally, we binarized these K matrices based on a
particular threshold (τ) to obtain the final confusion matrix
for computing true positives, false positives and false neg-
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Figure 6: The precision-recall curve for both
PAMIN and CCA.

atives. Thus, there are two parameters involved in build-
ing the confusion matrix for CCA: the Z-score threshold for
selecting the variables and τ . We varied these thresholds
and then plotted their impact using precision-recall values.
Similarly, PAMIN was varied by using different binariza-
tion thresholds (top percentile) for discretizing the data, IS
threshold(α) and DBS threshold(β). As shown in figure 6,
PAMIN outperforms CCA in terms of both precision and re-
call. Note that, since the negative class(negative Integrated
patterns) is hard to define for our case, we therefore, rely on
precision-recall values rather than ROC curves.

4.5 Neuroscience data.
In the neuroscience data, we want to demonstrate the appli-
cability of our method for integrating more than two datasets.
More specifically, we integrated three different types of modal-
ities, namely fMRI, sMRI and SNP data. Figure 7 represents
two different types of integrated patterns (IP) discovered
by the proposed approach. In each figure, the first three
columns represent the three different patterns coming from
the three datasets and the fourth column represents the in-
tegrated pattern after combining them. In Figure 7(a), we
show one of the interaction type integrated patterns, where
the fMRI (left temporal pole), SNP (rs760761), and sMRI
(parsorbitalis) patterns have 0.21, 0.20, and 0.21 discrimi-
nation power (measured by Diffsup), respectively (indicated
along the x-axis of the figure). However, the discrimination
power increases by 11% after integration (Diffsup = 0.32
and Imp = 0.11). Similarly, Figure 7(b) represents one of
the coherence type of integrated patterns where the discrim-
inative power is essentially the same for all three patterns
(Diffsup = 0.26, 0.25, 0.27) and the integrated pattern (Diff-
sup = 0.29), and thus there is no significant improvement in
terms of the discrimination power (Imp = 0.02). Both of this
patterns are statistically significant with FDR< 10−2 (the
process of finding statistical significance is described in next
paragraph). Furthermore, in this dataset, we have two cat-
egories of schizophrenic patients: chronic and first episode.
This provides us an opportunity to check the homogeneity
of the subspace covered by the two patterns. The patients
covered by the individual patterns found in each the three
datasets explain subjects of both subcategories. However,

the integrated pattern containing all three patterns covers
mostly the chronic subgroup (33 out of 38 for the coherence
pattern).

(a) The top interacting pat-
tern generated by the proposed
approach.

(b) The top associative pat-
tern generated by the proposed
approach.

Figure 7: Two sample patterns discovered by the
proposed approach.

4.6 Statistical significance of the obtained pat-
ters.

Since the real datasets lack the ground truth, it is hard
to evaluate the obtained set of patterns. Moreover, the
diffsup measure only captures the discriminitative power
of the pattern without providing any statistical significance
of the obtained pattern, since the sample size is not consid-
ered in the formula of diffsup. Furthermore, the search space
for pattern mining is exponential, and thus is often criticized
to generate numerous hypothesis which can potentially lead
to the increased type I error. Therefore, it is important to
correct the statistical significance of the obtained patterns
for multiple hypothesis testing[38, 37, 21]. Among differ-
ent available techniques for correcting multiple hypothesis
testing, we used the randomization strategy of class label,
which has been extensively used in several computational
biology applications [32, 14]. In particular, we randomize
the class labels of each sample for certain number of times
and then repeated the whole pattern mining procedure us-
ing the same parameter settings (alpha and beta) for several
runs, and then computed the false discovery rate of the DBS
scores of the obtained discriminative integrated patterns in
compare to the randomized versions.

We also computed the statistical significance of the obtained
discriminative components of MCCA, so that we can com-
pare those with the statistical significant integrated pat-
terns. However, as mentioned earlier, the components of
CCA are not directly comparable to patterns obtained by
PAMIN. To map the components of the MCCA into the orig-
inal feature space of the dataset, we use the similar approach
as described earlier in section 4.2. Once, we map each of the
statistical significant component to the original features of
each of the three datasets, we took a conservative approach
to compute the number of patterns from those statistical
significant components. In particular, if there is ni features
mapped from i-th dataset, then thre are

∏

ni, for i = 1, ..., 3.
Figure 8(a) shows that our approach can find more signifi-
cant patterns than MCCA for same label of statistical signif-



Figure 8: Comparision between MCCA and PAMIN

for different statistical significance levels. Subfigure (a)

compares total number of patterns and subfigure (b-d)

compares the original features covered by those patterns

for three datasets: fMRI, SNP, thickness respectively.

icance label (computed by FDR). Then, we also computed
the coverage of the obtained patterns and components in
terms of number of variables picked from the three datasets
(Figure 8)(b-c). Our proposed approach discovers more sta-
tistically significant patterns and the coverage of those pat-
terns is also higher than those of MCCA for each datasets.
The results are shown only for a particular parameter set-
ting(with IC=40 for MCCA and alpha=0.65, beta=0.25 for
PAMIN) because of space limitations, although the observa-
tions do not change for other parameter settings. The effect
of the parameters of our algorithm: alpha and beta is very
obvious leading monotonically increasing number of IPs as
any of the parameters decreases.

Figure 9 demonstrates the overlap between the coverages
of both algorithm for fMRI dataset. Although we observed
good overlap between the coverages of these two algorithms,
the similar phenomenon was not observed for SNP and thick-
ness datasets. This may be due to the difficulty of MCCA
to handle discrete datasets like SNP. Furthermore, MCCA
is an iterative approach and thus, there was lot of variation
in the correlation structures for different number of compo-
nents chosen. We aim to exflore further the coverage issues
for other two datasets in future works.

5. CONSLUSION.
In this paper, we proposed a pattern mining based integra-
tion framework for finding relationship from multiple hetero-
geneous datasets with binary class labels. This framework
has several advantages. First, this framework is generic
enough to integrate any number of heterogenous datasets.
Second, this pattern mining based framework can find both
within and across dataset interactions that are not discov-
ered by feature-extraction based approaches such as CCA
and DCCA.

Given the potential utility of our proposed pattern min-
ing based integration framework, there are some interesting
future directions. Currently, the proposed pattern mining
framework works only for binary dataset. This needs to be

Figure 9: The overlap between the fMRI coverages of

MCCA and PAMIN measured by number of variables

selected (a) and hypergeometric p-value(b)

extended for real-valued dataset also. Furthermore, we ob-
served an issue with pattern mining based framework that
many times patterns are themselves correlated, i.e.,there is
redundancy among the patterns within the datasets. Sum-
marizing those related patterns in the first step of the frame-
work is a potential future direction. Another potential fu-
ture research direction is to develop an efficient algorithm
combining both generation and summarization steps of the
algorithm, so that many of the redundant patterns can be
pruned earlier in the search process.
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