
Object-oriented Programming
with Gradual Abstraction

Kurt Nørmark
Department of Computer Science,

Aalborg University, Denmark
normark@cs.aau.dk

Lone Leth Thomsen
Department of Computer Science,

Aalborg University, Denmark
lone@cs.aau.dk

Bent Thomsen
Department of Computer Science,

Aalborg University, Denmark
bt@cs.aau.dk

Abstract
We describe an experimental object-oriented programming lan-
guage, ASL2, that supports program development by means of a
series of abstraction steps. The language allows immediate object
construction, and it is possible to use the constructed objects for
concrete problem solving tasks. Classes and class hierarchies can
be derived from the objects - via gradual abstraction steps. We in-
troduce two levels of object classification, called weak and strong
object classification. Strong object classification relies on conven-
tional classes, whereas weak object classification is looser, and less
restrictive. As a central mechanism, weakly classified objects are
allowed to borrow methods from each other. ASL2 supports class
generalization, as a counterpart to class specialization and inheri-
tance in mainstream object-oriented programming languages. The
final abstraction step discussed in this paper is a syntactical abstrac-
tion step that derives a source file with a syntactical class form.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Classes and objects

General Terms Object-oriented programming, objects before
classes, weak and strong classification of objects, abstraction steps.

Keywords ASL2, Scheme.

1. Introduction
This paper describes a continuation of our work on computational
abstraction steps [22] and the experimental ASL programming lan-
guage. The main idea in our work is to allow the programmer to
start an object-oriented programming process by constructing con-
crete objects, without having to deal with classes and inheritance.
The objects can be used to solve a particular problem. After having
solved the problem, which motivated the programming process in
the first place, it is possible to derive concrete and more abstract
classes on top of the objects.

After the initial object creation and problem solving phase it is
possible to derive classes from the objects, and to generalize these
classes to an appropriate level of abstraction. The introduction of
classes at a late point in time is seen as a consolidation of the
program that supports additional development on a more general

[Copyright notice will appear here once ’preprint’ option is removed.]

ground. The development approach proposed in this paper turns
the class-based object-oriented programming process upside down.
Instead of starting the programming process with general classes,
which are specialized to classes that can be used to create objects,
which eventually can be used to solve the problem that motivated
all of this, ASL2 reverses the process.

Object-oriented programming without classes is not a new idea.
Already in the first OOPSLA proceedings in 1986, Henry Lieber-
man’s seminal paper Using Prototypical Objects to Implement
Shared Behavior in Object Oriented Systems [23] outlined the idea
of object-oriented programming without classes. In Lieberman’s
work, a prototype is an object that represents default behavior. An
object can access default behavior by delegating messages to the
prototype. The use of prototypical objects is seen as an alterna-
tive to representing shared objects in classes. In the mid-eighties a
number of existing programming languages (Lisp-based languages,
Smalltalk derivatives, and SELF) relied on the ideas discussed by
Lieberman. More recently ECMAScript [2], JavaScript[4] and Ac-
tionScript [1] have adopted the prototype based object-oriented
approach. In Section 7.4 we will review this work, together with
elements from contemporary programming languages that support
direct creation of objects.

The starting point of our current research is rooted in two dif-
ferent, but slightly overlapping observations:

• A pragmatic observation: It is interesting to initiate many
practical problem solving tasks with the construction of con-
crete objects that gradually evolve to more abstract objects rep-
resenting concepts and shared properties.

• A pedagogical observation: It is difficult and confusing to
grasp the idea of object-oriented programming; If classes are
needed before objects can be created; If the more general
classes must be defined before specialized classes; And if a
source program containing the definition of a class hierarchy is
needed before any concrete object can be utilized.

In the following sections we introduce the ASL2 approach as a
truly object-first approach to object-oriented programming. In each
section we present realistic programming scenarios that illustrate
sample problem solving based on a number of simple objects.

The programming language used in the rest of this paper is
called ASL2, to distinguish it from the version of ASL used in
and earlier paper [22]. ASL2 uses Scheme syntax, and it relies
on a Scheme-based implementation that allows ASL2 to plug into
the existing pool of native Scheme functions for various mundane
problem solving steps.

1 2012/6/18



2. Non-classified objects
As the start of an object-oriented programming endeavor it is natu-
ral to make some concrete objects, which take part in a real problem
solving process. We do not aim at creating a number of toy objects
which are discarded at an early point in time. Rather, the objects
that are created at the very beginning encapsulate state and behav-
ior, which gradually will be brought into the final abstractions later
in the development process. This way of working justifies our use
of the word ”abstraction”, which signifies a change from concrete
and tangible phenomena to concepts at a higher level.

2.1 Concepts
A non-classified object is an encapsulation of data (fields) and
functions (methods). An object is created in terms of the data
fields, which carry the state of the objects. There is no attempt
to relate the object to other existing objects, hence the term ”non-
classified” applies. The object can be supplied with methods that
utilize the object in a context, which initially may be narrowly
oriented towards solving a particular problem. Methods added to
non-classified objects may be seen as the first, modest abstraction
step. It is also possible to add additional state to an object after the
initial creation step.

Every object relies on common behavior from a particular pre-
existing object called Object. This is true for non-classified objects
as well as the two kinds of classified objects that will be described
later. If an object receives a message, which is not understood, it
propagates the message to Object. Typical methods in Object in-
clude ASL2 related meta functionality, such as AddMember (which
adds a member to its receiver), DeleteMember (which deletes a
member from the receiver), and Clone (which copies the receiver).
In ASL2 it is possible, and often attractive, to add members to
Object with the purpose of adapting ASL2 to particular needs.
We will see examples of that in Section 2.2.

From the outside, it is only possible to interact with an object
by means of message passing. An object with a field f supports, in
the starting point, two methods get-f and set-f, which access f.
These are automatically generated getter and setter methods. From
inside an object, there is lexical access to the field f.

Information hiding is of primary importance in the object-
oriented programming paradigm. With use of information hiding
it is possible to hide data representation details from other objects,
thereby facilitating future local changes of the object representa-
tion. In ASL2 we handle information hiding by disabling the au-
tomatically generated getter and/or setter methods. The examples
shown in Section 2.2 include a concrete example.

With the lack of traditional, declarative source program descrip-
tions the overall composition of the ASL2 program is done by mu-
tation of the existing objects. Some of these mutations are done by
passing ASL2 related messages to the objects. In the current im-
plementation of ASL2, top-level message passing takes place in an
interactive read-eval-print loop (a command interpreter).

2.2 Examples
The examples of non-classified objects are taken from a develop-
ment scenario that works with points in a two-dimensional plane.
We first create a point object located at (5, 6):

(define p1 (make-object ’x 5 ’y 6))

The expression returned by make-object returns a reference to
a new object. The parameters passed to make-object are name-
value pairs (represented as a Lisp property list), where names must
be Scheme symbols, and values can be of arbitrary types. Objects
are not named, but in the following discussion we often use the
name of a variable, which refers to an object, as an informal name
of the object.

Following the construction of an object, such as p1, it is possible
to add more data properties and function properties by sending
messages to the object. Here we add a function to p1, which serves
as a method in the object.

(send p1 ’AddMember ’DistanceTo
(function (otherPoint)

(sqrt (+ (square (- (send this ’get-x)
(send otherPoint ’get-x)))

(square (- (send this ’get-y)
(send otherPoint ’get-y)))))))

This adds a new method member DistanceTo to p1. The AddMember
method is located in Object, as described in Section 2.1. When
used as a method in an object, the variable this refers to the re-
ceiver of the DistanceTo method. The expressions (send this
’get-x) and (send this ’get-y) could simply be substituted
by x and y respectively, because x and y are fields in the receiver. In
this example, however, we use getter methods uniformly because x
and y of otherPoint are not lexically available.

With the introduction of another object, the point p2 defined by

(define p2 (make-object ’x -3 ’y 2))

it is now possible to find the distance between p1 and p2:

(send p1 ’DistanceTo p2)
8.94427190999916

It is, however, not possible to send the DistanceTo message to p2:

(send p2 ’DistanceTo p1)
No appropriate method with selector DistanceTo

The problem is that the DistanceTo method is only added to
p1. Both p1 and p2 are non-classified objects, and therefore the
method DistanceTo in p1 is not available in p2. We deal with
this annoying issue when we introduce weakly classified objects in
Section 3. Until then, we may explicitly transfer the DistanceTo
method from p1 to p2:

(send p2 ’Borrow ’DistanceTo p1)
(send p2 ’DistanceTo p1)
8.94427190999916

The Borrow method transfers a member from one object to an-
other. As such, the Borrow method is an example of a domain-
independent method, which is potentially useful in many different
contexts. Therefore we place Borrow in Object:

(send Object ’AddMember ’Borrow
(function (member-name from-obj)

(send this ’AddMember member-name
(send from-obj ’GetField member-name))))

It simply gets the member from from-obj and adds it to the
receiver of the Borrow message.

We add additional methods to p1, which allows “polar access”
to the point:

(send p1 ’AddMember ’get-angle
(function () (atan y x)))

(send p1 ’AddMember ’get-radius
(function () (sqrt (+ (* x x) (* y y)))))

We may now decide to disable ”rectangular access” to p1, hereby
creating the illusion that p1 is represented in terms of polar coor-
dinates. With this decision the rectangular coordinates should be
private in p1:

(send p1 ’PrivateField ’x)
(send p1 ’PrivateField ’y)

Like the Borrow method, PrivateField is a method that easily
can be defined in Object:

(send Object ’AddMember ’PrivateField
(function (field-name)

2 2012/6/18



(send this ’AddMember (getter-name field-name)
(function () (error "ERROR: ...")))

(send this ’AddMember (setter-name field-name)
(function (value) (error "ERROR ...")))))

As it appears, we have hidden the x and y fields of p1. This is
done by invalidation of the get-x and get-y methods. We can
now interact with p1 in the following ways:

(send p1 ’get-x)
ERROR: ...
(send p1 ’get-y)
ERROR: ...
(send p1 ’get-angle)
0.8760580505981934

(send p1 ’get-radius)
7.810249675906654

The point p2 is not affected at all by these interactions with p1.
The example from this section is continued in Section 6.2 in the

scope of our discussion of class generalization.

3. Weakly classified objects
When we create an object we are typically aware of the role played
by this particular object. The objects introduced in Section 2.2 were
all envisioned as points, and therefore supposed to have shared
access to “point-related properties”. It is attractive to represent the
object role explicitly when we make a new object, because objects
of the same role have a lot in common.

3.1 Concepts
A weakly classified object is an object that carries an object role. In
the context of ASL2, an object role is just a name, represented by a
text string.1 When a new object is created it is possible to associate
the object with a role. The object role may be seen as a tiny piece
of documentation, which reflects the thoughts and intentions of the
programmer when the object is created. The role name can also be
understood as a weak form of object classification, in the sense that
all objects with the same role attached share a number of properties.

The most important benefit of working with weakly classified
objects is the possibility of method sharing among objects of the
same role. If a weakly classified object receives a message, which
it cannot handle itself, it consults the objects of the same role to see
if one of these related objects knows how to handle the message.
If a “neighbor object” can handle the message, the method of the
neighbor is used.

The method lookup process, as implemented by the ASL2 send
primitive, goes through the following steps when an object o re-
ceives a message m:

1. If o contains a function named m, this function becomes the
result of the method lookup.

2. If o is strongly classified (an instance of a class), the method is
looked up in the class of o (and in its superclasses if necessary).
This will be described in Section 4.

3. If m is a getter or setter name (of the form get-f or set-f) for
an existing field f, getting or setting will be carried out.

4. If m is the name of a function in one of the objects, with the same
role as o, this function is returned as the result of the method
lookup.

5. As the last resort, a method lookup error occurs.

1 In future versions of ASL the object role may be represented as an object
itself, in order to organize role-related management via message passing to
the role object.

Method borrowing, as used in step 4, is similar to applying
the Borrow method in Section 2.2, but not identical to it. The
Borrow method from Section 2.2 copies a method from one object
to another. Step 4 in the method lookup process simply uses the
methods from an appropriate “neighbor”, which belongs to the
same role as the original message receiver.

It may be the case that two different objects, of the same role,
have different2 methods of the same name. In that case, the borrow-
ing is ambiguous, and it will not take place.

Method borrowing, in the sense discussed in this section, is an
alternative to organizing shared methods in trait objects [36], from
which a number of objects inherit. The creation and organization
of shared trait objects would, to some degree, disrupt the work
of the programmer. Recall from Section 2 that most objects will
be created as part of a development process, which in the early
phases is strictly narrowed to solving a particular problem. Using
method borrowing, it is not necessary to introduce any additional
“artificial” object for organizational purposes. It is enough to state
the role played by each object being constructed, and to play the
game that objects of the same role can share behavior by means of
method borrowing.

The mechanism of method borrowing requires that we keep
track of all objects that belong to a given role r. In the current
ASL2 implementation, we maintain an organization that maps an
object role r to the set of all objects of that particular role.

The method lookup process based on borrowing of methods is
not efficient, because it leads to linear traversal of all objects in a set
of weakly classified objects with a given role. Thus, the price for
programmer convenience may be a time consuming method lookup
process. In ASL2, this is not a serious concern, because the use
of weakly classified objects is an intermediate phase in the overall
development process. As we will see in Section 4, weakly classified
objects may eventually be converted to strongly classified objects
(instances of traditional classes). Therefore, it is not critical that
method lookup is inefficient at an early stage of development. It is
much more important that the programmer is able to solve concrete
problems, in a natural way, based on objects that conveniently share
some properties.

3.2 Examples
In this section we will give examples of weakly classified objects
with the roles of point, line-segment, and triangle. The cre-
ation and use of the objects illustrate a geometric construction pro-
cess, based purely on weakly classified objects. The end goal - the
problem that causes us to create the objects - is to facilitate con-
struction of triangles on which it is possible to calculate areas, cir-
cumferences, sides, angles, etc.

As in Section 2.2 we start with the construction of a few point
objects.

(define p (make-object "point" ’x 5 ’y 6))
(define q (make-object "point" ’x 8 ’y -3.5))
(define r (make-object "point" ’x 0 ’y -7.3))

If the first parameter passed to make-object is a text string (as
opposed to a symbol which represents a field name), the text string
represents the role of the new object. As in Section 2.2 we also add
the DistanceTo method to p (not shown here).

Next, we introduce examples of line segments, each represented
in a natural way by two end points:

(define line-p-q
(make-object "line-segment" ’p1 p ’p2 q))

2 Method or function equality is not possible to implement in the general
case. We use a simple syntactical equality criterion to decide if borrowing
from neighbors is unambiguous.

3 2012/6/18



(send t1 ’AddMember ’Angle
(function (cs)

(let ((opposing-line-seg (send this ’LineOpposing cs))
(adjacent-line-seg-1 (send this ’LineOpposing (other-corner-1 cs)))
(adjacent-line-seg-2 (send this ’LineOpposing (other-corner-2 cs))))

(let ((a (send adjacent-line-seg-1 ’Length))
(b (send adjacent-line-seg-2 ’Length))
(c (send opposing-line-seg ’Length)))

(radian-to-degree (acos (/ (+ (square a) (square b) (- (square c))) (* 2 a b))))))))

Figure 1. The Angle method, as added to triangle t1.

(define line-q-r
(make-object "line-segment" ’p1 q ’p2 r))

We equip one of the line segments with a Length method

(send line-p-q ’AddMember ’Length
(function () (send p1 ’DistanceTo p2)))

and we can ask for the length of both line segments

(send line-p-q ’Length)
(send line-q-r ’Length)

The first expression works because the Length method is ex-
plicitly defined in line-p-q. The second works because line-q-r
borrows the Length method from the other line segment object. In
addition, the DistanceTo method, which is called by the Length
method, can be used on any object with role point by borrowing
it from the point p.

With some minimal point and line segment functionality in
place, we are ready to construct our first triangle:

(define t1 (make-object "triangle" ’c1 p ’c2 q ’c3 r))

As it appears, t1 is an object of role triangle with three corner fields
(named c1, c2, and c3). The corner values are the three existing
points p, q, and r. Let us first define a Circumference method in
t1:

(send t1 ’AddMember ’Circumference
(function ()

(+ (send c1 ’DistanceTo c2)
(send c2 ’DistanceTo c3)
(send c3 ’DistanceTo c1))))

The next method creates the line segment opposing a given
corner of the triangle. A corner is represented by a symbol (one
of cs1, cs2, and cs3).

(send t1 ’AddMember ’LineOpposing
(function (cs)
(make-object "line-segment"
’p1 (send this (getter-of (other-corner-1 cs)))
’p2 (send this (getter-of (other-corner-2 cs))))))

A corner symbol is passed as a parameter to the LineOpposing
method. other-corner-1 and other-corner-2 are Scheme
functions that return names of the other corners relative to a given
corner name. getter-of generates the name of an ASL2 getter
method: The value of (getter-of ’c) is the symbol get-c.

Next we add an Angle method to t1, shown in Figure 1. Based
on a given corner symbol cs the method encapsulates a possible,
underlying geometric construction process. It constructs the three
line segments of the triangle, calculates their lengths, and uses the
law of cosines to calculate the angle of the corner. The method
returns the angle in degrees.

The method relies on a few auxiliary functions, programmed in
Scheme: radian-to-degree converts radians to degrees; square

is the usual square function; acos the R5RS arccosine function; In
the outer let the Angle method constructs the three line segments
of the triangle. In the inner let the lengths of line segments are
calculated. The body of the inner let applies the law of cosines on
the sides of the triangle.

In a similar way we may add a method to the triangle t1 which
calculates the area of the triangle (not shown here).

We observe that we now are able to work with triangles, and
we can carry out most triangle calculations (finding angles, sides,
area, circumference). The calculations are done in terms of intu-
itive, easy to follow geometric construction steps on points, line
segments, and triangles. The triangle calculations are organized as
methods located in the weakly classified objects. Using this simple
machinery we can do useful problem solving in our domain. When
we have solved our immediate problems we may decide to step up
the ladder to the next abstraction level. Hereby we wish to consol-
idate the existing software, which at this point in the development
process is scattered throughout a number of arbitrary concrete geo-
metric objects.

The geometrical construction example is continued in Section
4.2 in the scope of our discussion of strongly classified objects.

4. Strongly classified objects
A weak classification of objects is useful in the early phases of a
development process, where a few objects are used in the process
of solving a concrete problem. As explained in Section 3.1 the main
asset of weak object classification is the sharing of methods among
objects that belong to the same (weak) class. Objects in a given
weak class may, however, easily drift apart. This can happen if new
instance variables are added to selected objects in the same class.
It can also happen if a method M ends up being defined differently
(perhaps with different signatures) in two different objects, say in
o1 and o2. This causes o1 and o2 to behave differently when the
message M is passed to them. In addition, it prevents other objects
in the class from borrowing the method M, because the borrowing
(as explained in Section 3.1) is ambiguous.

If the data type DT of a weakly classified object, such as Point,
Line-segment and Triangle from Section 3.2, should survive
in a longer lasting software development process it is valuable to
ensure that objects in DT conform to each other in a stronger sense.
This is the motivation for introducing strongly classified objects in
ASL2.

4.1 Concepts
A strongly classified object is an instance of a class. A class pre-
scribes and constrains all the instances to observe similar behavior.
Instances of a strong class cannot drift apart. Instances of a class
can be created by the new operation:

(new class ’field1 val1 ... fieldn valn)

4 2012/6/18



In ASL2, a class is represented by a class object, which in
most respects is an ordinary ASL2 object. All class objects share
behavior from a particular object class Class, which in turn relies
on the shared behavior of Object (as described in Section 2.1).

In ASL2 it is possible to create a class in the conventional way,
by specializing an existing superclass:

(define class (make-class superclass field1 value1 ...))

This is a “concretization step” because it builds a specialized class
on a more general class. As such, this mode of class creation is not
of particular interest to the topic of this paper.

The derivation of a class from a number of objects is an impor-
tant link in the gradual abstraction chain. A class object can be de-
rived from one or more “ordinary objects”, either non-classified ob-
jects or weakly classified objects. The derivation operation is called
kappa3, and it is used in the following way on a number of objects
o1, o2, ... on:

(define class (kappa o1 o2 ... on))

The first object o1 determines the instance variables of the
class, and the default values of these instance variables. The sub-
sequent objects o2, ... on are all required to possess at least the
instance variables of o1. The methods of the class is the union of
the methods in o1, o2, ..., on, as identified by method names.

The kappa operation transforms a set of objects, such as o1, o2,
..., on, to an instance of a new class (a class object). The methods
are removed from the individual objects to the class object. The
data fields of the individual objects o1, o2, ..., on are not affected
by the kappa operation.

If only a single role r (as used for representation of weakly
classified objects) is represented among the objects o1, o2, ... on
in activation of kappa shown above, the role r is mapped to the
new class. In addition, the involved objects are detached from their
role, and therefore they are no longer weakly classified objects.

The role to class mapping affects the behavior of the make-
-object primitive in the following way:

If the expression (make-object r ’f1 v1 ... fm vm)
is used to create a weakly classified object of role r, and
if r is mapped to a class c, then an appropriate instance of
class c is created by make-object. Thus, (make-object
r ’f1 v1 ... fm vm) will be equivalent to (new c ’f1
v1 ... fm vm). With this interpretation, make-object
is similar to a factory method [16] for production of c
instances.

At any time it is possible to manually transform an object o to
a strongly classified object (and an instance of a class c) provided
that o conforms to c. The operation as-instance-of-class is
used for that purpose. It is also possible to detach an instance from
its class.

Once a class c has been defined, by derivation as explained
above, instances of the class are forced to behave as prescribed by
the class. This constrains an instance o of class c in the following
ways:

1. It is not possible to add new members (data as well as methods)
to o. As an exception, it is possible to add a method m to o, if m
(identified by name and parameters) exists in c.

2. It is possible to delete a field f from o. The field f will exist in
c, and the class field will act as the future default value of f in
o.

3 The name “kappa” is a reminiscence of the use of “lambda”. Kappa is used
in expressions that generate classes, in the same way as lambda is used in
expressions that create functions.

3. It is possible to add and delete methods in c. Added methods
in c immediately apply to objects such as o. Methods deleted
from c can no longer be used on o.

4. It is possible to add a new field f with (default) value v to c.
The c instance o is updated “lazily”. If f eventually is accessed
from o, the value v from c is returned. If f eventually is set in o,
the field f is added to o, and assigned to the appropriate value.
The “lazy updating of objects” is convenient, because there is
not necessarily access to all instances of a class in ASL2.

The possibility of specializing an existing method on an par-
ticular object (as described in item 1) can be seen as a shortcut to
making a singleton subclass of the class c. This ASL2 feature is
similar to methods in CLOS specialized on singles objects [31].

The possibility of deleting a field f from an object o (as de-
scribed in item 2) may seem to contradict the purpose of introduc-
ing classes altogether. But ”deleting f from o” is really the same
as stating ”use the default value of f from the class of o”. As such,
deleting a field from an instance of a class c is a way of sharing a
field between several instances of c (a reminiscence of class vari-
ables or static variables in c).

4.2 Examples
Our examples of strongly classified objects build on top of the
example from Section 3.2 where we created a number of objects
weakly classified as points, line segments, or triangles. We ended
up with a number of triangle methods for computation of sides,
angles, area, and circumference.

Recall that the main agenda of our work with the weakly classi-
fied objects was to carry out geometric construction and calculation
processes on concrete objects, with the purpose of solving particu-
lar problems. In the context of this section we are interested in con-
solidating the geometric concepts in classes that define and con-
strain future work with points, line segments and triangles. Thus,
we are transitioning from a world with numerous weakly classified
objects that individually carry their own methods to a situation with
relatively few classes which contain almost all the longer lasting
program details.

Based on the points p, q, and r from Section 3.2 we derive class
Point from these three objects:

(define Point (kappa p q r))

This defines a class object Point with default x and y coor-
dinates taken from p, (x = 5, y = 6), and with the DistanceTo
method. All three existing points are transformed to be instances
of class Point. In addition, the object role “point” of p, q and r
is mapped to class Point. As a consequence, future applications
of the factory method make-object will instantiate class Point.
Therefore, the object s1 created by

(define s1 (make-object "point" ’x 0 ’y -3))

and the object s2 created by

(define s2 (new Point ’x 0 ’y -3))

are structurally equal to each other, and both instances of class
Point.

It is crucial that make-object acts as factory method that
can instantiate the new class. Without the underlying role-class
mapping facility, the LineOpposing method described in Section
3.2 would create a line segment that cannot respond to the line
segment methods, such as Length, as used in the Angle method.
As a consequence, we would be forced to rewrite methods such
as LineOpposing, to make use of the class instantiation primitive,
called new, instead of the make-object facility.

We also derive the classes Line-segment and Triangle from
existing and weakly classified objects:

5 2012/6/18



(define Line-segment (kappa line-p-q line-q-r))
(define Triangle (kappa t1))

We are now in a situation where all the existing objects are con-
strained by the three new classes. All methods are shared, because
methods are looked up in the classes.

It is not possible to add new fields or new methods to individual
objects. If a field is deleted from an existing object o, it is inter-
preted as “use the default value of the field from the class of o”.
These observations are illustrated by the following interactions on
point objects:

> (send p ’AddMember ’z 0)
It is not possible to add a data member to an
instance of a class.

> (send p ’AddMember ’DistanceToOrigo (function () ...))
It is only possible to add a method to an instance
of a class if the method is compatible with a
method in the class.

> (send q ’get-x)
8

> (send ’q ’DeleteMember ’x)

> (send q ’get-x)
5

> (send Point ’get-x)
5

If a field is added to a class, it becomes a field of all existing
objects:

> (send Point ’AddMember ’z 0)

> (send p ’get-z)
0

> (send p ’set-z -7.5)

> (send p ’get-z)
-7.5

> (inspect p)
An instance of a class
Instance members:

y: 6
z: -7.5

Class members:
x: 5
get-x: Automatic getter
set-x: Automatic setter
y: 6
get-y: Automatic getter
set-y: Automatic setter
DistanceTo: Function(otherPoint)...
z: 0
get-z: Automatic getter
set-z: Automatic setter

As a matter of future development of points, line segments and
triangles in our program, it will take place by refining classes by
means of generalization. When we work with strongly classified
objects, programming in individual objects is either prevented, or
forced to be aligned with the prescribed fields and methods of the
classes.

5. Class Generalization
Given a situation with a number of classes, as generated from
objects by the kappa operation, the next natural abstraction step
is class generalization. Class generalization is the opposite of class
specialization, which is provided by use of inheritance in most
mainstream object-oriented programming languages.

5.1 Concepts
Based on a number of classes, say c1, c2, ... cn, it may be attractive
to generalize these to a common superclass sc. Generalization of
classes involves a refactoring of the classes relative to the new
superclass, where some fields and methods are lifted to a new and
higher level of abstraction.

ASL2 allows generalization of a number of classes c1, c2, ... cn
with respect to an enumerated set of members (fields or methods)
m1, m2, ... mk:

(define sc
(generalize (list c1 ... cn) (list m1 ... mk)))

For notational convenience, the list of classes c1, c2, ... cn is
called C, and the list of members m1, m2, ... mk is called M. The
abstraction step behind the generalization of the classes in C to sc
involves the following actions:

1. Create a new class that represents the superclass sc.

2. For each member m in M, move a representative of m from one
of the classes in C to the new superclass sc.

3. For each class c in C delete those of the members in c that
belong to M.

4. For each class c in C arrange that sc becomes its superclass.

As a potential complication, it may be the case that a method
m in M is not present in all the classes in C. If, for instance, m is
not present in the class c, the class c will be extended with a new
method after the generalization step.

As another complication, it may be the case that a named
method m is located in two or more of the classes in C in diverg-
ing versions. In that case it is difficult to select “the right one” to
transfer to the new superclass. Instead of blocking the generaliza-
tion step by an error message, the ASL2 processor assumes that an
arbitrary choice of m will succeed. Therefore the m method, which
is elevated from a class in C to sc, is selected randomly.

The ASL2 implementation decisions, mentioned above, have
a couple of implications. First, if the classes in C do not contain
“enough shared properties” the generalization may end up being
too broad (enriching some of the subclasses with a number of new
members). Second, if the classes in C contain different versions
of “the same method”, it is hard to predict the exact definition of
the common superclass. We have decided to implement this rather
liberal version of generalize, as opposed to a stricter version
that rejects generalization in a number of situations. The current
implementation works best - and most natural - in cases where the
classes in C contain a homogeneous subset of members that can be
factored into the new superclass.

5.2 Examples
In this section we will continue the example from Section 2.2
which involved rectangular and polar points. Let us assume that we
have derived two classes, based on either non-classified or weakly
classified objects:

(define RectangularPoint (kappa ...))
(define PolarPoint (kappa ...))

6 2012/6/18



We will assume that both classes have polar getters, polar set-
ters, rectangular getters, and rectangular setters. In addition, both
classes are assumed to have a DistanceTo and a Move method.
PolarPoint is also assumed to have a Rotate method.

We now generalize these two classes to a common superclass,
Point:

(define Point
(generalize (list RectangularPoint PolarPoint)

(list ’Move ’Rotate ’DistanceTo)))

This causes a Move method and a DistanceTo method to be
moved to Point from one of the subclasses. Because these methods
are implemented in terms of the common getters and setters, the
choice between the two is not critical. Also the Rotate method
(implemented in terms of the polar getters and setters) is moved
from PolarPoint to Point. This effectively extends the class
RectangularPoint with the Rotate method.

We continue the example from above in Section 6.2 in the scope
of generating syntactic class forms.

6. Source Class Generation
After a series of abstraction steps it is possible to end up with a
hierarchy of classes. Each of the classes is represented by an ASL2
object (a so-called class object). Directly or indirectly, the members
of the classes have been added individually, by passing messages,
such as AddMember, to the classes (or to the objects that existed in
earlier parts of the abstraction chain).

In this section we will finalize the abstraction process by gen-
erating syntactic forms for the classes in the class hierarchy. Thus,
the last link in the abstraction chain is a syntactic abstraction step.

6.1 Concepts
In conventional development of object-oriented programs classes
are written in source files, and all use of the classes is based on the
descriptions in these files. Such “use” does - in most cases - involve
concretization steps. This is exactly the opposite of the ASL2
approach explained in this paper, where each development step has
been an abstraction step. The last abstraction step brings the ASL2
objects, that represent the classes, to the level of source files. These
source files contain complete and self-contained descriptions of the
classes and their members. Future development steps may therefore
by carried out by editing the syntactic forms in the source files.

The operation that performs the syntactic abstraction is called
class-source:

(class-source class-object class-name
superclass-name file-path)

The syntactic form of the class in class-object is written to a
text file, the path to which is given by the last parameter. It is
necessary to introduce names of classes when we carry out the
syntactic abstraction step. The second parameter, class-name,
names the class referred by the first parameter, class-object.
The third parameter names the superclass, which is referred by
class-object if it has been generalized as described in Section
5. If class-object does not have a superclass, a distinguished “no-
parameter-pass value” is passed instead of the superclass name.

Until this level, classes have been represented as objects, and as
such accessed by references. As explained in Section 2.2, variables
that hold these references may informally serve as object names or
class names. But in reality, ASL2 objects, including class objects,
are anonymous. In the abstraction step discussed in this section,
names are finally attached to the classes.

An additional parameter may be passed to the class-source
operation, namely the role name of objects, as used by the factory

method make-object for creation of objects. This parameter is op-
tional. Recall from Section 3 that role names were introduced at the
abstraction level where we worked with weakly classified objects.
The role name is mapped to the object that represents the class.
With this mapping we are able to keep the calls to make-object,
which uses the role name, hereby leaving method bodies intact, ex-
actly as written by the programmer in earlier phases of the develop-
ment process. Alternatively, we could have made a syntactic trans-
formation of the method bodies, substituting calls of make-object
with an activation of the new operation.

6.2 Examples
We will exemplify the syntactic abstraction steps, and the use of
the class-source operation, by continuing the development of
points (rectangular/polar) from Section 2.2 and Section 5.2. In
Section 5.2 we ended up with objects that represent three classes
in a class hierarchy. The classes are informally named Point,
RectangularPoint, and PolarPoint. These three names are
variables that refer to ASL2 class objects.

The following calls to class-source generate the syntactic
forms of the three class objects:

(class-source point "point" #f "point.asl2")

(class-source rectangular-point "rectangular-point"
"point" "rectangular-point.asl2"
"rec-point")

(class-source polar-point "polar-point"
"point" "polar-point.asl2" "pol-point")

The Scheme notion for boolean false, #f, is used as the no-
parameter-pass value. "rec-point" and "pol-point" happen to
be the role names of rectangular objects and polar objects respec-
tively, when these were introduced as weakly classified objects
earlier in the development process. (These details have not been
shown in this paper).

The syntactic forms, as generated by class-source, are shown
in Appendix A. We have only added an appropriate formatting (line
breaking and indentation) to the methods of the classes.

7. Related work
We start the discussion of related work by comparing the work
presented in this paper to the so-called objects first approach to
object-oriented programming. After that, gradual abstraction is
contrasted with gradual typing, as related to the body of work
that introduces types at a late time in the development process. We
also relate the ASL2 work to other languages and systems that do
not use traditional syntactical means for definition of all program
aspects. Finally, we review a number of programming languages
that contain facilities that are related to ASL2.

7.1 Objects-first
As mentioned in the introduction, our current work was launched
on pragmatic and pedagogical observations. Our starting point
is the pedagogical observation that today many educators use an
objects-first approach when teaching object-oriented programming
[10, 14]. The objects first approach starts with object-oriented anal-
ysis and design which emphasizes partitioning system behavior into
small, cohesive parts, and composing the final solution by making
the parts cooperate. Many proponents of the objects first approach
encourage students to create objects and to interact with them in an
experimental and iterative development approach until the students
reach an understanding of the implementation that is suitable for
a class definition. The BlueJ development environment makes an
attempt at supporting such a development process [9].

7 2012/6/18



Mainstream object-oriented languages such as Java only sup-
port interacting with objects that have been created by instantiating
classes. In reality, the objects first approach should be called the
classes first approach, as the programmer has to identify and de-
fine the needed set of classes before instantiating such classes to
objects. Our experience [25, 33] from teaching introductory pro-
gramming courses shows that many novice programmers find the
process of going from classes at a high abstraction level to concrete
objects via inheritance and object creation extremely counter intu-
itive. We presume this is because going in the opposite direction,
from objects to classes, is either not supported or only supported in
limited and cumbersome ways by mainstream object-oriented pro-
gramming languages [18].

Java allows creation of objects from anonymous classes and
C# allows creation of objects of anonymous reference types. Both
in Java and C# it is possible, using reflection and run-time code
generation, to create the illusion of constructing a type hierarchy at
run-time as demonstrated in one of our earlier papers [26]. These
facilities in Java and C# do not, however, support introductory
students in need of a more intuitive approach to developing object-
oriented programs.

7.2 Gradual typing
A considerable amount of work has been devoted to studies of
gradual introduction of static type information in source programs.
Gradual typing has been studied in the context of scripting [34],
functional programming [20, 28] and more recently also in the
context of object-oriented programming [12, 29]. In recent years
(2009, 2011, and 2012) an international workshop series called
STOP (Scripts TO Programs) has been setup to encourage work
in this area [37].

In general it is believed that the development speed is faster with
the use of dynamically typed programming languages compared
with statically typed languages. In addition, it is generally believed
that the number of errors discovered late (or never) in a dynamically
typed program is larger than for statically typed programs. It turns
out, however, that it is difficult to confirm these beliefs in empirical
research [19, 32].

With the use of gradual typing a programmer can start the
programming process without having to decorate a program with
type information. Furthermore, throughout the programming pro-
cess gradual typing allows a programmer to mix static and dynamic
type checking in a program. Gradual typing provides ways to con-
trol which parts of a program are statically checked and which parts
are dynamically typed.

Although gradual typing is still a research topic, mainstream
C#4.0 [15] supports the notion of type dynamic. The type dynamic
allows static and dynamic typing to be mixed, or rather allows
dynamically typed components to live and interact with statically
typed components albeit in a very limited and rudimentary form.

Gradual typing deals with the idea of gradual introduction of
type information in the source program text. Gradual abstraction (as
of this paper) deals with the idea of gradual introduction of more
and more abstract object notations. Gradual typing represents an
evolutionary approach, both seen relative to the software concepts
involved, and seen as a trend on a larger scale. In contrast we
consider gradual abstraction more like a revolutionary approach,
which in several respects reverses the order in which we encounter
some of the important programming artifacts. As such,we do not
expect the ideas presented in this paper to enter the landscape of
mainstream, industrial programming languages, in the near future,
but as illustrated in [22] there are already application areas such as
generating class hierarchies from data in XML or comma separated
files.

It may be the case, however, that gradual abstraction can be used
in niches, such as in pedagogical programming, in special-purpose
programmable systems, and within selected application domains.
More important, we find it worthwhile to demonstrate - both aca-
demically and practically - that it is indeed possible and operational
to deal with an upside down object-oriented development process.

7.3 Object-based program development
Many programming steps in ASL2 can only be performed by send-
ing program-development messages to an existing object (or by
calling operations on a number of such objects). As an exam-
ple, which has appeared several times in this paper, the only way
to add a method to an object o is to send the AddMember mes-
sage to o. Program-development messages (such as AddMember
and DeleteMember) should be contrasted with application domain
messages (such as DistanceTo and Area for geometric objects).
There is no ASL2 syntax for adding a method to an object. In ad-
dition, there exists no ASL2 syntax for adding a method to a class
prior to the derivation of the class source form in the last abstraction
step (described in Section 6). With respect to this property ASL2 is
similar to Smalltalk-80 [17].

In a paper about meta programming and reflection [13] Bracha
and Ungar write that “Smalltalk-80 differs from most languages
in that a program is not defined declaratively”. Instead, Smalltalk
relies on the programmers interaction with objects that represent
classes and other program related entities. Most Smalltalk and
ASL2 objects respond to messages that are related to the develop-
ment of the program as well as messages that are related to the ap-
plication domain. Following the phrasing used by Bracha and Un-
gar, the kind of programming discussed here could be called non-
declarative programming. But in order not to mess up with impor-
tant classic computer science distinctions we prefer to use the term
object-based program development. The point is, that some aspects
of ASL2 are not described in a traditional textual program source.
Rather, these aspects are captured as object state mutations, and
triggered by the reception of program-development related mes-
sages. In ASL2 the programmer can freely mix between program
development code (i.e. code that builds the program) and applica-
tion code. This is in contrast to the ideas in multi-staged program-
ming, e.g. in MetaOCaml [5], where application code and progam
development code is separated in stages and where the program-
ming language has syntactic support for runtime program genera-
tion.

It would not be easy to base ASL2 program development on
conventional source program text. The source text of an object-
oriented program consists of class declarations, and ASL2 classes
first appear when strongly classified objects are introduced. Recall
from Section 6 that the generation of syntactical class forms is
the end result of an ASL2 program development process - after a
number of abstraction steps has been carried out. Thus, ASL2 relies
to a large extent on object-based program development.

In this paper we have illustrated a relatively primitive elabora-
tion of the object-based program development process using ASL2.
The process relies on message passing (and function calls) in an in-
teractive command interpreter, also known as a read-eval-print-loop
(REPL). As an alternative, the object-based program development
process may be managed by a specialized set of browsing tools,
in the style of the browsers known from Smalltalk-80. Such pro-
gramming environments have more recently been put forward in
the Impromptu programming environment built around the Scheme
language for programming on the Mac OS X [3] and to some ex-
tent in Visual Studio from Microsoft for programming in the F#
programming language [6].

8 2012/6/18



7.4 Related programming languages
As mentioned in the introduction of this paper, object-oriented
programming without classes rests on some rather old ideas, most
prominently outlined by Lieberman in the mid eighties [23]. At that
point in time some Lisp-based languages [30] had been built based
on these ideas. Also some Smalltalk related work was oriented in
direction of “examplars” and “prototypes” [21]. Much territory was
pioneered in SELF [35, 36], which was initiated in 1986. SELF
organizes objects in multiple inheritance hierarchies, with emphasis
on shared behavior in so-called trait objects.

More recently ECMAScript [2], JavaScript [4] and ActionScript
[1] have adopted the prototype based object-oriented approach. In
these languages objects are created by constructors. Each object
implicitly references the constructor’s associated prototype, and
properties added to an object’s prototype are shared by all objects
sharing the prototype. Constructors are function objects that cre-
ate and initialize objects. Constructors have their own prototypes,
which the object prototype references and in this way implements
inheritance hierarchies.

Newer languages such as Scala [27] and Fortress [8] support
object creation without instantiation from a class. But in these
languages there are no constructs allowing an object to be classified
as belonging to a class after it has been created. Once created a
“class-less object” belongs to its own anonymous class subclassed
by the top element in the class hierarchy. Furthermore, both Scala
and Fortress are large general purpose languages vying for entering
mainstream. As such they embrace many new complex concepts
that hamper their suitability as candidates for languages used in
teaching introductory programming.

The Grace language [11] under development by a large group
of language educators headed by Andrew P. Black, Kim B. Bruce
and James Noble, tries to address the issue of the lack of a good
language for teaching introductory programming. The Grace lan-
guage also takes the approach of allowing objects to be created
directly. Objects can be abstracted over by methods, and it is easy
to create factory methods producing objects of the same kind, in-
stantiated with different initial values by parameters to the factory
method. Classes in Grace are just syntactic sugar for such factory
methods, however classes also introduce types for objects. Grace is
dynamically typed, but constructs can optionally be annotated with
type constraints which should be seen as assertions giving rise to
run time type checks. Although conceptually Grace’s class declara-
tions can be understood in terms of a flattening translation to object
constructor expressions that build the factory object, Grace does
not have constructs that allow a programmer to write a program
that realizes this construction.

8. Conclusions
ASL2 is an experimental programming language, which has been
developed for a truly “objects-first approach” in the area of object-
oriented programming. ASL2 is implemented in R5RS Scheme,
in part by adaption of a meta circular interpreter [7]. ASL2 is
tightly connected to the underlying implementation language, and
therefore Scheme functions can be used from ASL2 for plain and
common computations.

The most important results of our work with ASL2 are the
following:

• The possibility of starting an object-oriented development pro-
cess, by creating concrete objects that are equipped with meth-
ods that allow the programmer to solve real problems as early
as possible. This can be seen as problem-solving with exam-
ples/prototypes of objects, which belong to classes that have
not yet been established and fully shaped.

• The concept of a weak object classification that allows objects
to borrow methods from each other. This provides for conve-
nient method sharing among objects, without having to estab-
lish a particular “trait object” that holds the common function-
ality.

• Program development by gradual abstraction, in which more
abstract objects are derived from less abstract objects. Less
abstract objects are flexible for immediate problem solving
purposes, but they are not suitable for shaping the program in
the longer run. More abstract objects, such as class objects and
their generalizations, constrain both existing and future objects
in a direction that allows the programmer to reason about the
object system.

• A final result, which is a number of syntactic class forms in
source files. Instead of dealing with these descriptions at a
high level of abstraction early in the development process, the
class sources can be seen as the final product of an ASL2
development effort. A considerable amount of experience with
instances of these classes has been fused into the development
process, already at the moment where these class source files
materialize.

The ASL2 homepage [24] contains additional information, such
as a language reference API documentation. In addition, the home-
page gives access to a number of videos that illustrate the develop-
ment scenarios from this paper in additional details.

References
[1] Actionscript home page, 2012. http://www.actionscript.org/.

[2] Ecmascript language specification, 2012. http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

[3] What is Impromptu?, 2012. http://impromptu.moso.com.au/.

[4] Actionscript home page, 2012. https://developer.mozilla.org/en/About-
JavaScript.

[5] Metaocaml home page, 2012. http://www.metaocaml.org/.

[6] Visual studio developer center, visual F#, 2012.
http://msdn.microsoft.com/en-us/vstudio/hh388569.aspx.

[7] H. Abelson, S. G.J., and S. J. Structure and Interpretation of Computer
Programs. The MIT Press, 1985.

[8] E. Allen, D. Chase, C. Flood, V. Luchangco, J.-W. Maessen, S. Ryu,
and G. L. S. Jr. Project fortress. Lunux Magazine, September 2007.

[9] D. J. Barnes and M. Kölling. Objects First with Java: A Practical
Introduction Using BlueJ. Prentice Hall, October . ISBN 0130449296.

[10] J. Bennedsen and C. Schulte. What does ’objects-first’ mean? an inter-
national study of teachers’ perceptions of objects-first. In R. Lister and
Simon, editors, Seventh Baltic Sea Conference on Computing Educa-
tion Research (Koli Calling 2007), volume 88 of CRPIT, pages 21–29,
Koli National Park, Finland, 2007. ACS.

[11] A. P. Black, K. B. Bruce, and J. Noble. Panel: designing the next ed-
ucational programming language. In SPLASH/OOPSLA Companion,
pages 201–204, 2010.

[12] G. Bracha. Pluggable type systems. In OOPSLA04 Workshop on
Revival of Dynamic Languages, 2004.

[13] G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings
of OOPSLA 2004, pages 331–344. ACM Press, October 2004.

[14] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in introduc-
tory computer science. SIGCSE Bulletin, 35(1):191–195, Jan. 2003.

[15] M. Corporation. The C# language specification version 4.0, 2010.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison Wesley,
Reading, 1996. ISBN 0-201-63361-2.

9 2012/6/18



[17] A. Goldberg and D. Robson. Smalltalk-80 The Language and its
Implementation. Addison-Wesley Publishing Company, 1983.

[18] I. Hadar and U. Leron. How intuitive is object-oriented design?
Commun. ACM, 51(5), 2008.

[19] S. Hanenberg. An experiment about static and dynamic type sys-
tems: doubts about the positive impact of static type systems on de-
velopment time. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and ap-
plications, OOPSLA ’10, pages 22–35, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0203-6. doi: 10.1145/1869459.1869462.
URL http://doi.acm.org/10.1145/1869459.1869462.

[20] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan.
Sage: Unified hybrid checking for first-class types, general refinement
types, and dynamic (extended report.).

[21] W. R. LaLonde, D. A. Thomas, and J. R. Pugh. An exemplar based
smalltalk. In Conference proceedings on Object-oriented program-
ming systems, languages and applications, OOPLSA ’86, pages 322–
330, 1986. ISBN 0-89791-204-7.

[22] L. Leth-Thomsen, B. Thomsen, and K. Nørmark. Computational
abstraction steps. Journal of Object Technology, 9(6):1–23, November
2010.

[23] H. Lieberman. Using prototypical objects to implement shared behav-
ior in object oriented systems. In The proceedings of OOPSLA’86,
pages 214–223, 1986.

[24] K. Nørmark. The ASL2 home page, 2012. http://www.cs.aau.-
dk/∼normark/asl2/.

[25] K. Nørmark, L. Leth-Thomsen, and K. Torp. Reflections on the
teaching of programming, chapter Mini Project Programming Exams,
pages 229–243. 2008.

[26] K. Nørmark, B. Thomsen, and L. Leth-Thomsen. Mapping and visit-
ing in functional and object-oriented programming. Journal of Object
Technology, 7(7), September-October 2008.

[27] M. Odersky, L. Spoon, and B. Venners. Programming in Scala, Second
Edition. Artima Incorporation, USA, 2010.

[28] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, September 2006.

[29] J. G. Siek and W. Taha. Gradual typing for objects. In ECOOP’07:
21st European Conference on Object-Oriented Programming, 2007.

[30] S. Slade. The T programming language - A dialect of Lisp. prencie-
Hall, 1987.

[31] G. L. Steele. Common Lisp, the language, 2nd Edition. Digital Press,
1990.

[32] A. Stuchlik and S. Hanenberg. Static vs. dynamic type systems: an
empirical study about the relationship between type casts and devel-
opment time. In Proceedings of the 7th symposium on Dynamic lan-
guages, DLS ’11, 2011.

[33] B. Thomsen. Reflections on the teaching of programming, chapter
Using On-Line Tutorials in Introductory IT Courses, pages 68–74.
2008.

[34] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from
scripts to programs. In Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and appli-
cations, OOPSLA ’06, pages 964–974, 2006.

[35] D. Ungar and R. B. Smith. SELF: The power of simplicity. Lisp
and Symbolic Computation: An International Journal, 4(3):187 – 205,
1991.

[36] D. Ungar, C. Chambers, and B. wei Chang. Organizing programs
without classes. In Lisp and Symbolic Computation, pages 223–242.
Kluwer Academic Publishers, 1991.

[37] T. Wrigstad. StOP - internal workshop series on scripts to programs.
http://wrigstad.com/stop/. URL http://wrigstad.com/stop/.

10 2012/6/18



A. Source Programs
In this appendix we show the source programs generated by the class-source operation, as applied to the class objects Point, RectangularPoint,
and PolarPoint from Section 5.2.

(class point ()
(Rotate (function (da)

(send this (quote set-a) (+ (send this (quote get-a)) da))))
(DistanceTo

(function (otherPoint)
(sqrt (+ (square (- (send this (quote get-x)) (send otherPoint (quote get-x))))

(square (- (send this (quote get-y)) (send otherPoint (quote get-y))))))))
(Move (function (dx dy)

(send this (quote set-x) (+ (send this (quote get-x)) dx))
(send this (quote set-y) (+ (send this (quote get-y)) dy))))

)

(class polar-point (point)
(r 9.673869855964725)
(a 0.5048218521545986)
(get-x (function () (* r (cos a))))

(function (new-x)
(let ((existing-y (send this (quote get-y))))

(set! r (sqrt (+ (* new-x new-x) (* existing-y existing-y))))
(set! a (atan existing-y new-x)))))

(set-y
(function (new-y)

(let ((existing-x (send this (quote get-x))))
(set! r (sqrt (+ (* existing-x existing-x) (* new-y new-y))))
(set! a (atan new-y existing-x)))))

)

(map-role-to-class! "pol-point" polar-point)

(class rectangular-point (point)
(x 0)
(y 0)
(get-a (function () (atan y x)))
(get-r (function ()

(sqrt (+ (* x x) (* y y)))))
(set-a

(function (new-a)
(let ((existing-r (sqrt (+ (* x x) (* y y)))))

(set! x (* existing-r (cos new-a)))
(set! y (* existing-r (sin new-a))))))

(set-r
(function (new-r)

(let ((existing-a (atan y x)))
(set! x (* new-r (cos existing-a)))
(set! y (* new-r (sin existing-a))))))

)

(map-role-to-class! "rec-point" rectangular-point)

11 2012/6/18


