Reifying and Optimizing Collection Queries for Modularity

Paolo G. Giarrusso
Klaus Ostermann

Philipps University Marburg

Abstract

Conventional collection libraries do not perform automatic
collection-specific optimizations. Instead, performance-crit-
ical code using collections must be hand-optimized, leading
to non-modular, brittle, and redundant code.

We propose SQUOPT, the Scala Query Optimizer, a
deep embedding of the Scala collection library performing
collection-specific optimizations automatically without ex-
ternal tools or compiler extensions.

Categories and Subject Descriptors H.2.3 [Database Man-
agement]: Languages—Query languages; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming;
D.1.5 [Programming Techniques]: Object-oriented Program-
ming

Keywords Deep embedding; query languages; optimiza-
tion; modularity

Introduction

In-memory collections of data often need efficient process-
ing. For on-disk data, efficient processing is already pro-
vided by database management systems (DBMS), thanks to
their query optimizers which support many optimizations
specific to the domain of collections. However, moving in-
memory data to DBMSs does not typically improve perfor-
mance [6], and query optimizers cannot be reused separately,
since DBMSs are typically monolithic and their optimizers
are deeply integrated. A few collection-specific optimiza-
tions, such as shortcut fusion [1], are supported by com-
pilers for purely functional languages such as Haskell, but
the implementation techniques do not generalize to many
other optimizations, such as support for indexes. In general,
collection-specific optimizations are not supported by the
general-purpose optimizers used by high-level (JIT) com-

Copyright is held by the author/owner(s).

SPLASH’12, October 19-26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

Michael Eichberg

Software Technology Group,
Darmstadt University of Technology

Tillmann Rendel
Christian Késtner

Philipps University Marburg

pilers. Therefore, when collection-related optimizations are
needed, programmers perform them by hand.

Some optimizations are not hard to apply manually, but
in many cases become applicable only after manual inlin-
ing [4]. But manual inlining modifies source code by com-
bining distinct functions together, while often distinct func-
tions should remain distinct to preserve modularity, for in-
stance to separate different concerns or to allow reusing
a code fragment. In this case, manual inlining will reduce
modularity.

To sum up, developers have to choose between modu-
larity and performance when writing queries. We propose
instead an automatic optimizer supporting both inlining and
collection-specific optimizations, combining performance
and modularity. In particular, our optimizer automatically
performs various collection-specific algebraic optimizations,
such as map fusion, selection pushdown, automatic index-
ing and query unnesting. Some of these optimizations can
reduce the complexity class of a query. Moreover, the op-
timizer supports general-purpose optimizations, such as in-
lining and various algebraic simplifications, to allow collec-
tion-specific optimizations to trigger more often. We show a
few examples in the next subsection.

Motivating Example

Let us consider for instance map fusion, which combines
multiple map operations to avoid intermediate results.
Consider this Scala function definition in module M1:

def firstPart(someColl: List[Int]) = someColl.map(x=x + 1)

This code defines function firstPart which maps function

Az.z + 1 on some collection of integers someColl. Suppose

now that module M2 contains:

val theColl: List[Int] =...

def secondPart = M1.firstPart(theColl).map(x=x + 2)

This code defines function secondPart which maps function

Ax.x + 2 on the result of M1. firstPart. We assume that these

functions are part of different modules, for instance because

they are related with different concerns and firstPart’s im-

plementation should be hidden behind an abstraction barrier.
This code is inefficient: Executing this code will build a

collection to represent the result of firstPart, and then con-

sume it immediately to build a new collection; this interme-



diate step is unnecessary and expensive. Moreover, we sum
each number with first 1 and then 2; adding 3 directly would
be faster.

To improve performance we can write, in module M2, just
def secondPart = theColl.map(x = x + 3). However, this
code combines code fragments which belong to different
modules, which is undesirable in our example. An alterna-
tive would be to rely on an automatic optimizer. Automat-
ing this optimization requires inlining the call to firstPart
(which in general might be a virtual call, hence resolved only
at run-time) and then performing collection-specific opti-
mizations (here, map fusion). While most general-purpose
automatic optimizers can handle inlining, they cannot handle
collection-specific optimizations. Furthermore, virtual calls
typically cannot be resolved statically, hence can only be in-
lined at run-time by JIT compilers. Hence, this optimization
cannot be performed automatically by a typical optimizer,
especially not by a compile-time one.

There are many other optimizations that are possible to
improve performance, but that require implementation over-
head or lead to nonmodular solutions; one example is main-
taining indexes to speed up queries. Consider an address
book application, which manipulates a collection of people.
To find people by their name, this application will proba-
bly maintain an index mapping names to people. Each time
a person is added or removed, both the collection of peo-
ple and the index need to be updated: Keeping in sync these
operations by hand is error-prone. Automatic index main-
tenance, as done by databases, would make such inconsis-
tencies impossible, once again reconciling modularity and
performance.

Our Solution

To provide automatic collection-specific optimizations and
thus address these problems, we introduce SQUOPT, the
Scala Query Optimizer, which consists of:

1. An embedded domain-specific language (EDSL) for
queries on collections. This EDSL corresponds to the
purely functional portion of the Scala collection API, in-
herits its advantages [3] and naturally supports advanced
features of database query languages.

2. A Scala implementation of the above EDSL. Queries
written in this EDSL produce explicit representations of
themselves, termed expression trees. Crucially, this rep-
resentation includes Scala expressions and arguments of
query operators like map or filter. This library requires
no compiler extensions, unlike LINQ. To this end, we
extend existing techniques based on Scala implicit con-
versions [5] to cope with operations on collections.

3. A run-time compiler to convert queries to runnable code.

4. A run-time optimizer which transforms queries into
faster ones before compilation. Since optimizations hap-
pens at run-time, handling virtual calls precisely is pos-

sible. Since the query representation represents faithfully
the arguments of query operators, each optimization has
all the information needed to verify that its side condi-
tions apply. While the optimizer is not yet complete, the
speedups it achieves are already promising, as detailed
subsequently.

5. A prototype implementation of incremental view main-
tenance, which will allow to materialize and update the
results of any view, including indexes, so that the materi-
alized results can be reused in other queries.

Our current implementation is available online."
Overall, our approach seems a promising solution to com-
bine performance and modularity.

Initial experiments

To evaluate our optimizer, we reimplemented some queries
(sampled from FindBugs [2]) in Scala. At run-time, we
create indexes and measure the optimization speedup on
different queries, compared with native queries in Scala.
Around half of the queries can be optimized, and speedups
range from 2.5x to 2274.9x. In other cases, the optimizer
does not improve query performance significantly. More-
over, we study the overhead introduced by dividing queries
into smaller functions to increase reuse; our optimizer pro-
totype seems to already reduce this overhead significantly.

Acknowledgements The authors would like to thank Se-
bastian Erdweg and the OOPSLA anonymous reviewers for
their helpful comments. This work is supported in part by
the European Research Council, grant #203099.

References

[1] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In FPCA, pages 223-232. ACM, 1993.

[2] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Notices, 39(12):92-106, 2004.

[3] M. Odersky and A. Moors. Fighting bit rot with types (expe-
rience report: Scala collections). In JARCS Conf. Foundations
of Software Technology and Theor. Comp. Science, volume 4,
pages 427-451, 2009.

[4] S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell
Compiler inliner. JFP, 12(4-5):393-434, 2002.

[5] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
DSLs. In GPCE, pages 127-136. ACM, 2010.

[6] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In Int’l Conf. Very Large
Data Bases, pages 1150-1160. VLDB Endowment, 2007.

"http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt


http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt

