
Robust Scripting via Patterns

Bard Bloom Martin Hirzel
bardb@us.ibm.com hirzel@us.ibm.com

IBM Research

Abstract
Dynamic typing in scripting languages is a two-edged sword. On
the one hand, it can be more flexible and more concise than static
typing. On the other hand, it can lead to less robust code. We ar-
gue that patterns can give scripts much of the robustness of static
typing, without losing the flexibility and concision of dynamic typ-
ing. To make this case, we describe a rich pattern system in the
dynamic language Thorn. Thorn patterns interact with its control
constructs and scoping rules to support concise and robust test-
and-extract idioms. Thorn patterns encompass an extensive set of
features from ML-style patterns to regular expressions and beyond.
And Thorn patterns can be first-class and support pattern-punning
(mirror constructor syntax). Overall, this paper describes a power-
ful pattern system that makes scripting more robust.

Categories and Subject Descriptors D3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

Keywords Pattern matching, Thorn, dynamic typing

1. Introduction
An increasing number of programmers are writing quite serious
code in scripting languages, rather than more traditional languages.
Some of these programmers have the opinion (which might be true)
that they know what they are doing and that compilers and type
systems shouldn’t get in their way. Others, perhaps more of them,
have the opinion that this version of the software needs to get done
next week, and the next revision needs to get done next month, and
that they have to code as fast as possible. A third large sector has the
opinion that they need to write client-side code on web browsers or
similar systems, which generally means JavaScript or some-such.

Scripting languages give certain advantages that classically
styled languages do not. Scripting languages are, ultimately, de-
signed for quick coding. They are typically dynamically typed, so
that programmers don’t have to fuss with types, and can work with
data structures that do not fit conveniently into any straightforward
type system. They typically have concise syntax, allowing coders
to write more code per keyboard-hour – which can be a significant
consideration in the last hours before a deadline. They are often in-
terpreted, eliminating compilation time and increasing portability.

The negative side of the tradeoff can be harsh. Scripts tend to
be less reliable than traditional code. Dynamic typing means that
many errors that would be detected at compile time in traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS’12, October 22, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1564-7/12/10. . . $10.00

languages remain unseen until runtime in scripts. Concise syntax,
while nice to write, can make reading and maintaining code quite
painful. The lack of static types hurts code maintenance as well.
Interpreted languages are typically slower than compiled ones.

Part of the craft of designing a scripting language is to amelio-
rate the disadvantages without losing the advantages – just as for
any language design.

1.1 Patterns vs. Types
This paper discusses the use of a rich pattern system in scripting

languages. “Pattern” is intended more in the sense of ML, as a way
to test, dissect, and destructure composite objects of arbitrary type,
than in the sense of regular expressions on strings – though both
senses are intended. Ultimately, a pattern does three things:
1. Decide whether a given subject has a certain structure;
2. Extract zero or more pieces;
3. Bind those pieces to variables in a certain context.

For example, the following code checks the value L to see if it is
a three-element palindromic list whose first element is a string.
If so, those elements are bound to the variables x and y, and
concatenated. If not, an error value is returned.
fun f([x:string,y,$x]) = x+y;
| f(_) = "Wrong";

Patternless code for the same task might look like:
fun f(L) =
if (L instanceof List && L.length()==3

&& L.get(0) instanceof String
&& L.get(0).equals(L.get(2)))

return L.get(0) + L.get(1);
else
return "Wrong!";

So, patterns fit in well with the philosophy of scripting. Patterns
don’t introduce any new or unnecessary work. They only require
writing things that needed to be written anyways, and they usually
are more concise and sometimes more efficient than the alterna-
tives. (For comparison, types do require labor that isn’t immedi-
ately going to get the code working, and makes it longer.)

But patterns provide some of the information that types do.
Clearly f above expects a list as an argument, and, indeed, a three-
element list. While this can be seen from the patternless code as
well, it is obscured. A smart interpreter, or any human reading the
code, might be able to take advantage of this fact. It’s certainly not
going to recover all the power of a type system – the best way to do
that is to have a type system – but it gives many of the benefits for
a cost that script writers will find tolerable.

1.2 Patterns and Control Structures
If taken seriously, patterns work nicely in concert with standard

control structures. We take the operation ∼ for matching, so that
x∼P matches the subject x against the pattern P, returning true
iff it succeeds, and introducing bindings into the region of code
reachable only if it returns true.
if (x ∼ [a, b]) use(a, b);
else complain();

29

checks to see if x is a two-element list. If so, it uses its elements,
from the variables a and b scoped to the then-clause. If not, it
complains; a and b are out of scope and cannot be used.

Similarly, a pattern match in the test of a while-loop

while (x ∼ [a, b])
x := use(a, b);

introduces bindings in the body of the loop.
Nearly every standard control structure can benefit from pattern

matching. Once you have patterns in your language, they become
pervasive and very convenient.

1.3 Advanced Forms of Patterns
The pattern language familiar from ML [15], Hope [2], et al.

includes a number of useful forms. Atomic patterns include vari-
ables which match and bind anything, wildcards (_) which match
anything but bind nothing, and literals which match one specific
thing and bind nothing. Composites include matchers for built-in
and user-defined algebraic data types (or classes, as appropriate),
often with special forms for extracting the head and tail of a list
even if lists aren’t algebraic.

Thorn adds several more pattern operators, sketched here and
described in detail in Section 5.2. Type test patterns, such as x:int,
can emulate typed function parameters. Expression tests, such as
(it % 2 == 0)?, where it is bound to the subject of the pat-
tern, make it possible to embed arbitrary predicates in patterns. List
patterns can contain ellipses (...) to check multiple list elements
against a pattern, so [_:int...] is a list of integers. Multiple
ellipses in a list pattern are supported by back-tracking. Patterns
can contain internal pattern matches of the form E∼P. Patterns can
contain conjunctions, disjunctions, and negations, enabling boolean
combinations of tests and extractions. Finally, Thorn’s pattern lan-
guage integrates regular-expression matching on strings. For ex-
ample, "([0-9]+):([0-9]+)" / [hour, min] extracts infor-
mation from strings such as "9:35".

1.4 First-Class Patterns
For an entity to be a first-class citizen of a programming lan-

guage, it needs to satisfy three conditions. It must be possible to
store it in a variable or pass it as a parameter to a function. It must be
possible to use that variable or parameter where the entity would be
expected. And it must be possible to create an anonymous instance
of the entity at the place where it is used. For instance, first-class
functions can reside in variables or parameters; can be called via
variables or parameters; and can be created anonymously in place,
e.g., using the fn keyword in Thorn.

Thorn supports first-class patterns: patterns can reside in vari-
ables or parameters; can be matched via variables or parameters;
and can be created anonymously in place, using the pat keyword.
One use-case for first-class patterns is to make large complex pat-
terns easier to read, by defining sub-patterns separately, then using
them from the main pattern. Another use-case for first-class pat-
terns is to reduce the dependency between pattern-matching code
on the one hand, and the matched data structures on the other hand.
If the pattern-matching code uses a first-class pattern from a param-
eter, we can switch data structures and the code still works, as long
as we supply the appropriate pattern.

We define pun to be the intentional syntactic similarity between
term construction and term matching. Besides being aesthetically
pleasing, puns make code easier to read. Thorn’s first-class patterns
support puns, since a pattern for matching a data structure can be
defined in the same breath with a constructor for it.

An input parameter to a pattern is a value that modifies its
matching behavior. For example, a pattern for splitting a string
can have a parameter for the divider character. Thorn’s first-class
patterns can take input parameters.

1.5 Contributions
No feature of Thorn is completely without precedent, though

first-class patterns and internal pattern matches are rarely seen.
However, Thorn makes an unusually pervasive use of patterns, and
has an unusually complete set of patterns.

The core argument of this paper is that patterns can provide
a dynamic language with benefits comparable to those that static
types provide in a static language. What both patterns and static
types have in common is that they declaratively specify the ex-
pected properties of data. Thus, patterns can make scripts more ro-
bust, without giving up the conciseness and flexibility of dynamic
typing. In support of our argument, we implemented a rich pattern
system in our dynamic language Thorn. This includes first-class
patterns, which enable powerful abstraction over patterns. All in
all, this paper makes two main contributions: one concrete (an in-
novative pattern system) and one philosophical (a new perspective
on patterns).

2. Related Work
ML-style patterns. A core feature of ML is pattern matching
via terms over algebraic data types [15]. In the context of stati-
cally typed functional languages, pattern matching is usually syn-
onymous with ML-style patterns. Proposed in ML’s predeces-
sor ISWIM [13], ML-style patterns are also central to Hope [2],
Haskell [9], and F# [19]. When statically typed languages in other
paradigms borrow features from functional languages, ML-style
patterns are prime candidates, as in Scala [3] and Kotlin [12]. Thorn
embraces ML-style patterns, but they are only part of Thorn’s rich
pattern system.

Scripting via patterns. In the context of scripting languages,
pattern matching is usually synonymous with regular expressions
(REs). This contributes to the success of Perl [22], and Ruby [5]
where REs are tightly integrated with the rest of the language.
Even when patterns in scripting languages are not exactly regular
expressions, they are used for string matching, as in SNOBOL [7]
or Lua [10]. Thorn embraces string pattern matching via REs, but
they are only part of Thorn’s rich pattern system.

Dynamic ML-style patterns. Scheme provides ML-style patterns
as a library [24]. Geller et al. describe how to add ML-style patterns
to the dynamic language Newspeak [6]. Other dynamic languages
provide some form of patterns, including destructuring assignments
in Python [18], rules for matching UML in Converge [20], and full-
fledged term matching grammars in OMeta [23]. In comparison to
these pieces of prior work, Thorn patterns are more closely knit
into the fabric of the language, making their use ubiquitous and
maximizing the advantages of patterns for robust scripting.

Scoping of bindings from patterns. Bindings from Thorn pat-
terns are available in code reachable when the pattern succeeds.
This is a generalization of ideas from other languages for how
patterns can interact with the rest of the language. Specifically,
in OCaml (and Thorn), the left-hand-side of the binding construct
is a pattern. In ML-style languages (and Thorn), patterns produce
bindings for function formals [15]. In JMatch (and Thorn), pat-
terns produce bindings in if-statements and loops [14]. In Perl and
Ruby, groups captured in an RE are available in special variables;
in Thorn, they are available in normal variables. In Python (and
Thorn), patterns interact with comprehensions [18].

Rich patterns. Besides the pattern-external features from the pre-
vious paragraph, Thorn also has an unusually large set of pattern-
internal features. It improves over string-matching REs and over
ML-style patterns by providing both, and then some. Prior work
on rich pattern matching systems includes Views, which let a type
be pattern-matched in ways it was not originally designed for [21].

30

Ernst et al. generalize ML-style patterns with predicates and sup-
port for objects [4]. Another rich pattern system is Tom, a prepro-
cessor for adding pattern matching to C, Eiffel, and Java [16]. At
the high end of the expressiveness spectrum is OMeta, which uses
parsing expression grammars (PEGs) for matching [23]. Our own
prior work on Matchete pioneered bringing together several fla-
vors of patterns in a Java extension [8]. Our own previous paper
on Thorn focused on other features, and only briefly mentioned
Thorn’s pattern system [1]. Furthermore, the current study includes
several new insights and pattern features that came afterwards.

First-class patterns. Thorn supports first-class patterns. The ac-
tive patterns of F# provide much of the same functionality, albeit in
a static language [19]. Newspeak has first-class patterns as well [6].
Perl REs can be interpolated into each other at match time, making
them first-class in a way [22]. And Scala’s extractors also provide
much of the power of first-class patterns, again statically [3]. On
the theoretical side, Jay and Kesner studied first-class patterns in a
calculus [11]. Thorn differs from these pieces of prior work in that
it uses first-class patterns in a more expressive pattern language.

3. Philosophy and Practice of Patterns
A pattern match does two things: it checks to see if a certain value,
the subject, has a certain structure or appearance; and it yields (or
produces or binds) zero or more results. The simplest pattern is
thus the wildcard, _ in Thorn, which matches anything and yields
nothing:
if (x ∼ _) println("Yes!");

Patterns start to get more useful when variables are introduced.
A variable matches anything, but, unlike a wildcard, it binds what
it matched.
if (3 ∼ x) println("x = " + x + " = 3");

Patterns become nontrivial when they start destructuring values:
checking that composite values have a particular structure, and, if
they do, extracting pieces of that structure:
L = [1,2];
if (L ∼ [x,y]) println(x + "," + y);

3.1 Encapsulating Programming Idioms with Patterns
Most programming languages have the two halves of pattern

matching: tests (tests for a given structure can usually be pro-
grammed, even if they are not available as primitives), and binding
(or some form of giving names to values). The power of pattern
matching comes from combining the two into a single construct,
without, in general, the linguistic and allocation overhead of re-
turning a composite value.

Combining them enhances expressiveness. For example, the
conventional Java pattern for accessing a hash table carefully is:

// Java
if (table.containsKey(key)) {

Value value = table.get(key);
use(value);

}

The equivalent pattern code in Thorn is:
if (table.get(key) ∼ +value)

use(value);

(The + pattern means roughly, “it’s there”; see Section 5.2.4.)
Retrieving elements is the most important operation on maps. Java
maps split it between two method calls: Java’s method abstraction
does not fit this situation very well. Pattern-matching puts it back
into a single method call.

Combining them can potentially enhance performance as well.
The Java code (pace an extraordinary compiler) needs to compute
the hash code of key and look it up in the table twice: once to

Advantage Static Pattern
Describe shape of data somewhat somewhat
Static error checking yes occasional
Optimization yes maybe a little
Refactoring yes somewhat!
Code Assistance yes no
Conciseness no yes
Sloppy Data no yes
Open-ended Descriptions no yes

Table 1. Advantages of static typing and Thorn-style patterns.

tell if it’s there via containsKey, and again to actually return it.
Any halfway-decent pattern matching code will only need to do
one hash computation and table lookup; it combines the test and
the return of the value into a single operation.

3.2 Pattern Punning
One design principle of Thorn, and many other languages with

patterns, we call pattern punning: that patterns look like the as-
sociated expressions. As an expression, [11,22,33] constructs a
three-element list with elements 11, 22, and 33. As a pattern, it
matches a three-element list with the same elements.

One flaw associated with pattern punning is that it is often
hard to tell what is a pattern and what is an expression. (If we
avoided pattern punning and its associated ambiguity, by having
disjoint pattern and expression languages, the language would be
unambiguous but unendurable.)

A second flaw is that Thorn programmers may rejoice in writing
concise, intricate, and perhaps confounding patterns. This is an
issue with human nature, and, on the whole, outside of the scope
of this paper to address.

3.3 Comparing Patterns to Types
When one chooses to work in a dynamically typed language,

one eliminates a heap of annoyances, from the obligation to write
types to the difficulty of writing generic libraries. One also elim-
inates a heap of advantages, from catching many errors statically
to having a clue what one’s data looks like when one is reading or
writing code. One might to wish to recover some of the lost advan-
tages, preferably without recovering many annoyances as well.

One should not expect to recover all the lost advantages. The
best way to have the advantages of static typing is to use static
typing. The goal, then, is to recover as many of the advantages of
static typing as possible – and perhaps some different advantages –
with as little overhead as possible.

Table 1 summarizes some of the advantages that one might wish
to have, both those which come from static types, and those which
come from patterns. The rest of this section has a little more detail.
In every case many books could be written on caveats, exceptions,
variations, and alternatives.

Statically describe shape of data. Static types explain some
facets of data structures: e.g., in Java, that x is an array of inte-
gers. They leave out crucial features, such as the size of the array.
Thorn’s patterns can test for both of these. It is not uncommon to
statically know, in a region of code, with no more syntactic over-
head than types require (albeit with more runtime overhead), that x
is a list of three integers:
fun f(x && [_:int,_:int,_:int]) = · · ·
fun g(x && [_:int...] && (x.len == 3)?) = · · ·
Similarly, static error checking is in principle possible with pat-
terns. Uses of x in ways incompatible with a list of three ints could
be (but are not currently) detected at compile time.

Optimization. Since the earliest days of FORTRAN, optimizing
compilers have made heavy use of static type information. Patterns

31

sometimes provide information that could be of use to optimization,
such as array sizes. Perhaps an optimizing compiler (were one to be
written) for Thorn could exploit this information.

Refactoring. One of the joys of using a powerful programming
environment for Java is to be able to instantly rename a method
from doit to sort_input_data, and have all references to the
method change, but no unrelated doits . This is generally impossi-
ble without static types, and patterns do nothing to help. However,
see Section 7.5 for an example of a rather more difficult refactor-
ing – turning a list of numbers into a Point class – which is more
easily done with Thorn patterns than with static types.

Code Assistance. Another joy of static types and powerful pro-
gramming environments is the ability to press a key and get a listing
of all methods defined on some object. Doing this robustly in a dy-
namic language would be extraordinarily challenging.

Conciseness. Patterns excel at checking the shape of data, and
simultaneously extracting pieces from it. Static types separate these
operations. For example, to add up the x, y, and z fields of a record,
a static type system would need to extract each field separately:
// Java
int sumxyz(ThingXYZ a) { return a.x + a.y + a.z; }
// Thorn
fun sumxyz(<x,y,z>) = x+y+z;

Sloppy Data. In some applications, especially on the web, a pro-
gram should expect that its input data is only approximately prop-
erly structured. Dynamic types are far more adept at manipulating
sloppy data than most static types, especially such harmless varia-
tions as records with extra fields.

Open-Ended Descriptions. Pattern programming is all about
defining and using new patterns that apply to existing objects and
data. Few static type systems allow the definition of new types that
apply to existing data, much less use them effectively.

4. Around Patterns: Control and Scope
Name Syntax / example
Binding statement P = E;
If statement if (E ∼ P) S1 else S2

&& expression (E1 ∼ P1) && E2

For statement for (P<-E) S or for (P<∼E) S
Comprehension %[E1 | for P<-E2]
While and until loops while (E ∼ P) S etc.
Match statement match(E){P1=>E1 | · · · |Pn=>En}
Function definition fun ID(P1)=S1 | · · · | ID(Pn)=Sn

Anonymous function fn P1=S1 | · · · | Pn=Sn

Table 2. Overview of Thorn features that interact with patterns,
where P is a pattern, E is an expression, S is a statement, and ID is
an identifier.

Thorn has a powerful and well-integrated pattern language. It has a
potent collection of pattern primitives, and, perhaps more interest-
ingly, a convenient set of ways to use patterns (Table 2).

4.1 Binding statement
A central design principle of Thorn (and many other pattern-rich

languages) is that patterns should be allowed wherever variables are
bound. This is particularly clear in the binding statement itself:
x = 1;

introduces a new variable x and binds it to the value 1 for the rest
of the current scope. Some languages have a keyword, often let or
val, or a type name, for this concept. Thorn encourages immutable
binding by giving it the shortest syntax. (Mutable variables are
introduced as var m := 1; and updated with m := 2; — not
painful, but it’s clear which one is favored.)

The left-hand side of a binding = can be an arbitrary pattern. For
example,
[x,y,z] = L;

checks that L is a 3-element list. If so, it binds the first element to
x, etc. If not, it throws an exception.

4.2 if statement and && expression
Thorn, like most pattern-rich languages, has the expression E∼P,

which returns a Boolean result of whether a value matches a pat-
tern. In many languages, using matching expressions loses the
bindings that the match might induce; one must use a match con-
struct to capture the bindings.

By contrast, Thorn takes as a design principle that a match
should introduce bindings into the region of code that will be ex-
ecuted only if the match succeeds. For example, a match appear-
ing in the test of an if introduces bindings into the then-clause.
Similarly, in a conjunction (E∼P) && B, variables bound in P are
available in B.

In this example, we check that L is a one-element list [x] and
M(x) a two-element list, and use the elements.
if (L ∼ [x] && M(x) ∼ [y,z]) {

use(x,y,z)
} else {
println("x,y,z not in scope here.");

}

In this example, x is bound in L∼[x], and thus can be used as an
argument to the function call M(x) in the next conjunct, as well as
the then-clause. Similarly, y and z are in scope in the then-clause.
None of these is available in the else-clause.

Note that writing this with match statements would require two
matches, and duplication of the else-clause.

4.3 for statement
for loops, like other binding contexts, allows patterns. For

example, iterating over a list of three-element lists can be done by:
for ([x,y,z] <- L)
use(x,y,z);

As always in pattern matching, one must treat the case of failure
in some sensible way. There are two reasonable choices: (1) strict
looping, which requires all elements of the list to match the pattern,
and throws an exception if one does not, or (2) lax looping, which
only executes the body for those elements that match the pattern.
We had lots of two-symbol combinations lying around unused, so
we took both choices. A loop using <- is strict; a loop using <∼ is
lax.

Quite often, script programmers are under the impression that
they have a data structure with a uniform structure: say, a list of
records with pairs [a,b], say, coming from a user input file. In
many cases, the programmers are incorrect, perhaps due to users
who have filled in their input file haphazardly. A strict loop over the
data structure is a simple way to state and check a desired invariant.
It will throw an exception if the data structure is not precisely as
the programmer expected, which is the best that can be done in an
untyped language.
for ([a,b] <- listOfABs)
use(a,b);

Equally often, programmers want to search through a list for
suitable values, say pairs [a,b], and do something to them. This
could be written as:
for (x <- listOfWhatever)
if (x ∼ [a,b])
use(a,b);

But the lax match is shorter and arguably clearer:
for ([a,b] <∼ listOfWhatever)

use(a,b);

32

4.4 Comprehension
Thorn has a rich set of comprehensions. For example, the list of

squares of elements of L can be written succinctly as:
%[n*n | for n <- L]

Comprehensions thrive on conciseness. The list of squares of
integers in L could be written as follows where :? is Thorn’s syntax
for a type test:
%[n*n | for n <- L, if n :? int]

But comprehensions using lax matching are often cleaner:
%[n*n | for n:int <∼ L]

4.5 while and until loops
In the basic while loop while(E)S, the only way that S can be

executed is if the expression E is true. So, variables bound by E are
available in S. For example,
var L := something();
while (L ∼ [x,y,z]) {

L := somethingElse(x,y,z);
}

The do S while(E) loop, disappointingly, doesn’t cooperate
with matching at all. On the first iteration, S is executed without
testing E, so matches in E can’t get into S. There is no region of
code that is only executed if E is true, and thus, no place that
pattern bindings can be used. (Bindings in S could in principle
be propagated to after the loop, at the unacceptable cost of letting
bindings escape from braced statements.)

One of the Thorn implementers added until loops on a lark.
We had never thought that until(E) could be anything but an
abbreviation for while(!E), saving an all-important character or
three in those all-important cases where the loop test needed to be
negated. We didn’t remove it from Thorn, largely because the half-
hour it would take to do so could better be spent by making fun of
it.

We mocked it too soon. until’s binding behavior is quite
unlike while’s, in a very useful way. Consider an until-loop and
the following statement: until(E){S}; T. Inside the body S, E
has been evaluated to false, so there are no bindings in S from E.
However, if control ever passes to T, then E must have evaluated to
true.

That is, the test in an until loop introduces bindings after the
loop. This behavior is precisely what is desired when one is search-
ing for something that can be described by a pattern desired[y]
which binds a variable y – and, as we shall see, any predicate can
be phrased as a pattern. The general idiom is:
var x := init;
until (x ∼ desired[y]) x := next(x);
weFound(y);

do S until(E), unlike its dual do S while(E), introduces
bindings from E into the following code. This is natural for search-
ing when at least one attempt must be made, e.g., requesting the
name of an existing file from a user.

4.6 match statement
Thorn has a statement devoted to pattern matching, a chimera

of the C-style switch statement and the ML-derived notation for
function definition. It consists of a subject expression, and a se-
quence of pairs of a pattern and a code block. Dynamically, the
subject’s value is matched against each of the patterns in turn; when
the first one succeeds, its code body is evaluated and its value re-
turned. It is an error for all to fail. A wildcard pattern _ is often
used as a catch-all for the last clause.
match (thing) {

[x] => {println("Singleton $x");}
| x:int => {println("An integer");}
| _ => {println("Something else");} }

4.7 Function definition
Function definitions, method definitions, and closure expres-

sions allow pattern matching in the argument list. In the simplest
case,
fun two(x) = [x,x];

uses a variable pattern, which matches anything and binds it to x.
Functions whose arguments have to be some particular type quite
naturally use a type pattern. x:int matches an integer and binds it
to x, and so the squaring function on integers can be defined:
fun square(x:int) = x*x;

The full power of patterns can be used in function definitions.
For example, a function taking a list of two numbers [a,b] with
a<b can be defined as:
fun interval([a,b] && (a<b)?) = "good";
| interval(_) = "bad";

(When one defines a function with nontrivial patterns as arguments,
it is often wise to give a catch-all case, perhaps throwing a well-
tuned exception precisely explaining what went wrong, or perhaps,
as in this case, just whining.)

5. Inside Patterns: Rich Sub-Patterns

Name Syntax / example
Familiar patterns

Variable V
Wildcard _
Literal "hi"
Interpolate $V or $(E)
List, fixed-length [P, Q]
List, by head and tail [P, V...]
Record <F=P, G=Q>
Type constructor T(P, Q)

Fancy patterns
Type test V : T
Expression test (E)?
List, general [P..., Q, R...]
Positivity test +P
Internal pattern match E ∼ P
Boolean combination P && Q or P || Q or !P
Regular expression RE / P

Table 3. Overview of Thorn patterns, where V is a variable, E is an
expression, P, Q, and R are patterns, T is a type, F and G are fields,
and RE is a string with a regular expression.

Table 3 lists the various patterns that Thorn supports. The following
subsections describe them in detail.

5.1 Familiar Patterns
Nearly every language of extraction patterns has a core of pat-

terns, corresponding to the extractors for the data types of the lan-
guage. One can program happily for years using just the core con-
structs, as ML programmers do. We list these for the sake of com-
pleteness, and for the sake of a few minor language design points
that apply to them; but on the whole they are standard.

Variable. A variable, V, matches anything, and binds V to the
value that was matched.

Wildcard. A wildcard, _, matches anything and doesn’t bind
anything. This can be used to ignore irrelevant parts of a data
structure.

Literal. A literal, a constant expression, matches the value of
that expression, and binds nothing. For example, the pattern "hi"
matches the string "hi".

33

Interpolate. The pattern $V, where V is a variable, or $(E),
where E is an arbitrary expression, matches the value of V or E
and nothing else. So $(1) is equivalent to 1, and if x=1, then
$x is also equivalent. The ability to compute values avoids an
awkward feature of some pattern systems, such as Prolog and Scala,
which rely on capitalization to distinguish whether an identifier is
a constant or a pattern variable. .

Fixed-length list. The pattern [P,Q] matches a two-element
list whose first element matches P and whose second element
matches Q.

List by head and tail. The pattern [P, V...] matches a list
whose first element matches the pattern P. The remainder of the
elements, of which there may be zero or more, are bound to the
variable V. This is an instance of a more intricate form for matching
on lists in Section 5.2. For better pattern punning, Thorn allows
[E, F...] as an expression as well, consing the value of E onto
the head of the list F. For example, the function to apply f to every
element of a list L can be written:
fun map1(f, [x, y...])) = [f(x), map1(f, y)...];
| map1(f, []) = [];

Record. Thorn records are labelled, unordered tuples. Records
are constructed with the syntax <x=1,y=2>. Record patterns have
the form <F=P,G=Q>, which matches a record with fields F and G
(and possibly others), where the F field matches P and the G field
matches Q. Arbitrary patterns are allowed in the fields, so
if (pair ∼ <x=[_,x1,_],y=y1>) use(x1,y1);

extracts the second element from a list in the x field to use.
As a convenience, a field name alone, like x, is interpreted as

x=x. So,
if (pair ∼ <x,y>) use(x,y);

extracts the x and y fields from P into the variables x and y, and
uses them.

The same syntax, in Thorn, can match objects and look at their
nullary methods. If o is an object with a nullary method x, then
o∼<x=xx> will succeed and bind xx to the value returned by the
method call o.x.1

Thorn has no simple pattern syntax for describing a record that
has an x and a y field and no others. (The pattern Boolean operators
(Section 5.2.6) can be used to express that it has an x and a y
but no z, as <x,y> && !<z>.) This is an intentional philosophical
point. Such a pattern would amount to a test passed by a instance
of a class, but not by a instance of any subclass: a test that most
object-oriented languages either exclude, or allow via some dirty-
but-necessary library functions but certainly reject as a language
construct. Indeed, an exact field test can be performed by dirty but
necessary library functions in Thorn as well. (Similarly, we would
abandon this philosophical point in an instant given a persuasive
use case for exact matching, but for now the glint of purity is
amusing.)

Type constructor. Thorn is a class-based language. Every class
has a default constructor, given with arguments to the class dec-
laration: class Point(x,y)· · ·. Class constructors have the syn-
tax Point(1,2). Objects are destructured by a similar syntax:
if(P∼Point(x,y))use(x,y);

Classes can have constructors in addition to the default con-
structor. The non-default constructors are not automatically decon-
structable. First-class pattern members can be used to provide de-
constructors for non-default constructors.

1 Thorn does not require () on nullary methods, and does not expose
instance variables, so the o.x syntax unambiguously refers to a method
invocation on an object o. The choice that all nullary methods appear to be
fields is debatable, and often-debated.

5.1.1 Variable Availability
Patterns are matched from left to right. Variables bound early in

the pattern may be used later in the pattern. For example, [x, $x]
matches a two-element list with equal elements: the first element is
bound to x, and then its value is used in the subpattern $x which
matches a subject equal to the value of x.

5.2 Fancy Patterns
At approximately this point, a pattern-rich language can either

stop or proceed. Stopping gives a useful but constrained pattern
language. In a typed language, the constraints are useful, allowing
efficient compilation of patterns a la ML. In a dynamic language,
such as Thorn, no such compilation is possible. There is no reason
not to give patterns any capability we can imagine.

So Thorn’s first-order pattern language, while hardly unprece-
dented, is unusually generous. There are minor features like type
tests, specialized but very useful features like list and regexp pat-
terns, and broadly general features that evaluate expressions and
perform boolean combinations. The individual features are of only
moderate interest by themselves; their use in combination is what
counts.

5.2.1 Type test
The pattern x:int matches any integer, and binds x to its value.

More generally, P:T fails if its subject is not of type T; if the subject
is of type T, it matches it against P and produces whatever bindings
P does. This is frequently used to give the appearance of typed
function arguments:
fun sumsq(x:int, y:int) = x*x+y*y;

The most common choice of pattern P other than a variable is a
wildcard: _:int is a pattern that matches any integer.

5.2.2 Expression test
The pattern (E)? evaluates the expression E. If its value is true,

the pattern match succeeds without binding any values. If it is
false, the match fails. If it is anything else, it raises an exception.

Inside of E, the variable it represents the subject of the match.
For example, (it > 0)? is a pattern that matches positive num-
bers.

Test patterns alone don’t do very much. In conjunction with the
pattern && operator, or other operations, they provide side condi-
tions and considerably more.

With great power comes great uncomputability. The familiar
patterns of Section 5.1 can in many cases be compiled quite ef-
ficiently. The compilation schemes of ML, Scala, and so on some-
times take advantage of this, building finite-state automata to check
objects against patterns. Such compilation schemes are harder or
impossible in the presence of test patterns — which is, perhaps,
why side conditions are generally relegated to the side in many lan-
guages. Given that we wanted Thorn to have a rich set of pattern
constructs, and given that the language is dynamically typed, tight
compilation schemes like ML’s are out of the question anyways, so
we put our tests into patterns for maximum expressiveness.

5.2.3 General list pattern
Thorn supports pattern matching over lists. In a list pattern,

x... matches an arbitrary sublist, binding it to x. So,
[x..., true, y...]

matches a list containing true as an element somewhere in it. x is
bound to the list of elements before the first true, and y to the list
of elements after the first true. Similarly, _... matches but does
not bind a sublist.

There may be any number of x... elements in a list pattern, and
they will all be explored, in a straightforward backtracking way.
The pattern match may not be the most efficient in all cases. It
is O(nk−1) where n is the length of the list and k is the number
of v... subpatterns, and, for true-finding, a linear algorithm is

34

possible. But this pattern is certainly easy to write, and may be
adequate for many situations.

As a further elaboration, a pattern component may have the
form x && P ..., where x is a variable and P is a pattern. This
form matches a sequence of elements each of which match P, and
binds them to x. For example, to match a list consisting of some 1’s
followed by some 2’s, use:
if (L ∼ [ones && 1 ..., twos && 2 ...])

use(ones,twos);

5.2.4 Conditional Return, Positive Tests, +P
Quite commonly, a subprocedure can conditionally return: ei-

ther succeed and produce some values, or fail. For example, pop-
ping a stack can succeed and yield the prior top of the stack, or fail
if the stack was empty. Thorn’s idiom for conditional return takes
advantage of Thorn’s dynamic typing. It uses a unary 1-1 operation
+, with the connotation that a function returning +(v) is saying that
it is successfully returning the value v. It returns a distinguished
value null to indicate failure; of course, +(v) must never be null.
For example, the function to find the position of v in list L appears
in Figure 1. Note that the middle clause of the auxiliary function
loop returns +n rather than simply n.

fun index(v, L) {
fun loop([], n) = null;

| loop([$v, _...], n) = +n;
| loop([_, tail...], n) = loop(tail,n+1);

loop(L,0);
}
if (index(2, [0,1,2,3]) ∼ +n) assert (n==2);

Figure 1. Computing Index in Thorn

To use the result of a conditionally returning function, match it
against the pattern +P. If the subject is not in the range of +(·), in
particular if it is null, the match fails. Otherwise, the subject must
be +v for some value v; the matcher matches v against pattern P,
succeeding if P does, and binding whatever P binds.

In particular, the pattern +x succeeds if the subject is +(v),
and binds v to x, and fails if the subject is null. So the idiom
if (f(a,b)∼+x) use(x); expresses conditional return. This ap-
pears in the last line of Figure 1.

This will work for any function +(·) that is 1-1 but not onto.
Scala uses the Option type for this purpose, incurring an object
allocation each time.

Thorn, which is dynamically typed, can be more economical.
+(·) is already defined, from FORTRAN days, as the identity
function on numbers: +2 evaluates to 2. We generalize this so that
it is the identity function on nearly all values.

+(null), of course, can’t be null, as null is outside the
range of +(·) by hypothesis. In Thorn, it is a value with no
other interesting behavior or structure, beyond its connotation of a
function which successfully conditionally returns the value null.
+(+null) is a still different value, and, in general, the values
+n(null) for n≥ 0 are all distinct. These are called the nullities.
Except for null and +(null) they rarely appear in code.

And the nullities are the only values for which +(v)6=v. This
makes computing and inverting +(·) very cheap: usually nothing
needs to be done, and, with a bit of caching, the nullities rarely
need allocation.

5.2.5 Internal Pattern Matching: E ∼ P as a Pattern
Thorn pattern matches can contain pattern matches. The pattern

E∼P behaves like the expression E∼P: it evaluates E, and matches
the result against P, introducing bindings from P if it succeeds. Like
the test expression (E)?, internal pattern matches bind the subject
of the pattern to the variable it.

Internal pattern matches are particularly useful for sneaking get-
ters and other method calls into the middle of patterns. For exam-
ple, consider a function that accepts a list of maps, each of which
has an integer at key "a". The pattern it.get("a")∼+_:int is
one way to test whether a map has a number at key "a". So, the
following pattern tests for a list of such maps:
[(it.get("a") ∼ +_:int) ...]

Internal pattern matching can almost be imitated by test pat-
terns. (E∼P)? uses the pattern matching expression; the test pat-
tern construct (· · ·)? doesn’t bind any values. The internal pat-
tern match E∼P succeeds or fails under the same circumstances,
but binds the values bound by P.

As an extreme and surprisingly useful case, an internal pattern
match can be used to simply bind a value. 1∼x always succeeds,
and binds x to 1. This appears in complex patterns, especially first-
class ones.

5.2.6 Boolean Combinations of Patterns
Patterns can be combined with the short-circuiting Boolean

combinators &&, ||, and !. The success or failure of a Boolean
pattern is based on the success or failure of the subpatterns: s
matches P && Q iff it matches both P and Q; it matches P || Q
if it matches P or it matches Q, and it matches !P iff it does not
match P.

Pattern matching does more than return a success or failure; in
the event of success, it binds variables. Thorn’s rules of what is
bound are fairly generous. P && Q binds everything that either P
or Q binds; furthermore, bindings from P are available in Q. P||Q
binds everything that both P and Q bind. And !P binds nothing at
all.

&& is far and away the most useful Boolean combination of
patterns. It provides the main pattern construct that we have not
mentioned, often appearing as as or @. In languages that have
it, x as [y,z] is a pattern that matches a two-element list like
[y,z]; if the match succeeds, x is bound to the whole list and y
and z to the components. In Thorn, this is expressed as:
x && [y,z]

Pattern m && (test(it))? matches a value m which answers
true to test. Since variable binding is done from left to right,
m && (test(m))? does just the same, but with the occasionally
obscure variable it given the same name m that it has in the rest of
the program.

&& has uses beyond as, though. For example, one may match a
list containing 1, 2, and 3 in any order with:
[_...,1,_...] && [_...,2,_...] && [_...,3,_...]

&& and the test-pattern (E)? described above allow side conditions
to be taken off the side, and put inside patterns — often in the places
where they can do the most good. For example, the function hype
in Figure 2 takes a function f, and a nonzero value x such that
f(x) and f(1/x) are both singleton lists. It is important to check
that x!=0 before computing the reciprocal, which would be hard to
do with a side condition: the condition has to be in the middle.

fun hype(f, x && (x != 0)? &&
f(x) ∼ [a] &&
f(1/x) ∼ [b])

= [a,b];

Figure 2. Inside Condition

|| is much less often used than &&. It does show up now and
then, for instance, in balancing functional red-black trees [17]. A
function might take either an integer or a string as argument:
fun f(x:int || x:string) = use(x);

35

One may also use a record to send named arguments to a
function.
fun draw(<color, style>) {use(color,style);}

To make the arguments optional, one can supply default values with
||:
fun draw(

(<color> || "purple"∼color)
&& (<style> || "square"∼style)
) {use(color,style);}

The pattern <color> matches a record with a color field, and
binds the variable color to that field’s value. If that doesn’t match,
"purple"∼color gets to try; it unconditionally succeeds, and
binds color.

The negative pattern !P, which succeeds if P fails, is only rarely
useful. To calculate the sublist of L before the first occurrence of 1,
despite possible matches that could be achieved by backtracking,
use:
if (L ∼ [a && !1..., 1, b && _:int ...])

use(a,b);

Negation – and, usefully, double negation – has the property of
encapsulating bindings. The pattern ![x,$x] matches everything
but a list of two identical values, and it produces no bindings.
(It does use an internal binding of x, but that binding does not
escape past the scope of the !.) So, !![x,$x] matches a list of
two identical elements, and produces no bindings. This idiom can
be useful if one does not wish to introduce any variables – or to
emphasize that variables are not needed outside of the pattern.

(This gives an amusingly intuitionistic flavor to Thorn’s Booleans,
both Boolean expressions and patterns. A positive match, E∼P re-
turns true or false, and yields some bindings. Negated once, either
as !(E∼P) or E∼!P, it returns the opposite truth value and no bind-
ings. Doubly negated, !!(E∼P) or !(E∼!P) or E∼!!P, it returns
the original truth value but, unlike the positive, no bindings.)

5.2.7 Regular Expressions RE / P
Thorn’s regexp pattern has the form RE / P. The expression RE

should evaluate to a string containing a Java-style regular expres-
sion. P is a pattern, generally a list pattern. The match succeeds if
the subject is a string that matches the regexp RE, and the list of
substrings from the groups appearing in RE matches the pattern P.

The most common pattern match uses a list pattern to bind the
capture groups. To see if x consists of some a’s followed by some
b’s, write:
if (x ∼ "(a*)(b*)" / [xa,xb]) use(xa,xb);

But in practice the typical parsing problem isn’t simply to chop
a string up into pieces. The pieces are often needed in forms other
than strings: as numbers, booleans, files, etc. We illustrate with
the problem of parsing a pair of numbers separated by a colon:
"12:34". Here we use internal pattern matches and the .int
method on strings to avoid needing the intermediate strings.
if (x ∼ "([0-9]+):([0-9]+)"/

[it.int ∼ +i, it.int ∼ +j])
println("$i colon $j");

If we were coding an expression that became too large and in-
tricate, we would instinctively extract subexpressions into variables
or functions to simplify it. In most languages, there is no way to ex-
tract or use subpatterns. Thorn’s pattern abstraction mechanisms let
us write it more cleanly.

6. First-Class Patterns
Now that we have seen how patterns tightly integrate with the rest
of Thorn, and how Thorn provides a rich pattern system, we take
things one step further by also providing first-class patterns.

fun sum(t, t.Fork(left, item, right))
= sum(t,left) + item + sum(t,right)

| sum(t, t.Leaf(item)) = item;

Figure 3. Explicit Representation Parameter

6.1 Towards First-Class Patterns
The authors are not alone in feeling that, some months, two-

thirds of the code they write consists of an endless series of blocks
of the form:
1. Acquire a data structure X;
2. Determine if X satisfies some sanity properties;
3. If it does, rip it apart and put the pieces in variables a, · · ·, z.
4. (Optional: if it doesn’t, produce a clear and informative error

message.)
When one is unlucky enough to program in most mainstream lan-
guages, one is condemned to do this by a series of tests, condi-
tionals, method calls, and bindings. If one is lucky enough to pro-
gram in a language such as ML or its various progeny and inspirees,
among others, one can use pattern matching, and combine the test-
ing and extraction into a single function definition:
fun sum(Fork[left, item, right])

= sum(left) + item + sum(right);
| sum(Leaf[item]) = item;

The input to sum is destructured. In the first line, it is inspected
to see if it is a Fork node. If it is, it must have three fields; these are
bound to the variables left, item, right. If not, it is inspected to
see if it is a Leaf, and, if so, its single field is bound to item. This
definition is a marvel: concise without being terse, explicit without
being redundant. Would that all code could be like this!

Of course, one might not be programming with a specialized
datatype or class of trees. Especially in a scripting language, Python
or Perl or PHP or Ruby or a hundred others, one might choose to
use a built-in type to represent one’s trees. Perhaps fork nodes are
represented as three-element lists [left,item,right] and leaf
nodes as one-element lists [item]. Pattern matching still works
perfectly well:
fun sum([left, item, right])

= sum(left) + item + sum(right);
| sum([item]) = item;

This is basically the same code as the Fork example. The
only difference is that the trees are represented differently. Being
computer scientists, our immediate instinct is to try to abstract
away the representation into a separate parameter t, as in Figure 3.
That is, we want to make patterns first-class, so that they can be
manipulated as data, as well as invoked as patterns. Few languages
let us write this.

And of course one might not want to keep track of the repre-
sentation parameter t by hand. Suppose that we have a function
rep(tree) that takes a tree and returns its representation — as a
record containing at least first-class patterns Fork and Leaf. Fur-
ther, suppose that pattern selectors, such as Fork in Figure 3, can be
expressions, using a variable it as the subject of the pattern match.
We can then write a quite general tree walk, as in Figure 4, which
can sum any sort of binary tree whose representation is registered
with rep – even, say, trees represented by an array and an index n
into it, with the children of the node at n being 2n and 2n+1. Few
if any current languages, save the extended Thorn of this paper, are
capable of expressing this.

Making functions first class was not terribly difficult, and
proved to be an extraordinarily powerful and fruitful topic. Doing
the same to patterns is less revolutionary, especially in languages
that already have first-class functions. But it is still not terribly dif-
ficult, and provides a pleasing increment of expressive power that
has a variety of uses, as we shall demonstrate.

36

fun sum(rep(it).Fork[left, item, right])
= sum(t,left) + item + sum(t,right)

| sum(rep(it).Leaf[item]) = item;

Figure 4. Dynamic Representation

We have seen several reasons for wanting first-class patterns:
to break complex patterns into simpler ones, to unify procedures
that operate over similar but differently structured data, and so on.
We will need an abstraction mechanism, an application mechanism,
and a few odds and ends.

6.2 Function/Pattern Duality
There is a beautiful and elegant duality between (partial) func-

tions and patterns. A partial function accepts n inputs, and produces
one result, or fails. A pattern match accepts one subject, and pro-
duces n outputs, or fails.

This duality suggests that a function abstraction, like the follow-
ing which accepts three inputs
fn (x,y,z) = [x,<why=y, zee=z>]

should be dualized to a pattern, like the following which produces
three outputs named x, y, and z:
pat [x,y,z] = [x,<why=y, zee=z>]

Similarly, pattern test is dual to function application. Let f and
p be the function and pattern above. Then a basic use of f is to
apply it to three variables, say a, b, and c, and produce one value
r:
r = f(a,b,c);
use1(r);

and a basic use of p is to match one value r and produce three
variables, say s, t, and u:
if (r ∼ p[s,t,u])

use3(s,t,u);

Of course, the arguments to f can be any expression:
r = f(1+a(2), [b,b], m*c*c);
use1(r);

Dually, the arguments to p can be any pattern. Consider:
if (r ∼ p[1, [b, $b], 2])

use(b);

This first attempts to match the value of r against the body of
the pattern p. If this fails, matching fails. Otherwise, it will produce
three results, as given by the three formals of p’s definition, x, y,
z. (These variables are not bound; indeed, they don’t appear in
this code at all.) It then tries to match the first result, formally x,
against the first subpattern 1. If this fails, matching fails. Then the
second result, formally y, is matched against the second subpattern
[b, $b], which succeeds if it is a two-element list with equal
elements. If this fails, matching fails. If it succeeds, it binds b.
Finally, the third result is matched against the constant 2. If this
succeeds, the whole match succeeds, and use(b) executes with b
suitably bound.

6.3 On Beyond Duality
Besides duality, we have two other demands on pattern abstrac-

tions. First, we want to have pattern abstractions usable to construct
values as well as decompose them, as in Section 3.2. Second, we
want to be able to provide input parameters to patterns, allowing
patterns like “match two strings concatenated with separator sep”.

6.3.1 Pattern Punning in Thorn
Class names, suitably applied, can be used both as constructors

to make values, and patterns to take values apart. For example, the
code in Figure 5 squares every element of a binary tree. Note that
the Leaf and Fork on the left-hand side of sq are used as patterns,
and those on the right-hand side are used as constructors.

class Leaf(item){}
class Fork(left, item, right){}
fun sq(Leaf(i)) = Leaf(i*i);
| sq(Fork(l,i,r) = Fork(sq(l), i*i, sq(r));

Figure 5. Pattern punning with classes

fun demo(Leaf) {
t = Leaf(11);
assert(t ∼ Leaf[x] && x == 11);

}
Leaf1 = pat [x] = [x]

new (x) = [x];
Leaf2 = pat [x] = <leaf=x>

new (x) = <leaf=x>;
demo(Leaf1); demo(Leaf2);

Figure 6. Invertable Leaf

It is not absolutely necessary to do the same thing with first-
class patterns. We could perfectly well keep track of some closures
which would serve as constructors that go with patterns.

Indeed, not all patterns have associated constructors. The “fa-
miliar patterns” of Section 5.1 tend to have them; the others tend not
to. Inverting Leaf(x) or [x] is easy; inverting Leaf(x) || [x]
is not.

Still, in the spirit of making patterns as powerful as possible, we
allow an optional constructor abstraction to be attached to a pattern
abstraction. Constructors other than the default ones in Thorn are
introduced (but not invoked) with the new keyword, so we use the
same for the constructor attached to a pattern abstraction.

In Figure 6, we have a function demo that accepts a punned pat-
tern abstraction Leaf, which, like the Leaf class of Figure 5, can
either be used as a unary constructor, or as a unary pattern. demo
first constructs a Leaf node t containing 11, and then extracts the
value in t and checks that it was 11. demo is then called with two
representations of leaf nodes: Leaf1 represents them as singleton
lists, and Leaf2 represents them as records with a leaf field. Both
of these pass the assert in demo.

In many cases, the pat and new clauses will have the same body.
(We considered having syntax for the case where they did, but have
not yet arranged for it.) A simple yet sensible case where the two
do not have the same body appears in Section 6.3.3.

Since these values are patterns plus functions, and used for
pattern punning, we call them puns.

6.3.2 Inputs to Patterns
Some advanced pattern constructs require input values, which

govern or modify the pattern matching, as well as the more usual
output values which are bound upon success. Consider a pattern
that succeeds if the subject is a map with a value at key k, and binds
that value. The key k is not a typical pattern variable in the sense
of Section 6.2. While there is a sensible interpretation for matching
on k, the typical use of this pattern will be with some value for k.

Since we have two kinds of arguments to patterns, we need some
way to distinguish them. Marking them as in and out in the pat
construct wouldn’t work in an untyped language. There’s no way to
ensure that the same positional parameter is always input or always
output. Since output parameters introduce new variable bindings,
this approach makes it impossible to tell what variables are bound.
We deemed this unacceptable.

So, for Thorn, we make the inputs and outputs explicit in the use
of the pattern abstraction, separated by the symbol ∼>. In Thorn,
input values appear to the left of the ∼>, and output values appear
to the right. Figure 7 shows how to build an immutable map as an
association list, viz., a list of pairs whose first elements are keys and

37

fun memq(x, [[$x,y], tl...]) = +y;
| memq(x, [[_,_], tl...]) = memq(x,tl);
| memq(x, []) = null;

mem = pat[x ∼> y] = memq(x,it) ∼ +y;

a = [[1,11], [2,[22]]];
if (a ∼ mem[1 ∼> z])

println("1 maps to $z ");
if (a ∼ mem[2 ∼> [_]])

println("2 maps to a singleton");

Figure 7. Association-list Map and Accessor Pattern

between = pat[[low,high] ∼> x] =
[_..., (low<=it && it<=high)? && x, _...];

Figure 8. Input pattern in abstraction

second elements are values. The mem pattern allows matching over
the list; the 1 test retrieves an element if it’s there (which it is), and
the 2 test simply tests the value in the map against another pattern.

Note that, in a pattern abstraction, the input arguments are
patterns and the output arguments are identifiers. The abstraction
in Figure 8 takes a range, written for the sake of illustration2 as a
two-element list [low,high], and searches the subject for a value
within that range.

Conversely, in a pattern application, the input arguments are
expressions and the output arguments are patterns. When between
is used, the input argument must evaluate to a two-element list.
The output, however, can be a pattern, which is matched against
the value found by between. Here we bind it to a fresh variable in
one line, and compare it to a constant in another:
if ([1,2,3,4,5] ∼ between[[2,3] ∼> x])

assert(x==2);
if ([1,2,3,4,5] ∼ between[[2,3] ∼> 2])

println("Yes!");

The input arguments of a pattern application may be any value.
The core idea of first-class patterns is that pattern abstractions are
values. So, input arguments allow one to write pattern abstractions
that take other patterns as formals. E.g., a pattern abstraction that
matches a list of three elements, each of which matches the same
input pattern P, is:
three = pat[P ∼>] = [P[],P[],P[]];

(Output arguments are much more common than inputs, so pat[x]=P
abbreviates pat[∼>x]=P rather than pat[x∼>]=P.)

A list of three ones can be matched thus.
isOne = pat[] = 1;
assert([1,1,1] ∼ three[isOne ∼>]);

(isOne is to the pattern 1 as the function λ().1 is to the value 1: a
nullary abstraction of a constant.)

The concept of input arguments to patterns even appears in
the standard list of Thorn patterns. In the regexp pattern RE/P,
Section 5.2.7, the string RE is treated as an input, while the pattern
P is treated as an output.

6.3.3 Example: Joining Strings
The pattern sep[s∼>x,y], appearing in Figure 9, matches a

string whose body consists of the strings x and y with s between
them.3 It has one input and two outputs. The new side of the pattern

2 Or, perhaps, a misguided attempt to imitate closed intervals [a, b] from
analysis. In any case, there is no reason why low and high could not be
presented as two separate arguments pat[low,high∼>x]=..., save
that does not illustrate input patterns.
3 For the sake of illustration, we ignore the cases in which the separator
appears in x, or when regexp-active characters appear in s.

sep = pat[s ∼> x,y] = "(.*)$s(.*)"/[x,y]
new(s, x,y) = x+s+y;

if ("10/6" ∼ sep["/" ∼> shillings, pence])
assert(shillings=="10" && pence=="6");

ks = sep("/", "Kirk", "Spock");
assert(ks ∼ sep["/" ∼> "Kirk", "Spock"]);
assert(ks == "Kirk/Spock")
// Regexp separators violate the abstraction:
assert(ks ∼ sep["../.." ∼> "Ki", "ock"]);

Figure 9. Joining and Separating Strings

is ternary, taking the separator and the two strings to be joined. In
this case, as in most cases where construction or extraction does
much computation, the pat and new clauses are different, and have
different (and non-dual) arguments.

7. Experiences
We can observe the use of patterns in a nontrivial corpus of Thorn
code. This comprises most of the Thorn code (excluding only test
cases) written at IBM, by programmers ranging from the imple-
menter of the Thorn interpreter to summer interns with little rele-
vant background. Most of this was written before first-class patterns
were introduced, so they are underrepresented.

This corpus cannot be considered a scientific sample in any
way. Some of the code was written to be exemplary and appear
in tutorials, and may be regarded either as “the ideal for Thorn
coding” or “cheating”. Some of the rest was written as one-shot
scripts, and may be regarded as either “degenerate” or “realistic”.
All results in this section should be taken with a colossal saltshaker.

The corpus is 24K lines of code. It contains 13K uses of patterns
total – but 7K of those are variables, such as x in fun f(x)=x*x
or y in y=1. The remaining 6K are nontrivial patterns, which thus
appear every four lines of code on average. They are summarized
in Table 4.

7.1 Pattern Usage by Kind

Kind Fancy Count Fraction
Record <· · ·> 2,455 41.2%
List [· · ·] 1,068 17.9%
Wildcard _ 641 10.8%
Literal 329 5.5%
Positivity test +P Yes 278 4.7%
Interpolate $(E) 253 4.2%
Type test P:T 210 3.5%
Internal pattern match E∼P Yes 207 3.5%
Boolean && Yes 179 3.0%
Regular expression RE/P Yes 157 2.6%
Type constructor T(· · ·) 103 1.7%
Expression test (E)? Yes 64 1.1%
Boolean || Yes 11 0.2%
Boolean ! Yes 5 0.1%

Table 4. Nontrivial pattern usage by type (see also Table 3)

The Fraction is the fraction of the 6K nontrivial patterns.
Dissecting records (42%) and lists (18%) were by far the most

common pattern operations, perhaps because most Thorn data
comes in records and lists.

The fancy patterns of Section 5.2 collectively make up about
15% of nontrivial pattern use. This is a substantial fraction, and
shows that some, at least, of the fancy patterns are fundamental
programming tools in Thorn. Non-null testing embodies a core
Thorn idiom (Section 5.2.4), and is the most frequent of these.
Internal pattern matching is a pattern-matching duct tape, useful for
nearly anything. And-patterns are used like ML’s as, giving a name

38

to a pattern and dissecting it further, and are a fundamental tool.
The other fancy patterns are less useful. Though even the rarest,
negation, allowed convenient expression of things that would have
been awkward to say in other ways.

7.2 Pattern Usage By Context
Another way to look at pattern usage is to see which kinds of

pattern-bearing statements used nontrivial patterns. For example,
we count for(x <- L) as a trivial use of patterns; it’s an ordinary
for loop iterating over a list. But for(<a,b> <- L) is a nontriv-
ial use; it iterates over a list of records, and extracts two fields from
those records. We may also measure the complexity of these pat-
terns. We choose to count the number of nontrivial syntax nodes
appearing in the pattern. So, [a] would have a complexity of 1; the
list pattern is nontrivial, the variable is trivial. [[[a]]] would have
a complexity of 3. The results are in Table 5. For this table, the for
in a list comprehension %[x | for x <- 1..10] is counted in
with for loops, and similarly for other comprehension pieces.

Context Uses Nontrivial Complexity
Binding statement 2,758 3% 2.0
Function definition 2,120 19% 1.6
If statement 726 37% 1.7
For statement 499 43% 1.3
Match statement 434 87% 1.7
While and until loops 430 0.9% 4.3
&& expression 46 51% 1.4
Anonymous function 28 18% 1.3

Table 5. Pattern usage by context (see also Table 2)

Binding statements use patterns the most, but usually use them
in uninteresting ways. This is a result of defensive programming.
x = E cannot fail. <a,b> = E can fail, if E turns out not to eval-
uate to a suitable record. An experienced programmer may choose
to write it as if(E∼<a,b>) as a matter of routine caution.

And, indeed, a third of if statements have a nontrivial pattern,
and most of the &&’s appear in ifs. Even though all the standard
uses of if are used in the normal way in Thorn, a substantial
fraction of them were used with patterns in nontrivial and often
idiomatic ways.

Function declarations (including methods and communications)
and anonymous functions sometimes used patterns. An unscientific
glance through the corpus suggests that in Thorn code written to be
robust or exemplary, function declarations often used patterns, for
documentation and for pseudo-typing. More casually written code,
one-off scripts and such, tended to omit them.

for loops frequently involve some nontrivial dissection of the
value being looped over. For example, iterating over a map with
key/value pairs often had the form for(<k,v> <- m)· · ·.

match statements, catch-blocks, and receive statements are
grouped under the “Match statement” line. They generally had mul-
tiple clauses, most of which were nontrivial. For example, a catch
might test for an I/O exception, then a null exception, and then use a
trivial match to catch any other sort of exception. Communication,
similarly, tended to inspect and categorize incoming messages, with
many nontrivial clauses.

while loops rarely take advantage of the binding behavior of
Section 4. This may be due in part to other Thorn constructs, such
as the find statement, which are better suited for searching than
a vanilla while loop. Indeed, nearly all the loops had the form
while(flag) or, in reactive code, while(true).

7.3 Conclusions on Pattern Usage
Many of the fancy pattern constructs find substantial use in

Thorn code. Nearly every pattern construct gets noticeable usage,

fun norm([x,y]) = (x*x+y*y).sqrt;
fun plus([x1,y1], [x2,y2]) = [x1+x2, y1+y2];

Figure 10. Concrete Representation of Points

and nearly every construct that supports patterns often uses them in
nontrivial ways.

The “patterns as untyped types” concept is at least partially
substantiated by this corpus – unsurprisingly, as it was at least
partially inspired by the experience of coding this corpus. Some
fraction of the pattern checking is done by function declarations,
where types would be declared. More of it is done in if statements,
as a matter of defensive programming.

The zoo of pattern constructs consists largely of useful work-
horses. Boolean || and ! patterns, and the interaction of patterns
with while, and perhaps test patterns, are probably most useful as
a matter of intellectual consistency, rather than important program-
ming devices. Everything else gets used enthusiastically.

7.4 Implementation
Thorn is currently implemented as a proof-of-concept inter-

preter, designed for correctness and ease of modification rather than
efficiency. Performance was a secondary consideration. A casual
investigation suggests that the performance of pattern matching is
comparable to that of the rest of the interpreter.

In the Thorn interpreter, implementing first-class patterns was
a routine matter, a morning’s worth of coding. First-class patterns
are similar enough to first-class functions so that a solid implemen-
tation of one leads naturally to a solid implementation of the other.
The remaining pattern constructs can be implemented straightfor-
wardly.

The problem of optimizing pattern matches in a dynamically
typed language, especially with a rich set of pattern primitives and
first-class patterns, remains to be investigated. As with optimization
of closures, it is likely to be a challenging research topic.

7.5 Use Case for First-Class Patterns: Refactoring
Scripts frequently start off using concrete data structures, lists

and maps and such. For example, let’s represent points in the plane
as two-element lists [x,y], as in Figure 10. We list a few of the
many functions that might be involved in plane geometry.

At some point in the program’s evolution, one may wish to con-
vert the concrete points to a more abstract representation, using a
class Point. The traditional approach to this refactoring is approx-
imately:
1. Avoid doing it for as long as possible. Consider it a victory if

the program is abandoned before it needs to be refactored.
2. Make sure the program passes a comprehensive test suite.
3. Introduce principled new classes for the needed abstractions,

but don’t use them. The test suite should still pass.
4. Change all uses of two-element lists, or variables that refer to

them, so that they use the new classes.
5. Run the test suite on the updated program. Notice that it’s all

terribly broken. There is no realistic chance of making hundreds
of changes to a script in a single huge lump and having it work.

6. Spend a long and miserable eternity trying to fix the program.
Making this change is an inherently difficult chore. You must

look at every list, and everything that could be a list, and see if it is
a point or not. If you are lucky, you will generally be able to tell,
and there won’t be too many things that are sometimes points and
sometimes not in ways that matter.

The chore is made far worse by the difficulty of testing. Once
the refactoring has been started, the code cannot possibly work.
Some places refer to points as [x,y] and others as Point(x,y).
The program won’t run.

39

Even when it is possible to run the test suite, errors will be very
hard to localize. When one changes a program and introduces an
error, the first place to look is at the changed code. When the whole
program has been modified, there’s no good starting place.

This is one of the most painful code changes to make. Avoiding
it – or, for the painfully idealistic, designing one’s program from
the beginning with the right abstractions for its unknown future
evolution – is often the best strategy.

7.5.1 Abstraction with First-Class Patterns
With pattern abstraction, you can do much better. You won’t

save any of the obligatory work, but you can do it gradually and
test it as you go, saving some of the optional pain.

First, define Point, not as a class, but as a pattern abstraction
with constructor. This should match the original, concrete repre-
sentation. In our example, this is:
Point = pat [x,y] = [x,y]

new (x,y) = [x,y];

Now, change all the uses of the concrete representation into uses
of the abstraction. This is the same intellectual labor that would be
done without first-class patterns.

Note, crucially, that this change can proceed gradually. The ab-
straction simply provides another name for the concrete represen-
tation. Mixing the two is no more problematic than mixing the ex-
pressions x*x and square(x). Partially changed code will look
like Figure 11, where abstract and concrete representations coexist.

Point = pat [x,y] = [x,y]
new (x,y) = [x,y];

// The following code has been abstracted
fun norm(Point[x,y]) = (x*x+y*y).sqrt;
// The following has not been
fun plus([x1,y1], [x2,y2]) = [x1+x2, y1+y2];

Figure 11. Partially abstracted points

In particular, the test suite can be run as often as desired, and,
since no data manipulations have changed, should run without
error every time. In practice errors always happen, but they will
be normal small coding errors.

Finally, the pun may be replaced by a class Point. Semantic
errors show up at this point, but at least they are not accompanied
by droves of other errors.

8. Conclusions
This paper makes two primary contributions. The first contribution
is a new way of thinking about patterns. We argue that pattern-
matching (in the sense of ML) makes scripting in dynamically
typed languages (unlike ML) more robust. The second contribu-
tion is a rich pattern system, consisting of a diverse set of inter-
acting features. Each individual feature, taken by itself, represents
only a minor contribution, but when they are all taken together, a
powerful and novel way of scripting emerges. We implemented our
pattern system in Thorn, and we have written thousands of lines
of code in Thorn that exercise patterns, sometimes in surprising or
entertaining ways. Our pattern system (contribution 2) supports our
philosophy of Robust Scripting via Patterns (contribution 1).

Thanks
Thanks to John Field and Dave Grove for many helpful discussions
on the ideas in this paper.

References
[1] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor

Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. Thorn: robust,
concurrent, extensible scripting on the JVM. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
pages 117–136, October 2009.

[2] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An
experimental applicative language, 1980.

[3] Burak Emir, Martin Odersky, and John Williams. Matching
objects with patterns. In European Conference on Object-Oriented
Programming (ECOOP), pages 273–298, 2007.

[4] Michael D. Ernst, Craig S. Kaplan, and Craig Chambers. Predicate
dispatching: A unified theory of dispatch. In European Conference
for Object-Oriented Programming (ECOOP), pages 186–211, 1998.

[5] David Flanagan and Yukihiro Matsumoto. The Ruby Programming
Language. O’Reilly, 2008.

[6] Felix Geller, Robert Hirschfeld, and Gilad Bracha. Pattern matching
for an object-oriented dynamically typed programming language.
Technical Report Hasso Plattner Institute Technical Report 36,
University of Potsdam, 2010.

[7] Ralph E. Griswold, J. F. Poage, and Ivan P. Polonsky. The SNOBOL 4
Programming Language. Prentice-Hall, Englewood Cliffs, NJ, 1968.

[8] Martin Hirzel, Nathaniel Nystrom, Bard Bloom, and Jan Vitek.
Matchete: Paths through the pattern matching jungle. In Practical
Aspects of Declarative Languages (PADL), pages 150–166, 2008.

[9] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel,
Jon Fairbairn, Joseph H. Fasel, Marı́a M. Guzmán, Kevin Hammond,
John Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S.
Nikhil, Will Partain, and John Peterson. Report on the programming
language Haskell, a non-strict, purely functional language. SIGPLAN
Notices, 27(5):R1–R164, 1992.

[10] Roberto Ierusalimschy. Programming in Lua. Lua.org, second
edition, 2006.

[11] Barry Jay and Delia Kesner. First-class patterns. Journal of
Functional Programming (JFP), 19(02):191–225, 2009.

[12] JetBrains. Kotlin language project page. http://confluence.
jetbrains.net/display/Kotlin/.

[13] P. J. Landin. The next 700 programming languages. Communications
of the ACM (CACM), 9(3):157–166, March 1966.

[14] Jed Liu and Andrew C. Myers. JMatch: Iterable abstract pattern
matching for Java. In Practical Aspects of Declarative Languages
(PADL), pages 273–298, 2003.

[15] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The
Definition of Standard ML - Revised. The MIT Press, rev sub edition,
May 1997.

[16] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek.
A pattern matching compiler for multiple target languages. In
International Conference on Compiler Construction (CC), 2003.

[17] Chris Okasaki. Purely Functional Data Structures. Cambridge
University Press, June 1999.

[18] Python programming language – official website. http://
python.org/.

[19] Don Syme, Gergory Neverov, and James Margetson. Extensible pat-
tern matching via a lightweight language extension. In International
Conference on Functional Programming (ICFP), pages 29–40, 2007.

[20] Laurence Tratt. Domain specific language implementation via
compile-time meta-programming. Transactions on Programming
Languages and Systems (TOPLAS), 30(6), 2008.

[21] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’87,
pages 307–313, New York, NY, USA, 1987. ACM.

[22] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.
O’Reilly, third edition, 2000.

[23] Alessandro Warth and Ian Piumarta. OMeta: An object-oriented
language for pattern matching. In Dynamic Languages Symposium
(DLS), pages 11–19, 2007.

[24] Andrew K. Wright. Pattern matching for Scheme, 1996. The match
special form is part of PLT Scheme’s MzLib library.

40

