
Safety-Critical Java on a Java Processor

Martin Schoeberl
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

masca@imm.dtu.dk

Juan Ricardo Rios
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

jrri@imm.dtu.dk

ABSTRACT
The safety-critical Java (SCJ) specification is developed
within the Java Community Process under specification
request number JSR 302. The specification is available as
public draft, but details are still discussed by the expert
group. In this stage of the specification we need prototype
implementations of SCJ and first test applications that
are written with SCJ, even when the specification is not
finalized. The feedback from those prototype implementa-
tions is needed for final decisions. To help the SCJ expert
group, a prototype implementation of SCJ on top of the
Java optimized processor is developed and presented in
this paper. This implementation raises issues in the SCJ
specification and provides feedback to the expert group.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

Keywords
real-time systems; Java; safety-critical systems

1. INTRODUCTION
Safety-critical systems are currently developed in Ada and

in C. However, Ada has become a niche language and C can
be considered a very low-level language. Currently there is
effort to establish Java as a language to build safety-critical
systems. The arguments are that Java is safer than C, the
wide usage of Java led to mature tools (e.g., compiler), and
many programmers know Java very well.

However, standard Java is probably too complex to build
certifiable safety-critical systems. Therefore, a subset of
Java, called safety-critical Java (SCJ), is specified under
the Java Community Process [8, 6]. The specification is
currently in public draft. To evaluate the specification
we need independent implementations and application use
cases. This paper describes a prototype implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2012 October 24-26, 2012, Copenhagen, Denmark
Copyright 2012 ACM 978-1-4503-1688-0 ...$15.00.

of SCJ on top of the Java processor JOP [17]. As the
specification is a moving target the implementation is under
continuous development.

The implementation is open-source and can, although tar-
geted for JOP, also be executed on a standard PC with a
software simulation of JOP. Therefore, it can be used to
evaluate the SCJ and also to experiment with additional
or different features that are not (yet) officially part of the
specification. We used an early version of this implementa-
tion for example to experiment with active clocks that can
drive scheduling events [26]. SCJ applications and exam-
ples are already emerging [23]. One example, a 3D printer
controller [25], already uses the SCJ implementation that is
described in this paper.

The main contribution of this work is an open-source im-
plementation of SCJ. Furthermore, we present some imple-
mentation issues (and workarounds) that arise from the Java
package crossing of RTSJ and SCJ classes and propose a
simplification of aperiodic event handlers in SCJ.

The paper is organized as follows: the following section
presents related work on real-time Java subsets and first
implementations of SCJ. In Section 3 we provide a brief
overview of the SCJ specification. This section contains also
a complete, minimal SCJ Hello World example. Details
of the implementation of SCJ on top of JOP are given in
Section 4. Suggestions for changes in the SCJ specification
are discussed in Section 5 and the paper is concluded with
Section 6.

2. RELATED WORK
Java for real-time systems started with work on PERC

Pico [9]. Later on, the Real-Time Specification for Java
(RTSJ) [4] was defined. RTSJ initiated the Java Community
Process and is therefore the first Java specification request
(JSR 1). However, RTSJ is considered too complex to build
safety-critical systems. Therefore, work started to simplify
RTSJ.

The SCJ specification is based on early attempts to sim-
plify the RTSJ for high integrity applications. Puschner and
Wellings presented the first proposal of a subset of the RTSJ
classes [13]. They introduced the concept of an initialization
and mission phase into real-time Java. All threads, event
handlers, and shared objects are set up in the initializa-
tion phase. The restrictions (e.g., static priorities, no call of
sleep, no wait/notify, no dynamic class loading,...) are very
similar to the restrictions of the level 1 of SCJ.

The work was refined and renamed to Ravenscar Java [7]
to emphasize the heritage of the concepts from the Ada

Ravenscar tasking profile [5]. Later proposals for a safety-
critical Java profile argue for an API that is independent
of the RTSJ [16, 22]. The argument is that all approaches
that inherit from RTSJ classes introduce additional com-
plexity. Furthermore, two versions of the RTSJ classes (the
original and the restricted) may confuse real-time Java pro-
grammers. The issue comes from the fact that the RTSJ
is more expressive than SCJ, but SCJ classes extend the
RTSJ classes. Therefore, the RTSJ classes in the SCJ ver-
sion need to be restricted. To model this inverse relation
between RTSJ and SCJ it has been proposed to build the
class hierarchy the other way round: RTSJ shall inherit from
classes as defined in SCJ [3].

As the SCJ specification is still in draft, implementations
of it are rare. A first prototype of a level 0 implementation
on top of OVM [2] and Fiji [11] is presented in [12]. A
SCJ like implementation, called predictable Java profile [3],
implements a different class hierarchy where RTSJ classes
extend SCJ classes. A SCJ implementation on top of a JVM
for very memory constrained devices is presented in [24]. It
is reported that a simple SCJ application can execute in
35 KB ROM and just 10 KB RAM.

The upcoming version of PERC Pico [1] will be SCJ com-
pliant. However, Atego considers implementing SCJ in addi-
tion to the current PERC Pico notion of safety-critical Java.
The intention is to support both APIs and memory models
in a single JVM [10]. That paper also describes the differ-
ences between the SCJ memory model and the PERC Pico
memory model.

3. SAFETY-CRITICAL JAVA
Safety-critical Java (SCJ) [8] is intended for future safety-

critical systems that need certification. The SCJ specifica-
tion is developed within the Java community process under
specification request number JSR 302. To allow certification
of Java programs only a very restricted subset of Java is de-
fined. SCJ itself is based on the RTSJ [4]. It is a subset of
RTSJ with some additional class files. It shall be possible
to provide the reference implementation of SCJ on top of a
standard RTSJ.

To cover different criticality levels, SCJ defines three dif-
ferent levels with increasing expressive power for the appli-
cation programmer, but also increasing complexity of imple-
mentation and certification.

Level 0 admits a sequence of missions, where each
mission consists of periodic handlers under the control of
a single-threaded cyclic executive. The level is intended
as a stepping-stone for developers that are using cyclic
executives, programmed in C or Ada. The concurrency
model stays the same, only the language changes. Level
1 introduces a preemptive scheduler, very similar to the
Ada Ravenscar tasking profile [5]. Level 1 also sup-
ports a sequence of missions. Level 2 introduces nested
missions and supports an adapted version of RTSJ’s
NoHeapRealtimeThread. The nested missions of level 2 allow
more dynamic systems, where threads can be started and
stopped, while an outer mission continues to execute.

With respect to memory areas, all three levels support
the memory model with three layers: immortal memory,
mission memory, and handler or thread private scopes. The
only difference between the levels is that all handlers in level
0 can use the same backing store for their private memories.

Concurrency is represented as handlers in SCJ, similar to
RTSJ style event handlers. In fact the SCJ handlers are a
subclass of RTSJ’s BoundAsyncEventHandler. These handlers
are either periodic or event triggered.

3.1 Missions and Schedulable Objects
An application may have several missions. A mission con-

sists of a scoped memory, the mission memory, and a set
of managed handlers. A level 2 mission may also contain
managed threads.1 The notion of managed handlers and
threads means that the start and termination of those en-
tities is under the control of the SCJ implementation. The
handlers within a mission are created during mission ini-
tialization and the number of handlers is fixed for a mission.
Handlers come in two flavors: a periodic event handler to be
released time-triggered and an aperiodic handler released by
an event. The event to release an aperiodic handler can be
a software event or an interrupt. The handlers and threads
are also called schedulable objects.

A mission consists of three phases: initialization, execu-
tion, and cleanup. At the initialization phase the mission
memory is created by the SCJ implementation. Mission
memory is entered and the handlers and threads are created
within the mission memory. Furthermore, all data struc-
tures that are needed for the handlers to communicate need
to be allocated in mission memory (or in immortal mem-
ory). Only immortal and mission memory is shared between
threads.

On the transition to the execution phase all handlers are
started. During the execution phase no new handlers can
be registered or started. In the execution phase temporary
objects are allocated in handler private memory. Allocation
in mission memory or immortal memory is not prohibited.
However, allocating data in those memories can result in a
memory leak. After the cleanup phase, the mission memory
is cleared and a new mission can be started in a new, possible
differently sized, mission memory.

A SCJ application is represented by a class that imple-
ments Safelet and at least one class that extends Mission.
Simple programs, consisting of a single mission, can use one
class that extends Mission and implements Safelet. How
this main class is specified as the SCJ application is vendor
specific.

3.2 The Memory Model
SCJ simplifies the RTSJ memory classes and introduces

managed memories. As there is no garbage collector in SCJ,
heap memory is nonexistent. SCJ supports RTSJ style im-
mortal memory. RTSJ scoped memories are available in
two special versions: mission memory and private memory,
which extend the common superclass ManagedMemory. Mission
memory is a memory area that is alive as long as a mission
is executing. Therefore, it is used for data that is shared
among handlers.

For temporary objects, each handler has a private mem-
ory. This private memory is entered on the handler release
and exited after finishing the release. A handler can also
enter a nested private memory with enterPrivateMemory().
Conceptionally, these private memories are anonymous as
enterPrivateMemory() is a static method on the SCJ class

1A managed thread, as it is a RTSJ real-time thread, needs
to invoke waitForNextPeriod() to finish the current release.

public class HelloSafelet implements Safelet {

@Override
public MissionSequencer getSequencer() {

return new HelloSequencer(new HelloMission());
}

@Override
public long immortalMemorySize() {

return 1000;
}

}

Figure 1: A Safelet defines the application.

public class HelloSequencer extends MissionSequencer {

Mission m;

public HelloSequencer(Mission mission) {

super(new PriorityParameters(13),
new StorageParameters(1000000, null));

m = mission;
}

@Override
protected Mission getNextMission() {

return m;
}

}

Figure 2: A simple, application specific mission se-
quencer.

ManagedMemory. However, with getCurrentManagedMemory() a
SCJ application can get a reference to it.

The memory areas of SCJ form a clear hierarchy and an
index can be assigned to each area: starting with index 0 for
immortal memory, index 1 for the initial mission memory,
index 2 and upper for private memories and nested mis-
sion memories. These levels simplify the assignment checks,
which are needed to avoid dangling references to objects
with a shorter lifetime [14].

3.3 A Level 1 Example
In the following we show a SCJ Hello World example,

where each component is defined by an application specific
class.

Figure 1 shows the application defining class, which im-
plements Safelet. An instance of this class is allocated in
immortal memory. How this instance is defined and how
the class is instantiated is implementation defined. When
this class is instantiated by the runtime system, it needs to
have a parameter-less constructor. When no constructor is
defined, Java defines a parameter-less per default. Further-
more, as reflection is not available within SCJ, some JVM
magic is needed to convert a class name into a class type.
With this class type the application class can be created
with newInstance(Class type).

Our example contains an application specific sequencer
(see Figure 2), which returns always the same mission on
getNextMission(). The sequencer is created after the mission

public class HelloMission extends Mission {

@Override
protected void initialize() {

OutputStream os = null;
try {

os = Connector.openOutputStream("console:");
} catch (IOException e) {

throw new Error("No console available");
}

HelloHandler hh = new HelloHandler(
new SimplePrintStream(os));

hh.register();
}

@Override
public long missionMemorySize() {

return 100000;
}

}

Figure 3: A mission with a single handler.

object is created and both objects are allocated in immortal
memory.

Figure 3 shows the example mission. During initializa-
tion a reference to the console object is requested and a
SimplePrintStream is created. Furthermore, one handler is
created and registered. These objects are now allocated in
mission memory. Therefore, we cannot store the reference
to the output stream in a static variable for easy access. All
references to shared objects need to be passed via the con-
structor of the handlers. In our example it is the reference
to the console via SimplePrintStream.

SCJ does not support standard input and output streams
(System.in and System.out). Instead SCJ defines a console
and uses the Java micro edition (J2ME) connector frame-
work.

The active component, a periodic event handler, is shown
in Figure 4. The period is set to half a second. Within
handleAsyncEvent() a string is constructed to print out the
iteration number. This string construction generates several
objects, which are allocated in private memory.

We can see that an application needs to define the max-
imum memory consumption of mission memory, immortal
memory, and the maximum memory for all private memo-
ries a handler may use.

The example SCJ application provides an application-
defined class for each needed component. A minimalistic
version of the Hello World example could be implemented
with one named class that implements Safelet and extends
Mission. A utility class from SCJ, LinearMissionSequencer

can serve as sequencer, and the periodic event handler can
be declared as anonymous class within initialize() from
Mission.

4. IMPLEMENTATION
We base our implementation on the Java processor

JOP [17] and the available infrastructure for thread
scheduling. The original version of JOP supports garbage
collection (GC) and no scoped memories. Without a GC,
the whole heap implicitly becomes immortal memory. We

public class HelloHandler extends PeriodicEventHandler {

SimplePrintStream out;
int cnt;

public HelloHandler(SimplePrintStream sps) {
super(new PriorityParameters(11),

new PeriodicParameters(
new RelativeTime(0, 0),
new RelativeTime(500, 0)),
new StorageParameters(10000, null), 500);

out = sps;
}

@Override
public void handleAsyncEvent() {

out.println("Ping " + cnt);
++cnt;

}
}

Figure 4: The handler that writes periodically mes-
sages to the console.

added the mechanism of allocation in scoped memory to
implement mission memory and private memory. It is
possible to just use a single class, which we call Memory, to
represent all three different SCJ memory types: immortal,
mission, and private [19]. The Memory class is not intended
to be used by application code, but RTSJ/SCJ memory
classes are using it and delegating the scope handling to
it. It should not be visible for application code. However,
as the memory related classes are distributed between two
different packages, it is practically visible.

4.1 Scheduler Simplification
The thread scheduler in JOP is implemented in Java. The

thread scheduler in the JVM of JOP is invoked (1) on a timer
interrupt, (2) when a thread finishes it’s release (with the
invocation of waitForNextPeriod()), and (3) when an event
handler is fired. The scheduler performs three functions: (1)
find the next thread to dispatch, (2) reprogram the timer
interrupt, and (3) dispatch the thread. The thread with the
highest priority, which is ready (it’s release time is now or
already passed), is selected for dispatch.

To find the time for the next timer interrupt, the prior-
ity ordered list of threads is searched. A thread shall only
interrupt the currently dispatched thread, when its prior-
ity is higher than the dispatched thread. Therefore, only
higher priority threads are searched. Within this set of
threads, the thread with the nearest release time determines
the next timer interrupt. That release time is used for the
next scheduling interrupt.

The way the scheduler is implemented might not be the
‘correct’ way in which a real-time (RTSJ) scheduler shall
be implemented. We use distinct (internal) priorities for all
threads and not a FIFO queue for threads with the same
priority. If two threads are assigned the same priority from
the user, the scheduler implicitly provides a priority order.
The reason for the current implementation is that it is op-
timized for low overhead. As the scheduler does not allow
creating new threads during a mission, the data structures
can be optimized at mission start.

final Runnable runner = new Runnable() {
@Override
public void run() {
handleAsyncEvent();

}
};

thread = new RtThread(priority.getPriority(), p, off) {
public void run() {

while (!MissionSequencer.terminationRequest) {
privMem.enter(runner);
waitForNextPeriod();

}
}

};

Figure 5: Reusing the JOP real-time threads to im-
plement the SCJ periodic handler.

We do not want that a timer interrupt happens when no
thread switch is needed. The scheduler is programmable
timer based and not tick based. That is the reason why the
timer is programmed for the next higher priority thread. We
do not want to have an interrupt for a lower priority thread
just to change the run queue and then switch back to the
current thread.

The threads are collected in a simple array, which is prior-
ity ordered. There is no explicit run queue or other queues.
However, the run queue is implicit: each thread that has
a release time now or in the past is in the run queue. The
first thread found in the priority ordered array is dispatched.
This gives short dispatch time for high priority threads and
longer for lower priority threads, which is ok as high priority
threads have shorter deadlines when priorities are assigned
deadline monotonic.

Threads check their deadlines and update their release
time on a call to the waitForNextPeriod() method. The im-
plementation of the SCJ handlers uses the original real-time
threads from JOP (RtThread) [15]. Figure 5 shows the essen-
tial part of the SCJ PeriodicEventHandler implementation.
Similar to a plain Java thread or RTSJ real-time thread,
the run() method of RtThread is invoked when the thread
is released. Within the periodic loop, on each release the
initial private memory of the SCJ handler is entered with
the Runnable runner. That Runnable in turn invokes, now in
the private memory allocation context, handleAsyncEvent()

of the SCJ style handler. For aperiodic events the SwEvent

class of JOP’s runtime is used.

4.2 Mission Startup and Termination
SCJ allows in all three levels mission sequences, with a

mission memory that needs to be cleaned after each mission
termination. As each mission may contain different num-
ber of threads (handlers), we expect that all data structures
that are needed to represent threads in a JVM be allocated
in mission memory. However, the problem is now how the
scheduler shall find those thread objects. The scheduler is
basically a JVM internal class/mechanism, which is allo-
cated at boot time in immortal memory. According to the
scope assignment rules, objects allocated in immortal mem-
ory are not allowed to point to objects in mission memory.
To allow the scheduler to see the thread objects we need to
violate this rule internally to the JVM. However, this is sim-

ilar to other Java safety mechanism, such as implementing
a GC in Java. In Java one cannot access memory directly,
but if a GC is written in Java there needs to be some escape
mechanism to access memory directly. The same is needed
for the JVM internal scheduler to access thread objects in
mission memory.

The scheduler in JOP is basically an interrupt handler,
which is attached to the programmable timer interrupt at
JVM startup. Another option is to allocate that interrupt
handler object in mission memory and attach it to the inter-
rupt on mission start and detach it at mission termination.
However, at the moment too many applications still use the
JOP RtThread classes for real-time threads. Therefore, we
are not yet confident enough in our SCJ implementation to
make such a fundamental change in the JOP runtime sys-
tem.

4.3 Low-level Device Access
For low-level device access, the standard RTSJ style

classes for direct memory access are used in SCJ. We would
have preferred a more object-oriented way, the so-called
hardware objects [21], to access low-level IO registers and
DMA memory. For the implementation of the SCJ style
low-level device access we can either use native system
methods or hardware object based arrays. The system
method version uses just static read and write methods,
which access the memory mapped IO devices in JOP. With
a hardware object based array, we can map the IO space
into a Java array and then implement the raw memory
classes by using that array.

4.4 Interrupts
SCJ (and the next version of RTSJ) has the notion of

first-level interrupt handlers. An interrupt handler has
to extend InterruptServiceRoutine and has to implement
the interrupt handling code in the handle() method. The
InterruptServiceRoutine object is used as lock to protect
data structures that are used to communicate between the
interrupt handler and the application threads or second
level handlers. Interrupt priorities are higher than thread
priorities. Executing a synchronized section with such an
interrupt priority disables the scheduling interrupt and the
interrupts at lower priority. The build tool or JVM runtime
has to recognize this different handling of synchronized
code for classes that extend InterruptServiceRoutine. As
synchronized code blocks are not allowed in SCJ, only
methods of such classes are involved. Therefore, it is well
known at build time which methods need that special
handling of locks with interrupt priority ceilings.

The notion of the interrupt handler in SCJ and the map-
ping of lock priorities to interrupt disabling is similar to the
proposal in [20]. In our current implementation the JVM
accepts a standard Runnable as an interrupt handler, which
is registered by a system class. Even the thread scheduler
is just a plain Runnable that is registered for the timer in-
terrupt. Therefore, the SCJ implementation of interrupt
handlers can keep the notion of the available Runnable and
just invoke the handle() method of the interrupt handler.
The hardware of JOP disables all interrupts, when an inter-
rupt happens. By keeping them disabled during the handle()

method and disabling them on all synchronized methods of
the handler class we have a less responsive system, but are
on the safe side for synchronization.

4.5 Packages and Java Friends
The SCJ related classes are defined within two packages

(javax.safetycritical and javax.realtime). These classes
need to share information for the implementation that shall
not be visible at the application interface level. Member
methods and fields can be protected at the package level.
Therefore, building a library within one package is relative
easy. Moving the whole SCJ related classes and APIs into a
single package would simplify the implementation. However,
even in that case on some systems it might be beneficial
to collect low-level system functions (e.g., scheduling and
memory management) into a system level class (in the JOP
JVM those functions live in com.jopdesign.sys).

With C++ granting access to class internal methods and
data to another, well known class is possible with the friend

keyword, which is not available in Java. It is, however, some-
what possible to simulate this mechanism. One possibility is
to create a singleton delegation class in the target package.
The class has a private constructor, preventing application
code from instantiating it. A singleton is created at class
initialization. This object is then registered via a public
static method in the class requiring access to the package,
which only works once. Although this method is public, all
subsequent invocations will simply be ignored.

4.6 Code Size
The JOP build tool links only classes used by the applica-

tion into the final application. Furthermore, small versions
of the JDK (a CLDC 1.1 version and a subset of it) are avail-
able for JOP. Therefore, the overhead of the JVM is relative
small. The SCJ Hello World example, all needed SCJ and
JDK support classes, and the JMV Java classes result in an
application binary of 75 KB.

4.7 Source Access
The SCJ implementation on JOP is open source under

the GNU GPL. The code is hosted on a git repository at
GitHub and can be downloaded with

git clone git://github.com/jop-devel/jop.git

or as ZIP archive from

https://github.com/jop-devel/jop

Although the SCJ implementation is developed for JOP,
it can be evaluated on a standard PC. The distribution con-
tains a software simulation (JopSim) of the JOP JVM, writ-
ten in Java. It is an interpreting JVM, which can read JOP
application files and has the same restrictions as JOP. All
JVM parts that are written in Java (e.g., garbage collection,
thread scheduling) are interpreted with JopSim as it would
be executed on the JOP hardware. Therefore, this simula-
tion is a convenient tool for system level software debugging.
JopSim can also be used for evaluation of SCJ. The only issue
with a simulation that runs on a standard JVM on a non
real-time operating system is that no timing can be guaran-
teed. For scheduling decisions the standard system time is
used, which has usually a granularity of several milliseconds.

To run the JOP tool chain on a PC, Java and make need
to be installed. The tools need to be built once with:

make tools

Building and running an application in the simulation is
as follows:

make jsim -e USE_SCOPES=true P1=rtapi \
P2=examples/safetycritical P3=HelloSCJ

This example runs a SCJ hello world example where the
Mission and the Safelet is combined into a single class. Fur-
thermore, the single handler is instantiated as anonymous
class. Therefore, this example fits into a single source file.

The meaning of the parameters is as follows: USE_SCOPES:
JOP uses a garbage collector by default. This parameter
enables scopes. P1, P2, P3 describe the application:

• P1 is the directory pointing to the Java source

• P2 is the package name with ‘/’ instead of ‘.’ as delim-
iter

• P3 is the main class

The SCJ hello world can be found in folder:
jop/java/target/src/rtapi/examples/safetycritical

Further information on the build process, and how to con-
figure Eclipse for JOP development can be found in Chapter
2 of the JOP handbook [18].

The SCJ specification is still a moving target. So is the
current implementation on JOP.

5. DISCUSSION
During the implementation of the SCJ on JOP we came

across different aspects of the SCJ API specification we
would like to change.

5.1 Asynchronous Event Handling
The notion of asynchronous events and asynchronous

event handlers, which is inherited from the RTSJ, is
probably overkill for SCJ and it does not work well for
second level interrupt handlers. The current approach (at
least in RTSJ 1.1) to fix this issue with a new Happening

class makes the solution even more complex.
A simple solution to use SCJ style AperiodicEventHandler

for software events and as a mechanism for second level in-
terrupt handler would be:

1. Drop the inheritance from the RTSJ class
BoundAsyncEventHandler

2. Drop the classes for aperiodic events (AperiodicEvent
and AsyncEvent)

3. Add a method release() to the class
AperiodicEventHandler

A software event is fired simply by invoking release() of
the related aperiodic handler. This will release the under-
lying thread and it will be scheduled according to its prior-
ity. The same method can also be called from an interrupt
handler to delegate some interrupt work to a second level
handler.

There might be an argument that this solution is less flex-
ible than the RTSJ style possibility to map several handlers
to one event and/or several events to one handler. However,
the same functionality can be implemented by the applica-
tion when invoking several release() methods on a single
event for the first case and invoke the release() from one
handler at different events in the second case.2

2This suggestion of using a release() method on
AperiodicEventHandler has been accepted by the SCJ expert

5.2 Application Startup
The SCJ defines a Safelet for the SCJ application and

makes it vendor specific how the runtime knows which class
will be the main class, which implements the Safelet. Our
vendor specific solution is a standard Java main() method
that needs to create the application class. The startup code
for the SCJ example from Figure 1 is as follows:

public static void main(String[] args) {
JopSystem.startMission(new HelloSafelet());

}

For a SCJ solution we need to define a static start appli-
cation method in some SCJ class. This solution feels very
natural for a Java programmer. The main argument against
this Java main() method is that a SCJ application has to
start with immortal memory and in standard Java (and in
the RTSJ) main is executed in the heap memory context.
However, if there is no GC the heap is implicitly immortal. A
weaker argument is that the reference implementation (RI)
shall run on top of the RTSJ and therefore this main() will
run in heap. This can easily be solved by the same means
as a Safelet is created and used in the RI. Use a different
main for the execution of the RI, which first enters immortal
memory and then invokes main of the SCJ application.

Using the common Java method to provide a static main

method for SCJ application startup would also mean less
vendor-specific Java code (or scripts) for an SCJ application.

As a compromise between the current vendor specific no-
tion of the SCJ start and the main() method might be a
static method with a different name and signature. It would
make it clear that this application is not a standard Java
application, but also avoid the vendor specific solutions for
specifying and creation of the application object.

5.3 Immortal Memory
It is convenient to allocate some data structures, e.g., a

reference to the console, shared data for a single mission, or
shared data between missions, in immortal memory. Refer-
ences to such data can then be stored in static fields and are
therefore easily accessible by event handlers. However, no
user visible method is executed in immortal memory. Two
possibilities exist to allocate shared data in immortal mem-
ory: (1) enter immortal memory from mission initialization
or (2) use static class initializers, which are executed in im-
mortal memory.

Entering immortal memory from the first mission initial-
ization method is cumbersome and also ties allocation in
immortal memory to a dedicated mission. Using static class
initializers is fine for short code sequences, but becomes
also cumbersome when more initialization code is needed.
Furthermore, extensive usage of static class initializers can
easily lead to cyclic dependencies of static class initializers,
which is disallowed in SCJ.

An easy solution would be a method on Safelet that is
executed by the SCJ infrastructure in the immortal memory
allocation context before a mission sequencer is requested
and mission memory objects are created. This method could
be called initialize(), similar to the initialization method
of a mission, which is executed in mission memory.

group and is now part of the current specification. The
AperiodicEvent and AsyncEvent have been removed from SCJ.
The event handler still extends the RTSJ based event han-
dler classes.

6. CONCLUSIONS
The definition of a standard specification needs an im-

plementation of it and usage applications to evaluate if the
specification is sound. This is even important before the
specification is finished. We have implemented a prototype
version of the upcoming safety-critical Java standard on the
Java processor JOP. We did not run into any main issues
that hamper the implementation of SCJ. However, as the
specification is still under development, we need to continu-
ously update our implementation of it.

7. ACKNOWLEDGMENTS
The Authors would like to thank Torur Strom for the sug-

gestion of the singleton delegation mechanism to simulate
friend classes in Java. Furthermore, we would like to thank
the reviewers for their long and detailed reviews that helped
to improve the paper.

This work is part of the project “Certifiable Java for Em-
bedded Systems” (CJ4ES) and received partial funding from
the Danish Research Council for Technology and Production
Sciences under contract 10-083159.

8. REFERENCES
[1] Aonix. Perc pico 1.1 user manual.

http://research.aonix.com/jsc/pico-manual.4-19-
08.pdf, April
2008.

[2] Austin Armbruster, Jason Baker, Antonio Cunei,
Chapman Flack, David Holmes, Filip Pizlo, Edward
Pla, Marek Prochazka, and Jan Vitek. A real-time
Java virtual machine with applications in avionics.
Trans. on Embedded Computing Sys., 7(1):1–49, 2007.

[3] Thomas Bøgholm, René R. Hansen, Anders P. Ravn,
Bent Thomsen, and Hans Søndergaard. A predictable
java profile: rationale and implementations. In JTRES
’09: Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems, pages 150–159, New York, NY, USA, 2009.
ACM.

[4] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Java Series.
Addison-Wesley, June 2000.

[5] Alan Burns, Brian Dobbing, and G. Romanski. The
Ravenscar tasking profile for high integrity real-time
programs. In Proceedings of the 1998 Ada-Europe
International Conference on Reliable Software
Technologies, pages 263–275. Springer-Verlag, 1998.

[6] Thomas Henties, James J. Hunt, Doug Locke, Kelvin
Nilsen, Martin Schoeberl, and Jan Vitek. Java for
safety-critical applications. In 2nd International
Workshop on the Certification of Safety-Critical
Software Controlled Systems (SafeCert 2009), York,
United Kingdom, Mar. 2009.

[7] Jagun Kwon, Andy Wellings, and Steve King.
Ravenscar-Java: A high integrity profile for real-time
Java. In Proceedings of the 2002 joint ACM-ISCOPE
conference on Java Grande, pages 131–140. ACM
Press, 2002.

[8] Doug Locke, B. Scott Andersen, Ben Brosgol, Mike
Fulton, Thomas Henties, James J. Hunt,

Johan Olmütz Nielsen, Kelvin Nilsen, Martin
Schoeberl, Joyce Tokar, Jan Vitek, and Andy
Wellings. Safety-critical Java technology specification,
public draft, 2011.

[9] K. Nilsen and S. Lee. Perc real-time api (draft 1.3).
newmonics, July 1998.

[10] Kelvin Nilsen. Harmonizing alternative approaches to
safety-critical development with Java. In Proceedings
of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2011), pages 54–63, 2011.

[11] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time
Java on resource-constrained platforms with Fiji VM.
In Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2009), pages 110–119, New York,
NY, USA, 2009. ACM.

[12] Ales Plsek, Lei Zhao, Veysel H. Sahin, Daniel Tang,
Tomas Kalibera, and Jan Vitek. Developing safety
critical Java applications with oSCJ/L0. In
Proceedings of the 8th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2010), pages 95–101, New York, NY,
USA, 2010. ACM.

[13] Peter Puschner and Andy Wellings. A profile for high
integrity real-time Java programs. In 4th IEEE
International Symposium on Object-oriented Real-time
distributed Computing (ISORC), 2001.

[14] Juan Ricardo Rios and Martin Schoeberl. Hardware
support for safety-critical Java scope checks. In
Proceedings of the 15th IEEE International
Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2012), pages
31–38, Shenzhen, China, April 2012. IEEE.

[15] Martin Schoeberl. Real-time scheduling on a Java
processor. In Proceedings of the 10th International
Conference on Real-Time and Embedded Computing
Systems and Applications (RTCSA 2004),
Gothenburg, Sweden, August 2004.

[16] Martin Schoeberl. Restrictions of Java for embedded
real-time systems. In Proceedings of the 7th IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2004),
pages 93–100, Vienna, Austria, May 2004. IEEE.

[17] Martin Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[18] Martin Schoeberl. JOP Reference Handbook: Building
Embedded Systems with a Java Processor. Number
ISBN 978-1438239699. CreateSpace, August 2009.
Available at
http://www.jopdesign.com/doc/handbook.pdf.

[19] Martin Schoeberl. Memory management for
safety-critical Java. In Proceedings of the 9th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2011),
pages 47–53, York, UK, September 2011. ACM.

[20] Martin Schoeberl, Stephan Korsholm, Tomas
Kalibera, and Anders P. Ravn. A hardware
abstraction layer in Java. ACM Trans. Embed.
Comput. Syst., 10(4):42:1–42:40, November 2011.

[21] Martin Schoeberl, Stephan Korsholm, Christian
Thalinger, and Anders P. Ravn. Hardware objects for
Java. In Proceedings of the 11th IEEE International
Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2008), pages
445–452, Orlando, Florida, USA, May 2008. IEEE
Computer Society.

[22] Martin Schoeberl, Hans Sondergaard, Bent Thomsen,
and Anders P. Ravn. A profile for safety critical Java.
In 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed
Computing (ISORC’07), pages 94–101, Santorini
Island, Greece, May 2007. IEEE Computer Society.

[23] Neeraj Kumar Singh, Andy Wellings, and Ana
Cavalcanti. The cardiac pacemaker case study and its
implementation in safety-critical Java and Ravenscar
Ada. In Proceedings of the 10th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2012), Copenhagen, DK,
October 2012. ACM.

[24] Hans Søndergaard, Stephan E. Korsholm, and
Anders P. Ravn. Safety-critical Java for low-end
embedded platforms. In Proceedings of the 10th
International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2012),
Copenhagen, DK, October 2012. ACM.

[25] Tórur Biskopstø Strøm and Martin Schoeberl. A
desktop 3d printer in safety-critical Java. In
Proceedings of the 10th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2012), Copenhagen, DK, October
2012. ACM.

[26] Andy Wellings and Martin Schoeberl. User-defined
clocks in the real-time specification for Java. In
Proceedings of the 9th International Workshop on
Java Technologies for Real-Time and Embedded
Systems (JTRES 2011), pages 74–81, York, UK,
September 2011. ACM.

