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 1

ABSTRACT 

 

Fractional Fourier transform and chaos functions play a key role in many of 

encryption-decryption algorithms. In this work performance of image encryption-decryption 

algorithms is quantified and compared using the computation time i.e. the time consumption 

of encryption-decryption process and resemblance of input image to the restored image, 

quantified by MSE.  

This work proposes an improvement in computation-time of image encryption-

decryption algorithms by utilizing image compression properties of the 2-dimensional 

Discrete Wavelet Transform (DWT2). Initially, computation complexity of the algorithms is 

evaluated and compared with that of existing algorithms. This analysis claims the proposed 

algorithms to be nearly 8 times faster than the existing algorithms.  

Further, simulations are performed using MATLAB7.7 to quantify performance of 

existing algorithms and the proposed algorithms using MSE and computation time. The 

results obtained in these simulations prove that for the proposed algorithms MSE between 

restored and original images is lesser than that of existing algorithms thereby maintaining the 

robustness of the existing algorithms. These algorithms are found sensitive to a variation of 

1x10-1 in the fractional orders used in encryption-decryption process. 
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INTRODUCTION 
1.1 Motivation: 

With the rapid development of internet and wide application of multimedia technology, 

people can communicate the digital multimedia information such as digital image, with 

others conveniently over the internet. In many cases, image data, transmitted over a network 

are expected not to be browsed or processed by illegal receivers. Therefore, the security of 

digital image has attracted much attention recently and many different methods for image 

encryption have been proposed, such as [1] [2] [3] [4] [5] [6] [7]. 

  Optical systems are of growing interest for image encryption because of their distinct 

advantages of processing 2-dimensional complex data in parallel at high speed. In the past, 

many optical methods have been proposed in [1] [2] [4] [6] [8] [9]. Among them the most 

widely used and highly successful optical encryption scheme is double random phase 

encoding proposed in [4]. It can be shown that if these random phases are statistically 

independent white noise then the encrypted image is also a stationary white noise. In some 

schemes [2] [3] [5] [10], chaos based functions are used to generate random phase mask. As 

the generalization of the conventional Fourier transform, the fractional Fourier transform has 

also recently shown its potential in the field of optical security [1] [2] [4] [6] [9]. 

Image encryption has been very difficult than that of text encryption due to some 

intrinsic features of images such as bulk data capacity, high correlation among pixels and 

high redundancy. Fast (Efficient) image encryption has been an area of interest for research 

due to the need of real-time image encryption-decryption in various fields such as military 

image transmission etc. [10].  

1.2 Problem Statement: 

This work refers to the algorithms presented by Narendra [2]. Image compression 

characteristic of DWT2 can be exploited to improve the computation times of existing 

algorithm which can be verified on the basis of results obtained after executing suitable 

simulations.  

With reference to the three algorithms proposed by Narendra [2], these algorithms shall 

be improved by inserting DWT2 and IDWT2 in the encryption-decryption process. A 
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mathematical expression for computation complexity of each of these algorithms is to be 

derived and compared to their existing counterparts thereby producing some theoretical 

claims which in turn shall be verified. 

Simulations are to be performed using existing and proposed algorithms. Performance 

of these simulations shall be recorded in terms of MSE and computation time. Computation 

time shall be referred as the time required by entire encryption-decryption process. 

Besides improving computation time the proposed algorithms are expected to decrease 

the MSE of existing algorithms and maintain the robustness of existing algorithms. 

1.3 Organization of thesis: 

The outline of thesis is as follows. Chapter 2 includes a detailed description of 

mathematical definition, operational properties and applications of fractional Fourier 

transform; discrete Fourier transform and wavelet transform. A brief overview of chaos 

functions and the random phase mask is also included in this chapter. 

Three different encryption-decryption algorithms, based on the transforms and 

functions included in chapter 2 are analyzed in chapter 3. These methods are analyzed on the 

basis of their quality of encryption-decryption and computation time. 

Chapter 4 proposes three new algorithms which are time efficient than the existing 

algorithms. A mathematical model for encryption and decryption steps of these algorithms is 

presented in this chapter. Further, there is a detailed discussion about the computation 

complexity of these algorithms. Section 4.4 includes a theoretical comparison between 

computation times of the existing and the proposed algorithms. 

Chapter 5 summarizes the simulation results obtained using proposed algorithms and 

their comparison with the existing methods on the basis of various experimental results.  

Different parameters are defined to quantify the experimental results obtained from the 

execution of these algorithms. On the basis of these parameters, the theoretical claims made 

in section 4.4 are verified. 

Chapter 6 concludes the comparisons of chapter 5 and suggests future scope of the 

work done in this thesis. 
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LITERATURE SURVEY 
 

2.1   Fractional Fourier Transform 

Fractional Fourier transform are a one parameter subclass of the class of linear 

canonical transforms. It is possible to define the fractional Fourier transform in several 

different ways [11]. Any of these definitions can be taken as a starting point, and the others 

then derived as properties. Each different definition leads to different physical interpretation 

which becomes useful in a variety of applications. Following paragraphs introduce some 

notations and general assumptions. 

The ath order fractional Fourier transform of the function f (u) will be denoted in any 

of the following ways, depending on the context and requirements of clarity. Most 

commonly, the fractional transform is denoted by fa (u) or equivalently Faf (u). The latter 

expression may be interpreted in two equivalent ways. First, it may be interpreted as the 

operator Fa acting on the abstract signal f. The result of which is expressed in the u domain: 

            fa (u) ≡ Fa f (u) ≡ (Fa f) (u) ≡ Fa [f] (u) ≡ (Fa[f]) (u).                    (2.1.1)  

Second, Faf (u) may be interpreted as the operator Fa acting on the function f (u), with 

the result again being expressed in the u domain: 

fa (u) ≡ Fa f (u) ≡ Fa [f (u)] (u) ≡ ( Fa [f (u)]) (u).                        (2.1.2) 

This second interpretation is appropriate regardless of whether the operator Fa denotes 

a system or a transformation, whereas the first is appropriate only when Fa denotes a system. 

Same dummy variable u has been used both for the original function in the time domain, and 

its fractional Fourier transform. Both explicitly appear in the last two forms in equation 

(2.1.2), whereas either is absent in the first two. 

Further discussion will be restricted to the case where the order parameter ‘a’ is a real 

number. Complex-ordered fractional Fourier transform may be treated as a special case of 

complex-parameterized linear canonical transforms. It is assumed that f is a finite energy 

signal. ‘u’ is interpreted as a dimensionless variable. 
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2.1.1 Definition: Linear integral transform 

   The first definition presented here is the most direct and concrete one, although it 

will not be immediately evident why this transform deserves to be called the fractional 

Fourier transform. The transform is defined by explicitly specifying its linear transform 

kernel. 

Definition: The ath order fractional Fourier transform is a linear operation defined by 

the integral [11] 

      ''', duufuuKuf 




  ,    (2.1.3) 

    22 'cot')cosec(2cotexp', uuuuiAuuK a    ,                       (2.1.4) 

 cot1 iA                2 a  

when a ≠ 2 j for integer j and Ka (u, u’) =  (u – u’) when a = 4j and Ka (u, u’) =  (u + u’) 

when a = 4j±2, where j is an integer. The ath order transform is sometimes referred to as the 

 th order transform. The square root is defined such that the argument of the result lies in the 

interval (-π /2, π /2]. For 0 < a  < 2 (0<   <  π ), Aα can be rewritten without ambiguity as  

    sin/2/4/sgnexp  iA ,                                  (2.1.5)            

where sgn (.) is the sign function. When ‘a’ is outside the interval 0 ≤ |a | ≤ 2, ‘a’ is simply 

replaced by it’s modulo 4 equivalent lying in this interval and use this value in equation 

(2.1.5). 

At first sight, this definition does not offer much insight into the nature of the 

fractional Fourier transform, unless one is very well versed with the class of linear canonical 

transforms, of which fractional Fourier transforms are easily seen to constitute a one-

parameter subclass. Nevertheless equation (2.1.4) is the most direct way of defining the 

transform. To obtain the ath order fractional Fourier transform of a function f (u), it is simply 

substituted in the equation (2.1.4). 

The transform is by definition linear, but it is not shift-invariant (unless a = 4j), since 

the kernel is not a function of (u - u’) only. In order to examine the case where ‘a’ is an 

integer, let j denote an arbitrary integer. It is to be noted that by definition F4j and F4j±2 
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correspond to the identity operator I and the parity operator P respectively. For a = 1, 

1,2   A , and  

      '''2exp1 duufuuiuf 




  .                                         (2.1.6) 

Thus f1 (u) is equal to the ordinary Fourier transform of f (u), which until now was 

denoted as F(u). Likewise, it is possible to see that f-1 (u) is the ordinary inverse Fourier 

transform of f(u). It is further possible to conclude that the above definition of the fractional 

Fourier transform is consistent with our definition of integer powers of the Fourier transform. 

Since  = a / 2 appears in equation (2.1.4) only in the argument of trigonometric functions, 

the definition is periodic in a with period 4 .Thus, further attention will often be limited to the 

interval a  2,2  and sometimes a   [0, 4) (or α  [0, 2 )) [11]. These facts can be 

restated in operator notion:  

(2.1.12)                                                               ,
(2.1.11)                                                                 ,
(2.1.10)                                                               ,
(2.1.9)                                                                           ,
(2.1.8)                                                                           ,
(2.1.7)                                                                            ,

'44

04

3

2

1

0

ajaj FF
IFF
PFFPF

PF
FF
IF

 











 

where j, j’ are arbitrary integers. 

According to equation (2.1.4), the zeroth-order transform of a function is equal to the 

function it self by definition. Likewise, the ±2nd order transform is equal to f (-u) by 

definition. This piecewise definition would be rather artificial if it did not exhibit some kind 

of continuity with respect to ‘a’ for all values of ‘a’. It is not difficult to see by examining the 

kernel that a slight change in a results in only a slight change in fa (u) when ‘a’ is not close to 

an integer multiple of 2. To see that this is true when ‘a’ approaches an integer multiple of 2 

as well, first consider the behavior of the kernel as a →0. For infinitesimal a  > 0 the kernel 

can be rewritten as 

       


 /'exp4/sgnexp', 2uuiiuuK a 


  .                         (2.1.13) 

This is seen to indeed reduce to  (u- u’) in the limit 0a . Alternatively, noting that 

Ka (u, u’) is a function only of (u-u’), the function can be defined as 
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       


 /exp4/sgnexp 2uiiuKa


  ,                                 (2.1.14) 

which is convolved with f (u) to obtain Ka (u)* f (u) = fa (u). The Fourier transform of Ka (u), 

as  2exp i , approaches unity as 0 , which in turn implies that Ka (u) approaches a 

delta function .Thus, the definition of the transform is indeed continuous with respect to a=0. 

A similar discussion is possible when a approaches other integer multiples of 2.  

Another, very important property of the fractional Fourier transform operator, the 

index additively property, can be stated in the alternative forms 

       ,122121 fFFfFfFF aaaaaa                                   (2.1.15)                           

This can be proved by repeated application of equation (2.1.4), a process which is 

complicated by the square root appearing in the coefficient A .This process amounts to 

showing  

     ',''','''',
2112

uuKduuuKuuK aaaa                                   (2.1.16) 

by direct integration, which can be accomplished by using Gaussian integrals. Its proof may 

be found in [12]. 

Since Fractional Fourier transform are linear canonical transforms, they also satisfy 

the associative property, as well as other properties of linear canonical transforms. In 

particular, fractional Fourier transforms are unitary, as the kernel of the inverse transform can 

be obtained by replacing ‘a’ with ‘– a’: 

         ',,'',',', **1 uuKuuKuuKuuKuuK H
aaaaa  

 .                (2.1.17)                                                                           

Note that the kernel Ka (u, u’) is symmetric, but not Hermitian .Unitarily implies that 

the fractional Fourier transform can be interpreted as a transformation from one 

representation to another, and that inner products and norms are not changed under the 

transform. 

Now, the first interpretation of the fractional Fourier transform is given as follows. 

Let us concentrate on the interval 0 ≤ a ≤ 1. It is known that when a = 0 the fractional Fourier 

transform is the original function and when a = 1 it is the ordinary Fourier transform. As ‘a’ 

varies from 0 to 1, the transform evolves smoothly from the original function to the ordinary 
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Fourier transform. The fact that the fractional Fourier transform interpolates between the 

original function and its ordinary Fourier transform with the continuous parameter a, offers 

some justifications for its name. 

As a final comment, a transform can be interested as a system mapping “input” 

functions f (u) to “output” functions fa (u). In this interpretation, the same dummy variable u 

is used for both the input and outputs. This notation is usually found to be the most 

convenient. On the other hand, the functions fa(.) for different values of ‘a’ may be 

interpreted as different representations of the same abstract signal f and fa(.) may be 

considered as being the representation of the signal f  in the ath order fractional Fourier 

domain. In this case it is often useful to distinguish the variables associated with each domain 

by labeling them as ua. Thus fa(ua) is the representation in the ath domain, f0 (u0) is the 

representation in the time domain, and f1(u1) is the frequency-domain representation. The axis 

ua may be referred to as the ath fractional Fourier domain, so that u0 and u1 are the 

conventional time and frequency domains u and  . The representation of the signal in the ath 

domain can be obtained from its representation in the ath domain through an (a’ - a)th order 

fractional Fourier transformation: 

    aaaaaaaaa duufuuKuf )(,''''  
 .                                      (2.1.18)          

2.1.2 Properties of fractional Fourier transform 

TABLE 2.1  
PROPERTIES OF FRACTIONAL FOURIER TRANSFORM [11] 

1. Linearity          
j j

a
jj jj

a ufFufF  ][  

2. Integer orders     jj FF   

3. Inverse      aa FF  1  

4. Unitarity       Haa FF 1  

5. Index additivity   1212 aaaa FFF   

6. Commutativity   2112 aaaa FFFF   

7. Associativity        123123 aaaaaa FFFFFF   

8. Eignfunctions      ll
a ialF  2/exp   

9. Wigner distribution       cossin,sincos,  uuWuW ffa
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10. Parseval           ugufuguf aa ,,   

2.1.3 Operational Properties of fractional Fourier transform 
 

TABLE 2.2  
OPERATIONAL PROPERTIES OF FRACTIONAL FOURIER TRANSFORM [11] 

  uf                               ufa  
__________________________________________________________________________ 
1.  uf      ufa   

2.  MufM /1             





































sin
sin

cos
cos1cotexp

cot1
cot1 '

2

'2
2

2 '

Mufui
iM

i
a

 

3.  uf          cossin2expcossinexp 2  ufuii a  

4.    ufui 2exp         sincos2expcossinexp 2  ufuii a  

5.  ufu n        ufdudiu a

n
/2sincos 1   

6.     ufdudi
n

/2 1                  ufdudiu a

n
/2cossin 1   

7.   uuf /          'cotexp'cotexpcsc 2'22 duuiufuii
u

a 


  
 

8.  
u

duuf


''          'tanexp'tanexpsec 2'2 duuiufui
u

a 
  

9.  uf *     uf a
*
  

10.  uf *     uf a 
*  

11.      2/ufuf         2/ufuf aa   

12.      2/ufuf         2/ufuf aa   

2.1.4 Fractional Fourier transform of some common functions 
 

TABLE 2.3  
FRACTIONAL FOURIER TRANSFORM OF SOME COMMON FUNCTIONS [11] 

1.  u                                        cotexpcot1 2uii  

2.   u                                    cotcsc2cotexpcot1 22  uuii  

3. 1      tanexptan1 2uii   

4.  ui 2exp                               tansec2tanexptan1 22  uuii  

5.  2exp ui                       



tan1
tan1


 i
















tan1
tanexp 2ui  
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6.   uui  2exp 2            



tan1
tan1


 i  

















tan1
tansec2tanexp

22 uui  

7.  ul                                     ilexp  ul  

8.  2exp u                             2exp u  

9.  2exp u                       




































22

2
2

22

2
2

cot
cscexp

cot
1cotexp

cot
cot1 uui
i
i  

10.   uu  2exp 2          

 








































cot
sincos2cscexp

cot
sec21cotexp

cot
cot1

2

222
2

2

222

uu

uui
i
i

 

 

2.1.5 Applications of Fractional Fourier transform  
 Fractional Fourier Transform is used for Filtering, Estimation, and Signal   

Recovery. 

 Fractional Fourier Transform is used for Matched Filtering, Detection, and Pattern 

Recognition 

 Fractional Fourier Transform is also used in Optics. 

2.2   Discrete Fourier Transform. 

2.2.1 Definitions of the Discrete Fourier Transform 

The discrete Fourier transform pair is defined by [11] 






 
1

0

/   2 1,,2,1,0,)()}({)(
N

n

Nnkj
D NkenxnxFkX    (2.2.1) 






 
1

0

/   21 1,,2,1,0,)(1)}({)(
N

k

Nnkj
D NnekX

N
kXFnx    (2.2.2) 

where X(k)≡X(2πk/N). Substituting equation (2.2.1) in equation (2.2.2), gives 

 

















 






 1

0

/)(   2
1

0

1

0

/   2
1

0

/   2 )(1)(1 N

k

Nnmkj
N

m

N

k

Nmkj
N

m

Nmkj emx
N

eemx
N

  

But the last summation is equal to zero for m≠n and equal to one for m=n and, thus, the last 

expression becomes x(n)N/N=x(n) which proves that equations (2.2.1) and (2.2.2) are the 

DFT pair. 



Chapter – 2 

 11 

2.2.1.1 DFT as a Linear Transformation 

Let xN be an N-point vector of the signal sequence and XN is an N-point sequence of 

the frequency samples. Equation (2.2.1) can be written in the form 

NNN xWX       (2.2.3) 

where 

,

)1(

)1(
)0(

  ,

)1(

)1(
)0(













































Nx

x
x

x

NX

X
X

X NN


 





























)1)(1(/2

1/2

1/21/2

2/2/2

)(

)(
1

)()(1

)(1
111

NNNj

NNj

NNjNNj

NjNj

N

e

e

ee

ee
W

















             (2.2.4) 

If the inverse of WN exists, then Equation (2.2.3) gives 

NNN XWx 1        (2.2.5) 

which is the inverse Discrete Fourier transform (IDFT). The matrix WN  is symmetric has the 

properties 

NNNNN INWWW
N

W  **1 ,1      (2.2.6) 

Where, IN  is an N X N identity matrix 

WN  is an orthogonal (Unitary matrix) 

2.2.2 Properties of the DFT 
TABLE 2.4  

PROPERTIES OF THE DFT [11] 

Property 
Time functions 

x(n), h(n) 

Frequency domain 

Functions X(k), H(k) 

Linearity ax(n) + bh(n) aX(k) + bH(k) 

Periodicity x(n) = x(n + N) X(k) = X(k + N) 

Time reversal x(N - n) X(N – k) 

Circular time shift x((n - ℓ))N X(k)e-j2πkℓ/N 

Circular frequency shift x(n)e j2πℓn/N X((k - ℓ))N 

Complex conjugate x*(n) X*(N - k) 
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Circular convolution x(n)   h(n) X(k) H(k) 

Circular correlation x(n)   h*(-n) X(k) H*(k) 

Multiplication 
x(n)h(n) 

N
1 X(k) H*(k) 

Symmetry 
N
1 X(n) x(-k) 

Parseval’s theorem 




1

0

N

n
 x(n)h*(n) = 

N
1 





1

0

N

n
 X(k) H*(k) 

2.2.3 DFT of various functions 
TABLE 2.5  

DFT OF VARIOUS FUNCTIONS [11] 
f(n) F(k) 

,10  ),( 00  Nnnn  

10  integer,0  Nnn  
10  ),/2exp( 0  NkNknj   

  ,10  ),/2exp( 00  NkNkj   

10 integer,0  Nnk  
10  ),( 0  Nkkk  

10),()(  NnNnunu  


 


otherwise     ,0

0     ,1
)(

k
kF  

  ,10),/2cos( 00  NkNnk
10 integer,0  Nnk  













00

00

)]([
2

)(
2)(

kNkkNkN

kkkkN

kF



 

10   ),cos(  Nnn  10   ,
2

)( 





  NkNkNkF   

10    ,cos 





 Nn

N
n  















 




NN
kj

kjkF



2exp1

)]2(exp[1
2
1)(  

10,
2exp1

)]2(exp[1
2
1 N-k

NN
kj

kj
















 





  
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10   ,/  NnNn  















10
)/(sin2

)/sin()cos(

0
2)(

2 Nk
Nk

Nkkj

kN

kF


  








10
01

Nnm
mn

 
N
k

N
mk

N
kmjkF






sin

)1(sin
exp)(







 







   

, 10  Nk  

2.3   Wavelet transform (HAAR) 

The wavelet transform is a new mathematical tool developed mainly since the middle 

of the 1980s. It is efficient for local analysis of nonstationary and fast transient wideband 

signals. The wavelet transform is a mapping of a time signal to the timescale joint 

representation, which is used in the short-time Fourier transform, the Wigner distribution and 

the ambiguity function. The temporal aspect of the signals is preserved. The wavelet 

transform provides multiresolution analysis with dilated windows. The higher frequency 

analysis is done using narrower windows and the lower frequency analysis is done using 

wider windows. Thus, the wavelet transform is a constant-Q analysis. The basis functions of 

the wavelet transform, the wavelets, are generated from a basic wavelet function by dilations 

and translations. They satisfy an admissible condition so that the original signal can be 

reconstructed by the inverse wavelet transform. The wavelets satisfy also the regularity 

condition so that the wavelet coefficients decrease fast with the decreasing of the scale. The 

wavelet transform is local not only in time but also in frequency domain. 

To reduce the time–bandwidth product of the wavelet transform output, the discrete 

wavelet transform with discrete dilations and translations of the continuous wavelets can be 

used. The orthonormal wavelet transform is implemented in the multiresolution signal 

analysis framework, which is based on the scaling functions. The discrete translates of the 

scaling functions form an orthonormal basis at each resolution level. The wavelet basis is 

generated from the scaling function basis. The two bases are mutually orthogonal at each 

resolution level. The scaling function is an averaging function. The orthogonal projection of a 

function onto the scaling function basis is an averaged approximation. The orthogonal 
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projection onto the wavelet basis is the difference between two approximations at two 

adjacent resolution levels. Both the scaling functions and the wavelets satisfy the 

orthonormality conditions and the regularity conditions. The discrete orthonormal wavelet 

series decomposition and reconstruction are computed in the multiresolution analysis 

framework with recurring two discrete low-pass and high-pass filters, that are, in fact, the 2-

band paraunitary perfect reconstruction quadrature mirror filters, developed in the subband 

coding theory, with the additional regularity. The tree algorithm operating the discrete 

wavelet transform requires only O(L) operations where L is the length of the data vector [11]. 

The time–bandwidth product of the wavelet transform output is only slightly increased with 

respect to that of the signal. 

The wavelet transform is powerful tool for multiresolution local spectrum analysis of 

nonstationary signals, such as the sound, radar, sonar, seismic, electrocardiographic signals, 

and for image compression, image processing and pattern recognition. In this chapter all 

integrations extend from -1 to 1, unless stated otherwise. The wavelet transform can be easily 

generalized to any dimensions. 

2.3.1 Overview of Wavelet Transform. 

2.3.1.1 Continuous Wavelet Transform [11] 

Definition Let )(2 RL  denote the vector space of measurable, square-integrable functions. 

The continuous wavelet transform of a function )()( 2 RLtf   is a decomposition of f(t) into a 

set of basis functions hs,t(t) called the wavelets: 

dtthtfsW sf )()(),( *
,       (2.3.1) 

where * denotes the complex conjugate. However, most wavelets are real valued. The 

wavelets are generated from a single basic wavelet (mother wavelet) h(t) by scaling and 

translation: 







 


s

th
s

ths



1)(,        (2.3.2) 

where, s is the scale factor 

 is the translation factor. 
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Usually scale factor s>0 is considered to be only positive. The wavelets are dilated 

when the scale s>1 and are contracted when s<1. The wavelets )(, ths   generated from the 

same basic wavelet have different scales s and locations t, but all have the identical shape. 

The constant s-1/2 in the equation (2.3.2) of the wavelets is for energy normalization. 

The wavelets are normalized in terms of energy as: 

1)()(
22

,   dtthdtths      (2.3.3) 
so that all the wavelets scaled by the factor s would have the same energy. The wavelets can 

also be normalized in terms of amplitude as 

1)(,  dtths       (2.3.4) 
In this case, the normalization constant is s-1 instead of s-1/2, and the wavelets are 

generated from the basic wavelet as  







 


s

th
s

ths



1)(,      (2.3.5) 

On substituting equation (2.3.2) into equation (2.3.1) the wavelet transform of f(t) is 

expressed as a correlation between the signal and the scaled wavelets h(t/s): 

dt
s

thtf
s

sW f  





 


 *)(1),(     (2.3.6) 

2.3.1.1.1 Wavelet Transform in Frequency Domain 

The Fourier transform of the wavelet is 

dttj
s

th
s

H s )exp(1)(,  





 

   

dtjsHs )exp()(       (2.3.7) 
where H(ω) is the Fourier transform of the basic wavelet h(t). In the frequency domain the 

Fourier transform of the wavelet is scaled by 1/s, multiplied by a phase factor exp(-jωτ) and 

by a normalization factor s1/2. The amplitude of the scaled wavelet is proportional to s-1/2 in 

the time domain and is proportional to s1/2 in the frequency domain. Note that when the 

wavelets are normalized in terms of amplitude, their Fourier transforms of different scales 

will have the same amplitude. This is suitable for implementation of the continuous wavelet 

transform using the frequency domain filtering.  

Equation (2.3.7) shows a well known concept that a dilation t/s (s>1) of a function in 

the time domain produces a contraction sω of its Fourier transform. The term 1/s has a 



Chapter – 2 

 16 

dimension of frequency and is equivalent here to the frequency. However, the term ‘‘scale’’ 

is preferred to the term ‘‘frequency’’ for the wavelet transform. The term ‘‘frequency’’ is 

reserved to be a parameter related to the Fourier transform.  

The correlation between the signal and the wavelets in the time domain can be written 

as the inverse Fourier transform of the product of the Fourier transform of the wavelets and 

the Fourier transform of the signal: 




 djsHFssW f )exp()(*)(
2

),(     (2.3.8) 

The Fourier transforms of the wavelets )( sHs are referred to as the wavelet 

transform filters, and the impulse response of the wavelet transform filter is the scaled 

wavelet )/(2/1 sths , where the explicit phase shift exp ( j ) in the frequency and translation 

  in the time are removed. Therefore, the wavelet transform is a bank of wavelet transform 

filters with different scales s. 

In the definition of the wavelet transform, the kernel function, wavelet, is not 

specified. This is a difference between the wavelet transform and other transforms such as the 

Fourier transform. The theory of wavelet transform deals with general properties of the 

wavelet and the wavelet transform, such as the admissibility, regularity, and orthogonality. 

The wavelet basis is built to satisfy these basic conditions. The wavelets can be given as 

analytical or numerical functions. They can be orthonormal or nonorthonormal, continuous or 

discrete. One can choose or even builds a proper wavelet basis for a specific application. 

Therefore, when talking about the wavelet transform one used to specify what wavelet is used 

in the transform. 

The most important properties of the wavelets are the admissibility and regularity. 

According to the admissible condition the wavelet must oscillate to have its mean value equal 

to zero. According to the regularity condition the wavelet have exponential decay so that its 

first low order moments are equal to zero. Therefore, in the time domain the wavelet is just 

like a small wave that oscillates and vanishes, as that described by the name wavelet. The 

wavelet transform is a local operator in the time domain. The orthonormality is a property 

which belongs to the discrete wavelet transform.  
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2.3.2 Properties of the Wavelets 

This section discusses some basic properties of the wavelets. One of them is related to 

the fact that one must be able to reconstruct the signal from its wavelet transform. This 

property involves the resolution of identity, the energy conservation in the timescale space 

and the wavelet admissible condition. First any square integrable function which has finite 

energy and satisfies the wavelets admissible condition can be a wavelet. The second basic 

property is related to the fact that the wavelet transform should be a local operator in both 

time and frequency domains. Hence, the regularity condition is usually imposed on the 

wavelets. The third basic property is related to the fact that the wavelet transform is a 

multiresolution signal analysis. 

2.3.2.1 Admissible Condition 

2.3.2.1.1 Resolution of Identity 

The wavelet transform of a 1-D signal is a 2-D timescale joint representation. No 

information should be lost during the wavelet transform. Hence, the resolution of identity 

must be satisfied, that is expressed as 

212,,12 ,, ffcfhhfd
s
ds

hss       (2.3.9) 

where denotes the inner product so that <f1, hs, t> is the wavelet transform of f1 as defined 

in equation (2.3.6) and ch is a constant. In the left-hand side of equation (2.3.9) the extra 

factor1/s2 in the integral is the Haar invariant measure, owing to the timescale space 

differential elements, dτd(1/s)=dτds/s2. Here, positive dilation i.e. s>0 is assumed. Using the 

expression for the wavelet transform in the Fourier domain 

   2,,12 ,, fhhfd
s
ds

ss   

= 21
)(

22
*

21
*

1122
21)()()()(

4
1 


 ddesHFsHsFd
s
ds j    

=  1
2

11
*

211 )()()(
2
1  d

s
dssHFF  

=  12
*

211 )()(
2




dFFch            (2.3.10) 

where by using change of variables ω=sω1 and ds = dω/|ω1|, so that ds and dω are of the same 

sign. Because 0s , ds/s = dω/|ω|, then 

 



dHch )( 2      (2.3.11) 
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According to the Parseval’s equality in the Fourier transformwe have 

   21
*

2111
*

211 ,)()()(
2
1 ffdttffdFF 


  (2.3.12) 

Hence, the resolution of identity is satisfied on the condition that 

  



d
H

ch

2)(
         (2.3.13) 

2.3.2.1.2 Admissible Condition 

The condition in equation (2.3.13) is the admissible condition of the wavelet, which 

implies that the Fourier transform of the wavelet must be equal to zero at the zero frequency: 

  00
2 H      (2.3.14) 

Equivalently, in the time domain the wavelet must be oscillatory, like a wave, to have a zero-

integrated area, or a zero-mean value: 

  0)( dtth       (2.3.15) 

2.3.2.1.3 Energy Conservation 

When f1=f2, the resolution of identity, equation (2.3.6) becomes 

  dttfc
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dsdsW hf

2
2

2
)(),(      (2.3.16) 

This is the energy conservation relation of the wavelet transform, equivalent to the Parseval 

energy relation in the Fourier transform. 

2.3.2.1.4 Inverse Wavelet Transform 

From equation (2.3.6) the inverse wavelet transform is obtained as 
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The function f(t) is recovered from the inverse wavelet transform by the integrating in the 

timescale space the wavelets hs,τ(t) weighted by the wavelet transform coefficients Wf (s, τ). 

Thus, the wavelet transform is a decomposition of a function into a linear combination 

of the wavelets. The wavelet transform coefficients Wf (s, τ) are the inner products between 

the function and the wavelets. The Wf (s, τ) indicate how close the function f(t) is to the 

corresponding basis functions hs,τ(t). 

2.3.2.1.5 Regularity of Wavelet 

For the sake of simplicity, consider translation of the wavelet for τ = 0 and the 

convergence to zero of the wavelet transform coefficients with increasing 1/s and decreasing 
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s. The signal f(t) is expanded into the Taylor series at t=0 until order n. The wavelet transform 

coefficients become [13] 
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where the remainder in the Taylor series is 

 

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and f(p)(0) denotes the pth derivative of f(t) at t=0. Denoting the moments of the wavelets by 

Mp 

 dtthtM p
p )(     (2.3.19) 

it is easy to show that the last term in the right-hand side of equation (2.3.18) which is the 

wavelet transform of the remainder, decreases as sn+2. Then a finite development is obtained 

as 
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According to the admissible condition of the wavelet, M0=0, the first term in the right-hand 

side of equation (2.3.20) must be zero. The speed of convergence to zero of the wavelet 

transform coefficients Wf (s, t) with decreasing of the scale s or increasing of 1/s is then 

determined by the first nonzero moment of the basic wavelet h(t). It is in general required that 

the wavelets have the first n+1 moments until order n, equal to zero: 

  npdtthtM p
p ,,2,1,0for      0)(     (2.3.21) 

Then, according to equation (2.3.20) the wavelet transform coefficient Wf(s, t) decays as fast 

as sn+(1/2) for a smooth signal f(t). This regularity condition leads to localization of the wavelet 

transform in the frequency domain. The wavelet satisfying the condition (Equation 2.3.21) is 

called the wavelet of order n. In frequency domain, this condition is equivalent to the 

derivatives of the Fourier transform of the wavelet h(t) up to order n to be zero at the zero 

frequency ω = 0. 
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2.3.2.3 Multi-resolution Wavelet Analysis 

The wavelet transform performs the multi-resolution signal analysis with the varying 

scale factor s. The purpose of the multi-resolution signal analysis is decomposing the signal 

in multiple frequency bands in order to process the signal in multiple frequency bands 

differently and independently. Hence, the wavelet needs to be local in both time and 

frequency domains. Historically, looking for a kernel function which is local in both time and 

frequency domains has been a hard research topic and has led to invention of the wavelet 

transform. 

2.3.2.3.1 Localization in Time Domain 

According to the admissible condition the wavelet must oscillate to have a zero mean. 

According to the regularity condition the wavelet of order n has first n+1 vanishing moments 

and decays as fast as t-n. Therefore, in the time domain the wavelet must be a small wave that 

oscillates and vanishes, as that described by the name wavelet. The wavelet is localized in the 

time domain. 

2.3.2.3.2 Localization in Frequency Domain 

According to the regularity condition the wavelet transform with a wavelet of order n 

decays with s as sn+(1/2) for a smooth signal. According to the frequency domain wavelet 

transform, when the scale s decreases the wavelet H(sω) in the frequency domain is dilated to 

cover a large frequency band of the signal Fourier spectrum. Therefore, the decay with s as 

sn+(1/2) of the wavelet transform coefficient implies that the Fourier transform of the wavelet 

must decay fast with the frequency ω. The wavelet must be local in frequency domain. 

2.3.2.3.3 Band-Pass Filters 

In the frequency domain, the wavelet is localized according to the regularity 

condition, and is equal to zero at the zero frequency according to the admissible condition. 

Therefore, the wavelet is intrinsically a band-pass filter. 

2.3.2.4 Linear Transform Property 

By definition the wavelet transform is a linear operation. Given a function f(t), its 

wavelet transform Wf(s, τ) satisfies the following relations 

1. Linear superposition without the cross terms 
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 sWsWsW ffff     (2.3.22) 

2. Translation 

),(),( 0)()( 0
tsWsW tfttf       (2.3.23) 

3. Rescale 

),(),( )()(2/1 


sWsW tftf
    (2.3.24) 

Different from the standard Fourier transform and other transforms, the wavelet transform is 

not ready for closed form solution apart from some very simple functions such as: 

1. For f(t)=1, from the definition (Equation 2.3.6) and the admissible condition of the 

wavelets, Equation (2.3.15) 

0),( sW f      (2.3.25) 

The wavelet transform of a constant is equal to zero. 

2. For a sinusoidal function f(t)=exp(jω0t), directly from the Fourier transform of the 

wavelets 

)exp()(),( 00
*  jsHssW f     (2.3.26) 

The wavelet transform of a sinusoidal function is a sinusoidal function of the time 

shift τ. Its modulus ),( sW f depends on the scale s as )( 0
* sHs . 

3. For a linear function f(t)=t,  
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Hence, if the wavelet h(t) is regular and of order n≥1 so that its moments of order n≥1 

is equal to zero and its derivatives of first-order is equal to zero at ω=0, then the wavelet 

transform of f(t)=t is equal to zero. 

2.3.2.4.1 Wavelet Transform of Regular Signals 

According to earlier discussion, the wavelet transform of a constant is zero. The 

wavelet transform of a linear signal is zero, when the wavelet has the first-order vanishing 

moment: M1=0. The wavelet transform of a quadratic signal could be zero, when the wavelet 

has the first-and second-order vanishing moments: M1 = M2 = 0. The wavelet transform of a 
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polynomial signal of degree m could be equal to zero, when the wavelet has the vanishing 

moments up to the order n≥m. 

Thus, the wavelet transform is efficient for detecting singularities in signal and 

analyzing nonstationary, transient signal. For most functions the wavelet transforms have no 

closed analytical solutions and can be calculated only by numerical computer or by optical 

analog computer. The optical continuous wavelet transform is based on the explicit definition 

of the wavelet transform Equation (2.3.6) and implemented using a bank of optical wavelet 

transform filters as described in Section 2.3.1.1.1 in the Fourier plane in an optical correlator 

[14], [15], [16]. 

2.3.3 Discrete Wavelet Transform 

The continuous wavelet transform is a mapping of a 1-D time signal into a 2-D 

timescale joint representation. The time bandwidth product of the continuous wavelet 

transform output is the square of that of the signal. For most applications, however, the goal 

of signal processing is to represent the signal efficiently with fewer parameters. The use of 

the discrete wavelet transform can reduce the time-bandwidth product of the wavelet 

transform output. 

The discrete wavelet transform is understood as the continuous wavelets with the 

discrete scale and translation factors. The wavelet transform is then evaluated at discrete 

scales and translations. The discrete scale is expressed as iss 0 , where i is integer and s0>1 is 

a fixed dilation step. The discrete translation factor is expressed as isk 00  , where k is 

integer. The translation depends on the dilation is0 . The corresponding discrete wavelets are 

written as 

))(()( 000
2/

0,
iii

ki sktshsth    
)( 00

2/
0 ktshs ii        (2.3.28) 

The discrete wavelet transform with the dyadic scaling factor with s0 = 2 is effective in the 

computer implementation. 

Wavelet Frame: With the discrete wavelet basis, a continuous function f(t) is transformed to 

a sequence of wavelet coefficients 

  kikif hfdtthtfW ,
*
, ,)()(     (2.3.29) 
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A raising questing for the discrete wavelet transform is how well the function f(t) can 

be reconstructed from the discrete sequence of wavelet coefficients: 


i k

kif thkiWAtf )(),()( ,       (2.3.30) 

where A is a constant that does not depend on f(t). Obviously, if s0 is close enough to 1 and τ0 

is small enough, the set of wavelets approaches as continuous. The reconstruction (Equation 

2.3.30) is then close to the inverse continuous wavelet transform. The signal reconstruction 

takes place without restrictive conditions other than the admissible condition on the wavelet 

h(t). On the other hand, if the sampling is sparse, s0 = 2 and τ0 = 1, the reconstruction 

(Equation 2.3.30) can be achieved only for some special choices of the wavelet h(t). 

Daubechies [17] has proven that the necessary and sufficient condition for the stable 

reconstruction of a function f(t) from its wavelet coefficients Wf(i, k) is that the energy, which 

is the sum of square moduli of Wf(i, k), must lie between two positive bounds: 

2

,

2
,

2 , 
kj

ki fBhffA      (2.3.31) 

where 2f  is the energy of f(t), A>0, B < ∞ and A, B are independent of f(t). When A=B, the 

energy of the wavelet transform is proportional to the energy of the signal. This is similar to 

the energy conservation relation (Equation 2.3.16) of the continuous wavelet transform. 

When A≠B, there is still some proportional relation between the energies of the signal and its 

wavelet transform. When Equation (2.3.31) is satisfied, the family of the wavelet basis 

functions {hi,k(t)} with i, k   Z is referred to as a frame and A, B are termed frame bounds. 

The closer are A and B, the more accurate is the reconstruction.  

When A=B, the frame is tight and the discrete wavelets behave exactly like an 

orthonormal basis. When A=B=1 Equation (2.3.31) is simply the energy conservation 

equivalent to the Parseval relation of the Fourier transform. It is important to note that the 

same reconstruction works even when the wavelets are not orthogonal to each other. 

When A ≠ B the reconstruction can still work exactly for the discrete wavelet 

transform if reconstruction uses the synthesis function basis, which is different from the 

decomposition function basis for analysis. The former constitute the dual frame of the later. 



Chapter – 2 

 24 

2.3.4 Applications of the Wavelet Transform 

This section presents some popular applications of the wavelet transform for 

multiresolution transient signal analysis and detection, image edge detection, and 

compression. 

2.3.4.1 Two-Dimensional Wavelet Transform 

The wavelet transform can be easily extended to 2-D case for image processing 

applications. The wavelet transform of a 2-D image f(x, y) is 

 








 
 dxdy

s
vy

s
uxyxf

ss
vussW

yxyx
yxf ;ψ),(1),;,(   (2.3.32) 

that is a four-dimensional function. It is reduced to a set of two-dimension functions of (u, v) 

with different scales, when the scale factors sx=sy=s. When ψ(x, y)= ψ(r) with r = (x2+y2)1/2, 

the wavelets are isotropic and have no selectivity for spatial orientation. Otherwise, the 

wavelet can have particular orientation. The wavelet can also be a combination of the 2-D 

wavelets with different particular orientations, so that the 2-D wavelet transform has 

orientation selectivity. 

 
 

Fig 2.1. Schematic two-dimensional wavelet decomposition with quadrature mirror low-pass 
and high-pass filters p(n) and q(n) [11]. 
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At each resolution the pair of the 1-D low-pass and high-pass filters are first applied 

to each row of the image that result in a horizontal approximation image and a horizontal 

detail image. Then the pair of the 1-D filters are applied to each column of the two 

horizontally filtered images. The down-sampling by two is downsampling result in four 

subband images: (LL) for the low-pass filtered both horizontally and vertically image, (HH) 

for the highpass filtered both horizontally and vertically image, (LH) for lowpass filtered in 

horizontal direction and high-pass filtered in vertical direction image and (HL) for high-pass 

filtered in vertical direction and high-pass filtered in horizontal direction image, as shown in 

Figure 2.1 [18]. 

All the four images have the half size of the input image. The detail images (LH), 

(HL) and (HH) are now put in three respective quadrants as shown in Figure 2.2. The image 

(LL) is the approximation image in both horizontal and vertical directions and is down-

sampled in both directions. Then, whole process of two-step filtering and down-sampling is 

applied again to the image (LL) in this lower resolution level. The iteration can continue 

many times until, for instance, the image (LL) has only a size of 2X2. Figure 2.2 shows a 

disposition of the detail images (LH), (HL) and (HH) at three resolution levels (1, 2, 3) and 

the approximation image (LL) at the fourth low resolution level (4).  

 
 

 
Fig 2.2: Presentation of the two-dimensional wavelet decomposition and high-pass filters 

p(n) and q(n) [11]. 
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If the original image has L2 pixels at the resolution i=0, then each image (LH), (HL) 

and (HH) at resolution level i has (L/2i)2 pixels (i>0) The total number of pixels of the 

orthonormal wavelet representation is therefore still equal to L2, as shown in Figure 2.2.  

The dyadic wavelet transform does not increase the volume of data. This is owing to 

the orthonormality of the discrete wavelet decomposition. 

2.3.4.2 Image Compression 

Image compression is to use fewer bits to represent the image information for 

different purposes, such as image storage, image transmission, and feature extraction. The 

general idea behind is to remove the redundancy in an image.  

A popular method for image compression for removing the spatial redundancy is 

transform coding that represents the image in the transformation basis such that the 

transformation coefficients are decorrelated. The multiresolution wavelet decomposition is 

projections onto subspaces spanned by scaling function basis and the wavelet basis. The 

projections on the scaling function basis yield approximations of the signal and the 

projections on the wavelet basis yield the differences between the approximations at two 

adjacent resolution levels. Therefore, the wavelet detail images are decorrelated and can be 

used for image compression. Indeed, the detail images obtained from the wavelet transform 

consist of edges in the image. There is only little correlation among the values on pixels in 

the edge images. 

One example of image compression applications is the grayscale fingerprint image 

compression using wavelet transform [19]. The fingerprint images are captured as 500 pixels 

per inch and 256 gray levels. The wavelet sub band decomposition is accomplished by the 

tree algorithm described by Figure 2.1. The dominant ridge frequency in fingerprint images is 

in roughly ω=π/8 up to ω=π/4 bands. Because the wavelet decomposition removes the 

correlation among image pixels, only the wavelet coefficients with large magnitude are 

retained.  

Most wavelet transform coefficients are equal or close to zero in the regions of 

smooth image intensity variation. After a thresholding on the wavelet coefficients the 

retained coefficients are subsequently coded according to a scalar quantizer and are mapped 

to a set of 254 symbols for Huffman encoding using the classical image coding technique. 
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The thresholding and the Huffman coding can achieve high compression ratio. The decoder 

can now reconstruct approximations of the original images by performing inverse wavelet 

transform using the low-pass and high-pass filter analysis. After compression at 20:1, the 

reconstructed images conserve the ridge features: ridge ending or bifurcations that are 

definitive information useful for determination. 

2.4   Chaos Function. 

Chaos functions have been used mainly to develop the mathematical models of non-

linear systems. There are several interesting properties of the chaos functions [20]. These 

functions generate iterative values which are completely random in nature but limited 

between bounds. 

Convergence of the iterative values after any value of iterations can never be seen. Chaos 

functions have extreme sensitivity to the initial conditions. Three chaos functions are 

discussed below 

(a) The first chaos function is the logistic map [20], [21], [22] and is defined as: 

)1.(.)( xxpxf       (2.4.1) 

This function is bounded for 0 < p < 4 and can be written in the iterative form as: 

)1.(.1 nnn xxpx        (2.4.2) 

with ‘x0’ as the initial value. This is also known as the seed value for the chaos function.  

(b) The second chaos function is the tent map [20],[21], [22] and is defined as: 
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This function is bounded for 0< a ≤ 2 and can be written in the iterative form as: 
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with ‘x0’ as the initial value.  

(c) The third chaos function is the Kaplan–Yorke map [20], [21], [22] and is defined as: 
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     (2.4.5) 

This is bounded for 0 ≤ a ≤ 2 and 0 ≤ b ≤ 1 and can be written in the iterative form as: 

1mod.1 nn xax        (2.4.6) 
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)4cos(1 nnn xbyy      (2.4.7) 

with ‘x0’ as the initial value. These chaos functions are used to generate random phase masks. 

Logistic map and tent map are one-dimensional chaos functions and the Kaplan–Yorke map 

is a two-dimensional chaos function. For the two-dimensional chaos function, two seed 

values are required to generate the CRPM (Chaotic random phase mask). 

2.5   Random phase Mask. 

The process of making a random phase mask is described as follows. First, a chaotic 

map S(x, y) is generated by introducing some input parameters to the map. These input 

parameters are called seed values and the size of the map respectively. A typical chaotic map 

of size M X N pixels generated based on the mentioned technique is shown in fig 2.3 and its 

chaotic behavior is plotted in fig 2.4. 

The chaotic map obtained in fig 2.3 is real. The random chaotic map is generated from 

the chaotic map using:                







 ),(

2
exp),( yxSiyx 

     (2.4.8) 

 

Fig 2.3. A chaotic map of size 256X256. 
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Fig 2.4. Behaviour of the chaotic map shown in Fig 2.3. 
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ANALYTICAL STUDY OF EXISTING METHODS 

This chapter discusses three different methods, used for color image encryption and 

decryption process proposed in [1] and [2]. For further discussion a 2-D color image will be 

denoted by a 2-D function f(x, y) where x, y are the spatial coordinates of the image. 

Therefore an image I of size M X N can be represented as: 

 
 


M

x

N

y
yxf

1 1
),(I      (3.1) 

where  f(x, y) is further represented as follows: 





3
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),(),(

i
yxfyxf i      (3.2) 

Here, i denote the index of primary color component i.e. ),(1 yxf , ),(2 yxf and 

),(3 yxf  which correspond to three primary color channels viz. Red, Green and Blue 

respectively. Without the loss of generality M=N can be chosen for analysis of algorithms. 

3.1 Algorithm 3.1: Image encryption using FRT: As proposed in [1], the original image 

),( yxf  is first segregated into its three primary color channels (R, G and B). Each of these 

channels is then multiplied by a random phase function ),(1 yx  and is subsequently Fourier 

transformed using a 2-D Fourier transform using parameters α and β. In the next step, the 

Fourier transformed data is multiplied by another random phase function ),(2 yx , which is 

statistically independent of the first random phase function. Another 2-D Fourier transform 

with parameters γ and δ is now performed on each of the primary color channels obtained 

after previous step, thus, producing three encrypted primary color channels. These channels, 

when merged together, produce an encrypted image I1 = g(x, y).  

Decryption process is the inverse of the encryption process. Encrypted image is first 

segregated into three primary color channels i.e. R, G and B denoted by ),(1 yxg , ),(2 yxg  

and ),(3 yxg . These channels are inverse Fourier transformed using a 2-D Fourier transforms 

of suitable fractional order. Each of these channels is then multiplied by  ),(2 yxconj   and 

inverse Fourier transformed again, using a 2-D Fourier transform of suitable fractional order. 
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A multiplication by  ),(1 yxconj   now produces R, G and B channels of a decrypted image, 

say ),(' yxfI  . 

Computation complexity:  

 Encryption: Let I be an image of size N X N. Encryption process starts with three 

primary color channels of I and involves a sequence of following steps: 

(i) Multiplication by ),(1 yx : This multiplication takes place element by element 

between R, G and B components of original image and 2-D matrix of random phase function

),(1 yx , which involves N2 multiplication operations. Therefore its computation complexity 

is  2NO . 

(ii) 2-D Fourier transform of the output of step (i): Computation of 2-D Fourier 

transform is divided into two phases : 

a) Generation of Fourier transform matrix. 

b) Computation of 2-D Fourier transform of input matrix. 

Computation complexity of this process is evaluated to  NNNO 2
3 log2   [23]. 

(iii) Multiplication by ),(2 yx : Similar to the step (i), the computation complexity of 

this step is also  2NO . 

(iv)  2-D Fourier transform of the output of step (iii): Similar to the step (ii) 

Computation complexity of this process is evaluated to  NNNO 2
3 log2  . 

Therefore, time complexity of encryption process of Algorithm 3.1 (step (i) – (iv)) 

can be represented as follows: 

       NNNONONNNONOencryptionT 2
32

2
32 log2log2   

 NNNNO 2
23 log224   

 34NOencryptionT   

It is to be noted here that lower order terms can be neglected while evaluating 

asymptotic upper bound on time complexity [24] [25]. 

Decryption: Let I1=g(x, y) be the outcome of encryption process and the size of I1 be 

NXN. Decryption process starts with three primary color channels of g and involves a 

sequence of following steps: 
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(i) 2-D inverse Fourier transform of R,G & B of I1 : Computation of 2-D inverse 

Fourier transform is divided into two phases : 

a) Generation of inverse Fourier transform matrix. 

b) Computation of 2-D Fourier transform of input matrix. 

Computation complexity of this process is evaluated to  NNNO 2
3 log2   [23]. 

(ii) Multiplication by  ),(2 yxconj  : This multiplication takes place element by element 

between R, G and B components of output of step (i) and 2-D matrix of random phase 

function  ),(2 yxconj  , which involves N2 multiplication operations. Therefore its 

computation complexity is  2NO . 

(iii) 2-D Fourier transform of the output of step (ii): Similar to the step (i) 

Computation complexity of this process is evaluated to  NNNO 2
3 log2  . 

(iv)  Multiplication by  ),(1 yxconj   : Similar to the step (i), the computation complexity 

of this step is also  2NO . 

Therefore, time complexity of decryption process of Algorithm 3.1 (step (i) – (iv)) 

can be represented as follows: 

       NNNONONNNONOdecryptionT 2
32

2
32 log2log2   

 NNNNO 2
23 log224   

 34NOdecryptionT   

Thus, the computation complexity of algorithm 3.1 is evaluated to:  

 381.3 NOdecryptionTencryptionTT   

3.2 Algorithm 3.2 & 3.3: Image encryption using FRT and chaos:  

Algorithm 3.2 and 3.3 follow a sequence of operations, similar to algorithm 3.1 but 

with a little difference. As discussed in section 2.3, chaos functions generate iterative values 

which are completely random in nature but limited between bounds [2]. A color image 

encryption and decryption method was proposed in [2]. For further discussion only (i) 

Logistic map and (ii) Kaplan-Yorke map are chosen due to the reason that the Logistic map 

and Tent map are one dimensional chaos functions whereas the Kaplan-Yorke map is a two-

dimensional chaos function. These chaos functions are used to generate the CRPM (chaotic 
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random phase mask). In case of one-dimensional chaos functions (Logistic map and Tent 

map) only one seed value is needed whereas in case of a two-dimensional chaos functions 

(Kaplan-Yorke map) two seed values are needed to generate the CRPM. 

The original image I denoted by ),( yxf  is composed of three primary color channels 

viz. R, G and B. Each of these channels is multiplied by the first CRPM and is subsequently 

Fourier transformed using a 2-D Fourier transform. In the next step, the Fourier transformed 

coefficients are multiplied by another CRPM, which is generated by a different seed value 

than the first CRPM. Another 2-D Fourier transform is now performed on each of the primary 

color channels obtained after previous step, thus, producing three encrypted primary color 

channels. These channels, when merged together, produce an encrypted image I1 = g(x, y).  

For further discussion, Algorithm 3.2 refers to encryption and decryption method 

using fractional Fourier transform and Logistic map and Algorithm 3.3 refers to encryption 

and decryption method using fractional Fourier transform and Kaplan-Yorke map. In both the 

methods, chaotic functions are used to generate the first and second CRPM denoted by 

),(1 yx  and ),(2 yx respectively. Following sections discuss the computation complexity of 

Algorithm 3.2 and Algorithm 3.3 separately. 

3.2.1 Computation complexity of Algorithm 3.2:  

 Encryption: Let I be an image of size N X N. Encryption process starts with three 

primary color channels of I and involves a sequence of following steps: 

(i) Multiplication by first CRPM ),(1 yx  : This multiplication takes place in two 

phases (a) Generation of ),(1 yx  using logistic map, which is a linear process having  2NO  

computation complexity and (b) element by element multiplication of ),(1 yx  with ),( yxf i . 

The computation complexity of this phase is  2NO . Therefore computation complexity of 

step (i) is  22NO . 

(ii) 2-D Fourier transform of the output of step (i): Similar to section 3.1, computation 

complexity of this step  NNNO 2
3 log2  .  

(iii) Multiplication by second CRPM ),(2 yx : Similar to the step (i), the computation 

complexity of this step is also  22NO . 
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(iv)  2-D Fourier transform of the output of step (iii): Similar to the step (ii) 

Computation complexity of this process is evaluated to  NNNO 2
3 log2  . 

Therefore, computation complexity of encryption process of Algorithm 3.2 (step (i) – 

(iv)) can be represented as follows: 

       NNNONONNNONOencryptionT 2
32

2
32 log22log22   

 NNNNO 2
23 log244   

 34NOencryptionT   

Decryption: Let I1=g(x, y) be the outcome of encryption process. Size of I1 is NXN. 

Decryption process starts with three primary color channels of g and involves a sequence of 

following steps: 

(i) 2-D inverse Fourier transform of R,G & B of I1 : Similar to section 3.1 

computation complexity of this step is  NNNO 2
3 log2  . 

(ii) Multiplication by  ),(2 yxconj  : This multiplication takes place element by element 

between R, G and B components of output of step (i) and 2-D matrix of random phase 

function  ),(2 yxconj  , which involves N2 multiplication operations. Therefore its 

computation complexity is  22NO , out of which  2NO  time is required to produce 

 ),(2 yxconj   from ),(2 yx . 

(iii) 2-D Fourier transform of the output of step (ii): Similar to the step (i) 

Computation complexity of this step is evaluated to  NNNO 2
3 log2  . 

(iv)  Multiplication by  ),(1 yxconj   : Similar to the step (ii), the computation complexity 

of this step is also  22NO . 

Therefore, computation complexity of decryption process of algorithm 3.2 (step (i) – 

(iv)) can be represented as follows:  

       NNNONONNNONOdecryptionT 2
32

2
32 log22log22   

 NNNNO 2
23 log244   

 34NOdecryptioT
n
  

Thus, the computation complexity of Algorithm 3.2 is evaluated to:  

 382.3 NOdecryptionTencryptionTT   
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3.2.2 Computation complexity of Algorithm 3.3:  

As discussed in the beginning of section 3.2, computation of algorithm 3.3 is similar to 

algorithm 3.2 except the difference that algorithm 3.3 uses Kaplan-Yorke function to generate 

),(1 yx  and ),(2 yx . Therefore, computations using Kaplan-Yorke function only may cause 

difference in computation times of algorithm 3.2 and algorithm 3.3 

Encryption: Let I be an image of size N X N. Encryption process starts with three 

primary color channels of I and involves a sequence of following steps: 

(i) Multiplication by first CRPM ),(1 yx  : This multiplication takes place in two 

phases (a) Generation of ),(1 yx  using Kaplan-Yorke map, which is a linear process having 

 2NO  computation complexity and (b) element by element multiplication of ),(1 yx  with 

),( yxf i  which is also  2NO . Therefore computation complexity of step (i) is  22NO . 

(ii) 2-D Fourier transform of the output of step (i): Similar to section 3.2.1, 

computation complexity of this step  NNNO 2
3 log2  . 

(iii) Multiplication by second CRPM ),(2 yx : Similar to the step (i), the computation 

complexity of this step is also  22NO . 

(iv)  2-D Fourier transform of the output of step (iii): Similar to the step (ii) 

computation complexity of this process is  NNNO 2
3 log2  . 

Therefore, computation complexity of encryption process of algorithm 3.3 (step (i) – 

(iv)) can be represented as follows: 

       NNNONONNNONOencryptionT 2
32

2
32 log22log22   

 NNNNNO 2log244 2
23   

 34NOencryptionT   

Decryption: Let I1=g(x, y) be the outcome of encryption process. Size of I1 is NXN. 

Decryption process starts with three primary color channels of g and involves a sequence of 

following steps: 

(i) 2-D inverse Fourier transform of R, G & B of I1: Similar to section 3.2.1 

computation complexity of this step is  NNNO 2
3 log2  . 

(ii) Multiplication by  ),(2 yxconj  : Similar to section 3.2.1, computation complexity of 

this step is  22NO .  
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(iii)2-D Fourier transform of the output of step (ii): Similar to the step (i), computation 

complexity of this step is evaluated to  NNNO 2
3 log2  . 

(iv) Multiplication by  ),(1 yxconj   : Similar to the step (ii), the computation complexity 

of this step is also  22NO . 

Therefore, computation complexity of decryption process of method 1 (step (i) – (iv)) 

can be represented as follows:  

       NNNONONNNONOdecryptionT 2
32

2
32 log22log22   

 NNNNNO 2log244 2
23   

 34NOdecryptionT   

Thus, the computation complexity of algorithm 3.3 is evaluated to:  

 383.3 NOdecryptionTencryptionTT  . 
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PROPOSED ALGORITHMS. 
 

Chapter 3 discussed that a color image I = f(x,y) of size M X N consists of three 

primary color channels viz. RED, GREEN and BLUE. For simplicity the image size is 

assumed to be N X N. This chapter proposes three image-encryption and decryption 

algorithms based on the Discrete Wavelet Transform, fractional Fourier transform and 

chaotic logistic-map and Kaplan-Yorke map. Each of these methods follows a similar 

sequence of operations but differing in their implementation. An overview of the encryption 

and decryption process is as follows.  

As shown in fig 4.1, initially, the RED, GREEN and BLUE channels of the original 

image are segregated. Rests of the following operations are applied concurrently to these 

channels. Initially, the DWT2 operation is performed over each channel to generate: 

  31        ,),(2  iyxfDWT i  
This distribution is encoded by the first CRPM which is mathematically expressed as the 

phase function 





 ),(

2
exp 1 yxSj  , where ),(1 yxS is the random number sequence generated by 

the chaos function. The first 2-D FRT operation is then performed over this to generate: 

 














 ),(

2
exp*),( 12, yxSjyxfDWTF i




 
where γ, δ are the fractional orders of the first 2-D FRT and * denote the element by element 

multiplication between two matrices of same order. The resultant matrix is encoded by the 

second CRPM which is mathematically expressed as the phase function 





 ),(

2
exp 2 yxSj  , 

where ),(2 yxS is the random number sequence generated by the chaos function for a 

different seed value than the first CRPM. . The second FRT operation is then performed over 

this to give us: 

 






























 ),(

2
exp*),(

2
exp),( 212,, yxSjyxSjyxfDWTFF i




 
where α, β are the fractional orders of the second 2-D FRT. Each channel is now operated 

with IDWT2 to produce R, G and B channel of the encrypted image. These channels are 

merged to produce the encrypted image g(x, y) as per the following formulae:   
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 










































 ),(

2
exp*),(

2
exp*),(),( 212,,21 yxSjyxSjyxfDWTFFIDWTyxgI i




… … … … (4.1) 

 
 

The decryption process as shown in fig 4.2 is the inverse of the encryption process. 

The DWT2 operation is performed over g(x,y), the encrypted image, to generate:  

 ),(2 yxgDWT  
 

 
 

The first inverse FRT (of order -α, -β) is now applied and followed by a multiplication 

by conjugate of second CRPM, thus generating: 

   















 ),(
2

exp*),( 22, yxSjconjyxgDWTF 
  

Fig 4.1. Encryption process using DWT2 in proposed algorithm. 

Fig 4.2. Decryption process using IDWT2 in proposed algorithm. 
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On the output obtained, the second FRT (of order -γ, -δ) is performed and then 

multiplication by the conjugate of first CRPM takes place. The decrypted image from this 

outcome is now obtained by performing IDWT2 as follows:  

  


















































  ),(

2
exp*),(

2
exp*),(),( 122,,2

' yxSjconjyxSjconjyxgDWTFFIDWTyxf 
  

… … … … (4.2) 
4.1 Algorithm 4.1: Image encryption and decryption using DWT2 and FRT. 

 This algorithm uses DWT2 and Fα, β in encryption process and IDWT2 and F-α,-β  in 

decryption process as per the general encryption and decryption schemes shown in fig. 4.1 

and fig. 4.2. Both of the random phase functions are generated as a 2-D sequence of random 

numbers and they are not chaos based in this algorithm. 

Computation complexity: 

Let the input image I be of size N X N. Analysis of the algorithm is divided into two 

phases viz. Encryption and Decryption. 

Encryption: Image encryption process involves following steps: 

1. Application of DWT2 on the primary color channels fi(x, y) of original image. 

2. Encoding by first random phase function. 

3. Application of first 2-D FRT. 

4. Encoding by second random phase function. 

5. Application of second 2-D FRT. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 6. 

In step 1, each of the primary color channels of original image is operated using 

DWT2, which is an  NO  process. Thus step 1 takes  NO  time and produces an output 

image of size
2

X
2

NN . Therefore, steps 2 to 6 are to be applied on a smaller sized image than 

the original. 

Computation of 2-D FRT of an image of size N X N is a  NNNO 2
3 log2   [23] 

process. Also, the generation and multiplication of first and second random phase function is 

an O(2N2) process. But now, as the input image size for steps 2 to 6 has reduced to
2

X
2

NN ,  

(i) Step 2 takes 


























22
2

22 NONO  computation time. 
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(ii) Step 3 takes 

























2
log

22
2 2

3 NNNO  = 















2
log

24 2

3 NNNO  time. 

Similar to step 2 and 3, step 4 and 5 also take 







2

2NO  and 















2
log

24 2

3 NNNO  

computation time, respectively. Step 6 involves computation of inverse wavelet transform, 

which is also a )(NO function. Therefore, the computation complexity of encryption is: 



































22
log

242
)(

2

2

32 NONNNONONOencryptionT  

)(
2

log
24 2

3

NONNNO 













  
















 NNNNNO 2

2
log

2 2
2

3

 











2

3NOencryptionT  

Decryption: Image decryption process involves following steps: 

1. Application of DWT2 on the primary color components gi(x,y) of encrypted image. 

2. Application of 2-D inverse FRT. 

3. Decoding by conjugate of second CRPM. 

4. Application of 2-D inverse FRT. 

5. Decoding by conjugate of first CRPM. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 5. 

In step 1, each of the primary color channels of encrypted image is operated using 

DWT2, which is an  NO  process. Thus step 1 takes  NO  time and produces an output 

encrypted image of size
2

X
2

NN . Therefore, steps 2 to 6 are to be applied on a smaller sized 

image than the original encrypted image. 

(i) Step 2 takes 
























2
log

22
2 2

3 NNNO  = 















2
log

24 2

3 NNNO  time. 

(ii)  Step 3 takes 


























22
2

22 NONO  time. 



Chapter – 4 

 41 

Similar to step 2 and 3, step 4 and 5 also take 















2
log

24 2

3 NNNO  and 







2

2NO  

computation time, respectively. Step 6 involves computation of inverse wavelet transform, 

which is an )(NO process. Therefore, the computation complexity of decryption is: 














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


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
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log
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)(
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2

32 NONNNONONOdecryptionT  
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log
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3
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  
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


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
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 NNNNNO 2
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log
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



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




2

3NOdecryptionT  

Thus, the computation complexity of algorithm 4.1 is evaluated to:  

 3
1.4 NOdecryptionTencryptionTT   

4.2 Algorithm 4.2: Image encryption and decryption using DWT2, FRT and logistic map. 

This algorithm is similiar to the Algorithm 4.1 except the fact that both of the random 

phase functions are generated using Chaotic Logistic map (as discussed in section 2.5). 

Computation complexity: 

Similar to the Algorithm 4.1, estimation of computation time of Algorithm 4.2 is divided into 

following two phases: 

Encryption: Image encryption process involves following steps: 

1. Application of DWT2 on the primary color channels fi(x,y) of original image. 

2. Encoding by first random phase function. 

3. Application of first 2-D FRT. 

4. Encoding by second random phase function. 

5. Application of second 2-D FRT. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 5. 

For an input image of size NXN, step 1 is an  NO  process which produces 
2

X
2

NN  

image. Thus, input for step 2 to 6 is an 
2

X
2

NN  image matrix. Similar to section 4.1, 
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computation time of step 2 and step 4 is 







2

2NO  and that of step 3 and 5 is 
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3 NNNO . Step 6 involves computation of inverse wavelet transform, which is 

an )(NO function. Therefore, the computation complexity of encryption is: 
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3NOencryptionT  

Decryption: Image decryption process involves following steps: 

1. Application of DWT2 on the primary color components gi(x, y) of encrypted image. 

2. Application of 2-D inverse FRT. 

3. Decoding by conjugate of second CRPM. 

4. Application of 2-D inverse FRT. 

5. Decoding by conjugate of first CRPM. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 5. 

For an input image of size NXN, step 1 is an  NO  process which produces 
2

X
2

NN  

image. Thus, input for step 2 to 6 is an 
2

X
2

NN  image matrix. Similar to section 4.1, 

computation time of step 2 and step 4 is 







2

2NO  and that of step 3 and 5 is 





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





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2
log

24 2

3 NNNO . Step 6 involves computation of inverse wavelet transform, which is 

an )(NO function. Therefore, the computation complexity of decryption is: 
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Thus, the computation complexity of algorithm 4.2 is evaluated to:  

 3
2.4 NOdecryptionTencryptionTT   

4.3 Algorithm 4.3: Image encryption and decryption using DWT2, FRT and Kaplan-Yorke 

map. 

This algorithm is similiar to the Algorithm 4.1 except the fact that both of the random 

phase functions are generated using Kaplan-Yorke map, which is a two-dimensional function 

(as discussed in section 2.5). 

Computation complexity: 

Similar to the Algorithm 4.1, estimation of computation time of Algorithm 4.3 is divided into 

following two phases: 

Encryption: Image encryption process involves following steps: 

1. Application of DWT2 on the primary color channels fi(x,y) of original image. 

2. Encoding by first random phase function. 

3. Application of first 2-D FRT. 

4. Encoding by second random phase function. 

5. Application of second 2-D FRT. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 5. 

For an input image of size NXN, step 1 is an  NO  process which produces 
2

X
2

NN  

image. Thus, input for step 2 to 6 is an 
2

X
2

NN  image matrix. Similar to section 4.1, 

computation time of step 2 and step 4 is 







2

2NO  and that of step 3 and 5 is 
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3 NNNO . Step 6 involves computation of inverse wavelet transform, which is 

an )(NO function. Therefore, the computation complexity of encryption is: 
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Decryption: Image decryption process involves following steps: 

1. Application of DWT2 on the primary color components gi(x, y) of encrypted image. 

2. Application of 2-D inverse FRT. 

3. Decoding by conjugate of second CRPM. 

4. Application of 2-D inverse FRT. 

5. Decoding by conjugate of first CRPM. 

6. Application of IDWT2 on the R, G, and B channels obtained after step 5. 

For an input image of size NXN, step 1 is an  NO  process which produces 
2

X
2

NN  

image. Thus, input for step 2 to 6 is an 
2

X
2

NN  image matrix. Similar to section 4.1, 

computation time of step 2 and step 4 is 
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3 NNNO . Step 6 involves computation of inverse wavelet transform, which is 

an )(NO function. Therefore, the computation complexity of decryption is: 



































22
log

242
)(

2

2

32 NONNNONONOderyptionT  

)(
2

log
24 2

3

NONNNO 













  
















 NNNNNO 2

2
log

2 2
2

3

 











2

3NOdecryptionT  

Thus, computation complexity of algorithm 4.3 is evaluated to:  
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4.4 Comparison with existing methods:  

For an image I of size N X N, as discussed in chapter 3, the computation complexity of 

Algorithms 3.1, 3.2 and 3.3 is  38NO  i.e.  

,81.3
3NT   

382.3 NT   

383.3 and NT   

This chapter proposed three algorithms viz. algorithm 4.1, 4.2 and 4.3, in section 4.1, 

4.2 and 4.3 respectively. Computation complexity of these algorithms is evaluated to be

 3NO  i.e.  

,1.4
3NT   

3

2.4 NT   

3

3.4 and NT   

Therefore,  

8
1
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T
, 

8
1

2.3

2.4 
T

T
, and 

8
1

3.3

3.4 
T

T
.   (4.4.1) 

Based on equation (4.4.1), this work claims that the proposed algorithms 4.1, 4.2 and 

4.3 are 8 time faster than the existing algorithms. This claim needs to be verified by 

conducting appropriate simulations. Following chapter discusses evidentory simulations in 

support to these calims. 
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SIMULATION RESULTS 

In order to investigate the quality of encryption, decryption and efficiency of 

proposed algorithms, digital simulations were performed in an environment as under: 

Processor – Intel® Core™ i3 CPU, M380 2.53GHz. 

RAM – 3.00 GB. 

Operating System – 64-bit Windows 7. 

Simulation tool – MATLAB® R2008b.  

For investigation, two parameters were used to quantify the information required for 

comparison between existing algorithms and the proposed algorithms and these parameters 

are as under: 

(i) Mean Square Error: Let ),( yxfI  and ),('' yxfI   be the input image to and 

decrypted image from an algorithm respectively and let the size of I and I’ be MXN. MSE 

between each of the primary color channels of I and I’ is evaluated, which is formulated as 

follows [2]: 

 
 


M

x

N

y
yxfyxf

NM
MSE iii

1 1
),(),(11 2'    (5.1) 

(ii) Computation time: Another parameter for evaluating the efficiency of algorithms is 

computation time. Chapter 3 & chapter 4 have analyzed various algorithms on the basis of 

their asymptotic computation complexity. The term computation time means total time 

required in encryption-decryption process of each algorithm for different fractional orders of 

FRT. On the basis of this collected data about computation time, a comparison between the 

existing and proposed algorithms is made in next sections. 

The input image chosen for analysis is Lena (TIFF image; Size = 193 KB; pixel by 

pixel resolution = 256X256) as shown in fig. 5.1. Lena was encrypted using algorithm 4.1, 

4.2 and 4.3 for α = β = γ = δ = 0.5 fractional orders of FRT. The resulting encrypted images 

obtained after execution of algorithm 4.1, 4.2 and 4.3 are shown in fig 5.2. These images can 

be decrypted on any fractional order of FRT, but the restored image may differ from the input 

image depending on the order of FRT. The decrypted images obtained using incorrect 
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fractional orders of FRT are shown in fig. 5.3. Fig. 5.4 shows decrypted image obtained when 

correct fractional order of FRT are used. 

 
 

 
 

 

 
 

Fig 5.1. Input image to algorithm 3.1, 3.2 and 3.3 (Lena.tif, 256X256, color). 

Fig 5.2. Encryted images of size 256X256 by (a) Algorithm 4.1 (b) Algorithm 4.2 and 
(c) Algorithm 4.3. The fractional orders of FRT are α = β = γ = δ = 0.5. 

Fig 5.3. Decryted images of size 256X256 decrypted on an incorrect fractional order of 
inverse FRT by (a) Algorithm 4.1 (b) Algorithm 4.2 and (c) Algorithm 4.3. The 
fractional orders of FRT are α = β = γ = δ = 0.4. 

(a) (b) (a) 

(a) (b) (c) 
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TABLE 5.1  
MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 

FUNCTION OF ORDER OF FRT, USED FOR DECRYPTION IN ALGORITHM 3.1 
AND ALGORITHM 4.1. 

Order 
of FRT 

MSE for Algorithm 3.1 (X104) MSE for Algorithm 4.1 (X104) 
R MSE G MSE B MSE R MSE G MSE B MSE 

0 6.94 2.50 2.43 6.79 2.43 2.37 
0.1 6.94 2.50 2.43 6.88 2.46 2.40 
0.2 6.92 2.49 2.42 6.89 2.47 2.40 
0.3 6.92 2.49 2.42 6.85 2.44 2.39 
0.4 6.82 2.45 2.39 6.61 2.39 2.34 
0.5 2.68E-28 1.04E-28 1.02E-28 9.9E-29 4.5E-29 3.7E-29 
0.6 6.82 2.45 2.39 6.67 2.41 2.36 
0.7 6.93 2.49 2.43 6.78 2.42 2.37 
0.8 6.92 2.49 2.42 6.91 2.47 2.41 
0.9 6.90 2.49 2.41 6.92 2.47 2.41 
1 6.94 2.49 2.43 6.81 2.43 2.37 

   

 
(a) 

Fig 5.4. Decryted images of size 256X256 decrypted on appropriate fractional order of 
inverse FRT by (a) Algorithm 4.1 (b) Algorithm 4.2 and (c) Algorithm 4.3. The 
fractional orders of FRT are α = β = γ = δ = 0.5. 

(a) (b) (c) 



Chapter – 5 

 49 

Fig 5.5. MSE graph showing the MSE between (a) R, (b) G and (c) B channels of 
decrypted image and the input image as a function of order of FRT used for 
decryption by using algorithm 3.1 and algorithm 4.1. 

 
(b) 

 
(c) 

TABLE 5.2  
MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 
FUNCTION OF ORDER OF FRT (4.0-6.0), USED FOR DECRYPTION IN 

ALGORITHM 4.1. 
Order 
of FRT 

MSE for Algorithm 4.1 (X104) Order 
of FRT 

MSE for Algorithm 4.1 (X104) 
R MSE G MSE B MSE R MSE G MSE B MSE 

4.0 6.64 2.41 2.35 5.1 2.97 1.05 0.97 
4.1 6.84 2.47 2.40 5.2 6.65 2.39 2.26 
4.2 6.69 2.37 2.33 5.3 6.54 2.38 2.33 
4.3 6.36 2.23 2.22 5.4 6.01 2.13 2.14 
4.4 6.73 2.33 2.30 5.5 6.71 2.32 2.29 
4.5 6.72 2.31 2.29 5.6 6.71 2.33 2.30 
4.6 6.00 2.14 2.14 5.7 6.36 2.24 2.22 
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4.7 6.54 2.38 2.34 5.8 6.71 2.37 2.33 
4.8 6.68 2.39 2.26 5.9 6.84 2.46 2.39 
4.9 2.98 1.05 0.98 6.0 6.61 2.4 2.34 
5.0 9.9E-29 4.5E-29 3.7E-29 

 

 
 
 
 

 
TABLE 5.3  

MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 
FUNCTION OF ORDER OF FRT, USED FOR DECRYPTION IN ALGORITHM 3.2 

AND ALGORITHM 4.2. 
Order of  

FRT 
MSE for Algorithm 3.2 (X104) MSE for Algorithm 4.2 (X104) 

R MSE G MSE B MSE R MSE G MSE B MSE 
0 6.91 2.48 2.42 6.85 2.45 2.39 

0.1 6.93 2.49 2.42 6.90 2.47 2.40 
0.2 6.92 2.49 2.42 6.89 2.46 2.40 
0.3 6.92 2.49 2.42 6.81 2.43 2.38 
0.4 6.79 2.44 2.38 6.60 2.40 2.35 
0.5 1.97E-28 7.98E-29 7.21E-29 9.38E-29 4.37E-29 3.31E-29 
0.6 6.79 2.44 2.38 6.60 2.40 2.35 
0.7 6.92 2.49 2.42 6.81 2.43 2.38 
0.8 6.92 2.49 2.42 6.89 2.46 2.40 
0.9 6.93 2.49 2.42 6.90 2.47 2.40 
1 6.91 2.48 2.42 6.85 2.45 2.39 

 
Fig. 5.5 shows a graph, comparing MSE’s generated by the algorithms 3.1 and 4.1 for 

different fractional orders of FRT. From the graph it is clear that both the algorithms perform 

equally in terms of the restoration of image. Similar results are observed for algorithm pair 

3.2 - 4.2 and 3.3 - 4.3 and are shown in fig 5.7 and 5.9 respectively 

Fig 5.6. Variation in MSE between R, G and B channels of decrypted image and the input 
image as a function of order of FRT (4.0-6.0) used for decryption in algorithm 4.1. 
(See TABLE 5.2 for references). 
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(a) 

 
(b) 

 
(c) 

 
 
 

Fig 5.7. MSE graph showing the MSE between (a) R, (b) G and (c) B channels of 
decrypted image and the input image as a function of order of FRT used for 
decryption by using algorithm 3.2 and algorithm 4.2. 
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TABLE 5.4  

MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 
FUNCTION OF ORDER OF FRT (4.0-6.0), USED FOR DECRYPTION IN 

ALGORITHM 4.2. 
 

Order 
of FRT 

MSE for Algorithm 4.2 (X104) Order 
of FRT 

MSE for Algorithm 4.2 (X104) 
R MSE G MSE B MSE R MSE G MSE B MSE 

4.0 6.60 2.40 2.35 5.1 2.99 1.06 0.98 
4.1 6.86 2.48 2.41 5.2 6.75 2.42 2.28 
4.2 6.65 2.35 2.32 5.3 6.48 2.37 2.33 
4.3 6.23 2.19 2.18 5.4 5.79 2.06 2.07 
4.4 6.69 2.31 2.28 5.5 6.65 2.27 2.25 
.4.5 6.65 2.27 2.25 5.6 6.69 2.31 2.28 
4.6 5.79 2.06 2.07 5.7 6.23 2.19 2.18 
4.7 6.48 2.37 2.33 5.8 6.65 2.35 2.32 
4.8 6.75 2.42 2.28 5.9 6.86 2.48 2.41 
4.9 2.99 1.06 0.98 6.0 6.60 2.40 2.35 
5.0 9.38E-29 4.37E-29 3.31E-29 

 
 

 
 
 
 

 
 

.Fig. 5.11, 5.12 and 5.13 consist of graphs comparing computation time required by 

algorithm pair 3.1 Vs 4.1, 3.2 Vs 4.2 and 3.3 Vs 4.3. From these graphs based on the tables 

5.4, 5.5 and 5.6 respectively, it is observed that the ratio between computation times of 

algorithms 4.1 and 3.1 is ≈1:8. Similar results are observed between algorithm pairs 3.2 - 4.2 

and 3.3 - 4.3. 

Fig 5.8. Variation in MSE between R, G and B channels of decrypted image and the input 
image as a function of order of FRT (4.0-6.0) used for decryption in algorithm 4.2. 
(See TABLE 5.4 for references). 
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TABLE 5.5  
MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 

FUNCTION OF ORDER OF FRT, USED FOR DECRYPTION IN ALGORITHM 3.3 
AND ALGORITHM 4.3. 

Order of 
FRT 

MSE for Algorithm 3.3 (X104) MSE for Algorithm 4.3 (X104) 
R MSE G MSE B MSE R MSE G MSE B MSE 

0 6.93 2.49 2.43 1.71 0.51 0.52 
0.1 6.96 2.49 2.43 1.76 0.52 0.53 
0.2 6.93 2.49 2.43 1.89 0.56 0.58 
0.3 6.92 2.48 2.42 1.93 0.57 0.57 
0.4 6.95 2.50 2.43 2.00 0.59 0.59 
0.5 2.94E-28 1.06E-28 1.04E-28 5.22E-29 1.6E-29 1.6E-29 
0.6 6.97 2.50 2.44 1.97 0.59 0.58 
0.7 6.91 2.48 2.42 2.07 0.63 0.62 
0.8 6.92 2.49 2.42 1.74 0.54 0.53 
0.9 6.97 2.50 2.44 1.86 0.58 0.58 
1 6.95 2.50 2.43 1.74 0.54 0.54 

 

 

 

 

 

 

 

 

 

 

(a) 
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Fig 5.9. MSE graph showing the MSE between (a) R, (b) G and (c) B channels of decrypted 
image and the input image as a function of order of FRT used for decryption by 
using algorithm 3.3 and algorithm 4.3. 

(b) 
 

 

 

 

 

 

 
 
 
 

(c) 

TABLE 5.6  
MSE BETWEEN DECRYPTED IMAGE AND THE INPUT IMAGE AS A 
FUNCTION OF ORDER OF FRT (4.0-6.0), USED FOR DECRYPTION IN 

ALGORITHM 4.3. 
Order 
of FRT 

MSE for Algorithm 4.3 (X104) Order 
of FRT 

MSE for Algorithm 4.3 (X104) 
R MSE G MSE B MSE R MSE G MSE B MSE 

4.0 2.00 0.59 0.59 5.1 1.25 0.34 0.33 
4.1 1.92 0.57 0.56 5.2 1.74 0.51 0.49 
4.2 1.84 0.55 0.53 5.3 1.86 0.56 0.54 
4.3 1.80 0.52 0.52 5.4 1.96 0.59 0.57 
4.4 1.84 0.54 0.52 5.5 1.97 0.59 0.57 
.4.5 1.92 0.56 0.56 5.6 1.93 0.57 0.56 
4.6 1.96 0.58 0.57 5.7 1.82 0.54 0.52 
4.7 1.88 0.55 0.54 5.8 1.80 0.54 0.52 
4.8 1.72 0.50 0.49 5.9 1.89 0.57 0.55 
4.9 1.25 0.34 0.33 6.0 1.97 0.59 0.58 
5.0 5.22E-29 1.6E-29 1.6E-29 

 
TABLE 5.7  

COMPUTATION TIME (IN SECONDS) OF ALGORITHM 3.1 AND ALGORITHM 4.1. 
 

Order of FRT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Computation 

Time  
(in Sec.) 

Algo 3.1 72.3 73.1 73.1 72.9 73.0 72.8 72.8 72.9 72.9 72.8 72.9 

Algo 4.1 9.3 9.3 9.2 9.2 9.2 9.2 9.3 9.2 9.3 9.2 9.2 

Ratio T3.1/T4.1 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 
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TABLE 5.8  

COMPUTATION TIME (IN SECONDS) OF ALGORITHM 3.2 AND ALGORITHM 4.2. 

Order of FRT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Computation 
Time (in Sec.) 

Algo 3.2 73.4 73.3 73.2 73.2 73.4 73.4 73.2 73.2 73.2 73.4 73.2 
Algo 4.2 9.4 9.3 9.3 9.3 9.3 8.8 9.3 9.3 9.3 9.3 9.3 

Ratio T3.2/T4.2 7.8 7.9 7.9 7.9 7.9 8.3 7.9 7.9 7.9 7.9 7.9 
TABLE 5.9  

COMPUTATION TIME (IN SECONDS) OF ALGORITHM 3.3 AND ALGORITHM 4.3. 

Order of FRT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Computation 
Time (in Sec.) 

Algo 3.3 72.6 73.0 72.9 73.1 72.9 72.9 72.9 73.0 72.9 72.9 73.0 
Algo 4.3 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 

Ratio T3.2/T4.2 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 
 

 
 

Fig 5.11. Graph showing computation time of algorithm 3.1 and algorithm 4.1 as a 
function of order of FRT. 

Fig 5.10. Variation in MSE between R, G and B channels of decrypted image and the 
input image as a function of order of FRT (4.0-6.0) used for decryption in 
algorithm 4.3. (See TABLE 5.6 for references). 



Chapter – 5 

 56 

Fig 5.12. Graph showing computation time of algorithm 3.2 and algorithm 4.2 as a 
function of order of FRT. 

Fig 5.13. Graph showing computation time of algorithm 3.3 and algorithm 4.3 as a 
function of order of FRT. 
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Fig 5.14. Graph showing computation time (in seconds) of algorithm 4.1, 4.2 and 4.3 as a 
function of order of FRT. 

 

 

Fig 5.14 shows a graph, comparing computation time required by algorithm 4.1, 4.2 

and 4.3 for different fractional orders of FRT. From this figure, it is shown that the 

computation time required by Algorihtm 4.1, 4.2 and 4.3 is nearly equal (ranging between 8.8 

second to 9.4 second). The variation in computation time may be caused by other background 

processes running on machine. 
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CONCLUSION 
 

This work proposed three algorithms viz. Algorithm 4.1, 4.2 and 4.3 in section 4.1, 4.2 

and 4.3 respectively for image encryption and decryption based on fractional Fourier 

transform (FRT), discrete Wavelet transform and Chaos functions. MSE and computation 

time are taken as the parameters for performance-comparison among these algorithms 

Section 4.4 claimed in equation 4.4.1 that these algorithms 4.1, 4.2 and 4.3 should be nearly 8 

times faster than algorithms 3.1, 3.2 and 3.3 respectively. This improvement in computation 

time is due to reduced input data size (or image size) for encryption and decryption by a 

factor of 4. For this purpose image compression characteristic of the discrete wavelet 

transform are utilized. This claim has been verified in this work. 

For verification of claims made in chapter 4, simulations were run using MATLAB7.7. 

Results obtained after these simulations were summarized in chapter 5. Table 5.1, 5.3 and 5.5 

summarize the MSE between R, G and B channels of input and restored image for different 

fractional orders of FRT, using algorithm pair 3.1-4.1, 3.2-4.2 and 3.3-4.3. From these tables 

the MSE for algorithm 4.1, 4.2 and 4.3 is found to be consistently less than their counterparts, 

hence the proposed algorithms are less likely to information-loss during encryption-

decryption process. 

Table 5.2, 5.4 and 5.6 present a deeper insight into the variation of MSE with respect 

to the fractional orders of FRT (ranging between 4.0 and 6.0 and at an interval of 1x10-1). 

These results are shown by graphs of fig.5.6, 5.8 and 5.10 respectively. These graphs indicate 

that the correct decryption of image is possible within 0.49 to 0.51 value of α, β, γ and δ as 

compared to earlier range of 0.45 to 0.55 reported earlier 

Future work: 

a. Faster algorithms for computation of 2-D FRT, 2-D inverse FRT, DWT2 and IDWT2 

may result in further reduction of computation. 

b. This work can be extended for different formats of images.  

c. This work may be extended using other transforms methods also. 
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